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Prologue

"Oh, you can’t help that,” said the Cat:

‘'we’re all mad here. I'm mad. You’re mad.’

"How do you know I'm mad?’ said Alice.

"You must be,” said the Cat, ’or you wouldn’t have come here.’
Lewis Carroll, Alice’s Adventures in Wonderland

From Aristotelian Logic to Logic nowadays, an incredibly huge progress has taken place. One of
the first in appear and the simplest is what we call now “Propositional Logic” and we are going to
review its most important aspects in the first section. Later on, during the 19th and 20th centuries, logic
was rediscovered and a mathematical structure was adopted. But the astonishing approach was the one
Godel and Tarski developed: a metalogic, logic which speaks about logic.

The main result Godel proved was that if an axiomatic system for arithmetic (Peano Arithmetic)
is consistent, i.e. it does not lead to any contradictions, and its axioms are recursive, then it will be
incomplete. What does it mean to be “incomplete”? To put it simply: to have at least one sentence
which is true but not provable in the system or a false sentence that cannot be proven to be false. This
sentence is usually called a “Godel sentence”.

This is related to the liar paradox, which consists of just one statement: “This sentence is false”. By
writing “not provable” instead of “false” we get what we called a Godel sentence, this time without a
contradiction. So, how can we write a sentence that states its own unprovability in the system? This is
what we are going to study in this thesis.

The discovery of Godel pointed out the limitations of axiomatic systems. A mathematical system
which contains enough arithmetic will never be able to prove all true sentences without proving falsities
as well.

This thesis is organised in the following way:

1. A first chapter on Propositional Logic which will serve as a review for those who already are
familiar with Logic and as a brief introduction to those who are not.

2. A second chapter on Predicate Logic and first-order systems, more complex than the ones in the
first chapter. Here, we are going to deal with objects, functions and relations.

3. In the third chapter, we are going to develop a first-order system in which Mathematics can be
expressed, more specifically, Peano Arithmetic.

4. Chapters 4 and 5 will take a vital part in the proof of the theorem since the notions of recursive-
ness, expressibility, representability and Godel numbers defined then are what is going to enable
us to see the problem from another point of view.
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5. Finally, the last chapter is devoted to the theorem itself and a further discussion about Godel’s
Second Theorem and Church’s Thesis.



Resumen en espanol

En este trabajo de fin de grado, vamos a estudiar uno de los teoremas mas importantes del campo de la
Légica, el Teorema de Incompletitud de Godel.

En pocas palabras, lo que dice es que si un sistema matemdtico contiene suficiente aspectos de la
Aritmética y es consistente, es decir, que no se pueda probar a la vez una cosa y su contrario, entonces,
por desgracia, ese sistema siempre va a ser incompleto. Esto quiere decir que hay alguna férmula
que, a pesar de ser verdadera, no puede ser probada. No porque la demostracion sea extremadamente
complicada, sino porque esa demostracién, simplemente, no existe.

Se ha estructurado este trabajo siguiendo un modelo constructivo, partiendo de la Légica mas basica
hasta llegar al teorema. En los primeros capitulos, se han obviado las demostraciones para no hacer
demasiado pesada la lectura y siempre en pos de la claridad.

La disposicion del trabajo es la siguiente:

1. El primer capitulo trata sobre la Légica Proposicional, la mas basica y sencilla. En este capitulo,
presentaremos a través de sus tablas de verdad los conectores 16gicos mds usuales, como la con-
juncién, la disyuncién o la negacién. Definiremos un sistema a partir de unos axiomas légicos.
Para terminar el capitulo, se mencionard la completitud de ese sistema formal, que nos asegu-
rard que podemos encontrar todas las tautologias o verdades del sistema en forma de teoremas, a
diferencia de lo que ocurre con otras Légicas que veremos en capitulos posteriores.

2. Un escaléon mds arriba se encuentra la Logica de primer orden, o Logica de predicados. En
ella, aparecen objetos (constantes, variables,...) que podemos cuantificar, ademds de funciones y
relaciones. Es una Légica mucho mds potente que la del capitulo anterior, ya que practicamente,
puede formalizar todas las Matematicas. La nocion de verdad aqui es un poco distinta, dado que
es necesaria una interpretaciéon. Una misma férmula puede ser verdadera bajo una interpretacion,
pero falsa bajo otra. También partiremos de unos axiomas para definir un sistema formal y se vera
que éste es completo, como pasaba con el sistema definido en el capitulo anterior.

3. En el tercer capitulo, ampliaremos nuestro sistema l6gico a uno que formalice la Aritmética de
Peano. Para ello, necesitaremos definir la igualdad y sus axiomas y también la suma y el producto.
Asi, construiremos un sistema . diseflado para este fin.

4. El capitulo 4 estd dedicado a las funciones recursivas, la expresabilidad y la representabilidad.
Estos tres conceptos se probard mds adelante que estin muy relacionados entre si. Ademds,
cumplirdn un papel clave en el desarrollo de la demostracién del Teorema de Incompletitud.

5. En el capitulo 5, veremos una de las ideas mas brillantes de Godel: expresar las férmulas de
la Logica en forma de niimeros. Este cambio de perspectiva serd el que nos permitird abordar
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el problema mds facilmente. Relacionaremos a su vez esto con la recursividad definida en el
capitulo anterior y daremos ejemplos de funciones y relaciones que quedan definidas a partir
de la numeracién de Godel y que ademds son recursivas. Precisamente, serdn algunas de estas
funciones y relaciones las que utilizaremos a la hora de demostrar el Teorema de Incompletitud.

. Por dltimo, en el capitulo 6 nos encontraremos el Teorema de Incompletitud de Godel. Para

entonces, ya tendremos casi todas las herramientas necesarias que nos permitirdn comprender la
demostracién. Tan solo nos hard falta demostrar el teorema del punto fijo y definir el concepto
de w-consistencia. A continuacion, enunciaremos el Segundo Teorema de Godel, que dice que
la Aritmética de Peano no puede demostrar su propia consistencia. Para terminar, se hablard
de la tesis de Church y lo que ella implica, que no existe ninglin procedimiento mecédnico para
determinar si una férmula es un teorema de la Aritmética o no.
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Chapter 1

Taking the first steps: Propositional Logic

Logic is something we use on a daily basis and we do not even think about it.

- If Charles goes to the cinema, he will see the movie about the two dinosaurs.

- Charles is at the cinema or he is watching a romantic movie at home.

- Therefore, Charles is either seeing the movie about the two dinosaurs or watching a romantic one
at home.

Moreover, we can also say:

- If a borogove is crying, it is mimsy.
- A borogove is crying or it does not exist.
- Therefore, a borogove is mimsy or it does not exist.

Both share the same structure and we can apply the same reasoning without even having to know
what “mimsy” or a “borogove” is. This is the magic of Logic. We deal with statements, not with their
meanings, and we can infer rules of more general applicability. Regardless of their meaning, these two
examples have the structure:

-If A, then B.
-AorC.
- Therefore, B or C.

Every time we see a structure like this, we can derive the conclusion, no matter what A, B or C
mean. Propositional Logic studies which are the correct patterns and which are not.

We have been talking about propositions and statements. What are they? They are sentences, or
situations of the world that can be true or false. From now on, we will use 1 to represent the truth value
“true” and O for “false”.

We can combine propositions in order to get more complex ones. For instance, —p stands for “not
p”. It is false when p is true and true when p is false.

P|™Pp
110
0| 1

The conjunction of two statements, pAq, is true whenever p AND q are both true, and is false if at
least one of them is false.
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P|dq|prAq
1[1] 1
1ol 0
0(1] 0
0(0] 0

The disjunction of two statements, pVq, is true if at least one of p and q is true, and is false only if
both are false.

pP|lq|prVq
T[1] 1
1[o] 1
01| 1
0(0] 0

One of the most important connectives is the conditional, p—q, which stands for “if p then q”. It is
true if and only if the antecedent p is false or the consequent q is true.

Plda|P—9
1|1 1
110 0
011 1
00 1

Finally we may denote by p<+q the statement “if p, then ¢ AND if q, then p”, that is, “p if and only

if .
Pld|Preq
1[1] 1
1[0 0
0(1] o©
0(0] 1

Definition. i) An atomic proposition is a letter which stands for an arbitrary and unspecified simple
statement.
ii) A propositional formula is an expression defined recursively as:
a) Any atomic proposition is a propositional formula.
b) If ./ and £ are two propositional formulas, then (—.o/), (&7 V A), (o/ N AB) and (o — RB)
are also propositional formulas.

An assignment is a mapping that assigns values in {0,1} to every atomic proposition in a proposi-
tional formula. As we said before, 1 stands for “true” and O for “false”. For p V g, an assignment could
be (0,1), that is, p takes value O and q takes value 1. In this case, by the truth tables from before, the
propositional formula would be true, since it has value 1.

Definition. A propositional formula is said to be satisfiable if there exists an assignment of truth values
in which the formula takes truth value 1.

A formula is said to be a tautology if for every assignment it takes value 1.

A formula is said to be a contradiction or unsatisfiable if there is no assignment in which the formula
takes value 1.
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For example, pVq is satisfiable, as we have seen. The law of excluded middle is a tautology: pV—p.
And pA—p is unsatisfiable.

It is clear that a o7 is a contradiction if and only if —.¢7 is a tautology.
Let’s define our logic system L by the following axioms:

Definition. The axioms of L are:
(L) (o = (#— o))
L) (o > (B—F) > (A >B)— (A —>F)))
L3) () = (~B)) = (B — A))
for any formulas .27, % and €.

From a set of axioms, we can prove new formulas using the inference rule: Modus Ponens. This
rule allows us to derive the consequent whenever we have a conditional and its antecedent:

If & — % and <7, then &
A proof of a propositional formula 7 in the logic system is a sequence of formulas ending in &/

such that each one of them is either an axiom or a direct derivation by Modus Ponens (MP) from two
previous formulas in the proof. A theorem is a formula that is provable, i.e., the last line of a proof.

For example, let’s give a proof the theorem &/ — o7

1. o = (o — o) (Axiom L1)
2. - (A > ) — ) (Axiom L1)
3. (A - (A > A)—>A))— (A = (F =)= (o — o)) (Axiom L2)
4. (o - (A - A)) = (A — ) (MP 2,3)
5. — o (MP 1,4)

Of course, no formula that has a proof in the system can be a contradiction because the system
would be inconsistent!

What about the converse? Can every tautology be proved? In other words, is the logic system
complete?

In Propositional Logic, that is the case: the theorems are exactly the tautologies. Our syntactic logic
system “encapsulates” the semantic notion of tautology.



Chapter 2

Objectivising Logic: Predicate Logic

Propositional Logic allows us to derive logical conclusions based only on relations among propositions.
Unfortunately, it is not adequate when we want to work in a more general context.

For example, from “Every riddle has a solution” and “The prisoners and hats problem is a riddle”,
one would infer “The prisoners and hats problem has a solution” but Propositional Logic can’t.

We are in need of quantifying objects in our language, so we introduce the symbol V, which means
“for all”.

For example, given a formula .7 (x) which depends on x, “Vx(.2(x))” is the universal quantifier and
means “for all x, the formula <7 (x) is true”.

The symbol 3 is the existential quantifier and means “there exists”. For instance, “3x(<7(x))” is
“there exists an x such that o7 (x)”.

For example, “every positive number has a positive square root” can be written as:

Vx((x>0) = Iy((y > 0) A (x =y*y)))
Note that we could also have defined the existential quantifier by means of the universal one:
(A (x)) = —Vx(— (x))
We are going to use the following alphabet of symbols for the language we will call .Z":
1. x1, x2,... as variables.
2. ay, as,... as individual constants.
3. AL AL, A% A2,... as predicate letters.

4. fll, f21,..., f12, f22,... as function letters.

For example, defining the predicate letters A} as “is a girl”, A% as “is the father of” and the individual
constants a; as “Emma” and a, as “David”, we can translate “Emma is David’s daughter’:
Al(ar) NA?
1(a1) NAY(az,a1)

Regarding predicate and function letters, the number over them indicates their arity, that is, the
number of arguments they take.
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Definition. A term in our language .7 is defined recursively as follows:
1) Variables and individual constants are terms.
ii) For every function letter f' and terms t1,.., t,, f/'(t1,...,,) is a term.

The definition of formulas in Predicate Logic (also known as first-order logic) is almost the same as
in Propositional Logic, adding the universal quantifier.

Definition. An atomic formula in .Z is A’J‘-(tl , ., Ix) Where A'J‘- is a predicate letter and ¢,..., t; are terms.

Definition. A well-formed formula (wf. for short) in .Z is an expression defined recursively as:

1) Any atomic proposition is a well-formed formula.

ii) If o7 and A are wfs., then (—o7), (' V B), (A NAB), (o — PB) and (Vx;(/)) are also well-
formed formulas.

We say that a variable x; is bound in a wf. if it occurs within the scope of a universal quantifier Vx;
in the wf., or if it is the x; in a Vx;. x; is said to be free otherwise.

For example, in A} (x1) — (Vx2(Al(x2,x1))), x1 occurs free both times it appears and x; is bound by
the quantifier.

A term tis free for x; in a wf. & if x; does not occur free in <7 within the scope of a (Vx;), where x;
is any variable occurring in t. In this case, we can substitute every free occurrence of x; in .27 for t.

Definition. An interpretation I of the language consists of a non-empty set Dy, which is called the
domain of I, some elements of D; (a;, a»,...) (one for each individual constant), some functions on D;
(]7:7 ,1 >0, n > 0) (one for each function letter) and some relations on D; (K?, i >0, n > 0) (one for each
predicate letter).

For example, assume we have a language with an alphabet that contains ay, A% and flz. Let
D;={0,1,2,...}, the set of natural numbers. Here, a; is O (this is the interpretation of the individual
constant a;). The relation = is the interpretation of A?, and addition is the interpretation of f12.

Now, the formula Vax; (A2(f2(x1,a1),x1) has the interpretation “for every natural number x, x+0=x".
Obviously, the formula is true in this case.

But, what if the interpretation of f12 was multiplication instead of addition? Then, the formula would
be interpreted as “for every natural number x, x*0=x", which is false.

Therefore, we cannot say that a formula in a first-order language is true or false. We can only say
that when we are given an interpretation of the language. As we have seen, the same formula can have
different truth values for different interpretations.

As the reader may have intuitively thought, every term of .Z is related to an object in the interpre-
tation by means of a function v from the set of terms of .£”:

v(ai) =a,

V(I (t1yestn)) = fr (0(11), -, v(20))

Such a function v is called a “valuation in the interpretation I”.
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Definition. A valuation v in I is said to satisfy a wf. .27 in the following situations:

i) v satisfies the atomic formula A’(t1, ...,1,) if Z?(v(tl )s---sV(2y)) is true in Dy.

ii) v satisfies =% if v does not satisfy Z.

iii) v satisfies (# — €) if v satisfies =% or v satisfies €.

iv) v satisfies (Vx;) 2 if for every valuation w such that v and w have the same values on each of the
variables, except possibly on x;, w satisfies Z.

Now, we have the tools to define truth in a predicate language.

A wf. formula is said to be frue in an interpretation if it is satisfied by every valuation in the
interpretation. It is said to be false if there does not exist any valuation which satisfies the formula.

Moreover, a wf. is called “logically valid” if it is true under every interpretation. On the other hand,
it is called a “contradiction” if it is false under every interpretation.

Notice that logically valid formulas are the analogous to tautologies in Propositional Logic.

At this point, mimicking the last chapter, we continue to define the axioms of what is going to be
our formal system K :

Definition. The axioms in our system K ¢ are:

KD (o = (B — A)).

K2 (o = (B—=FC) = (o = B)— (o = F))).

K3) (o) = (=2)) = (B = ).

(K4) ((Vx;)of — <), if x; does not occur free in o7 .

(KS) ((Vx;)e (x;) — (1)), if o7 (x;) is a wf. of .Z and t is a term in . which is free for x; in
%(x,‘).

(K6) (Vx;)(of — B) — (o — (Vx;)A), if o/ contains no free occurrence of the variable x;,

for any formulas &7, % and €.

e N L

As before, we will use Modus Ponens as a rule, but we will add a new one:
Generalisation: for any wf. <7 and any variable x;, from <7, deduce (Vx;)</.

The definition of a proof is the same: a sequence of wfs. .@,..., of £ such that every one is
either an axiom or follows from previous formulas in the proof by Modus Ponens or Generalisation. We

call the last member of a proof a theorem.

Theorem 2.1. Soundness Theorem
If awf. o is a theorem of K o, then it is logically valid.

Therefore, our logic system is consistent, i.e. it cannot prove both o7 and —.¢f for a wf. <7
Besides, the converse of Theorem 2.1 is also true in Predicate Logic:

Theorem 2.2. Adequacy Theorem
If awf. o is logically valid, then it is a theorem of K .

This is also known as Godel’s completeness theorem for Predicate Logic. We can perceive here the
same “‘encapsulation” of semantics and truth by syntax and theorems as in Propositional Logic.



Chapter 3

Into deeper waters: Mathematical systems

As we argued before, the only “universal truths” in this system are the theorems. But there are more
wfs. that can be true under certain interpretations. We are dealing with structures, not meanings. As
mathematicians, we would like to have a logic theory that could be applied to Mathematics. We would
like then to have a symbol that meant “equality”, and we should introduce some axioms in order to
grasp its essence.

We extend the system in the following way:

Definition. The axioms regarding equality are:

(E7) (Vxl)(xl :Xl).

(E8) (tx = u) = (fI(t1, ... thy s tn) = f1(t1, ... 4, ..., 1y)), for any terms f1,..., t,, u and any function
letter f7'.

(E9) (tx =u) — (Al(t1,...,1¢, ..., 1) = (Al(t1,...,u,...,t,)) for any terms ..., t,,, u and any predicate
symbol A}.

Notice that “=" is a predicate symbol, we could also call it A2, for instance, but we keep this notation
because of its clarity.

Any system with axioms (K1) to (K6) and (E7) to (E9) is called a first-order system with equality.

For example, let’s prove the commutativity property:
(Vx1) (Vx2) ((x1 = x2) = (32 = x1)).
1. (x1 =x2) = ((x1 =x1) — (x2 = x2)) using (E9) for A? as the symbol “=".

2. (r1=x2) = (1 =x1) = (2 =x1))) = (((x1 =x2) = (x1 =x1)) = ((x1 = x2) = (%2 =x1)))
because of (K2).

3. ((x1 =x2) = (x1 =x1)) = ((x1 =x2) = (x2 =x1)) by Modus Ponens 1, 2.
4. ((x;1 =x1) = ((x1 =x2) = (x1 =x1))) by (K1).

5. x1 =x1 by (E7).

6. (x; =x2) — (x1 = x1) by Modus Ponens 4, 5.

7. (x1 =x2) — (x2 = x1) by Modus Ponens 3, 6.

8. (Vx1)(Vx2)((x1 = x2) — (x2 = x1)) using Generalisation in 7.

7



8 Chapter 3. Into deeper waters: Mathematical systems

The transitivity of equality is also easily proved:
(V1) (Vx2) (Va3 ) (v = x2) = (02 = x3) = (x1 = x3))).

Now that we have the equality symbol, can we continue and add some more elements of Mathe-
matics? Yes, why not? Let’s take 0 as the interpretation of the constant variable a;, the successor of a
number as the interpretation of fll, the sum of two numbers as the interpretation of f12 and the product
as the interpretation of f22. For the sake of clarity, we will use the common mathematical symbols: x/, +
and *. This system is what we are going to call .7

Again, we should add some axioms for these new characters in the story.

Definition. . is the first-order system with the language £ of Arithmetic and axioms (K1) to (K6)
and:

(S1) (Vx1)(Vx2) (Vx3) ((x1 = x2) = ((x1 = x3) = (22 = x3))).
(S2) (Vx1)(Vx2) ((x1 = x2) = (x1" =x5)).

(83) (Vxp)=(x} =0).

(S4) (Vx1)(Vxo) (¥} = x5) — (x1 =x2)

(SS) (Vxl)(xl +0= xl)

(S6) (Vx1)(Vx2)(x1 +x5 = (x1 +x2)).

(S7) (Vx1)(x1 x0=0).

(S8) (Vx1)(Vx2) (1 % x5 = (x1 % x2) 4 x1).

(S9) <7 (0) = ((Vx1) (o (x1) = o/ (x])) = (Vx1)( (x1)), for any wf. . in which x; occurs free.
The axioms (S1)-(S9) are called proper axioms.

Given a language ., a first-order system or a theory is an extension of K by adding some proper
axioms. In particular, .# is a theory with proper axioms (S1)-(S9), the ones from Peano Arithmetic for
the natural numbers, regarding + and *. The last one, (S9) is a version of the Principle of Mathematical
Induction.

From these new axioms, one can derive (E7) to (E9), so this is a first-order system with equality.
Notice that a first-order system with equality is a theory, with proper axioms only the ones regarding
equality.

Let’s prove, for example, (Vx)(Vy)(Vz)((x+z=y+z) — (x=y)). This is the so-called “cancellation
law for addition”. We are going to use (S9), the induction principle on z:

1. Ttis clear that (x+ 0 =y+0) — (x =y) (just using (S5)).

2. Now, assume (x+z=y+z) —= (x=y). Does (x+7 =y+7') — (x =1y)? The latter is equivalent
to (x+z)'=(y+2)) = (x=y), because of (S6). Now, using (S4), (x+z=y+2) = (x=1y)?
But this is true by the induction hypothesis.

3. By Generalisation, (Vx)(Vy)(Vz)((x+z=y+2z) = (x=1y)).

This way, we can work with natural numbers as well as with wfs. in the logic system.

It is clear that .7 is consistent, since it’s just an extension of a consistent axiom system and the new
axioms we added are true in the standard model of arithmetic (the one with domain the set of natural
numbers and +, *, 0 and 1 having their ordinary meaning).
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But the important question is: “Is .’ complete?” Obviously, we would like it to be. All truths would
be provable and all falsities falsifiable. Such a wonderful mathematical paradise!

Unfortunately, this is not the case, as we shall see later with the proof of Godel’s Incompleteness
Theorem.



Chapter 4

The path towards the theorem I:
Recursiveness

The last three chapters have been a very brief introduction (or refreshment) to the main aspects of the
context in which the theorem arises.

Now, we can deal with a formal system that formalises arithmetic. But we still need more tools in
order to understand what Godel proved.

The strategy we are going to follow from here to the theorem is this: in this chapter, we are going
to define an important class of functions and deduce several of their properties. The most important
concept in this chapter is the notion of “recursiveness”, which will play a determinant role in the proof
of our theorem. In the next chapter, we are going to present the ingenious idea Godel had to express
logic formulas in terms of numbers. Those are commonly known as “G6del numbers” and are also key
in the proof.

Definition. A number-theoretical function (or relation) is a function (or relation) whose arguments are
natural numbers. A number-theoretical function takes natural numbers as values.

For example, addition is a number-theoretical function of two arguments, and so is multiplication.

__9

=" is a number-theoretical relation that also takes two arguments.

The terms 0, 0, 0”.... are called numerals and are denoted by 0, 1, 2,...

Definition. a) A number-theoretical relation is expressible in a theory K if and only if there exists a wf.
PB(x1,...,x,) of K with free variables xi,..., x, such that for any natural numbers ki, ...,k;:

i) If R(ky,...k,) is true, then B (k1 ...,k,) is provable in K.

ii) If R(ky,...k,) is false, then =~ (kj, ...,k,) is provable in K.

b) A number-theoretical function is representable in a theory K if and only if there exists a wf.

PB(x1,...,%n,y) of K with free variables xi,..., x,, y such that for any natural numbers ki, ..., k,, m:

i) If f(ki,...k,) = m, then B(ki,...,k,,m) is provable in K

i) (3y)B(k1,...,kn,y) is provable in K.

For example, the zero function, Z(x)=0, is representable in K by the wf. (x1 =x1)A(y=0). For i),
if Z(k)=m, then obviously m=0 and (k; = k;) A (0 = 0). ii) is also easily proved.

The successor function, N(x)=x+1, is representable in K by the wf. y = x}.

The projection function, U7 (x1,...,x,) = x;, is representable in K by the wf. (x; =x1) A (x2 =
X)) N A (X =X0) A (y = ;).

10



Gdodel’s Incompleteness Theorem - Jorge del Castillo Tierz 11

Let R be a relation that takes n arguments. The characteristic function of R is defined by:

0 if R(x,...,x,) istrue
CR(’”""’X"){l it R(xi,..,x,) is false

Now, we see a relation between expressibility and representability.

Proposition 4.1. For any theory K with equality, if it is provable in the system that 0 # 1, then a
number-theoretic relation R is expressible in K if and only if the function Cg is representable in K.

Proof. =>) R is expressible in K by a wf. .o/ (xy,...,x,). It is easy to prove that Cg, is representable
by ( (X1, eesn) A (y = ) V (7 (21, ey ) A (3 = 1). )

<=) Cg is representable in K by Z(xy, ...,x,). Using the fact that "0 # 1" is a theorem of the system,
then R is expressible in K by #(x1,...,x,,0).

Definition. A function f is recursive if one of the following is true:

a) It is the zero function, Z(x)=0 for all x, the successor function, N(x)=x+1 for all x, or a projection
function, U}*(x1, ...,Xx,) = x; for all xq,..., x,.

b) It can be obtained from the functions in a) by a finite number of steps using the following rules:

i) (Substitution) g(h1(x1,...,Xn)..., Am(x1, ..., X)) is the result of substituting the functions A; (x1, ..., x,),
eees P (X1, ..., X,) in the function g(yq, ..., ym)-

ii) (Recursion) Given g(xi,...,x,) and h(xy,...,x,12), the function f such that f(xi,...,x,,0) =
g(x1,..yxy) and f(xp, ..., xn,y+ 1) = h(x1, ..., xn,y, f(x1,...,x,,y)) is said to be obtained by recursion. In
the case n=0, we have that f(0) = k for k a fixed natural number and f(y+ 1) = h(y, f(y)).

iii) (Restricted p-Operator) Given a function g(xi,...,x,,y) such that, for every xi,..., x, there
exists a y such that g(xi,...,x,,y) = 0, define the function pug(xi,...,x,) = min{y|g(xi,...,x,,y) = 0}
where U is called p-operator.

Examples

1. If f(x1,...x;) is a recursive function, then g(xy, ..., Xk, Xgt1,---sXn) = f(X1,...x¢) is also recursive.

2. Another trivial example is that if f(x],...x,) is a recursive function, then we can permute variables
and f(x3,x1,X2,...,X,) is also recursive.

3. If f(x1,...,x,) is a recursive function and g(xy,...,x,—1) = f(x1,...,%,—1,X1), that is, we identify
the last variable in f with the first one, then g is also recursive.

The following functions are recursive:

4. x+y. Let f(x,y) =x+y and g(x) = x. g is recursive since it is the identity, a projection function.
Now, f(x,0) =x+0=ux=g(x). And f(x,y) =x+y' = (x+y) = h(x,y,x+y) = h(x,y, f(x,y)),
where / is the composition of a projection and the successor functions, recursive by the substitu-
tion rule.

5. x*y. The proof is very similar to the one in 4.

6. The predecessor function

x—1 if x>0
5()6)_{ 0 if x=0

is recursive. Here the proof is also based on the recursion rule.
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Chapter 4. The path towards the theorem I: Recursiveness

7. The function

10.

11.

12.

13.

14.

15.

16.

17.

18.

S Jx=y if x>y
* y‘{ 0 if x<y’

o Jxey it x>y
x y*‘{y—x if x<y’
Observe that [x —y| = (x — y) + (y — x).

o [0 i x=0
SEWTNL i x£0

Here, sg(x) = x — 8(x), therefore it is clear that it is recursive.

_ 0 if x=0
sﬂﬂ:{lifx#O'
min(xy, ..., X,).
max(xi,...,X,).
rm(X,y)= remainder upon division of y by x.
qt(x,y)= quotient upon division of y by x.

If g1,...gx and Ry,...,Ry are recursive functions and relations, respectively, and for any x,...x;, one
and only one of the relations R; (x1,...,X,),..., Rg(x1, ..., X,) is true, then the function:

g1(x1y.yxy) if Ry (x1,...,X,) iS true
&2(x1y ey x)  if Ra(x1,...,xy) iS true

flxr,.x,) =

gk(x1,.y ) if Re(x1,...,x) i true

is also recursive. The reason is that f(xy,...,x;) = g1(x1,...,Xn) *S§(CR, (X1, ..., Xn)) + -+ g (X1, ...
@(CRk(xl,...,xn)).

If f(x1,...,X,,Y) is recursive, then

Hf(x17"'7xn,y):{ 1 %f Z:O
o Sty ey X, 0) sk f (1 ooy Xz — 1) if >0

18 recursive.

The function p(x) (or, as we shall denote it in the future, p,) given by p(x)= x'* prime number, is
recursive. For example, pp=2, p1=3, p»=5,...

Given a number x and its factorisation into prime powers x = pg’p{' - -- pi*, define the function
(x)j = a;. It is also recursive.
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We would like sometimes to define functions by a recursion in which f(xi,...,x,,y+ 1) does not
depend only on f(xi,...,x,,y), but on several (possibly all) values of f(xi,...,x,,u) for u <y. This

type of recursion is called course-of-values recursion. Let f#(xy,...,x,,y) = pr:(x"""x”’u). That
u<y
is, f# “stores” all the previous values of f. Note that f can be obtained from f#: f(xy,...x,,y) =

(f#(-x]7"‘7-xn7y+ 1))y

Proposition 4.2. If f(xi,...,x,,y,2) is recursive, then h(xy,...,xXn,y) = f(X1, .0, Xn, Y, fH(X1, -0 Xn,Y)) is
recursive.

Proof.
h#(xp,...,x,,0) =1

h#(xlr”u-xn)y'i_ 1) = h#(.x1, ...,Xn,y) *pg(xl""vxnay)

— h#(x17'~-7-xn;y) *p;(xl7~~7xn:yah#(xl7~-~,xmy))

Therefore, by the recursion rule, A# is recursive and

h(xi,...,xn,y) = (f#(x1, ..., x5,y +1))y.

Corollary 4.1. Let H(xy,...,x,,y,2) be a recursive relation.
If R(x1,...,X,,Y) holds if and only if H(x1,...,xn,y, (CR)#(x1,...,Xn,y)), then R is recursive.

Proof. We can express Cg(x1,...,Xu,,y) = C(x1,...s Xn, ¥, Cr(X1, ..., Xs,Y)). Cg is recursive, so Cg is
recursive too by the previous proposition, and, therefore, so is R.

Now, we are arriving at one of the important results in this chapter: that the notion of recursive-
ness implies representability or expressibility, depending on whether we are talking about functions or
relations. But, first, we need two lemmas.

Lemma 4.1. Godel’s B-function

Define B(x1,x2,x3) = rm(1+ (x3+ 1) xxp,x1) (remember that rm is just the remainder of the divi-
sion).

We know that B is recursive. Furthermore, it is representable as well. And a wf. that represents 3 is

B(x1,x2,x3,y) : (AW)((x1 = (1+ 3+ 1) sx2) s« w+y)A(y < 1+ (x3+ 1) %x2)).

Lemma 4.2. Let kg, ky,..., k, be a sequence of natural numbers. Then there exist natural numbers b and
¢ such that B(b,c,i) =k; for 0 <i<n.

Proposition 4.3. Every recursive function is representable in ..

Proof. For the proof, see proposition 3.24 of [Mendelson].

Corollary 4.2. Every recursive relation is expressible in ..

Proof. Let R(xy,...,x,) be a recursive relation. We know that Cy is also recursive. By the last
proposition, Ck is representable in .. Now, using Proposition 4.1, we conclude that R is expressible in

.



Chapter 5

The path towards the theorem II: Godel
numbers

Definition. The Godel number of a symbol u in a first-order theory K is an odd positive integer g(u)

defined as follows:
1) g(0=3, g0)=5, g()=7, g(-)=9, g(—)=11, g(V)=13.
ii) g(xg)= 13+8k for k > 1.
iii) g(ay)=7+8k for k > 1.
iv) g(fih= 1+8(2"3%) for k,n > 1.
V) g(A))= 3+8(2"3K) for k,n > 1.

Indeed, every Godel number is an odd number. Moreover, we can “recover” the symbols from their
numbers in this way: if the number is 3, 5, 7, 9, 11 or 13, then it is clear which symbol it comes from
(the ones in 1)); otherwise, divide by 8 and if we can express it with a remainder of 5, then the original
symbol is a variable as in ii); if the remainder is 7, it is an individual constant as in iii); if itis 1, itis a

function letter as in iv); and if it is 3, then the symbol is a predicate letter as in v).

Examples

1. The Godel number of x3 is g(x3)=13+8*3=37.
2. The Godel number of a; is g(a;)=7+8*%2=23.
3. The Godel number of f23 is g(f23):1+8(2332):1+576:577.

4. The Godel number of A3 is g(A3)=3+8(2%31)=3+192=195.

5. Which is the symbol whose Godel number is 45?7 Dividing by 8, we get 45=5%8+5. But 5 is not

one of our remainders. No, but... 45=4*8+13. And therefore, the symbol is x4.

6. Which is the symbol whose Godel number is 31?7 Again, we divide by 8 and 31=3%8+7. There-

fore, the original symbol is as.

7. What if the number is 145? Proceeding in the same manner, 145=8*18+1. The symbol must be a

function letter and, since 18 = 2 %32, it must be f}.

8. If the Godel number is 51=8*6+3, then it must be the predicate letter A} because 6=2%3.

Now, how can we translate into numbers in a similar way longer expressions, not only single sym-
bols? For instance, for (Vx;), should we write 313215, or rather 3+13+21+5? It does not seems a good
way to do so, because we wouldn’t be able to recover anything. For example, in the first case, 313215

14
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could also be a3(x;) and, in the second case, 3+13+21+5=42=3+39, that is, (a4, or even as( or )(x;V.
So what should we do?

Definition. Let ugu;...u, be an expression where each u; is a symbol of the first-order theory K. Its
Godel number is given by:

g(uouy...u,) = 2g(”0)3g(u1)._'p§(ur)

where p, means the j prime number, starting with py = 2.

Examples

1. The Godel number of the expression (Vx;) considered above is thus 2331352173,

2. The Godel number of f7(x1,x2) is 2°73352177112913° (do not forget the comma!). But in a dif-
ferent order, f(x2,x1) gives 2°73352977112113%, which is a different number.

3. The number 2°3°!53715115 comes from —A} (a;).

4. The symbol x; has Godel number 29, but the expression consisting only of x, has Gode/ number
2%,

Given a positive number, there exists only one expression (in case such an expression exists) whose
Godel number is that number, because of the unique factorization of integers into primes. Since every
expression has at least one symbol, the number 2 will be a factor of every Godel number of an expres-
sion, i.e. Godel numbers are even. Moreover, since the Godel number of a symbol is always an odd
number, these are not only even, but the exponent of 2 in their factorization is odd. This is important, as
we shall see in a moment.

Definition. Let eg,eq,...,e, be a finite sequence of expressions of the first-order theory K. Its Godel
number is given by:

gleo,e1,...,e;) = 28(en)38(er) ,pz;’(er)'

How could we tell whether a given Gddel number comes from a sequence of expressions or from
a single expression? They have almost the same definition! There is no need to worry, the answer is
truly simple. As we stated before, the Godel number of an expression is an even number such that the
exponent of 2 in its factorization is odd. Well, since it is even, the Godel number of a sequence of
expressions will have an even power of 2 (and therefore, it will also be even). So, in conclusion: even
Godel number with an odd power of 2 => expression. Even Godel number with an even power of 2
=> sequence of expressions.

Notice that not every positive integer is the Godel number of something. For example, 14 or 20 are
not Godel numbers.

Since a proof in K is a certain kind of finite sequence of expressions, every proof has a Godel
number.

Definition. A theory K has a recursive vocabulary if the following relations are recursive:
1) IC(x): x is the Godel number of an individual constant of K,
ii) FL(x): x is the Godel number of a function letter of K, and
iii) PL(x): x is the Godel number of a predicate letter of K.
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Definition. A theory K has a recursive axiom set if:
PrAx(x): x is the Godel number of a proper axiom of K (i.e. it is one of (S1)-(S9))
18 recursive.

Proposition 5.1. Let K be a theory having a recursive vocabulary and a recursive axiom set, and whose
language contains the individual constant 0 and the successor function. Then the following functions
and relations are recursive:

1. EVbl(x): x is the Godel number of an expression consisting of a variable.

EIC(x): x is the Godel number of an expression consisting of an individual constant.
EFL(x): x is the Godel number of an expression consisting of an function letter.
EPL(x): x is the Godel number of an expression consisting of an predicate letter.

Wfix): x is the Gddel number of a wf. of K.

S T

MP(x,y,z): 7 is the Gddel number of the expression that is a direct consequence of the expressions
with Godel numbers x and y by Modus Ponens.

7. Gen(x,y): y is the Godel number of the expression that comes from the expression with Godel
number x by the Generalisation rule.

8. Fr(y,v): yis the Godel number of a wf. or term of K that contains free occurrences of the variable
with Godel number v.

9. Neg(x): the Godel number of the negation of the wf. whose Gddel number is x.
10. LAx(x): x is the Godel number of a logical axiom of K.
11. Prf(x): x is the Godel number of a proof in K.
12. Pfix,y): x is the Gddel number of a proof in K of the wf. with Gddel number y.

13. Sub(y,u,v): the Gddel number of the result of substituting the term with Godel number u for all
free occurrences in the expression with Godel number y of the variable with Godel number v.

14. D(u): the Godel number of B(u), if u is the Godel number of a wf. B(x).

We now have the means to prove the converses of proposition 4.3 and corollary 4.2.
Proposition 5.2. Let .7 be the theory as in the previous chapter. Let f(xi,...,x,) be a representable
Sfunction in . Then, fis recursive.

Proof. For the proof, see proposition 3.29 of [Mendelson].

Therefore, the class of recursive functions is identical to the class of representable functions in .7

Corollary 5.1. In the same situation, every number-theoretic relation that is expressible in . is recur-
sive.

Proof. Let R be an expressible relation. We know that Cy is representable in . if and only if R
is expressible in .. Therefore, Cr is representable. By the proposition, C is recursive. But, by the
definition, this means that R is recursive.

In conclusion, a number-theoretic relation R(xj, ...,x,) is recursive if and only if it is expressible in

.



Chapter 6

Facing the reality: The Incompleteness
Theorem

Remember we have defined a function D (which we will call diagonal function) such that D(u) is the
Godel number of (), if u is the Godel number of a wf. Z(x;). We are now going to use this function
to prove the following proposition.

Proposition 6.1. Fixed-point theorem
Let o/ (x1) be a wf- of the theory . in which x) is the only free variable.
Then, there exists a closed wf. 9 such that it is provable in the theory that

B < A (q),
where q is the Godel number of .

Proof. D is recursive. Therefore, it is representable by a wf. D(xj,x;) in .. Let m be the
Godel number of the wf. (Vx2)(D(x1,x2) — </(x2)). Substituting 7 for x; in this formula, we get
(Vx2)(D(7,x2) — <7 (x2)). Call this formula & and let q be its Gdel number.

By the definition of the diagonal function, D(m)=q. Since D(x;,x;) represents D in ., it is provable
that D(m,q).

We now have to prove that this 4 is the formula we are looking for. First, we prove that  — 27 (q)
is provable.

1. # Hypothesis

2. (Vx2)(D(m,x2) — o (x2)) Same as 1

3. D(m,q) — < (q) 2,K5
4. D(m,q) Proven above
5. (q) MP 3-4

And, therefore, 8 — <7 (g). Now, let’s prove the converse.

1. (g) Hypothesis

2. D(m,x;) Hypothesis

3. (3|x2)(D(m,x2)) Representability of D
4. D(m,q) Proved above

5. x=¢q 2-4, properties of =

17
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6. o (x) Properties of =
7. D(W,XZ) — JZ/(XQ)
8. (Vx2)(D(m,x2) — < (x2)) Generalization

Therefore, <7 (q) — (Vx2)(D(m,x2) — <7 (x2)), that is, <7 (q) — A.
By biconditional introduction, # <> <7 (q).

We just need two more ingredients to add: the notions of w-consistency and undecidability, and
everything will be ready for the Theorem.

Definition. A theory K whose language contains the individual constant 0 and the successor function
is said to be w-consistent if for every wf. .&7(x) of K containing x as its only free variable, if —.o7 (7) is
provable in K for every natural number n, then (3x) (27 (x)) is not provable in K.

It is easy to prove that w-consistency implies consistency: let A(x) be a wf. with X its only free
variable. Consider the formula Z(x) A ~%(x), let’s call it o7 (x). Of course, the negation of <7 (n) is
an instance of a tautology. Therefore, —.o7 (77) is provable in K for every natural number n. Since, K is
o-consistent, (3x) (e (x)) is not provable in K. If K were not consistent, it would be possible to prove
everything in K. But we found something that is not provable, so K is consistent.

Definition. An undecidable sentence of a theory K is a closed wf. € of K such that neither € nor =%
is a theorem of K.

Recall that Pf(x,y) means that x is the Gédel number of a proof in K of the wf. with Gédel number y.
If we stick to the theory .7, that is, Peano Arithmetic, we know Pf is recursive and, therefore, expressible
in . by awf. Zf(x1,x2).

Applying the fixed-point theorem to the wf. (Vx;)(—=Z2f(x1,x2)), there exists a closed wf. ¢ such
that

G (V1) (P f(x1,9))

is provable in ., where q is the Godel number of ¥.

As we stated in the introduction of this thesis, we were looking for a sentence that states its own
unprovability. But this is precisely what ¢ does! (Vx;)(—22f(x1,q)) says that there is no natural number
that is the Godel number of a proof in .% of the wf. ¢, that is, that there is no proof in . of ¢4. And,
since ¢ is equivalent to (Vx1)(—=Z f(x1,q)), it is clear that it does indeed assert its own unprovability.

This wf. ¢ is called a Godel sentence and we can now prove that ¢ is undecidable.

Theorem 6.1. Gaodel’s Incompleteness Theorem
Let .7 be Peano Arithmetic.
i) If & is consistent, then 9 is not a theorem of ..
ii) If % is w-consistent, then 9 is not a theorem of ..
Hence, if < is @-consistent, G is an undecidable sentence of <.

Proof. i) By Reductio ad Absurdum, assume ¥ is provable in .. Let r be the Godel number of a
proof, so Pf(r,q). Hence, &7 f(7,q) is provable in .. But, on the other hand, ¢ <> (Vx;)(—~Zf(x1,9))
is provable in .7, so (Vx1)(—Z f(x1,q)) is also provable in .. In particular, =2 f(7,q) is provable by
Modus Ponens. But this leads to a contradiction, since .# is consistent and & f(7,q) is provable in .7
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ii) Again, by Reductio ad Absurdum, assume that =¥ is provable in .. From the same property as
before, =(Vx;)(—=Zf(x1,q)) is provable. This formula is equivalent to (3x;)(Z2f(x1,g)). On the other
hand, .# is consistent, since it it w-consistent. Therefore, since =% is provable, it is not the case that
¢ is provable. In other words, there is no proof in . of ¢. This means that Pf(n,q) is false for every
natural number n. Therefore, =& f(7,q) is provable in . for every n. Finally, by @-consistency, it is
not the case that (3x;)(22f(x1,4)) is provable in ., which is a contradiction.

In consequence, ¢ is a sentence that states its own unprovability in .¥ and it is not provable in .7
Therefore ¢ is true in the standard model.

Another important consequence of what we have derived is Godel’s Second Theorem. We know that
there are some undecidable sentences. If we could express somehow the notion of consistency, would
it be a theorem of arithmetic? In other words, would the theory be "conscious" of its own consistency?
This is exactly what the Second theorem answers.

First, how can we express consistency by means of a wf.? A theory is consistent if there is no proof
of a wf. and its negation. The relation Pf and the function Neg are recursive. Hence, Pf is expressible in

& by awf. Zf(x,x;) and Neg is representable in . by a wf. .4 eg(x1,x2).

Let € on be the following wf.:

(V1) (Vx2) (V3) (Vo ) = (L f (x1,x3) A P f (x2,x4) NN eg(x3,x4)).

In the standard interpretation, this is the same as that there are no proofs in . of a wf. and its
negation.

Theorem 6.2. Gddel’s Second Theorem
Let .7 be the theory we have been working with (Peano Arithmetic).
If % is consistent, then € on is not a theorem of ..

Proof. For the proof, see proposition 3.42 of [Mendelson].

This means that a proof of consistency must use ideas and methods that are not available in .. In
fact, there are consistency proofs but it is not possible to formalise them in .7

Finally, we would like to conclude this dissertation by talking about Church’s thesis and what it
implies.

Church’s thesis: A number-theoretic function is effectively computable if and only if it is recursive.

What does it mean to be “effectively computable”? That there is an algorithm that correctly calcu-
lates the function.

Definition. Let K be a theory. K is recursively decidable if Th = {n € N| n is the Godel number of a
theorem of K} is a recursive set (that is, “x € Th is recursive”). Otherwise, K is recursively undecidable.

Assuming Church’s thesis, the notion of recursive decidability is equivalent to the fact that there
exists an algorithm that decides whether a formula is a theorem of K or not.
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Let K& be a first-order system on the language . of Arithmetic. Now, extend it by adding ALL
formulas of Arithmetic which are true in the standard model as proper axioms, obtaining a system that
is clearly complete. Tr = {n € N| n is the Godel number of a true wf. of K in the standard model} is not
recursive: if it was, we would have a recursive axiom set and, hence, the theory would be incomplete by
Godel’s Theorem, in contradiction with the fact that it is complete. In other words, accepting Church’s
thesis, there is no algorithm or decision procedure for determining whether a wf. of Arithmetic is true
in the standard model or not. This is a completely different situation from the one we had, for example,
in the first chapter. Back then, we had a decision method: constructing the truth table of the formula
and checking whether the last column has only 1’s. Besides, Th, the set of Gddel numbers of theorems
of .7, is not recursive either (for the proof, see section 7.4 of [Hamilton]). Hence, by Church’s thesis,
there is no algorithm capable of deciding whether a given formul/a is a theorem of Arithmetic or not.



Bibliography

[Berger] U. BERGER Logic for Computer Science. Lecture notes, University of Swansea, 2015.

[Genesereth] M. GENESERETH Introduction to Logic: Second Edition (Synthesis Lectures on Com-
puter Science), disponible en https://d396quszad4Oorc.cloudfront.net/intrologic/
notes/notes.html.

[Hamilton] A.G. HAMILTON Logic for Mathematicians. Revised edition, Cambridge University Press,
1978.

[Mendelson] E. MENDELSON Introduction to mathematical Logic. Fourth edition, Chapman & Hall,
1997.

21


https://d396qusza40orc.cloudfront.net/intrologic/notes/notes.html
https://d396qusza40orc.cloudfront.net/intrologic/notes/notes.html

	Prologue
	Resumen en español
	Taking the first steps: Propositional Logic
	Objectivising Logic: Predicate Logic
	Into deeper waters: Mathematical systems
	The path towards the theorem I: Recursiveness
	The path towards the theorem II: Gödel numbers
	Facing the reality: The Incompleteness Theorem
	Bibliography

