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Prologo

El presente trabajo estudia modelos sobre la distribucion del dinero entre la poblacion y los di-
ferentes factores que le afectan. Se recopilan para ello algunos trabajos esenciales sobre la materia
desarrollados tanto por matematicos como por fisicos y se respaldan con simulaciones numéricas que
corroboran lo mencionado. Todo ello intentando seguir un orden cronolégico que nos permite ver el
desarrollo del campo que nos concierne, la econofisica.

Tras una breve introduccidn histérica introduciremos un primer modelo bésico, el cual analizaremos
de formas distintas, para luego comenzar a introducir modificaciones sobre este. De esta manera, con-
seguiremos modelizar situaciones mds concretas de la vida cotidiana o incluso introducir la posibilidad
de préstamos de dinero entre la poblacién.

Cabe destacar que de las tres principales distribuciones sobre las que se centra la econofisica, dinero,
salarios y riqueza, inicamente nos centraremos en la primera y pese a que parece que hacen referencia
a elementos similares, no todos los resultados validos para un tipo de distribuciones son validos para
otros. De esta forma, los resultados aqui recogidos no deben ser extrapolados a las otras distribuciones
sin justificacion previa.

La mayoria de los célculos se desarrollardn en el propio trabajo para facilitar su seguimiento, salvo
en ciertos casos en los que el desarrollo completo de los calculos distraeria al lector del hilo principal
de la demostracién.

Las simulaciones se han obtenido mediante programacién en C++ y no se han incluido los progra-
mas por el cdracter informal de estos.
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Resumen

Along the centuries, philosophers and politicians have been worried about wealth. They were wo-
rried about its growth but, specially, about its distribution and developed many different models and
solutions for it. However, scientists did not care about it until statisticians started to accumulate data
about the wealth of the population. That was the first meeting between science and wealth distribution.
Later on, in the 80’s, the computers development allowed financial workers to save big amounts of data
and that made them hire physicists and mathematicians to handle it. They started making models just
to predict the market but, little by little, they continued focusing on many different objectives. The field
become wider until, finally, they considered again the problem of wealth distribution. With a deeper
knowledge on physics and mathematics than the first statisticians, they applied models developed on
physics to the problems they met. That engender econophysics.

In particular, for the case we are concerned, they started to use gas-type models. They considered
agents on the market as particles interacting in a gas. Those particles collide and, in each collision,
exchange energy. In a similar way, agents interact in pairs exchanging money. Depending on the rules
of the procedure different models are proposed taking into consideration saving propensity, loans, the
amount of money each agent trade or even how the agents relate with the others. These models could be
expressed just as exchange laws, as functional between probability spaces, as stochastic functions...

In this work, we will focus on models in which the amount of money exchanged is random. The first
model we will consider is the one that fulfills the following law: Let us randomly choose 2 agents, j and
i, and let m; and m; be the the amount of money they own respectively at the beginning of the trade and
m';, m; the amount they have at the end. Let € be a random number.

m;-:s(mj—i-m,-) mQ:(l—s)(mj+m,-)

By computer simulations, we can see how this model converges to an exponential distribution,
independently of the initial distribution. We can also formulate it as a functional between probability
spaces in the following way:

prr1(x) = T (pr)(x) = //S(x) Wdudv

where S(x) = {(u,v) € R*|u >0, v>0 u+v>x}. By very different results, using Laplace trans-
forms, results on integrals, on probability distributions and measures, it will be shown that this fun-
ctional, and therefore the succession of exchanges, converges to the Boltzmann factor, an exponential
probability distribution. We will also reach this result from geometry, considering equiprobability on
the N-hyperplane {(x{,x2,...,xx5) € RV|x; +x, + ... +xy = E} with E the total amount of money.

This exponential distribution matches with the empiric results observed on the wealth and income
distributions and also satisfies an interesting property: Although there is a big mass of agents with small
money, it also has more than a 50% of rich and medium class agents, what could help to make the
society generated "politically stable".

However, this model does not take in consideration an important fact. On its pursuit of generality,
the last model forgets that many of the exchanges are not undirected. When we go to the supermarket to
buy food, we always pay for the products we buy, and not sometimes pay and sometimes get paid for it.
The next model considers this, and it is call a directed model: Let us first choose, from the population,
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VI Capitulo 0. Resumen

the agent who will win the money and call it the agent j, the looser agent will be i. Let € be a random
number. The transaction law is:

mi=emi+m;  mp=(1-¢&)m

A functional formula can be found for this last model by considering 2 equal copies of the population
from which we extract the looser ad the winner of the trade. Thus:

Prr1(x) = T (pr)(x) :% T 2//<x<u+v . Py )a’udv

Following similar steps to the first case, it is shown that the model converges to a gamma distribution
of parameters 1/2 and < x >, with < x > the mean wealth of the system. This new distribution has also
an exponential tail, and it still fulfills the condition of having a population of rich and middle class
agents of almost 50 %.

Another condition to be considered is what happens when borrowing money is allowed. Borrowing
would force the model to not maintain the total amount of money but we can develop one with a bounded
limit. Back to the first model, we can consider that one of the agents can borrow (1 —a) times its money
(so it will have (2 —a)m; money), while the other agent just can lend (1 —a) times its money, when it
is supposed a < 1. The case a > 1 is symmetric. This leads us to the functional:

P =700 = [ [, o e

Note that the total amount of money will be conserved in the limit (the total money will not grow or
decrease from the initial amount) since the extra money obtained when the agent who gets the loan is
the one with more money will be compensated with the lost produced when the agent who gets the loan
is the one with less money.

Although there is no known probability distribution for the limit of the functional, it is proven that
it has a heavier tail than the first model and that this tail is heavier as the number a gets further from 1
at both sides, but without reaching it, something that can also be checked by computer simulations. For
the case @ = 1 we are in the first model again.

In the last chapter, we will focus on the distribution of money of the richest man. By giving general
conditions valid for any of the distributions studied before, we will give this distribution in terms of the
wealth distribution. We will model this situation as the maximum of n samples taken from the wealth
distribution. We will also study the maximum to conclude that the many samples we take to find the
maximum, the richest agent becomes still richer at each new iteration.
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Capitulo 1

1.1. Introduccion

En los afios 80, las grandes firmas financieras de WallStreet comenzaron a contratar a fisicos y
matematicos para analizar las ingentes cantidades de datos obtenidas debido a la informatizacién de las
bolsas. Durante los afios 90, gran cantidad de articulos fueron escritos, proponiendo nuevos modelos
sobre el mercado, inspirados o tomados directamente de la fisica, dando lugar a la econofisica, nom-
bre otorgado por H.E. Stanley en una conferencia en Kolkata. Pronto dejaron de fijarse tinicamente en
la evolucién de los activos financieros, sino que se centraron en las causas del mercado financiero, la
distribucién de la riqueza. De esta forma plantearon numerosos modelos dando explicacién a tal impor-
tante hecho [1][2]. Basdndose en datos estadisticos V.M.Yakovenko [1] aproxima las distribuciones de
riqueza, de dinero y de salario por diversas distribuciones de probabilidad (obviamente escalando). Una
de ellas corresponde a la planteada afios antes por el mismo y A.Dragulesku [3] en la que se aproxima la
distribucién del dinero por una distribucién exponencial o distribucién de Boltzmann-Gibbs basdndose
en resultados empiricos planteados en [4]. De esta forma, la probabilidad de que, eligiendo una persona
al azar en una poblacién, esta posea una riqueza x sera:

1

p(X):7<x>e

—x/<x>

siendo < x > la canitdad de dinero media de la poblacion.

Obsérvese que, si dividimos a la poblacién dependiendo del dinero que cada uno posea en 3 clases
baja (menos de la mitad de dinero que la media), alta (mdas del doble del dinero medio) y media, esta
distribucién cumple, pese a la desigualdad en el reparto, que alrededor de un 39,3 % de la pobacioén
pertenece a la clase baja, un 47,2 % a la case media y un 13,5 % a la clase alta. Asi, una clase media tan
amplia (casi la mitad de la poblacién), crearia un modelo social estable y contrario a las revoluciones o,
en palabras de Aristoteles: “Una constitucidn no se consolida sino donde la clase media es mas numerosa
que las otras dos clases extremas, o por lo menos que cada una de ellas"(Poltica, libro VI, captulo 10).

13,5%

Figura 1.1: Porcentajes de riqueza de cada clase social segun el modelo con distribucién exponencial.



2 Capitulo 1.

1.2. Primer modelo

Nuestro modelo inicial pues, deberd dar lugar a una distribucién de riqueza exponencial. Lo que
A.Dragulesku y V.M.Yakovenko [3] proponen es modelizar los intercambios de dinero en una poblacién
de n individuos de la siguiente forma:

= Se eligen aleatoriamente 2 individuos de la poblacion.
= (Cada individuo pone sobre la mesa todo su dinero.

= Uno de los 2 individuos, retira una cantidad arbitraria del dinero que hay sobre la mesa y el otro
individuo se queda con lo que queda.

Este modelo también se puede formular con la siguiente ley de intercambio:
xp = €(xi+x;)
X = (1=e)(xi+x)

Realizando simulaciones de gran cantidad de intercambios de dinero, ambos observaron que la distri-
bucién del dinero convergia a una distribucién exponencial (ver Figura 1.1).

2000 T T T T T

T T

5600 iteraciones
11200 iteraciones
50400 iteraciones

1800
1600
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1200
1000 f
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Figura 1.2: Imagen correspondiente a la simulacién del modelo utilizando 7000 agentes con una canti-
dad inicial determinada. El eje vertical representa la cantidad de personas y el eje horizontal el dinero.

1.2.1. Explicaciéon geométrica

Mas tarde, R.L6opez-Ruiz, J.Safiudo y X.Calbet propusieron una interpretaciéon de la aparicion, en
el equilibrio, de la distribucién exponencial [5]. En ella, proponen considerar el modelo como un es-
pacio n-dimensional. La coordenada x; representa la cantidad de dinero del i-ésimo agente econdémico.
Suponiendo una cantidad total de dinero constante E, el sistema evoluciona en la parte positiva del
hiperplano:

X1 +x+ . X1 tx, =E

Llamando S,(E) a la superficie de E, @, al vector perpendicular al hiperplano, @, = ﬁ(l, L,.,1)y
en al n-ésimo vector de la base candnica, definimos 6, como el angulo satisfaciendo:

cos0, =w, ‘e, =

R
Jn
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Proyectamos ahora dicho hiperplano en la direccién n-ésima, obteniendo un volumen (n-1)-dimensonal,
Va—1(E), que cumple V,_1(E) = S,(E)cos6, por tratarse de una proyeccién. Dicha proyeccién estd
conformada por los puntos x; > 0 tales que x; +x2 + ... +x,—1 < E. De esta forma, sabiendo que:

En—]
Vit () = 4,
Obtenemos: |
E"~
Sn(E) = \/ﬁ

(n—1)!

Aplicando el Criterio de Laplace o principio de razén insuficiente, como no sabemos la distribucién
de probabilidad de (xi,...,x,), consideramos que todos los puntos son equiprobables. De esta forma la
probabilidad de encontrar un agente i con dinero x;, f(x;)dx; es proporcional a la superficie del drea de
todos los puntos del hiperplano cuya i-ésima coordenada es x;. Al mismo tiempo, para poder ser una
distribucién de probabilidad se ha de cumplir:

E
/ f(xl')dxl- =1
0

De la igualdad cos?6), + sin*6, = 1 obtenemos sinb, = ”;nl
Si el i-ésimo agente tiene dinero x;, los otros n-1 agentes comparten dinero E — x;. Llamando
Sy—1(E — x;) a la superficie dada por la ecuacién xj + ... +x;—j + X+ + ... +x, = E — x;. Se puede

ver que:

Y asi la superficie del hiperplano para la que el drea estd entre x; y dx; es proporcional a S,_;(E —
x;)dx;/sin6,. Si normalizamos (dividimos entre el drea total) obtenemos:
Vi
Snfl(E_xz) _ (n=2)! (E
Sy (E)sin6, Vi g1 n—1
(n—1)!

Por tanto, llamando € al dinero medio por agente, tenemos £ = n€ y tomando el limite cuando

n —> oo | . )
. n— . n—
)= (1-20)" - (1= 2 ey
€ né né né

Que coincide con la funcién de distribucién de la exponencial.

xl)n 2 " (E( _%)>n—2

Je = e ) (B A

1.2.2. Explicacion funcional

Otra forma de obtener la distribucion exponencial desde una situacion fuera del equilibrio seria me-
diante el modelo propuesto por R.L6pez-Ruiz y estudiado en [6], que se ha denominado Z — Model,
utilizando funcionales .7 : Supongamos que p,, es la distribucién del dinero en la iteracién m. La proba-
bilidad de que dos agentes con dinero u y v interactien es por tanto p,,(u)p,(v) puesto que la eleccién
de los agentes se realiza aleatoriamente y de forma independiente. Una vez que han puesto el dinero
sobre la mesa, uno de los dos agentes se lleva una cantidad aleatoria. La cantidad que se lleva sigue
una distribucién uniforme entre 0 y u + v. Asi, la probabilidad de que tras el intercambio, uno de los
agentes termine con dinero x < u+v es py,(u) pm(v)/(u+v). Puesto que para obtener dinero x, nos sirve
cualquier par de (u,v) tales que x < u+ v, la distribucion de probabilidad en la iteracién m + 1 sera:

Pm ( )
Pm+1(x) = T pm(x //Hm Hv T dudy (1.1)

La convergencia a la distribucién exponencial y su unicidad fué propuesta y verificada en [6] y més
tarde demostrada por Guy Katriel [7] de la siguiente forma:
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Se define el espacio P de todas las distribuciones de probabilidad en [0,00) y & el subespacio de
todas las probabilidades con momento de orden o convergente, Py = {p € Z|My(p) < o}, siendo
My(p) = [ x*p(x)dx. Denotemos p,(x) = e */®/w con ® la media de la distribucién pg y sean:

A = [ pde Ey0 = [ pilodu=1-e

las funciones de distribuciéon acumuladas de py y py, respectivamente. Veremos que si py € &y con
o > 1, entonces converge en ley a py,:

lim Fj(x) = F,(x) Vx>0

k—>o0

Observemos que (1.1) es siempre finita para todo x mayor que O puesto que:

// pre) 4y <1 // V)dudy < — / / V)dudy —
FusSx u—l—v u+v>x

1, 1
= —llpl = -

ya que p es una distribucién de probabilidad luego ||p| ]%1 = 1. Comprobemos ahora que .7 va de &y
en Yy y que conserva la media:

Lema 1.1. Siax > 1y p € Py, entonces:
» T(p) € Py

= Mi\(7(p)) =M (p)

Demostracion. Renombrando u + v = z tenemos:

/ / p(u)p(z—u)dudz (1.2)
Ahora para cada § > 1:

/ ﬁ/ /p plz—u dudzdx—/ / ﬂ/p u)dudxdz =
ﬁ—f—l/ ﬁ/ pz— ududz—/ / Ll Z_udzdu—// u+vﬁ+(l) (V)dudv

De esta forma, para 3 = 0 obtenemos:

170l =Mo(7p) = [ [ plwp)dudy = [ pdu [~ p(viav = lplit =1

y la distribucidn resultante es también una distribucién de probabilidad. Para f = 1:

M (Tp)= % [/Om up(u)/owp(v)dvdu—k/omvp(v) /Omp(u)dudv} =M (p)

Para una B arbitraria (mayor o igual que 1), usando la desigualdad (u+v)? < 28=1(uB +-vB) tenemos:

P 2w P )p(wpl)
Mﬁ(ﬂp)—/o/o Bri dudv<// Brl dudv =

2ﬁ—1 2B
— uPp v p —
5 / / dvdu+/ /0 p(u )dudv} 5 1Me(p)
y asi p € Py implica que T (p) € Py. O]
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Como es sabido, se pueden aplicar transformadas de Laplace a probabilidades. Sea p = .Z|p]| la
transformada de Laplace de de la distribucion p. Se tiene:

Lema 1.2. Sea p una distribucion de probabilidad en [0,0). Entonces:

L7 (p)s) = [ () e (13

Demostracion. Usando (1.2) tenemos:
Tp)) = [ ¢@dz ) = 1A hx) = [ pluplr—u)du=(pp)x)

De esta manera:

=2 [@yar= [ (se)iae

N 0

Si calculamos la transformada de Laplace de pj, obtenemos:

B 1
14+ ws’

“~k

Pw

y la transformada de Laplace del funcional .7 aplicado a p;};:
! 1 2 1 .
/ ( ) = =Po

0o \1+wse 14 ws

2T (po)] = Po = ZPol-

y asi:

Luego p;, es un punto fijo de .7.
Definamos ahora para cualquier o € (1,2), ® > 0, p € &, una funcién distancia dy, satisfaciendo:

da(p.g) = supog O ZL0),

Comprobemos pues que dicha métrica estd bien definida:
Lema13. Siac (1,2), ® >0, p€ Pyo=1{p € Pu|Mi(p) = 0}, entonces dy(p,q) < .

Demostracion. Seap € Py oy p=-Z[p]. Podemos escribir:

1 N 1 o) . oo
)+ os— 1= & [ pWIpls) +@s— 1ldx= [ x*po)w(s0)ds
S N 0 0
en donde Y(z) = [e~* +z — 1]. Puesto que (z) > 0¥z > 0, tenemos:
it =i =0
lim y(z) = lim y(2)
De esta forma, para cada x:

lim x%p(x)y(sx) =0

s—04

Ademads observamos que, puesto que Y es continua en (0,c) (composicién de continuas en dicho
intervalo), y en ambos extremos el limite es 0, Y estd acotada por una cierta constante M en el intervalo
[0,00). Asi, tomando p € Py :

0 < x*p(x)y(sx) < 2%p(x)M € L']0,9)
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donde L'[0,) es el espacio de funciones con valor absoluto integrable en [0,). Aplicando ahora el
teorema de la convergencia dominada conseguimos:

lim i[ﬁ(s) +ws—1] = lim c><,xo‘p()c) Y (sx)dx =0

s—04 Sa s—04+.J0

Y asi, si p,q € Py 0, tenemos:

tim PO =0 _ i\( p(s)+os—1)— (G(s)+ @s—1)] =0

s—04 s¢ s—0, s*

y puesto que 0 < p(s),g(s) < 1 (yaque ||p||.r = ||g||, = 1), también tenemos:

=0
S—yo0 s
y por tanto se trata de una métrica acotada, y asi dy(p,q) es siempre finito. O
Lema 1.4. Sean o € (1,2), ® >0, p € Py o, entonces:
de(7 (p), 7 (q)) < da(p,q).

a+1

Demostracion. Gracias al Lema 1.1. sabemos que .7 (p), 7 (q) € Pa.0- Ast:

da(T(p), T (g)) = supyo 2 Wp)l(s)s—a 217 (9)(s)]

Como 0 < p(s),g(s) < 1y usando el Lema 1.2. tenemos Vs > 0:

L1 (p))(s) = Z[T (9)](5)]

Ot SO(

[ 1ptse) — atse)lptse) +gtse e <

1
<
= sa

/|p (s€) — G(s€)|plse) d+—‘/ IP(s€) — G(se)|q(se)d <

g‘/ |D(se _‘1(58)|8ad8+)/ |p(se _Q(58)|8ad8
0 se)“ se)“

< 2SMPr>O ) / e%de = doc(P q)
O

Lema 1.5. Sean o € (1,2), @ > 0, pg € Py, entonces:

1im de,(7*(po), pw) =0

k—yoo
Demostracion. Por el Lema 1.4, para cada k > 0 tenemos:

. 2
do (T (po), py) < do(T (o), )
oa+1
Luego por induccion:
do(T*(po),pey) < (TH> da(Po, Pe)

y puesto que o > 1, tomando limite cuando k tiende a infinito, llegamos al resultado. O

Lema 1.6. Siax > 1, @ >0, pg € Py e, entonces:

1im pi(s) = Py (s)- Vs > 0.

k—boo
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Demostracion. Puesto que py € Py V1 < @’ < a, podemos tomar o tal que 1 < ' < min(2,a) y el
Lema 1.5 nos asegura que:

lim da/(pk,pz)) =0
k—roo
y puesto que por la definicion de nuestra funcién distancia dy, para cada s > 0 tenemos:

k—ro0

|Pr(s) — Pyl < % da(pisPy) — 0

Para acabar, como estd demostrado en [8], usamos el siguiente resultado:

Lema 1.7. Sean {pi};_, y pi, distribuciones de probabilidad en [0,%0) y p, py, definidas como hasta
ahora. Si existen 0 < s1 < s; tales que:

]}i_rgﬁk(s) = Dg(s) Vs € (s1,52)
entonces las funciones de distribucion acumuladas Fy(x) y F;(x) satisfacen:

lim Fj(x) = F,(x)

k—voo

Observese que de esta demostracidn se obtiene también que el punto fijo es Unico, algo ya demos-
trado en [6].






Capitulo 2

2.1. Un modelo mas realista

Pese a que el modelo del capitulo anterior da unos resultados acordes a los datos empiricos, lo
cierto es que las transacciones rara vez son bidireccionales. Lo normal es que una vez determinada
la transaccion sea uno de los agentes el que tenga el papel de perdedor y otro el de ganador debido al
caracter de esta. Por ejemplo, cuando vamos a comprar al supermercado, sabemos que siempre debemos
pagar, y no unas veces pagar y otras recibir dinero, dependiendo de nuestra suerte. Otro ejemplo seria
lo que sucede con un jefe y sus empleados ya que no hay veces en las que los empleados pagan al jefe
y veces que es este el que paga a sus empleados, cada uno tiene un rol bien definido. De esta forma se
introdujeron los modelos dirigidos. El primero de ellos fué descrito por John Angle [9] y a raiz de este
muchos otros, mds o menos interesantes, surgieron. Uno de ellos y al que nosotros prestaremos nuestra
atencion, es el descrito por Ismael Martinez-Martinez y Ricardo Lépez Ruiz [10]. Este modelo sigue el
esquema:

xﬁ = &EX;

Xy=xj+(1-€)x

Mediante simulaciones con ordenador, se puede comprobar que la distribucidn obtenida no es exac-
tamente una exponencial. Hay més gente pobre y menos rica que en dicha distribucién y la convergencia
a una distribucién estable es realmente rpida.

2500 T T T T

1050 iteraciones
2100 iteraciones
9450 iteraciones

2000 b

\\
1500 - 1

1000 %’/‘\ J

s00 | \ R

Figura 2.1: Imagen correspondiente a la simulacién de este nuevo modelo utilizando 7000 agentes con
una cantidad inicial determinada. El eje vertical representa la cantidad de personas y el eje horizontal el
dinero. Se aprecia una convergencia mas rapida que en la Figura 1.2

2.1.1. Explicacion funcional

Para ofrecer una explicacion utilizando funcionales, debemos separar la distribucion del dinero en
dos distribuciones a priori idénticas. Una de ellas corresponde a la probabilidad de extraer un agente

9
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perdedor con dinero u y la otra la de extraer un agente ganador con dinero v. De esta forma, si p es la
probabilidad de extraer un agente con dinero x y p’ y p” la probabilidad de extraer un agente ganador o
perdedor con dinero x respectivamente, en la primera iteracion se tiene:

pi() = 3pb(x) + 3PH(0)

2
Para las siguientes iteraciones, la distribucion total se puede dividir de igual manera, separada en la
distribucién de que el seleccionado provenga de perder més la de ganar:

1, L,
Pmr1(x) = Epmﬂ(x) + Epmﬂ(x) = T pm(x) (2.1)

Nuestro problema pues es saber las distribuciones de p/,, | (x) y p),.  (x). Para que un perdedor al-
cance el dinero x al perder, obviamente ha de poseer una cantidad # > x de dinero antes del intercambio,
y puesto que es una cantidad aleatoria, la cantidad de dinero que ponga en la mesa se distribuird de una
forma uniforme en [0, u]. Asi:

p;nH(x):/ >xpm(u)lfm(v)dudv:/0 p(v)dv u>xpmu(u)du: u>xpmu(u)du (2.2)

Para que un ganador alcance la cantidad de dinero x, primero ha de poseer una cantidad de dinero v
inferior a x, v < x. Ademds, la suma del dinero de los dos agentes del intercambio ha de ser mayor que
X, puesto que la maxima cantidad que se puede llevar es u+v. Asi v < x < u+v. Como el dinero que
recibe estd entre v y u + v, sigue una distribucion uniforme en [v,u + v|, cuya funcién de distribucién es

1/u. De esta forma:
Pl (x / / Pn)en(v) (2.3)
<x<u+v u

De esta forma, juntando (2.2) y (2.3) obtenemos:

1 m(
Pm+1(X) = T pm(x) = = P d += > //<x<u+v P(v >dudv 2.4)

2Jusx U u

Notese que:

) oo oo u oo
/ P (X)dx = / / Pnlt) dudx = / / Pn(t) dxdu = / pm(u)du =1
0 0 Ju>x U 0 Jo u 0

[ [ ] PP o o[
:/0 p(u)du/o p(v)dv=1

Luego continda siendo una probabilidad. Para calcular el dinero medio comprobamos:

/ P (x dx-/ / ddx—/ du/ P /upm 7<x>
u>x 2
u+v
/Pm+1 dx—/ // QLG dudvdx—/ / / Pm )dxdvdu—
0 <x<u+v u

y por tanto el dinero medio, que es la media de los dineros medios de la distribucién de ganadores y la
de perdedores, es constante.

Tomando este modelo y teniendo en cuenta las simulaciones realizadas por ordenador, Guy Katriel
[11] demostrd que la sucesion de distribuciones obtenidas al aplicar el funcional 7 convergia a una
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distribucién Gamma con pardmetro de forma 1/2 y media < x >, es decir, su funcién de distribucién

cra:

% 1 X
Poy> = —F————¢ = (2.5)

V2<x>nx

Para ello, comenzoé reescribiendo (2.4):

T pm(x) = % [/xm pm(M)du—i—/Oxpm(x—v) /uw pmv(v)dvdu] (2.6)

u

y buscé los puntos fijos del funcional, es decir, las distibuciones p tales que .7 (p) = p. Para obtenerlos,
aplico la transformada de Laplace a (2.6):

<z Llcp(x)} (s)="— /Osﬁ(s’)ds’+ /OOO %p(x)dx =7 [/: \I}p(v)dv] (s) ="" i/osﬁ(s’)ds/ =
Ny { /0 " pr—u) / ) % p(v)dvdu} (s) = ﬁ(s)% /O " 5(s')ds’

Donde los célculos seguidos para * y ** son explicados en el Anexo I. También:

2| [ ipwai 0= [ 5

1

ZIT)s) = 5

A
P +1) [ ps)as exp
0
De esta forma, hallaremos p(s) satisfaciendo (2.7):

1

pls) = 2

p6)+11 [ a2

Desarrollamos la derivada:

Y la resolvemos:

=T

Aplicamos la antitrasformada de Laplace para obtener:
()= —
X)) =
P VCrx

Para determinar C utilizamos la condicién f;”xp(x)dx = @ y obtenemos C = 2®. De esta forma los
puntos fijos de (2.6) son:

e

Al=

1 x
—5 2.8
p(x) \/2a)7txe 28)

El siguiente paso serd comprobar que la sucesion de distribuciones {p; } converge a la distribucion
obtenida en (2.8), a la que llamaremos de nuevo pj,. El procedimineto serd andlogo al del primer ca-
pitulo, tratando de demostrar una convergencia en distribucién de las distribuciones de {p, }7 a la de
Dy, Para evitar redundancias, todos los demds terminos definidos en el capitulo 1 se denotardn de igual
manera, salvo que se indique lo contrario. El primer resultado es:

Lema2.l. Sia>1ype Py o, entonces I [p| € Py o
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Demostracion. Comenzaremos probando que el momento de orden & de .7 [p] es finito. Para ello:

Ma<9[p1>—/°° X7 [ (x)dx =

1 oo X
= f/ xa/ p(x—u)/ v)dvdudx + — / / u)dudx
2 Jo 0

Centrandonos en el primer sumando y utilizando la desigualdad (u+x)% < 2%~ 1(x¥ 4 u%):

[ [ ot / V)dvduds = / e [  plv)dvau =
_// x ) p(x)ds [ p(v)dvdu <
e [ /Ow /waap(x) W / L vt / / p(x)dx / VP(V)dvdu]:
e [Ma@) /°° L / v+ [ o) [ vu“dudv} -

=221 {Ma(p)/: 1/ adv] =2 "My(p )Zﬁ

Para el segundo sumando tenemos:

= o (=1 = u 1= Me(p)
@l = dd:/f /“dd:—/“ du=—2 2.
/0 X /x Mp(u) udx A up(u) A x%dxdu a1l u”p(u)du a1 (2.9

De esta forma combinandolos obtenemos:

1
Mo (T [p]) < m (

2 N a+2)+1) Ma(p)

Luego si My (p) < oo tendremos My (.7 [p]) < o. Para o = 1 la desigualdad (u+x)% < 2%~ (x* +
u®) es una igualdad y por tanto se tiene la igualdad también en (2.9) y asi M;(p) = M,(T[p]) = o,
luego 7 [p] € Pu.0- O

Veremos ahora que, con la funcién distancia definida anteriormente, el funcional .7 es contractivo:

Lema 2.2. Seal <a <2, >0, p,g € Py,e. Entonces:

(TP 7)< (5+ 5y ) dalpa)

Demostracion. Nétese primero que en el Lema 1.3. ya probamos que dy (p,q) < oo luego la desigualdad
estd siempre bien definida. Haciendo el cambio de variable s’ = s€ en (2.7) conseguimos:

L171)(5) = 3[pts) +1) [ Bise)de

L171pl)s) ~ 21714 6) = 3156 ~05)] [ ploelde+ 31a(s)+ 1) [ [pise) - alse)de

Puesto que ||p||;1 = ||g]||1 = 1 tenemos |ﬁ(s)] <1, |q(s)| <1y por tanto podemos estimar:

LT LT 1 (1T [ e 1 | e 2208 ) <

5% -2 (se)e

< da(p q) +da(p, Q>/ g%de = (;Jrail) da(p,q)

Y puesto que este resultado no depende de s, tomando supremos en s > 0 la cota se mantiene igual. [
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De esta forma estamos en condiciones de probar que la sucesién de probabilidades converge al
correspondiente punto fijo.

Lema 2.3. Seal <o <2, ® >0, pg € Py 0. Entonces:
lim do(pi ) = 0

Demostracion. Gracias al Lema 2.2. tenemos por recurrencia:

1 I .
do(pi,pyy) < (2 ++1> do(Pos Pey)

lo que implica el enunciado puesto que (% + or 1) <lsia>1. O

La convergencia en la métrica d, implica la convergencia puntual de las transformadas de Laplace
y, aplicando el Lema 1.7. llegamos al resultado deseado.

Asi pues este nuevo modelo converge a una distribucién gamma de pardmetro de forma 1/2, una
distribucién con mayor nimero de gente pobre y de gente rica que el modelo anterior, pero que, sin
embargo, mantiene un porcentaje de poblacion de clases alta y media cercano al 50% (no hay que
olvidar que los rangos de riqueza asociados a cada clase social son, en cierta forma, arbitrarios y que
los elegimos asi para simplificar).

Gamma(1/2,1)

Figura 2.2: Porcentajes de riqueza en cada clase social obtenidos aplicando el método de Simpson.

2.2. Un modelo con préstamo

Volviendo al modelo desarrollado en el capitulo 1, hay un factor importante en la distribucién del
dinero que, antes incluso de que la usura fuera despenalizada por la iglesia, ya tenfa una gran importancia
en la distribucion de este. Se trata del préstamo. Puesto que en la explicacion funcional en ningiin caso se
considera que el dinero sobre la mesa pueda ser superior (o inferior) a la cantidad de dinero que poseen
entre los dos agentes seleccionados, el préstamo queda totalmente fuera de consideracion. Conscientes
de esto, en el articulo [12] se propone un nuevo modelo, basado en funcionales y al que se denomina
Z —Model generalizado que en este caso si tenia en cuenta el préstamo o inyeccion de capital:

Pm+1(X) = T pm(x) // au+2 m(v) ST dudy (2.10)

a)v

siendo S, (x) = {(u,v)|x <au+ (2—a)v} ya € (0,2). Nétese que el dinero total se mantiene constante,
(ni se crea ni se destruye). Asi, para cada (u,v) existe un (v,u) de forma que el dinero en juego de las 2
parejas es au+ (2 —a)v+av+ (2 —a)u =2(u+v). Esto se podria interpretar como que se puede tanto
recibir un préstamo al bote de una pareja o que se puede extraer dinero del bote de una pareja.
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Para ver la convergencia de este nuevo modelo Yves Pomeau y Ricardo Lépez Ruiz buscaron una
férmula recursiva para la funcién generatriz de momentos. Nétese que:

) /oc o pm (u)pm (V) /au+(2—a)v
m ————dudvdx = —————dud dx =
0(Pm+1) / //a au+ 2 a) M= o au+(2—a)v v *

—/ / (v)dudv = My(pm)

luego {pm}§ son distribuciones de probabilidad si pg lo es. Ademds:

P () pm(v) /oo “ P (1) P (V) /au+(2a)v
————dudvdx = ————dud dx =
(1) / // y au+ ( 2 a)v HEYaE= o J au+(2—a)v v s

oo 2_ oo
2/ / aup(u)p(v)dudv+ = // (2—a)vp(u (v)dudv:g/ up(u)du—l—Ta/ vp(v)dv=Mi(pm)
0 0

lo que implica que si existe la media de pg, también existirdn las medias de p,, para cualquier m. Como
regla general se tiene:

o0 oo au+(2—a)v 0 oo
Mk(pm+1):/0 A Md dv/ " xkdx_kj—l/o /0 Pn() (V) (au+ (2—a)v)*dudv

Puesto que (au+ (2 —a)v)* = (a*uf + (2 — a)*V* 4 ...) podemos quedarnos con los términos de mayor
orden. Notar que si a < 1, algo que harfa que el peso del término u* fuese muy pequefio en el limite,
tendriamos que 2 — a serfa mayor que 1, con lo que casi todo e peso estarfa en V¥, término que también
tenemos en consideracién. Por lo tanto, llamando b = 1 — a para simplificar:

1

Mi(pm+1) = 1

[((1=b) + (14 b)\Mi(pm) +1.0.t(m)] (2.11)
siendo [.0.t(m) los términos de menor orden. Al repetir m veces el funcional, el momento de orden k

convergerd o divergerd dependiendo del coeficiente de My (p,). Si % < 1, al iterar o, en otras

K k
palabras, al aplicar el limite m — oo, el momento My (p,,) convergerd, pero si % > 1 estos

momentos crecerdn exponencialmente. Para saber los valores de b para los que, para un momento de
orden £ fijo, la sucesién converge consderamos:

(1= +(1+b)F _ (1+]b)*
= 1 2.12
k+1 SN R (2.12)
Tomando logaritmos:
In(k+1) 1
ln(l—l—\by)k:kln(l—i—]bn>ln(k+1)<:)ln(1+|b\)>”(k+)>k

ya que estamos con51derand0 cuando k > 2. Asf In(1+|b|) > 1. Puesto que |b| < 1 podemos aproximar
In(1+|b|) = |b|, luego k > W b‘ . Llevando el resultado de nuevo a (2.12) obtenemos:

In(k+1) _ In(g)+1 P () +1

In(1+1b]) = |b

Esto muestra que cuanto mas cercano a 0 sea b, sin llegar a alcanzarlo, la distribucién a la que
converge, si es que converge, deberd tener una cola pesada, para causar que los momentos diverjan
como lo hacen.

Esto puede ser comprobado mediante simulacién numérica. Para ello simplemente utilizamos la
regla de intercambio:

x; = €(ax;+ (2 —a)x;)
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 In1/1b]+1)
Ib

0 k

1]

Figura 2.3: La figura muestra el conjunto de puntos (k,Ibl) donde el momento de orden k converge.

x; = (1 —¢&)(ax;+ (2 —a)x;)

Pese a que el dinero total no se mantiene constante, tomando un nimero de agentes lo suficientemen-
te grande, de forma que la pérdida de dinero que se pueda producir en un intercambio sea practicamente
insignificante con respecto al dinero total, todo funciona correctamente. Se aprecia en las simulacio-
nes también una rdpida convergencia a la distribucién estacionaria, menor sin embargo que en el caso
anterior.

4500 T T

T
2100 iteraciones
[ 6300 iteraciones

4000 ' 12600 iteraciones
21000 iteraciones

3500 |- ‘ R

3000 - | q
2500 - ‘ ‘ B
2000 - | B
1
|
1500 [ ‘:“ B

W
1000 ,J I R

AR |

\
o e . | ! ! L
0 10 20 30 40 50 60 70
4500 T 4500 T T
2100 iteraciones 2100 iteraciones
6300 iteraciones 6300 iteraciones
000 12600 iteraciones 000 12600 iteraciones
21000 iteraciones 21000 iteraciones
3500 — 3500 —
3000 —” - 3000 -
2500 - ‘ - 2500 - -
2000 *‘ — 2000 - —
|
1500 [ | 1500 - |
| I,
1000 H l B 1000 - B
s00 [ il g 500 F g
0 = L I I I L 0 — L I L
0 20 40 60 80 100 120 0 5 10 15 20 25 30

Figura 2.4: Histogramas obtenidos para los valores a = 0,1 en la izquierda,a = 1,8 enel centroy a = 1,3
en la derecha. En los 3 casos casos el nimero de agentes ha sido 7000 que comenzaron con una cantidad
igual de dinero.
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2.3. Un modelo con ahorro

Otro factor que puede ser tenido en cuenta es el ahorro. Parece extrafio considerar que los agentes
pongan en juego siempre todo su dinero. Mas normal resultaria que el dinero que pusiesen fuese una
fraccién A del total. Existen varios modelos considerando el ahorro, teniendo en cuenta si son dirigidos,
no dirigidos o incluso si el ahorro es fijo o variable. El més sencillo de ellos considera un ahorro fijo y
un intercambio no dirigido. Como fué introducida en [13] y [14], que el modelo no dirigido por Marco
Patriarca, Anirban Chakraborty y Kimmo Kasky, la regla de intercambio que modeliza esta situacién
es:

[= Axi+ (1 A)e(x +x))

; = lxj + (1 — l)&'(x,' —I—Xj)
Para obtener una expresion funcional de dicho intercambio seguimos los siguientes pasos: La pro-
babilidad de que tras un intercambio un agente tenga dinero x, depende de que en el momento anterior

2 agentes tengan dinero u y v interactien. En dicha interaccion, el dinero a repartir es (1 — A)(u+v),

y consideraremos que la probabilidad de que un agente se lleve una parte z de ese dinero sigue una

distribucién uniforme. De esta forma py,+(x) dependerd de % Para hallar los extremos de in-

tegracién consideramos primero que es el agente con dinero v el que llega a tener x. Asi x siempre serd
mds grande que Av porque es el dinero ahorrado por el agente y mas pequeiio que (1 — A)u+ v, que es
el dinero que obtendria si ganara todo el dinero que pone en juego el agente con dinero u y no perdie-
se nada. Si el que llega a tener dinero x es el agente con dinero u se tiene el andlogo intercambiando
papeles. Como ambos agentes tienen la misma probabilidad de llegar a tener el dinero x (1/2 y 1/2), se
tiene:

Pon(18) P P ()P (v) _
Pmi1(x) =T pm(x 2//1 Mutvors iy 1_1)(V+u =2y (v u) Jr2//1 A)v-usx>Au 1—1)( -+~

- Pm (1) pm(v)
//1 Au+v>x>Av 1—1)( + )dudv (2.13)

Si integramos de 0 a o nuestro funcional tenemos:

/ //1 Rutvsxsav ( l—().))(v—i—u d”dde—/ / Al o 1_ ))1(7 i))dxdudv_

B (V) L(-A)u _/ / _
/ / v+u) [x] dudv P () pm(v)dudv =1

Luego la distribucion resultante sigue siendo una distribucion de probabilidad. Para ver si el dinero
total se conserva calculamos la esperanza:

1(Pmt1) / //1 /lu+v>x>7w 1—(}»))(v+u dudvdx—/ / /)Ll o 1_”))1(7 _(F))dxdudv—

9 (1=A)u+v

LA 5], e [ A 2w (120 v

(I/t m(V) B oo oo 1 - B
//2 )+ )[(M+V)2+l(v2_u2)}dud\/—/ / pm(u)pm(v)i[(u+v)+l(v u)] dudv =

:/ / Pm(”)Pm ududv+/ / pm pm Vdudv+
+A’/ / pm Pm VdUdV_)L/ / pm pm ududv_

~5 (Ml (Pm) + M1 (pm) +AMi (pm) =AMy (pm)) = M1(Pm)
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Puesto que si que se conserva, nuestro nuevo funcional es vdlido.
Mediante simulaciéon numérica se puede comprobar como, tal y como hicieron en [13] y [14], esta
rueva regla de intercambio hace converger la distribucion inicial a una distribucién cercana a la forma:

\% v Xvil —xv
p(x) = (— e<x>
<x>/ T(v)
37
donde v = 1+ 5
1-2
2000 T T T T T T T 3000 T T T
5600 iteraciones 5600 iteraciones
1800 [ ' 16800 iteraciones B 16800 iteraciones
|| 33600 iteraciones 1 33600 iteraciones
1600 “ 56000 iteraciones i 2500 - I\ 56000 iteraciones T
|
|| [ ‘l‘
1400 [~ 1 |
‘ | 2000 |- 1 E
|
1200 |- | | 4 [
[ [
1000 | | — 1500 —
ol | 4
75| | 1000 |- 4
ool N | 1
| [ SAN
400 |/ \7 4 . |
I/ *\
200 [ B
/ \\‘—-_‘\___7_‘ _
0 L I 1 ——— L L L L 0 L

Figura 2.5: Histogramas obtenidos para los valores A = 0,2 en la izquierda y A = 0,7 en la derecha.
En ambos casos casos el nimero de agentes ha sido 7000, que comenzaron con una cantidad igual de
dinero.

Algo similar se puede hacer para el caso de intercambio dirigido con ahorro. Dividiendo la poblacién
en ganadores y perdedores determinamos que la probabilidad de que un perdedor llegue a tener dinero
X es:

pm(u)
————du 2.14
Joon 00 219
La probabilidad de que el que llegue a tener dinero x sea un ganador es:
/ / Pn(@)pm(v) o 2.15)
(I-A)u+v>x>v (1 — l)u

Y asi, juntando ambas tenemos:

Pm(1) Pm (1) pin(v)
pm+l( ) gpm 2/>x>lu mdu—i_ 2//1 A)u4v>x>v (1_72«)61 udv 2.16)

Para comprobar que la distribucién resultante es una distribucién de probabilidad calculamos su
momento de orden 0. Reescribinedo (2.14) y desarrollando tenemos:

/ / Pt dua’x—/ / dxduzl
>x>),u 1_ u 1—

Haciendo lo mismo con (2.15) obtenemos:

/()m//(l—/l)u+v>x>v Wdudvdx: /Ooo /Ow/v(ll)uw dedudv: /0°° /Ooopm(u)l?m(v) =1

Luego se trata de una distribucion de probabilidad.
Para ver que conserva el dinero medio y que por tanto es un intercambio, calculamos, como siempre,
el momento de primer orden. Partiendo de (2.14):

e avau= [T =
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Y desde (2.15):

o oo o(1-A)utv Pm () pm(v) [ (1—A)u+2v _(37&)
/O/O/v x(l_)t)udXdudv_/O /0 pm(”)pm(v)fdud\)— > Ml(Pm)

De esta forma:

ey = 12

Y asi se trata, por tanto, de un intercambio.

(3-2)
4

My (pm) +

M, (Pm) =M (Pm)

2500 T T T T

T
5600 iteraciones
16800 iteraciones
| 33600 iteraciones

2000 |||‘ 56000 iteraciones i

1500 [ |‘ | g

1000 |- [ —

e A
/; .r'/ \‘*~.
s00 |-/ / g
//
.’..
;

Figura 2.6: Histograma obtenido para un intercambio dirigido con ahorro A = 0,5. 7000 agentes comen-
zaron con la misma cantidad de dinero.

Sin pérdida de validez en las demostraciones realizadas en esta seccion se puede considerar un
modelo con ahorro aleatorio tomando valores en (0, 1) y que daria lugar para el intercambio dirigido al
funcional:

m T pm(x // ddl—I—/// (>()dddl
b +1( ) P 2 >x>7Lu 1_ ! 2 1—A)utv>x>v _l) Hav
Y para el no dirigido:

P (%) = 7 pn() / //1 Mutvsasav ( 1—</1))( o ))dud\}d)L

2500

T T
5600 iteraciones
16800 iteraciones
33600 iteraciones
56000 iteraciones

2000 | |
1500 |-

1000 | | -

—— x_
s00 [/ AN b
i )

i 5 10 15 20 25 30 35 40 45

Figura 2.7: Histograma obtenido para el modelo de ahorro aleatorio no dirigido con 7000 agentes co-
menzando todos con la misma cantidad de dinero.

Otra variacion sobre el modelo puede ser la distincion entre el ahorro de un agente con el del otro,
permitiendo que puedan ser valores diferentes, para el caso de intercambio no dirigido. Los cédlculos y
demostraciones siguen siendo andlogas.



Capitulo 3

3.1. La distribucion del mas rico

Durante muchos siglos, la persona mas rica de una poblacion era el rey o lider, al que pertenecia
practicamente todo, y medir su riqueza era medir la riqueza de la poblacién. Sin embargo con el tiempo
esto ha dejado de ser asi. Aumenta el nimero de revistas y programas interesados en averiguar la persona
mads rica del mundo y en medir su riqueza. Por tanto, nuestro siguiente paso serd considerar cual es la
distribucié del més rico de nuestros agentes.

Para ello consideraremos nuestra distribuciéon de riqueza como una distribucién de probabilidad
p(x), sobre la que realizaremos n muestreos, uno por agente, y nos interesaremos por la distribucién del
mdaximo de estos muestreos, a la que llamaremos P, (x). Seguiremos los pasos desarrollados en [12]:

Comenzamos considerando el caso mas simple de determinar la distribucion de probabilidad IT(X,xo)
del mdximo de xo, un valor fijo y x siguiendo una variable aletoria con distribucion de densidad p(x).
Denotemos este maximo como X. Definamos N(x) como la probabilidad de que x’ sea menor que x:

De esta forma la distribucion de X es:
II(X,x0) =N(X)d(X —x0) + p(X)H(X — x0)

donde 8 (X —xo) es la delta de Dirac que toma valor 1 en xo y H(X —x¢) la funcién escalén de Heaviside.
Observese que puesto que N(eo) = 1, se trata ciertamente de una medida de probabilidad:

/ TI(X, x0)dX = 1
0

Para acercarnos mds al resultado buscado consideremos ahora que x( se elige aleatoriamente si-
guiendo una distribucién de probabilidad ¢(xp). En consecuencia la distribucién debe ser promediada
entre los posibles valores de xq:

~ X / /
PX) = | ga)TI(X x0)dxo = N(X)q(X) +p(X) [ g(+')dx G3.1)

Observese que la integracién de 6 (X — xo)q(xo) entre todos los posibles valores de xo nos da g(X) por
las propiedades de integracion la delta de Dirac y que la misma integracion de g(xo)H (X — xo) resulta
fg( q(x')dx' por las propiedades de integracién de la funcién de Heaviside. Ademés se puede comprobar
que se trata de una medida de probabilidad integrando para x, x’ > 0:

/ P(X)dX = / / ¥ )dx'dX + / X) /0 ¥ J()dr dX =
_/ / g(X)p(x'dXdx' +/ )/qu(x’)dxldXZ/Omp(x)dx/omq(x’)dx’:
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20 Capitulo 3.

Sustituyendo ahora g(xp) por el mdximo de los anteriores muestreos en (3.1), podemos obtener la
recurrencia:

P (X) =N(X)P,(X) + p(X) /O ) B, (x")dx’ (3.2)

donde P,(X) es la distribucién del maximo en n muestreos.
Si definimos ahora Q,(X) = [i¥ P,(x')dx’, como P,(X) toma valores en [0,e0), podemos reescribir
(3.2) como:
d Qn-H (X )
X

Que puede ser integrada para obtener:

40,(X) , dN(X)
dX dX

= N(X) 0n(X)
Qn-i—l(X) :N(X)Qn(X) +Sn

donde S, es una constante de integracion. Como Q,(0) = 0 pues es una integral de 0 a 0, despejamos
S, =0Vn.

Puesto que:
X X
0:(x) = [ AW)aY = [ p()ax = N(x)
Tenemos:
X) = ( / ) (x’)dx’)n
On(X) = P
Y asi:

n—1

Px) =m0 [ pta'a

Si suponemos que p(x) es una funcién suave que decae de manera continua a 0 cuando x tiende a
infinito, algo que sucede con todas las distribuciones estacionarias a las que hemos llegado con nuestros
modelos, podemos obtener una aproximacion asintética para valores n grandes. Para ello comencemos
escribiendo P,(X) de forma exponencial:

P, (X) _ eT(n,X)

con T(n,X) = In(n) +In(p(X)) + (n— 1)in </0X p(x’)dxl>

Centrémonos ahora en como serd la distribucién del més rico. Lo mds 16gico seria que se fuera
concentrando alrededor de un cierto valor conforme 7 creciera. Este punto seria un maximo de B,(X) y,
puesto que la exponencial es continuamente creciente, un maximo de 7' (n,X). Derivando esta funcién
con respecto a X e igualando a 0 obtenemos:

0T (n,X "(X X
0X p(X) Jo p(xX)dx’
X))? '(X)N(X
o P PR PN
N(X) (p(X))

LLamamos X, al punto que satisface esto para un » fijo. Considerando —1’:—; = % y teniendo en
cuenta que en todos nuestros casos p(x) es una funcién suave que decae mas rapido que X 2 para hacer
el momento de primer orden convergente, concluimos que —% = % crece mas rapido que X para

X grandes. Como cuando X, es grande, N(X,,) = [0 p(¥')dx’ ~ 1 determinamos que X, crece a infinito

a medida que »n tiende a infinito, puesto que —[% es una funcién creciente y por tanto para igualar un
crecimiento en n, X,, ha de crecer.



La distribucion del dinero - Gorka Labata Lezaun

21

Todo esto puede ser comprobado mediante simulacién. Por ejemplo, para el caso de la distribucién
exponencial podemos comprobar como la aproximacién obtenida es similar al resultado obtenido me-
diante simulacién. Para obtener esta tltima aplicamos la funcién cuantil a la distribucién uniforme en
(0,1), ya que c++ solo representa distribuciones uniformes, obteniendo n muestras. Después buscamos
el agente mds rico de la muestra y lo incluimos en la poblacién de agentes ricos, para luego representar

esta dltima.

T T
5 muestras

50 muestras
200 muestras

T T
5 muestras
50 muestras
200 muestras

400

300

50

40 45

Figura 3.1: En la izquierda: representacién de la aproximacién obtenida para una distribucién expo-
nencial de media 1. A la derecha: resultados obtenidos mediante simulacién para una distribucién
p(x) = e™* con 7000 muestras y clasificados segin su riqueza en 100 intervalos para obtener un histo-

grama.






Anexos

3.2. Anexol

En este anexo explicaremos 2 célculos importantes desarrollados en el Capitulo 2. El primero de

ellos corresponde a:
1 5 =
< {p(x)] (s) = —/ p(s’)ds'—k/ —p(x)dx
X 0 0 X

Por definicién tenemos:

Luego:

/ .,2”[ } )ds' —/ / x)dxds'
0
De esta forma:

/ s')ds' —/ / x)dxds' —/pr(x) /Oxe_“'/xds’dx:/owp(x) <1 _;SX> dx =
= /pr(x))lcdx/owe‘”pix)dx: - [ip(x)} (s)+/0°°p(x)fdx

Para la segunda:
g[ / lp(v)dv} (5)= / B(s)ds
x V s Jo

Tenemos:

% [ / ” } / / dvdx _ /0 ) p(v)% /0 Lo dxdy —
[ oo (v
—([Troy0v-2 ] o] ) - 1

1 [ 1
p dv—f/ e p(v)—dv=
v

S

</ dv+/ §)ds' —/0 ‘1}p(v)dv> _

\
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