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Prologo

El problema de controlar el error de redondeo es fundamental en andlisis numérico. Un andlisis
del error cldsico depende del condicionamiento del problema y un enfoque novedoso en este tema ra-
dica en considerar algoritmos con alta precisién relativa. En particular, para cdlculos con clases de
matrices estructuradas. En estos algoritmos se parte de parametrizaciones de las matrices que permiten
asegurar la alta precision relativa independientemente del condicionamiento de las mismas. Hasta aho-
ra, los ejemplos de clases de matrices encontrados que presentan esta ventaja son o estdn relacionados
con subclases de las P-matrices. Recordemos que una P-matriz es una matriz cuadrada con todos los
menores principales positivos. Entre las P-matrices destacan por sus muchas aplicaciones las matrices
totalmente positivas no singulares, asi como las M-matrices no singulares. En esta memoria vamos a
presentar dichas subclases de matrices, mencionaremos algunas de sus aplicaciones mds importantes y
describiremos las parametrizaciones que permiten obtener algoritmos con alta precisién relativa. Ade-
mads presentamos un método de alta precision relativa para hallar la inversa y resolver ciertos sistemas
lineales de ecuaciones considerando una clase de matrices para la que hasta ahora no se habian obtenido
este tipo de algoritmos.

En el primer capitulo introducimos los conceptos bésicos que necesitamos para plantear un estudio
del error, definimos alta precision relativa, damos una condicién suficiente para asegurarla y definimos
la clase de las P-matrices.

En el segundo capitulo abordamos el estudio de una parametrizacién adecuada para las matrices
totalmente positivas no singulares, la llamada factorizacién bidiagonal. Comenzamos presentando varias
propiedades destacables de las matrices totalmente positivas y el tema del disefio geométrico asistido
por ordenador como una aplicacién en la que se refleja la importancia de estas matrices. A continuacién
mencionamos algunas subclases de matrices totalmente positivas para las que esta factorizacién se ha
conseguido con alta precision relativa, presentamos la eliminacién de Neville y la propia factorizacién
bidiagonal. La dltima seccion del capitulo, mds extensa que las anteriores, ilustra la forma de realizar
diversos célculos matriciales elementales utilizando la factorizacién bidiagonal de manera que logremos
llevarlos a cabo con alta precision relativa. Los cdlculos presentados se utilizan en los algoritmos de
célculo de inversas y valores propios y singulares de matrices totalmente positivas con alta precision
relativa.

En el tercer capitulo nos centramos en las M-matrices no singulares. Las M-matrices para las que
vamos a lograr algoritmos con alta precision relativa cumplen ademads la condicién de dominancia dia-
gonal. En este caso, la parametrizacion adecuada para trabajar con ellas vendrd dada por los elementos
extradiagonales de la matriz asi como la suma de los elementos de cada fila de la misma. Con estos pa-
rdmetros, buscaremos obtener con alta precision relativa lo que se llama una descomposicién reveladora
del rango. Estas descomposiciones permiten obtener los valores singulares con la alta precision rela-
tiva. En el caso de las M-matrices de diagonal dominante las descomposiciones reveladoras del rango
seran ciertas factorizaciones LDU, obtenidas utilizando la eliminacién Gaussiana de forma apropiada,
es decir, empleando adecuadas estrategias de pivotaje simétrico. Por ello expondremos dicho método
de factorizacion LDU libre de restas (y asi con alta precisioén relativa), y veremos la manera de im-
plementarlo empleando dos técnicas distintas de pivotaje simétrico. Al final del capitulo definimos la
clase de las H-matrices, la cual engloba a las M-matrices y proporciona una condicién generalizada de
dominancia diagonal.

El dltimo capitulo presenta algoritmos con alta precision relativa para las Z-matrices Nekrasov con
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v Prélogo

elementos diagonales positivos, las cuales constituyen una clase de matrices para las que hasta ahora no
habia algoritmos con alta precisién relativa y que contiene a las M-matrices de diagonal estrictamente
dominante. Para dicha clase de matrices se propone una parametrizacién a partir de la cual se obtie-
nen algoritmos con alta precision relativa para el calculo de inversas y para el cdlculo de sistemas de
ecuaciones lineales con términos independientes no negativos.



Summary

Error analysis is an important task in the study of numerical methods. To carry out error analysis of
an algorithm we need some assumptions about the accuracy of the basic arithmetic operations. These
assumptions are mainly embodied in the following model:

flxoy) = (xoy)(148),  [6]<u,  O=+4,—%/.

where fI(x®y) means the rounded result of the operation ®. The quantity u is the maximum possible
relative error consequence of the rounding, and it is called unit roundoff.

The forward error measures the distance between the computed and the exact solution. The com-
puted solution can be considerered as the exact solution of a perturbated problem. The backward error
measures this perturbation. Although we are interested in obtaining forward error bounds, frequently
backward error bounds are easier to derive, in particular in the field of numerical linear algebra.

When backward error, forward error, and the condition number are defined in a consistent fashion
we aim to prove the following relation:

forward error < condition number x backward error

The computed solution to an ill-conditioned problem can have a large forward error. Even if the
computed solution has a small backward error, this error can be amplified by a factor as large as the
condition number when passing to the forward error.

The best behaviour of a numerical algorithm under the point of view of error analysis occurs when
the following formula is satisfied:

forward relative error < Ku, for a constant K

Then, we say that the computations have been performed to high relative accuracy (HRA).

A sufficient condition to assure the HRA of an algorithm is the no inaccurate cancellation (NIC)
condition: The algorithm only multiplies, divides, adds (resp. subtracts) real numbers with like (resp.
differing) signs, and otherwise only adds or subtracts input data. In particular, this condition is satisfied
when no subtractions are made. An algorithm that performs no subtractions will be denoted SF, which
stands for subtraction free.

The matrix algorithms known to satisfy the NIC condition that we are going to introduce are also
efficient. By efficient we mean that they run in &'(n?) elementary operations for an 7 x n matrix.

Some classes of structured matrices allow us to perform many computations to high relative accu-
racy. These classes of matrices are closely related to some subclasses of P-matrices. A square matrix is
called a P-matrix if all its principal minors are positive. The nonsingular totally positive matrices and
the nonsingular M-matrices are both subclasses of P-matrices with important applications.

A matrix is totally positive (TP) if all its minors are nonnegative. TP matrices have applications in
many fields such as Approximation Theory, Combinatorics, Mechanics and Computer Aided Geometric
Design. In this last field, shape preserving representations are associated to bases that are always totally
positive. In order to perform computations to high relative accuracy, we factorize a nonsingular TP
matrix as a product of bidiagonal matrices.

A=F, \F, 2---FIDGy--- G, 2G,
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where the matrix D is diagonal with positive entries, the matrices F;’s are lower triangular bidiago-
nal nonnegative matrices and the matrices G;’s are upper triangular bidiagonal nonnegative matrices.
Given the entries of these factors with HRA, then we can compute A~!, the LDU decomposition, the
eigenvalues and the SVD of A accurately and efficiently.

The crucial tool to achieve this bidiagonal factorization is called Neville elimination. Neville elim-
ination is an alternative procedure to Gaussian elimination to make zeros in a column of a matrix by
adding to each row an appropiate multiple of the previous one. Neville elimination provides a construc-
tive way of obtaining bidiagonal factorizations, and the bidiagonal factorization of a nonsingular TP
matrix is unique, which is critical to the design of the HRA algorithms. In fact, the diagonal entries of
D are the diagonal pivots of Neville elimination and the off-diagonal entries of the bidiagonal factors
are the multipliers of the Neville elimination of A and A .

Given the bidiagonal factorization of a nonsingular TP matrix, it is possible to carry out the neces-
sary computations implicitly by transforming the entries of its bidiagonal decomposition in a way that
subtractions are not required. So the problem of performing computations to high relative accuracy
with a nonsingular TP matrix is transformed into the problem of finding its bidiagonal decomposition
with HRA. While every TP matrix intrinsically possesses such a decomposition, and for many classes
of structured matrices we know how to obtain it accurately, there are also nonsingular TP matrices for
which we know of no accurate and efficient algorithm to compute their bidiagonal decompositions.

The second class of matrices with HRA algorithms is the class of nonsingular diagonally dominant
M-matrices. A real matrix with nonpositive off-diagonal elements is called a Z-matrix. We say that a
matrix A = (a;j)1<i j<n is (tow) diagonally dominant (d.d.), if, for i = 1,...,n,|a;| > Yz |aij|. If AT
is row diagonally dominant, then we say that A is column diagonally dominant. A Z-matrix A is called
M-matrix if it can be expressed as A = sI — B, with B > 0 and s > p(B) (where p(B) is the spectral radius
of B). If s > p(B) holds then A is a nonsingular M-matrix. Equivalently, a Z-matrix A is a nonsingular
M-matrix if and only if A~! is nonnegative. M-matrices play an important role in many applications
such that Optimization, Economy and Numerical Analysis.

A rank revealing decomposition of a matrix A is defined as a decomposition A = XDY ', where X,Y
are well conditioned and D is a diagonal matrix. The singular value decomposition can be computed
accurately and efficiently for matrices that admit accurate rank revealing decompositions.

In the class of diagonally dominant M-matrices, the natural parameters that permit obtaining accu-
rate and efficient algorithms are the off-diagonal entries and the row sums (or the column sums). In
the case of a row diagonally dominant nonsingular M-matrix we can compute to high relative accuracy
LDU factorizations associated to some pivoting strategy when the parameters are given. To carry out
this task, we modify Gaussian elimination to compute the off-diagonal entries and the row sums of each
Schur complement without performing any subtractions, and we choose an adecuate pivoting strategy
so that the factors L and U are well conditioned and so we have an RRD. A symmetric pivoting strategy
leads to an LDU-decomposition of A of the form PAPT = LDU, where P is the permutation matrix asso-
ciated to the pivoting strategy. There are at least two pivoting strategies useful for this task. Symmetric
complete pivoting consists in using the largest diagonal entry as the pivot element. It leads to an LDU
factorization with U d.d. and L such that its diagonal entries have absolute value greater than or equal to
the remaining entries of their column. The other symmetric pivoting is the symmetric maximal absolute
diagonal dominance (m.a.d.d.) pivoting, which chooses as pivot at the kth step (1< k <n—1) arow i
satisfying

k k k k
agol = X lag)l= max{laf| - ¥ ay'l}
J=k,j#ik =t J=k,j#i

Using this technique we obtain an LDU-decomposition valid as RRD, because both L and U are d.d.
Given a complex matrix A = (a;j)1<j,j<n, its comparison matrix M (A) = (m;;) 1< j<n is the Z-matrix
whith entries m;; = |a;;| and m;; = —|a;;|. The comparison matrix allows us to introduce a class of matri-
ces containing the M-matrices: the class of H-matrices. We say that a complex matrix A = (g; j)lgl" i<n
is an H-matrix if its comparison matrix is an M-matrix. H-matrices are closely related to diagonally
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dominant matrices. In fact, a matrix A = (a;;)1<;, j<» is an H-matrix if and only if there exists a diagonal
matrix D such that AD is strictly row diagonally dominant.

In chapters 2 and 3 we have presented many known results about accurate computations. In chapter
4 we introduce a class of matrices without any previously known algorithm with HRA, as far as we
know. We provide the adecuate parameters to perform some computations with HRA.

Let A = (a;j)1<i,j<n be a complex matrix. We define fori=1,...,n:
n
Z’alj’a ifi=1,
j=2
i—1 WA .
hi(A)Z Z|aij| ]( )‘l- Z |Cll'j‘, if 2<i<n,
=1 4jj =it
n—1
hi(A
Y Jan 22, it i=n,
j=1 ajj

We say that A is a Nekrasov matrix if the condition |a;| > h;(A) holds for i = 1,...,n. Nekrasov
matrices are known to be H-matrices, a fact that shows its relationship with generalized diagonally
dominant matrices.

Given a Z-matrix Nekrasov whose diagonal elements are positive, we propose the following para-
metrization consisting on n”> parameters:

{ dijj, i 7é Js (1)
Aj(A):=ajj—hj(A), j=1,...n.

The signs of this parameters determine wether a Nekrasov matrix A is a Z-matrix or not. In fact,
a Nekrasov matrix A is a Z-matrix if and oly if the n> — n first parameters are nonpositive and the n
last parameters are positive. Given these parameters with HRA, we can compute with HRA both the
inverse and the solution of the linear system of equations Ax = b whenever the components of b are

nonnegative. For this purpose, we define the diagonal matrix S = diag (%fl‘), ey %) Then AS is
a d.d. Z-matrix, and so it is a d.d. M-matrix. As we stated earlier, the natural parameters to perform
accurate computations with AS are its off-diagonal elements and its row sums. We can compute this
parametrization with an SF algorithm if we know accurately the parameters (1), and then we can use it
to obtain A~ with HRA and the solution of Ax = b if the components of b are nonnegative. Finally, we

state the main result after the previous sketch of the tools used in it.

Theorem. Let A = (a;;)i<; j<» be a Nekrasov Z-matrix with positive diagonal elements. If we
know its parameters (1) with HRA then we can compute A~' and the solution of the linear system
Ax = b whenever b > 0 with HRA performing &'(n?) elementary operations.
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Capitulo 1

Error y calculos con alta precision relativa

El 4lgebra lineal numérica estudia el desarrollo de algoritmos para la resolucién de problemas del
dlgebra lineal mediante cdlculos con ordenador. Entre estos problemas, varios muy frecuentes son:

= Resolver Ax = b, con A matriz cuadrada no singular.
= Resolver problemas de minimos cuadrados.
= Hallar los valores propios de una matriz n X n.

= Calcular los valores singulares de una matriz m X n.

La técnica usada para abordarlos es la aproximacion numérica. Este planteamiento ocasiona que
exista una diferencia entre nuestro cdlculo y la solucién exacta, a la que llamamos error. El estudio del
error aparece como un problema fundamental para desarrollar buenos algoritmos. Existen tres causas
fundamentales de error. La primera es el redondeo consecuencia de trabajar en una aritmética de preci-
sion finita. Los errores de redondeo no son aleatorios, y aunque a veces puedan ser beneficiosos, como
al aplicar el método de potencias partiendo de un vector elegido desafortunadamente (por ejemplo, un
vector propio asociado al valor propio 0), hay que tener presente que un algoritmo deficiente puede
magnificar estos errores y dar lugar a una solucién numérica indtil. La segunda es la incertidumbre que
podamos tener en los datos de cualquier problema en la practica, bien sea debida a errores de medicién
0 estimacion, a errores de almacenamiento de los datos o a errores de célculos previos si estos datos son
solucién de un problema anterior. La tercera es la discretizacién que puede tener que llevarse a cabo al
plantear la resolucién prictica del problema. En cualquier caso, nos encontramos una primera cuestion:
(Coémo se cuantifica el error? Supongamos que queremos calcular un valor x escalar.

Definicion 1. El error absoluto cometido al hallar X es E,;s(X) = |x —X].

Esta primera definicién no tiene en cuenta la magnitud de la cantidad a calcular, por lo que puede
no ser muy informativa. Por tanto, se introduce el error relativo:

Definicion 2. El error relativo cometido al hallar X, definido cuando x # 0, es E(X) = ‘x‘;‘ﬂ

El concepto de error relativo estd relacionado con el nimero de cifras significativas correctas que
obtenemos, por lo que serd el que atraiga nuestro interés. En el caso vectorial se puede extender la
misma definicién de esta forma:

Definicion 3. El error relativo cometido al calcular el vector x, definido cuando x # 0, es E,; (X) = Cati

No obstante, puede que se obvie el error cometido en las componentes de menor magnitud del
vector, por lo que también es interesante definir :

Definicion 4. El error relativo componente a componente del vector X, definido cuando x; # 0, es
|xi—xi|
Jxi

max



2 Capitulo 1. Error y cdlculos con alta precision relativa

Como no conocemos con exactitud el error que cometemos, la forma de proceder consiste en dar
cotas de este error, al que se denomina forward (o progresivo), que aseguren que nuestros calculos son
buenos.

Otro planteamiento posible es considerar para qué valores iniciales del problema nuestra solucién
numérica serfa la solucién exacta. Tomando como ejemplo y = f(x), una funcién continua real de va-
riable real, e y una aproximacién numérica a f en un punto x dado, consideramos el conjunto de valores
x+ Ax para el que seria la solucién exacta, y tomamos el menor |Ax|, al que llamamos error backward
(o regresivo). Si para todo x, el valor |Ax| es pequeiio (en el contexto del problema que tratemos) dire-
mos que el método es estable backward. El estudio de la estabilidad backward juega un papel importante
en el disefio de un buen algoritmo. En un problema concreto, podemos definir el factor de crecimiento,
que es una medida del incremento de la magnitud de los datos con los que se trabaja. Si éstos crecen
demasiado podria darse un problema de overflow, lo que significa que una cantidad calculada ha supe-
rado el maximo del conjunto de nlimeros representables. Cldsicamente en dlgebra lineal numérica, tener
una cota adecuada del factor de crecimiento nos permite a su vez acotar el error backward. Asi también
evitaremos este tipo de problemas en el desarrollo del algoritmo. De igual forma, se dice que un método
es estable forward si la magnitud del error forward de sus soluciones es similar a la del error backward
asociado a un método estable backward.

1.1. Representacion en coma flotante

Antes de introducir el concepto de alta precision relativa, debemos especificar en qué contexto
estamos trabajando. Hemos mencionado como una causa de error el trabajar utilizando una aritmética
de precision finita. Sea F' un subconjunto de los nimeros reales (F' C R). Diremos que F es un sistema
de numeracién en coma flotante si sus elementos presentan la siguiente forma:

y=4mx B,

El significando (también llamado mantisa), m, es un nimero entero que cumple 0 < m < f' ~1 Elsistema
F queda caracterizado por los siguientes nimeros enteros:

= la base f3,
= ]a precision t,
= y el rango de exponentes e, < e < emax-

En nuestro caso, la base serd 2. Los nimeros representables dependerdn del ndmero de bits em-
pleado para almacenar el significando y el exponente. El nimero de bits utilizados para el significando
determinard la precision, y el nimero de bits usados para el exponente delimitard el rango de nimeros
representables. Lo comtn es emplear el estdndar del IEEE para aritmética en coma flotante. En él se
definen dos formatos de nimeros en coma flotante muy utilizados: precisiéon simple (de 32 bits) y pre-
cision doble (de 64 bits). El primero destina 8 bits al exponente y 23 al significando. El segundo 11 bits
al exponente y 52 al significando. En ambos casos el primer bit corresponde al signo.

Si queremos realizar un andlisis del error que cometemos al aplicar un algoritmo, existe un valor
asociado a F fundamental: la unidad de redondeo, u. La unidad de redondeo es el maximo error relativo
que se puede cometer al aproximar un nimero dentro del rango de nimeros representables. En los
siguientes capitulos consideraremos el modelo estdndar de aritmética en coma flotante. Sean x,y € F:

flxoy)=(xoy)(148),  [6]<u,  O=+4,—%/.

donde fI(-) con un argumento representa el valor calculado de esa expresién. El modelo dice que el
valor que se calcula es “tan bueno” como el valor exacto redondeado. A veces puede ser mas conveniente
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utilizar la siguiente variacién del modelo. De nuevo, sean x,y € F:

xX©®y

fl(xoy) = 55

|6| < u, O=4+,—,%,/.

1.2. Condicionamiento y alta precision relativa

Ademais del interés propio que suscita el estudio del error backward (si tenemos estabilidad back-
ward, la solucién calculada es la solucién de un problema ligeramente perturbado), éste puede servir
para dar una estimacién del error que definiamos originalmente, el error forward. La relaciéon entre
ambos errores estd gobernada por el condicionamiento del problema, que mide la sensibilidad de la
solucién a las perturbaciones en los datos.

Como ejemplo concreto de condicionamiento, podemos considerar el problema de la resolucién
de un sistema lineal de ecuaciones Ax = b, con A matriz cuadrada no singular (puede consultarse, por
ejemplo, en la secci6n 2.2 de [9]). Este condicionamiento viene dado por el nimero k(A) = ||A]|[|[A7],
denominado nimero de condicién. El nimero de condicién depende solamente de la matriz A, y cuando
es arbitrariamente grande, nos impide dar una cota satisfactoria del error forward de la solucién del
sistema.

En general, cuando en un problema tenemos definido el error forward, el error backward y el nlimero
de condicién correspondientes, se busca probar la relacién (véase la seccidn 1.6 de [17]):

error forward < niimero de condicién x error backward

ya que normalmente es més fcil acotar el error backward que el error forward.

Aunque la solucién numérica que obtengamos tenga un error backward pequefio, éste puede ser am-
plificado por un factor de hasta el tamafio del nimero de condicién, dando lugar a una solucién numérica
con un error forward excesivo. Asi, el condicionamiento se puede presentar como un impedimento in-
trinseco a la hora de dar una cota del error satisfactoria, en contraste con el error backward, que depende
del método utilizado. En la préctica, si nuestro problema lleva asociado una matriz mal condicionada,
es de interés buscar algin camino alternativo.

Un ejemplo que también justifica el buscar un planteamiento distinto es el calculo de valores sin-
gulares de una matriz. Si buscamos acotar el error cometido al calcular el vector de valores singulares
en norma, aunque veamos que los valores singulares grandes tendran un error relativo pequefio, muchas
veces no podremos asegurar lo mismo para los mds préximos a cero (puede verse en [10]). Y éstos son
los que queremos conocer de forma precisa.

Para obtener resultados con varias cifras significativas correctas, buscaremos que el error de nuestro
algoritmo cumpla esta relacion:

error forward relativo < Ku, para alguna constante K.

Entonces, diremos que los célculos se han realizado con alta precision relativa (HRA, de high rela-
tive accuracy). | Es posible lograr la HRA para cualquier problema? Desgraciadamente, la respuesta es
negativa. Como primer ejemplo de cdlculo que no puede realizarse con HRA tenemos la evaluacion de
la expresion x +y + z (véase [10]). También podemos encontrar un ejemplo entre las clases de matri-
ces con una estructura sencilla, que es la evaluacion de determinantes de las matrices de Toeplitz. Una
matriz de Toeplitz presenta la siguiente forma:
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ap a o dp—2  Adp—1
a.q ao ‘. an—2
B =
A-n+t2 . . ai
dpyl dpy2 00 4 ap

Las matrices de Toeplitz se caracterizan porque en cada diagonal aparece siempre el mismo elemen-
to. Aunque estan parametrizadas con 2n — 1 pardmetros, para un n arbitrariamente grande, no se puede
asegurar la HRA. No obstante, para otras matrices con determinada estructura veremos como lograrla.

Comenzamos la bisqueda de la alta precision relativa identificando las causas de la pérdida de la
misma. El principal fenémeno que provoca este problema es la cancelacién debido a restas de cantida-
des aproximadas durante el desarrollo de un algoritmo. Una resta de dos cantidades del mismo tamafio
puede magnificar errores previos y provocar que los resultados obtenidos no sean validos. Para entender
mejor este fendmeno, vamos a plantear la operacion (en aritmética exacta en este caso) x = a — b, donde
a=a(l+Aa), b= b(1+4Ab) y Aa 'y Ab son los errores relativos en los datos que intervienen en la ope-
racion. Veamos qué podemos decir del error relativo que cometemos al calcular X como aproximacién
dex=a—b(x+#0):

_ ‘ "i“_*bbAb‘ < mix (|Ad], |Ab|)w.

Vemos que la cota para el error relativo de x es grande cuando |a —b| < |a| + |b
te, cuando se produce mucha cancelacidn al realizar la operacion.

xX—Xx

X

, 0 equivalentemen-

Aunque no toda resta tiene que provocar este efecto. Por ejemplo, podemos restar dos datos iniciales
que se conozcan de forma precisa sin que se produzca una cancelacién perniciosa. En cualquier caso,
es un fendmeno que tenemos que tener presente al construir un método con HRA. Existe una condicién
suficiente para asegurar la alta precision relativa de un algoritmo (véase [11]). Es la condicién no inac-
curate cancellation (NIC): las operaciones realizadas en el algoritmo son sumas de nimeros del mismo
signo, multiplicaciones, divisiones y restas de datos iniciales (entendiendo como resta la diferencia entre
dos cantidades del mismo signo). Es decir, estdn prohibidas las restas (salvo de datos iniciales). Muchos
de los algoritmos que vamos a presentar son algoritmos libres de restas (o SF, de subtraction free). Un
algoritmo SF cumple en particular la condicién NIC, y, por tanto, mediante su aplicaciéon obtendremos
resultados con HRA.

En esta seccion hemos introducido conceptos fundamentales en el andlisis del error. No obstante,
a la hora de desarrollar un algoritmo hay que tener en cuenta mds factores. Si las medidas utilizadas
para evitar la propagacion de errores acarrean un coste computacional excesivo, las consideraciones
previas no podrén ponerse en practica. Como vamos a describir cdlculos matriciales, expresaremos el
coste computacional en funcién del tamafio de la matriz n X n en estudio. Normalmente, los algoritmos
para resolver los problemas algebraicos enunciados al principio de esta seccién se consideran eficientes
si realizan @ (n®) operaciones elementales. En los siguientes capitulos presentaremos clases de matrices
con algoritmos eficientes con HRA. Todas ellas pertenecen a la clase de P-matrices, que serd introducida
a continuacion.

1.3. P-matrices

Para ciertas clases de matrices, se pueden realizar muchos cédlculos con alta precision relativa in-
dependientemente del condicionamiento. Una justificacion para este hecho es que estas matrices tienen
detrds una estructura especial y traen asociados unos pardmetros naturales, que son los que se emplean
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en los algoritmos para lograr la alta precision relativa. En este documento se van a presentar dos clases
de matrices que presentan esta ventaja, ambas subclases de las P-matrices. Estas subclases son las M-
matrices no singulares y las matrices totalmente positivas no singulares. De hecho, casi todas las clases
de matrices estructuradas para las que se han encontrado hasta ahora algoritmos con HRA estdn muy
relacionadas con subclases de P-matrices (véase [10]). Este hecho estd probablemente relacionado con
el de que la condicién suficiente para HRA propuesta en el capitulo anterior depende de una cuestion de
signos.

Definicion 5. Una matriz A = (a;j)1<; j<» s una P-matriz si todos sus menores principales son positivos.

Recordemos que los menores principales de una matriz son aquellos que se forman eligiendo filas y
columnas con el mismo indice.

Esta es la definicién méds comiin de P-matriz. No obstante, existen muchas caracterizaciones. En el
siguiente resultado (pagina 120 de [18]) se presentan las siguientes:

Teorema 1.1. Sea A = (a;j)1<i j<n. Las siguientes condiciones son equivalentes:
i) A es P-matriz.
ii) Para todo x € R" no nulo existe k € {1,...,n} tal que x;(Ax); > 0.
iii) Para todo x € R" no nulo existe una matriz D diagonal positiva tal que x” (DA)x > 0.
iv) Para todo x € R" no nulo existe una matriz D diagonal no negativa tal que x” (DA)x > 0.
v) Todo valor propio real de cualquier submatriz de A es positivo.

Ademads de estas caracterizaciones, podemos encontrar otras que relacionan a las P-matrices directa-
mente con sus aplicaciones. Como ejemplo de aplicacién en programacién lineal, tenemos el problema
de complementariedad lineal (LCP):

Dados r € R" y M € R™", encontrar (o deducir que no existe) z € R" tal que
w=r+Mz, conw>0,z> O,ZTW =0.

(1.1)

Pues bien, la existencia y unicidad de solucién del problema de complementariedad lineal caracte-
riza a una P-matriz (pagina 274 de [5]):

Teorema 1.2. M = (m;;)1<; j<n es una P-matriz si'y solo si el problema de complementariedad lineal
(1.1) tiene solucion tinica para todo r € R".

En los siguientes capitulos presentaremos subclases de P-matrices para las que se han encontrado
algoritmos con HRA, e incluso propondremos un ejemplo nuevo al final de la memoria.






Capitulo 2

Matrices totalmente positivas y
aplicaciones

Comenzamos este capitulo introduciendo las matrices totalmente positivas. Aunque su definicién
parece muy restrictiva, destaca la frecuencia e importancia de las aplicaciones en las que aparecen.
Como ejemplos tenemos las aplicaciones a sistemas mecdnicos, teoria de aproximacion, disefio geomé-
trico asistido por ordenador, estadistica o economia (véase [14]).

Definicién 6. Una matriz A = (a;j)1<;,j<» con todos los menores no negativos se llama matriz totalmente
positiva (TP).

Antes de continuar, vamos a introducir la siguiente notacién, que serd de utilidad para describir
los posteriores calculos realizados con matrices y submatrices de las mismas. Definimos Qi , como el
conjunto de sucesiones estrictamente crecientes de k ndmeros naturales menores o iguales que n. Sean
o= (a,....,o), B=(Bi,...,B) dos sucesiones de Oy ,. Entonces A[ct| 8] denota a la submatriz k x k
de A conteniendo las filas @i, ..., 04 y columnas By, ..., B Si a@ = 3 la submatriz A[a|a] es principal
y también se representa de forma abreviada como A[c].

Teorema 2.1. Identidad de Cauchy-Binet para determinantes. Sean A, B matrices n X n. Entonces:

det(AB)[a|B] = Z detA[o|w] - det B[w| ] para &, 3 € Q.

WerJl

La demostracién puede verse en la seccién 1 de [3]. Como consecuencia directa de este teorema
se tiene que el producto de matrices TP vuelve a ser una matriz TP. Es mads, las matrices TP nxn no
singulares forman un semigrupo s, con la multiplicacién. Por ello, si A es matriz TP no singular se
plantea la posibilidad de trabajar con una descomposicién de la matriz en un producto de otras mas
simples que también sean totalmente positivas.

Otra propiedad importante que cumplen las matrices TP es la llamada disminucién de la variacién.
La imagen AX de un vector X cumple que el nimero de cambios de signo estrictos entre sus compo-
nentes consecutivas es menor o igual que el correspondiente nimero de cambios de signo estrictos entre
las componentes consecutivas de X (véase la seccién 5 de [3]). Esta propiedad justifica la importancia
de esta clase de matrices en muchos campos como teoria de aproximacion o el disefio geométrico asis-
tido por ordenador (Computer Aided Geometric Design, C.A.G.D.). Para entender qué papel juegan las
matrices TP en este tltimo tema vamos a presentarlo muy brevemente. Posteriormente, comentaremos
la parametrizacion adecuada para poder realizar célculos con estas matrices con HRA y también intro-
duciremos la eliminacidn de Neville y la factorizacién bidiagonal, ambas herramientas fundamentales
para dicho objetivo.
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2.1. Matrices TP y diseiio geométrico asistido por ordenador

Queremos representar una curva plana paramétrica en un espacio vectorial de funciones definidas
sobre el intervalo [a,b] de la siguiente manera:

n
v(t) = ) Puilt), 1€ [a,b], 2.1
i=1
donde P, € R? y u;(t) es una funcién definida en [a,b] con i = 0,...,n. Asi consideramos una curva

paramétrica. Los puntos P; se denominan puntos de control, y la linea que los une, Py - - - P, poligono de
control.

Es de nuestro interés poder controlar la forma de la curva mediante el poligono de control. Este
tipo de control geométrico se llama preservacion de forma. Nuestro objetivo es que la curva imite la
forma de su poligono de control. Para lograrlo buscamos la base de funciones que nos permita dar una
representacion en ese espacio con las mejores propiedades posibles. Si consideramos a un disefiador
trabajando en un ordenador, una primera propiedad deseable es conseguir que la curva disefiada per-
manezca dentro de la pantalla. Con este fin aparece la condicidn de que las funciones de la base sean
no negativas, asi como la normalizacién de la misma. Un sistema de funciones (uy, ... ,u,) definido en
[a,b] se llama normalizado o se dice que forma una particion de la unidad si verifica:

Y u()=1  Vielab], i=0,...,n.
i=0

Un sistema normalizado de funciones no negativas se llama sistema blending, y la propiedad que
cumple, la cual justifica que las curvas permanezcan en la capsula convexa de su poligono de control,
y asi dentro de la pantalla, se denomina propiedad de la cdpsula convexa (P.C.C.). A continuacién,
buscamos poder trabajar con tramos de curva por separado con el fin de enlazarlos después. Esto es
posible si la base cumple:

{ up(a) =1; ui(a)
1; ui(b)

ya que entonces se tiene que y(a) = Py y y(b) = P,. Esta propiedad se conoce como la propiedad de
interpolacién en los extremos (P.LLE.). Con estas consideraciones en mente, es hora de ver qué papel
juegan las matrices TP en este dmbito.

0, i=1,...,n,
0, i=0,....,n—1,

Definicion 7. Un sistema de funciones U = (uy, ..., u,) tiene la propiedad de disminucién de la varia-
cion si para toda curva Yy de la forma (2.1) cualquier recta la corta a lo sumo tantas veces como corta a
su poligono de control.

La propiedad de disminucién de variacién implica que el poligono de control exagera la forma de
la curva, asi como que la curva imita la forma del poligono de control. Por tanto, podremos realizar un
disefio de la curva de forma interactiva; manipulando la forma de ésta desplazando adecuadamente los
puntos de control.

Definicion 8. Un sistema de funciones U = (uy,...,u,) se dice TP si para toda sucesién de puntos
fH<...<t, contenida en el intervalo [a,b] la matriz de colocacién M = (M;;j)i<; j<n, con M;; = u;(t;) de
U en (19,...,t,) es TP.

Un sistema normalizado y TP se denota NTP. Las bases NTP poseen buenas propiedades para el
disefio; en particular, cumplen la propiedad de la disminucién de la variacién. Este tema asi como otros
relativos a las representaciones con preservacion de forma pueden consultarse en el libro [25].
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Antes de volver a nuestro tema de cdlculos con HRA, presentamos la base de los polinomios de
Bernstein (Bj.,...,B)), con
B (1) = <) F(— 0 e (0,1,
i
como ejemplo crucial en C.A.G.D. Este sistema de funciones es una base NTP del espacio de poli-
nomios de grado menor o igual que n definidos sobre el intervalo [0, 1]. Es la base mds importante en

C.A.G.D. Las curvas paramétricas empleando esta base se conocen como curvas de Bézier. Las matrices
de colocacién de esta base se suelen llamar matrices de Bernstein-Vandermonde.

2.2. Parametrizacion de las matrices TP para HRA

Las matrices TP contienen algunas matrices mal condicionadas, por lo que no es adecuado emplear
los algoritmos tradicionales con ellas ya que hay procedimientos alternativos con HRA. El problema de
realizar célculos con alta precision relativa en este caso se transforma en un problema de representacion.
Si logramos una factorizacion adecuada de la matriz asegurando la alta precision relativa, a partir de ella
podremos realizar los célculos descritos al comienzo del texto también con alta precision relativa. Para
las matrices TP se considera la llamada factorizacién bidiagonal, que se describe mas adelante. Dada
esta factorizacidn, se puede consultar [19, 20] para ver como realizar los cdlculos algebraicos mencio-
nados anteriormente con HRA. También en la seccion 2.5 mostraremos algtin ejemplo.

Las matrices TP poseen varias subclases para las que se conocen algoritmos con alta precision rela-
tiva para sus factorizaciones bidiagonales y por tanto para dichos problemas algebraicos. Hemos visto
la importancia de la base de los polinomios de Bernstein. Se puede ver cémo hallar la factorizacién bi-
diagonal con HRA y resolver un sistema lineal de matrices de Bernstein-Vandermonde en [21], resolver
un problema de minimos cuadrados considerando esta misma base en [23] o hallar la solucién de los
problemas de valores singulares o valores propios en [24].

Las matrices de colocacién empleando como base del espacio de polinomios la base de Said-Ball,
la cual también es NTP e importante en C.A.G.D., llamadas matrices de Said-Ball-Vandermonde, se
consideran en [22], las matrices de colocacion de bases racionales en [6] y las matrices de q-Bernstein-
Vandermonde en [8]. Otro ejemplo notable debido a sus diversas aplicaciones es la clase de las matrices
de Pascal, estudiado en [2]. En [7] se presentan algoritmos con HRA para trabajar con matrices de
Jacobi-Stirling, las cuales aparecen en el campo de la combinatoria.

Para presentar la parametrizacién bidiagonal, primero introducimos el algoritmo de la eliminacién
de Neville, el cual nos dard un método constructivo de obtener factorizaciones bidiagonales.

2.3. Eliminacion de Neville

La eliminacion de Neville es un procedimiento que sirve para hacer ceros por debajo de la diagonal
principal de una matriz. Se puede decir que es un método alternativo a la eliminacién Gaussiana en el
que para hacer un cero en una fila se emplea un multiplo de la fila anterior; en vez de emplear la fila
con el mismo indice que la columna como se haria si apliciramos eliminacién Gaussiana. En nuestro
caso, consideraremos una matriz A = (a; j) 1<i,j<n DO singular , para la cual el algoritmo se divide en n-1
etapas

A=AD 540 5 AWy,

donde U es matriz triangular superior.

La matriz AK1) = (ag.(H))lgi, j<n se obtiene a partir de A*) = (aﬁf))lgi, j<n afiadiendo un multiplo
delafilai-ésimaalafilai+ 1 (coni=n—1,n—2,...,k) En general, al comienzo de cada etapa, podria
ser necesario hacer una reordenacién de filas para continuar con el algoritmo. En el caso de las matrices
TP, una de sus caracteristicas es que siempre se puede realizar la eliminacion de Neville sin cambios de
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filas. Asi, podemos definir el célculo de los elementos de la etapa k+1 a partir de los de la etapa k de la
siguiente forma:

all sil<i<j<k,
(k)
k+1 (k) _ Gig_ (k) . - (k)
al(j ) a;; —#aiq’j szk—i—lgl,jgnyaifl’j#o,
i1k
ag.c) sik—i—lgignyal@]j:O

paratodok € {1,...,n—1}.
Se define el pivote (i,j) de la eliminacién de Neville de la siguiente manera:

py=al, 1<j<i<n,

En el caso de que todos los pivotes sean distintos de cero, se puede dar una expresion directa para
calcularlos (Lemma 2.6 de [15]):
pi=aji, 1<i<n,
- detA[i—j+1,...,01,...,]]
CdetAfi—j+1,...,i—11,...,j—1]

Dij 1<j<i<n
También se define el multiplicador (i,j) de la eliminacién de Nevillede A,con 1 < j <i<ndela
siguiente forma:
b))
4j _ _Dij
mij = al@lj Pi-1,j

0, Si az@l,j =0

) sial@l’j #0

Entre pivotes y multiplicadores se da la relacién p;; = 0 <> m;; = 0 y ademads los segundos cumplen:
m,-j:0:>mhj:O Vh > i.

La eliminacién completa de Neville de una matriz A consiste en aplicar la eliminacién de Neville
a la matriz A para obtener la matriz triangular superior U, y después llevar a cabo la eliminacién de
Neville de U”. Los multiplicadores que se obtienen a partir de la eliminacién de Neville de U7 son los
mismos que los que obtendriamos aplicdndoselo a A7 (p4gina 116 de [16]), por lo que vamos a expresar
el siguiente resultado en funcién de A y AT (Corollary 5.5. de [15]).

Teorema 2.2. Una matriz A = (a;j)1<i, j<n s no singular'y TP si'y solo si la eliminacién de Neville de
Ay de AT puede llevarse a cabo sin cambios de filas, todos los multiplicadores de la eliminacion de
Neville de A y de AT son no negativos y todos los pivotes diagonales (p;;) de la eliminacion de Neville
de A son positivos.

Este resultado refleja la importancia de la eliminacién de Neville en el estudio de las matrices TP,
puesto que el método las caracteriza. Observemos que el coste computacional del método es de solo
0 (n?) operaciones elementales para asegurar que todos los menores de una matriz n X n son no nega-
tivos. Ademds podremos describir la descomposicién de A en matrices bidiagonales en funcién de los
multiplicadores y los pivotes de la eliminacion de Neville.

2.4. Factorizacion bidiagonal

El siguiente resultado (véase Theorem 4.2, en la pagina 120 de [16]) presenta la factorizacién bidia-
gonal de las matrices TP no singulares.
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Teorema 2.3. Sea A = (a;j)1<i j<n una matriz no singular. Entonces, A es una matriz TP si'y solo si
admite una factorizacion de la forma:

A=F, 1\F, 2 -F1DGy -G, 2G,

donde D es una matriz diagonal diag (p11,...,Pnn) con elementos diagonales mayores que cero,
1
0 1
F;,= 0 1 ,
My 1
My p—i 1
10
1
0
G,= 1 miyy
1
%n,n—i
1

paratodoi € {1,....n—1}y
mij:0:>mhj:0 Vh>i
ﬁijZO:%ikZO Vk > j

En esta factorizacion, las entradas m; j son los multiplicadores de la eliminacion de Neville de A, los
m;j son los multiplicadores de la eliminacion de Neville de AT (o indistintamente de UT) y los p;; son
los pivotes diagonales de A. Ademds, bajo las condiciones anteriores esta factorizacion es unica.

Existen varios métodos andlogos a la eliminacion de Neville. Cada uno da lugar a una descompo-
sicién de A como producto de matrices bidiagonales no negativas con una estructura de ceros aniloga,
pero que se presenta de forma diferente. No obstante, cualquiera de ellas nos serviria para llevar a cabo
los célculos necesarios con alta precision relativa.

2.5. Operaciones con HRA para matrices TP

Una vez obtenida una parametrizacién adecuada, queda conocer la forma de utilizarla para realizar
célculos con HRA. En [19, 20] se muestra cémo resolver de forma precisa y eficiente los problemas
citados en el capitulo anterior para una matriz TP utilizando la factorizacién bidiagonal descrita en
el Teorema 2.3, a la que nos referiremos como A Y. Antes de continuar, es conveniente expresar la
factorizacion dada en el Teorema 2.3 en funcién de las matrices Ex(x), definidas de la siguiente forma
parak=2,...,n:

1 sii=j
(Ex(x))ij =< x si(i,j) = (k,k—1)
0 enelresto

Son matrices con una estructura muy simple; solamente difieren de la matriz identidad en la com-
ponente (k,k — 1). Ademads, cumplen las siguientes propiedades:
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E ' (x) = Ei(—x)

E(x)Ei(y) = Ei(x+) (2.2)
Ei(x)E;(y) =E;(y)Ei(x) si |i—jl#1
El producto E;(@)A supone sumar a la fila i-ésima de A la fila anterior multiplicada por ¢. Por tanto,
el proceso de factorizacién LU mediante eliminacién de Neville sin cambios de filas puede expresarse
como el producto de A por las matrices adecuadas de esta clase, y, mediante una reordenacién de las
mismas, se logra la factorizacion del Teorema 2.3. Para expresar esta factorizacién, en [20] se introduce
la notacién de H'f:"’l, que indica que el producto empieza en k =n — 1 y el indice va reduciéndose
hasta llegar a 1. Empléandola tenemos que:

n j=n
F=[1 Eitmj;—),  Gi=]]E] (mj,-).

j=itl i+1

Sustituyendo los factores F; y G; por estos productos obtenemos

(lﬁl [1 Ei(mj;- ,)D(ﬁﬁE}(ﬁ%”))

Jj=i+l1 i=1i+1

y, debido a la primera propiedad de (2.2), podemos calcular A~! de la siguiente forma:

i 1 n—1j=n
(H HET r?z”,> (HHE m”,>.
Jj=i+1 i=1i+1
Hacer este producto supone & (n ) operaciones elementales. La estructura de signos de las matrices
que intervienen en el producto no conlleva ninguna cancelacién por restas.
Habiendo calculado la inversa de la matriz A, la siguiente cuestién que aparece de forma natural es
estudiar la posibilidad de resolver el sistema lineal de ecuaciones Ax = b también con HRA. Planteamos

i 1 n—1j=n
x:A_lb:<H HE n?j,j,> (HHE m”,>b.
Jj=i+1 i=1 i+l

Como los multiplicadores m; j (0 m; ;) son no negativos, podemos asegurar que la operacién
Ei(—m; ;)b no supondrd realizar una resta si las componentes del vector b tienen signos alternados:
signo(b;) = (—1)" o signo(b;) = (—1)"*!. En ese caso, obtendremos la solucién x con HRA realizando
O (n?) operaciones elementales.

Con la factorizacién bidiagonal de una matriz, también es posible calcular un menor, hallar la des-
composiciéon LDU y calcular los valores propios y valores singulares de forma precisa y eficiente (véase
[19, 20]). La clave para resolver cualquiera de esos problemas consiste en combinar las siguientes ope-
raciones denominadas elementary elimination transformations (EETSs):

EET1: Restar un mdltiplo de una fila (o columna) a la siguiente para hacer un cero de forma
que la matriz transformada siga siendo TP.

EET2: Anadir un multiplo de una fila (o columna) a la anterior.
EET3: Anadir un multiplo de una fila (o columna) a la siguiente.

EET4: Multiplicar por una matriz diagonal positiva.

Realizar cualquiera de estas operaciones con una matriz TP da como resultado otra matriz TP [16].
La forma de proceder no serd realizar las operaciones directamente a la matriz, sino aplicar las mismas
de forma implicita transformando los pardmetros de la descomposicion bidiagonal realizando los célcu-
los necesarios de forma que no se produzcan restas. En [19] puede consultarse como se realizan las dos
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primeras operaciones. En [20] se describe la forma adecuada de llevar a cabo las otras dos. EET1 es la
mads sencilla. Realizar esta operacion es equivalente a sustituir por un cero la componente adecuada de
ABZ(A). EET2 y EET3 requieren un cuidado especial. Aqui describiremos como se realizan EET3 y
EET4:

Empecemos viendo cémo se lleva a cabo EET3. Llamemos C a la matriz obtenida a partir de A
afladiendo un multiplo de la filai — 1 a la fila i de A,

C= Ei(x)A, x> 0.

Nuestro objetivo es saber cémo operar partiendo de % (A) para llegar a Z2(C) asegurando la
HRA. Trabajaremos con matrices bidiagonales inferiores. Es decir, matrices cuyos elementos no nulos
se encuentran en la diagonal principal y en la diagonal inferior a ésta. Ademas cumplirdn que sus ele-
mentos diagonales son todo unos. Si B es una matriz de esta clase, para identificarla bastard utilizar n — 1
pardmetros correspondientes a los elementos de la diagonal inferior. Nos referiremos a sus elementos
como b;coni=1,...,n—1,y lo mismo serd aplicable a toda matriz que pertenezca a esta clase.

Para describir el método necesitaremos este resultado auxiliar:

Lema 2.4. Sean B y C matrizes bidiagonales inferiores tales que sus elementos en la diagonal prin-
cipal son todo unos, los elementos de la diagonal inferior son no negativos (b; > 0y ¢; > 0 para
i=1,...,n—1)ytambién cumplen que b; = 0 cuando c;_; = 0. Entonces existen matrices bidiagonales
B'y C' con elementos extradiagonales b, > 0 ¢; >0 coni=1,...,n—1 tales que B'C' = BC y b} = 0.
Ademds se pueden calcular b!y ¢! sin realizar restas en como mucho 4n operaciones elementales.

Demostracion. Vamos a seguir la demostracion de [20] para ver como se realizan los calculos necesarios
para obtener pardmetros b}, ¢} sin realizar restas. Si comparamos las entradas de B'C' y BC apoyandonos
en la igualdad:

1 1 1 1
0 1 1 by 1 a 1
/2 1 C/2 1 — b2 1 Cc2 1

/ 1 C’ 1 bn,1 1 Cn—1 1

n—1

obtenemos ¢} =b; +c¢; y

b — bici
i ’

7 23)

/ /

C;, = bi—i-C,'—bi,
para i =2,3,...,min{j|b; = 0}. En otro caso, simplemente se tiene que b; = b;, ¢; = ¢; . Vemos que
podemos calcular todos los pardmetros sin realizar restas salvo los ¢ que sigan la expresion de (2.3). Para
evitar realizar esa operacion, definimos las variables auxiliares d; como d; = b; — bl coni=1,...,n— 1.

En ese caso di = b; — b’1 y como b = 0 simplemente se tiene que d; = b;. Los demds d; se pueden
calcular de la siguiente forma :
bici—1 bi

/ /
di=bi—b;j=bi———=——(ci_1 —ci-1),
i1 G

y por la dltima igualdad de (2.3) ¢}, —c;—1 = b}_; — b;_. Por tanto,

bi ., bi ., bidi—
. — Ci_ = — b — b-_ =
C;f] (thl Ci 1) 0271 ( i—1 i 1) 6271

d; =

Observemos que d; > 0y que debido a la férmula recursiva que acabamos de deducir el resto de para-
metros d; lo sera también.
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Asi, la forma de obtener los pardmetros serd realizando los cdlculos

b — bici—
i / )
bcé'il
idi—1
di = i )
Ci—1
C; =C; -l-d,',

parai=2,3,... , min{j|b; = 0}.

En total no se realizan mds de 4n operaciones elementales si realizamos el célculo e = b;/ c§_1
una vez y lo utilizamos tanto para calcular 5! como d;. Ademads por los signos y las relaciones entre los
pardmetros se tiene que ¢;_, = 0 implica b} = 0, por lo que se tiene que B'C’ es 2% (BC) (esta condicién
es la que cumplen los multiplicadores m;; que aparecen en el Teorema 2.3).

O

El interés de este lema radica en que nos da una forma de propagar el factor E;(x) a través de los
factores F; de ZZ(A). Estos factores tienen una estructura de ceros que queremos mantener a la hora de
realizar EET3 para obtener % (E;(x)A), por lo que aunque E;(x) es una matriz bidiagonal no basta con
realizar un producto de matrices. El siguiente algoritmo libre de restas realiza el procedimiento descrito
en el lema anterior, transformando los pardmetros de By de C.

Algoritmo 1 dqd2

Entradas: b, c > b es el vector de pardmetros de B, y c el de C
=
cr=c1+b;
d=b
by =0
i=1
while i < longitud(b) and b;.; >0
e=bii1/ci
d=ed
biy1=et
t=ciy1+d
i=i+1
end while
Salidas: b, c, i

Teorema 2.5. Sea A = (a;j)1<i j<n una matriz TP no singular. Dados x > 0y #B9(A), la descompo-
sicion BY(E;(x)A) puede calcularse sin llevar a cabo ninguna resta en como mucho 4n operaciones
elementales.

Demostracion. Recordemos que B (A) tiene la siguiente forma por la unicidad de la descomposicién
bidiagonal de una matriz TP no singular:

A=F, 1F,_»---F1DGy---Gy—2Gy1,

ysea F =F, 1F, ,---F). Entonces la matriz E;(x)F es TPy triangular inferior con unos en la diagonal.
Por tanto, la descomposicién Z%(E;(x)F) presentara la forma:

%.@(EK}C)F) = Lnfan,Z . -Ll,
y BD(Ei(x)A) serd

%@(E,‘(X)A) =L, L, ---L1DGy - G,_2G,_1.



Cilculos precisos con algunas clases de matrices - Héctor Orera Herndndez 15

Es decir, hallar ZZ(E;(x)A) se reduce a obtener % (E;(x)F ). Para lograrlo, nos apoyamos en el
Lema 2.4 y buscamos propagar E;(x) a través de los factores F; de la siguiente manera:

Ei(x)F =Ei(x)F,_1Fy—2---Fi =L, E;,(x1)Fy—2---F1 = Ly 1Ly 2E;, (x2) - Fy
=...=L, 1L, »---Ly.

Para lograrlo comenzamos en k = 1 y repetimos el siguiente procedimiento. Aplicamos el Lema
2.4 a las submatrices principales de E;,_, (xx—1) y F,— formadas tomando las filas y columnas con
indices i — 1,...,n (para que esta descripcion sirva para k = 1 consideraremos E;(x) = Ej,(x)).
Asf, desaparece el tnico elemento distinto de cero extradiagonal de E;_, (x¢_) y obtenemos la matriz

L,y = E;_,(xx—1)L,—k. Una vez obtenida L,,_«, comprobaremos si se da una de estas condiciones:
m k=n—1,0
= no se han introducido ceros en L, _; que no estuviesen en L, ¢, 0

» se ha introducido un elemento no nulo l_(jnfk) enL, i, pero f ;Ekil) #£0,

. - . ok
entonces fijamos L, = L,_, y hemos terminado de propagar el factor E;(x). La notacién f]( ) hace
referencia al pardmetro j-ésimo de la matriz F;. En caso contrario (se ha introducido un elemento no

l_(j”_k) enLj, gy f}f}k_l) =0, con k < n— 1), tenemos que L, = L, _E;, (x;), donde L, tiene

la misma estructura de ceros que F,_j. Basta actualizar iy = j, xy = f ](k),
mismo proceso.

El célculo de ZZ(E;(x)A) cumple la condicién SF. Como mucho se cambian 2n — 3 entradas de
BP(A) correspondientes a los factores F;: hay n — 1 factores de este tipo. En los n — 2 primeros puede
cambiarse los coeficientes f; y fi+1 parael indice i = i;_1, y en el caso de Fj solo hay un elemento extra-
diagonal no nulo, que seria el susceptible de transformarse. Ademas, actualizar un coeficiente supondra
como mucho dos operaciones elementales (por el Lema 2.4).

nulo

aumentar k en uno y repetir el

O]

Como se deduce de la demostracion, la implementacion de este método se apoya en los célculos del
algoritmo 1, y bastard con llamarlo de forma adecuada las veces necesarias para realizar la operacion
EET3.

Ahora vamos a ver como se realiza EET4. Sea C una matriz diagonal. Estamos interesados en hallar
la descomposicién bidiagonal de CA. Para ello, la idea fundamental va a ser propagar C a través de los
factores F;. Consideremos F', matriz bidiagonal. El producto CF cumple la relaciéon CF = BC, donde B
es otra matriz bidiagonal:

Cl 1 1 Cl
2 fi 1 by 1 1)

Cm Jm 1 bn1 1 Cm
Los elementos de B se obtienen a partir de F' mediante la relacion:

Ci )
bi=fi-tL coni=1,2,...,m—1.
Ci

La estrategia consiste en aplicar n— 1 veces esta propiedad (una por cada F;, puesto que i € {1,...,n—1}),
y terminar realizando el producto CD.






Capitulo 3

M-matrices, dominancia diagonal y
descomposiciones reveladoras del rango

Las M-matrices constituyen la segunda clase de P-matrices que vamos a presentar. La importan-
cia de estas matrices se refleja en sus numerosas aplicaciones. Se encuentran, por ejemplo, en teoria
de probabilidad, en el estudio de cadenas de Markov; en andlisis numérico, al buscar cotas de valores
propios, o al establecer criterios de convergencia de métodos iterativos para la resolucidon de grandes
sistemas lineales de ecuaciones con matriz asociada hueca (o sparse, es una matriz en la que la mayoria
de los elementos son cero). Entre estas aplicaciones, cabe destacar el papel que juegan las M-matrices
en el campo de la economia. Su aparicion en diversos modelos desemboco en el estudio de las mismas
por parte de los economistas. Como ejemplo fundamental tenemos el modelo input-output o modelo
de Leontief, denominado asi por su precursor Wassily Leontief, premio nobel de economia en 1973.
La novedad del trabajo de Leontief radica precisamente en emplear el 4dlgebra lineal para describir una
economia en la que diversos sectores producen y consumen bienes, y estudiar cémo sus diversas partes
encajaban e interaccionaban.

Las M-matrices para las que vamos a lograr algoritmos con HRA cumplen la condicién de domi-
nancia diagonal. Vamos a comenzar definiendo los correspondientes conceptos bdsicos:

Definicién 9. Una matriz A = (a;j)1<; j<n se dice Z-matriz si a;; <0 V(i j) tal que i # j.
Es decir, es una matriz cuyos elementos extradiagonales son no positivos.

Definicion 10. Una Z-matriz A = (a; j)lgh j<n s€ dice M-matriz si puede representarse de la forma:
A=sl—B,con B>0ys>p(B) (donde p(B) es el radio espectral de B). Si se cumple s > p(B) la
matriz es una M-matriz no singular.

Definicién 11. Una matriz A = (a;;)1<; j<» se dice matriz de diagonal dominante por filas (d.d.) si cum-
ple:

|a,-,-|22|a,-j|, izl,...,n
i#j

Si AT es d.d., A se dice matriz de diagonal dominante por columnas. Si la desigualdad es estricta
para todas las filas de A (resp. de A7), la matriz es de diagonal estrictamente dominante por filas (resp.
de diagonal estrictamente dominante por columnas).

Antes hemos mencionado la variedad de aplicaciones de las M-matrices. Una curiosidad acerca de
las M-matrices no singulares guarda relacién con esta diversidad de aplicaciones, y es la gran canti-
dad de caracterizaciones que poseen. En el capitulo 6 del libro [5] aparecen 50 caracterizaciones. A
continuacién presentamos varias debido a su importancia:

17
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Teorema 3.1. Sea A = (a;j)1<i,j<n una Z-matriz. Entonces, las siguientes condiciones son equivalentes:

i) A es una M-matriz no singular.
ii) Todo valor propio real de A es positivo.
iii) Todos los menores principales de A son positivos.
iv) Los menores principales directores de A son positivos.
v) A es invertible, y A~ es no negativa (A~! > 0).
vi) Existe una matriz D diagonal tal que AD es una matriz de diagonal estrictamente dominante.

vii) A = LU, donde L es una matriz triangular inferior, U es una matriz triangular superior y todos
los elementos diagonales de ambas matrices son positivos.

Volviendo a nuestro problema de aplicar algoritmos de forma precisa, recordemos que muchas veces
la clave consiste en buscar distintas factorizaciones o parametrizaciones del problema. Para hallar los
valores singulares de una matriz, se emplea la llamada descomposicién reveladora del rango (o rank re-
vealing decomposition, RRD). Esta consiste en una descomposicién de la matriz de la forma A = XDY 7,
donde X,Y son matrices bien condicionadas y D es una matriz diagonal. En [11] se presenta un algo-
ritmo que realiza &'(n’) operaciones elementales para obtener con HRA los valores singulares de una
matriz n X n a partir de su RRD.

En el caso de las M-matrices, se considera como RRD la descomposicién LDU obtenida tras una
adecuada estrategia de pivotaje, en la que L es una matriz triangular inferior y U una matriz triangular
superior. Los elementos diagonales de D son positivos, y tanto los de L como los de U son todo unos.
Podemos obtener esta descomposicion con HRA logrando unas matrices L 'y U bien condicionadas, por
lo que habremos calculado una RRD que podremos emplear para computar los valores singulares de la
matriz de forma precisa. Para calcular la descomposicién emplearemos la eliminacién Gaussiana con
una adecuada estrategia de pivotaje.

3.1. Eliminacion Gaussiana

Dada A = (a;j)1<i,j<» matriz no singular, la eliminacion Gaussiana es un procedimiento empleado
para hacer ceros debajo de su diagonal. Consiste en una sucesion de n — 1 pasos que dan lugar a una
sucesién de matrices de la forma:

A=AD 5 A0 540 5 40 5 AW = 40 = py,

donde A% tiene ceros por debajo de la diagonal en las primeras k — 1 columnas y DU es triangular
superior. Habiendo calculado A®) reordenamos sus filas y/o columnas para obtener A® mediante una
estrategia de pivotaje. Una estrategia de pivotaje en el proceso de eliminacién Gaussiana consiste en una
reordenacion de las filas y/o columnas de A en cada paso para seleccionar cudl serd el elemento pivote
que emplearemos para hacer ceros en la siguiente iteracién. En el esquema, su aplicacién se produce
en el paso de A® a A®) . Dos estrategias muy utilizadas son el pivotaje parcial (reordenacién solamente
de filas, consiste en buscar un elemento de mayor médulo en la columna en la que haremos ceros en
el siguiente paso) y el pivotaje total (reordenacion de filas y columnas, se busca un elemento pivote de
médulo mdximo en toda la submatriz A*®) [k,...,n]). Sea cual sea la estrategia elegida, necesitamos que
el elemento pivote, d,(!/?, sea no nulo.

Aplicando la permutacién adecuada segun la estrategia de pivotaje que elijamos, llegamos a A®).
El elemento d,((',? serd el pivote elegido por la estrategia de pivotaje, y se empleard para hacer ceros en
la columna k. Para ello, restaremos multiplos de la fila k a las filas de debajo, obteniendo asi la matriz

A~ )
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a sil<i<k,
gﬁLl) — (k) d(k) (k)
~ ik ~ . .
Y d;; _dl(k)akj sik<i<n.

Kk

En esta descripcidn de la eliminacién Gaussiana no hemos tenido en cuenta la estructura de la ma-
triz. Para obtener una factorizacion LDU de una M-matriz de diagonal dominante, con L y U bien
condicionadas, es necesario realizar cambios en el planteamiento descrito. Por un lado, al trabajar di-
rectamente con los elementos de la M-matriz, el algoritmo de eliminacién Gaussiana puede dar lugar
errores por cancelaciones debido a las restas que se llevan a cabo. Para evitar este fenémeno, en vez de
trabajar directamente con los elementos de la matriz se utiliza una parametrizacién de la misma. Para
las M-matrices de diagonal dominante, unos pardimetros adecuados son las sumas de los elementos de
cada fila y sus elementos extradiagonales.

Ademas, si elegimos sin cuidado la estrategia de pivotaje, podemos perder la estructura de M-matriz
en el desarrollo del algoritmo. Con el fin de evitar este problema, se utilizan las llamadas estrategias
de pivotaje simétrico. La idea consiste en realizar en cada paso la misma permutacién tanto de filas
como de columnas. Asi, teniendo en cuenta que estas permutaciones simultdneas de filas y de columnas
preservan la propiedad de ser M-matriz y que por [13] el complemento de Schur de M-matrices también
preserva la propiedad, concluimos que todas las submatrices A®[k, ... n] con k € {1,...,n— 1} serdn
M-matrices. Obtendremos una factorizacién de la forma PAPT = LDU con P una matriz de permutacién.
A continuacién introducimos dos estrategias de pivotaje simétrico que pueden servir para obtener una
RRD de la forma ya descrita.

La primera se denomina pivotaje simétrico total, y consiste en elegir un elemento de médulo maximo
en la diagonal. En el caso de las M-matrices, esta estrategia coincide con pivotaje total. En [12] se
presenta un algoritmo que emplea esta estrategia para lograr la descomposicién en valores singulares de
una matriz d.d. Dados los elementos extradiagonales a;;, con i # j, y el vector de sumas de filas s, con
si = Y}_ aij, el siguiente algoritmo da la factorizaciéon LDU de una M-matriz usando pivotaje total:

Algoritmo 2 Eliminacién Gaussiana para M-matrices d.d. utilizando pivotaje simétrico total

Entradas: A = (a;;)(i # j), s > s es el vector de sumas de las filas de A
pP=1I, > la matriz de permutacién
fork=1:n—1
fori=k:n
i = Si = Ljop j2iGij
end for

Buscar ¢ tal que a;, = méx;>;{a;}
Elegir P; matriz de permutacién que intercambia la fila t y la fila k.
Actualizar P = PP, A = PAPL, s = Pis
fori=k+1:n
ik = it/ Ak
Si = 8 — QikSk
for j=k+1:n
ifi#j
Qij = Aij — Qjkqg j
end if
end for
end for
end for

Las salidas del algoritmo son la matriz P, la matriz L y la matriz DU (estas dos ultimas almacenadas
en A) de la factorizacién PAPT = LDU mediante pivotaje simétrico total. Si necesitamos factorizar una
M-matriz de diagonal dominante por columnas, bastaria con aplicar el algoritmo a A”. En ese caso,
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tendriamos como pardmetros los elementos extradiagonales de A asi como la suma de los elementos de
cada columna, que se corresponderian con las sumas de las entradas de las filas de A”.

La segunda técnica de pivotaje simétrico que presentamos para hallar una factorizacién LDU de una
M-matriz de diagonal dominante con Ly U bien condicionadas se encuentra descrita de forma detallada
en [26]. Aqui introduciremos ésta técnica de pivotaje y el algoritmo para obtener una factorizacién LDU
de una M-matriz de diagonal dominante por columnas.

La estrategia de pivotaje simétrico se denomina maximal absolute diagonal dominance (m.a.d.d.) y
se basa en elegir como pivote en el paso k (k € {1,...,n—1}) una fila iy > k que cumpla:

k k P k k
gl = X lagjl= max {la’| = ¥ a1}
JZk,ji == JZkji

Por el Teorema 2 de [1] una M-matriz A siempre tiene un elemento diagonal a;; que verifica |a;;| >
Y j+i laij|. Por tanto, el pivote que elijamos cumplird a;,;, # 0 (serd un pivote vilido).

Dados los elementos extradiagonales a;;, con i # j, y el vector de sumas de columnas ¢, con ¢; =
Y= aij, el siguiente algoritmo da la factorizacién LDU de una M-matriz de diagonal dominante por
columnas empleando la estrategia de pivotaje m.a.d.d.:

Algoritmo 3 Eliminacién Gaussiana para M-matrices d.d. utilizando pivotaje m.a.d.d.

Input: A = (a;;)(i # j), ¢ > ¢ es el vector de sumas de las columnas de A
P=1I, > la matriz de permutacion
fori=1:n

Si = Xljo1,j4i i

Qi = Ci—Si

pi =Y aij
end for
fork=1:n—1

Buscar ¢ tal que p, = max;>¢{p;}
Elegir P, matriz de permutacién que intercambia la fila t y la fila k.
Actualizar P = PP, A = PAPL, c = Pic, p= Pip
fori=k+1:n
ik = it/ rk
Ci = Ci — kiCk/ Ak
Pi = Pi — QikPk
for j=k+1:n
ifi£j
ajj = djj — kA
end if
end for
end for
for j=k+1:n
$j = Liska1,i4) i
ajj=¢j—5j
end for
end for

Las salidas del algoritmo son la matriz P, la matriz L y la matriz DU (estas dos dltimas almacenadas
en A) de la factorizacién PAPT = LDU mediante pivotaje m.a.d.d.

Hemos presentado dos estrategias para obtener una factorizaciéon LDU que sirve como RRD de una
M-matriz de diagonal dominante. No obstante, el siguiente teorema muestra una importante diferencia
entre ambas (Proposition 3.2 de [26]):
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Teorema 3.2. Sea A = (a;j)1<i,j<n una M-matriz de diagonal dominante por filas o columnas y sea P
una matriz de permutacion asociada a aplicar la estrategia de pivotaje m.a.d.d. de A o AT, respectiva-
mente. Entonces PAPT = LDU, donde L es una matriz triangular inferior de diagonal dominante por
columnas y U es una matriz triangular superior de diagonal dominante por filas.

Si utilizamos pivotaje simétrico con una M-matriz d.d. por columnas obtendremos una factorizacién
LDU en la que la matriz L es d.d. por columnas. No obstante, no podremos asegurar que U sea d.d. por
filas, sino solo que el elemento diagonal es mayor en médulo que los restantes de su fila. Es mads, en
[26] se muestra un ejemplo en el cual la matriz U obtenida empleando pivotaje simétrico no es d.d. por
filas, y su nimero de condicion es considerablemente mayor que el de la U obtenida empleando pivotaje
m.a.d.d. Para una M-matriz d.d. por filas, considerando su matriz traspuesta se deduce que solamente
tendremos asegurada la dominancia diagonal por filas de U.

La dominancia diagonal de las matrices L y U implica que estdn muy bien condicionadas (Proposi-
tion 2.1 de [26]):

Teorema 3.3. Sea T = (t;;)1<i j<n una matriz triangular de diagonal dominante por filas (respectiva-
mente columnas) cuyos elementos diagonales son todo unos. Entonces k..(T) < n? (respectivamente
Keo(T) < 2n)

De nuevo, tenemos que tener en cuenta la eficiencia del algoritmo que emplee una de estas estrate-
gias de pivotaje. La implementacién de cualquiera de las dos estrategias supone un aumento de &' (n?)
operaciones elementales sobre el coste computacional del algoritmo de eliminacion Gaussiana. No obs-
tante, la estrategia de pivotaje m.a.d.d. se puede implementar para esta clase de matrices de modo que
podamos obtener una factorizacién LDU con un coste computacional atin menor y conseguir L y U ma-
trices de diagonal dominante. En [4], se presenta como se realiza la implementacién de la estrategia de
forma que afiada &'(n?) operaciones elementales al coste computacional de la eliminacién Gaussiana.

3.2. H-matrices

En esta seccién hemos introducido las M-matrices, y hemos descrito dos algoritmos para hallar
una RRD con HRA. En muchos problemas tedricos y practicos (véase [5]), aparecen otros tipos de
matrices, que atin no siendo M-matrices, guardan cierta relacién con éstas, que nos puede servir de
guia para lograr algoritmos con HRA. Para ilustrar como puede aparecer esta relacion, a continuacién
vamos a definir el concepto de H-matriz, una clase de matrices que engloba a las M-matrices. Para dar
la definicion de una forma clara, conviene primero introducir la nocién de matriz de comparacion:

Definicién 12. La matriz de comparacién M(A) = (m;;)1<i j<, de una matriz A = (a;j)1<; j<n se define
de la siguiente forma:

eyl sij=i
m”_{—]a,-.,-| sij#i.

Definicion 13. Una matriz A = (a;j)1<; j<» compleja se dice H-matriz si su matriz de comparacion es
una M-matriz no singular.

La estructura de signos de la matriz de comparacién es la de una Z-matriz con diagonal no nega-
tiva. Una H-matriz es M-matriz si y solo si su matriz de comparacién coincide con ella misma. En el
caso de las M-matrices no singulares hemos visto numerosas caracterizaciones. Para las H-matrices,
existe una caracterizaciéon (véase p. 124 de [18]) que también las relaciona con las matrices de diagonal
estrictamente dominante.

Teorema 3.4. Sea A = (a;j)i<i j<n- A es H-matriz si 'y solo si existe una matriz diagonal D tal que AD
es una matriz de diagonal estrictamente dominante por filas.

En el siguiente capitulo consideraremos una subclase de las H-matrices llamadas matrices Nekra-
sov.






Capitulo 4

Z-matrices Nekrasov con elementos
diagonales positivos

En contraste con los capitulos anteriores, en los que se buscaba hacer una introduccién al tema
de cdlculos con HRA, a continuacién presentamos la resolucién de un problema nuevo. El objetivo
de este capitulo es dar una metodologia para resolver el problema de hallar la inversa con HRA de
otra clase distinta de matriz estructurada: una Z-matriz Nekrasov con elementos diagonales positivos.
Para lograrlo, vamos a seguir una estrategia que se apoya en las descritas para trabajar con M-matrices
de diagonal dominante. Vamos a buscar una parametrizacion adecuada de la matriz, emplearemos esta
parametrizacion para relacionarla con las M-matrices de diagonal dominante y podremos aprovecharnos
de las técnicas conocidas en este caso para lograr nuestro objetivo.

Ademads, podremos resolver también con HRA el sistema lineal de ecuaciones Ax = b, con la con-
dicién de que ninguna componente del vector b sea negativa (b > 0). Aseguraremos que trabajamos con
HRA viendo que los algoritmos descritos satisfacen la condicién NIC.

Vamos a introducir las matrices Nekrasov (véase [27]). Para ello necesitamos una notacién previa:
Sea A = (a;j)1<i,j<» Una matriz compleja. Se define /;(A) con i = 1,...,n de la siguiente forma:

n
Z‘alj‘a sii=1,
J=2
i—1 n
hi(A ) )
hi(A) = { X laijl it )+ Y laijl, si2<i<n, 4.1)
j=1 ajj =i
n—1 hA
Z|anj| ]( ), si i =n.
i=1 ajj

Definicién 14. Una matriz A = (a;;)1<; j<n se llama matriz Nekrasov si cumple la condicién
laii| > hi(A)  parai=1,....n.

Esta es una condicién suficiente para que una matriz sea no singular [27], por lo que tendra sentido
plantear el cilculo de A~!. Los parametros que emplearemos para las Z-matrices Nekrasov 7 X n con
diagonal positiva son los n? siguientes:

aij, i 7],
: 4.2
{ AJ(A) I:ajj*hj(A), ]:1,...,11. ( )

Observemos que, a partir de los n? signos dados en (4.2), podemos caracterizar las Z-matrices Ne-
krasov con diagonal positiva. De hecho, A cumple dicha propiedad si y solo si los n? — n primeros
pardmetros (los elementos extradiagonales, a;; con i # j) son no positivos y los n tltimos pardmetros
(Aj(A) con j=1,...,n) son positivos. Las matrices Nekrasov estdn intimamente relacionadas con las

23



24 Capitulo 4. Z-matrices Nekrasov con elementos diagonales positivos

matrices d.d. Nos vamos a aprovechar de esta relacion para resolver nuestro problema. Es conocido que
una matriz Nekrasov es una H-matriz (Corollary 2 de [27]), por tanto, por el Teorema 3.4 existe una
matriz D diagonal tal que AD es de diagonal estrictamente dominante. Con objeto de tener una matriz
diagonal S sencilla, nosotros nos conformaremos con que AS sea de diagonal dominante. Esta matriz S
es la siguiente:
mi(A)
ai
ha(A)
S= 2 ' (4.3)

hn(A)

Ann

Lema 4.1. Sea A una Z-matriz Nekrasov con entradas diagonales positivas y S la matriz dada por (4.3).
Entonces, la matriz AS es una Z-matriz de diagonal dominante por filas.

Demostracion. Notemos que ( hi(4) >0 parai=1,...,n,y, portanto, S > 0. Entonces, al hacer el pro-
ducto B = AS se conserva la estructura de signos de A y tenemos que los elementos de B = (B;;)1<i, j<n
son:

hi(A .. .
Bij: aij#v Sll#‘h
h,’, Sii:j.

Como A es Z-matriz, B es Z-matriz. Falta ver que B también es de diagonal dominante. Conside-
rando la fila i-ésima:

]

j= 1+1 j= t+1

puesto que /1;(A) < aj; por ser A matriz Nekrasov, y asi queda demostrada la dominancia diagonal. []

Gracias a este lema, vamos a poder apoyarnos en los resultados conocidos para M-matrices de
diagonal dominante a la hora de afrontar la resolucién de nuestro problema utilizando la matriz AS.
Como hemos mencionado previamente, la clave para aplicar algoritmos con HRA a estas matrices se
encontraba en utilizar una parametrizacién adecuada de las mismas, que en este caso se correspondia con
los elementos extradiagonales y la suma de los elementos de cada una de sus filas. Por tanto, buscaremos
hallar estos parametros de AS de una forma que nos asegure su obtencion con alta precision relativa, y
asi estaremos ya en condiciones de resolver nuestro problema.

Teorema 4.2. Sea A = (a;j)i<i j<n una Z-matriz Nekrasov con entradas diagonales positivas y S la
matriz dada por (4.3). Entonces, podemos hallar las sumas de las entradas de cada fila y los elementos
extradiagonales de AS a partir de los n* pardmetros dados por (4.2) mediante un algoritmo libre de

3n(n—1)
2

restas que realiza sumas, 2n(n — 1) productos 'y 2n — 1 cocientes.

Demostracion. Observemos que por (4.2),
ajj=A;j+hj(A), j=1,...,n. 4.4)

Asi, tras calcular con SF £ (A) con la férmula de (4.1) procedemos a calcular a;; con SF mediante
(4.4) para j=1. A continuacién, seguimos calculando h;(A), ax, h3(A), ass, ... ,hy(A), au, con SF me-
diante (4.1) y (4.2). Como el elemento extradiagonal (i, j), i # j, de AS es a;; hfl (;_‘), podemos calcularlo

con SF. Finalmente, para cada i = 1,...,n la suma de los elementos de la fila i-ésima de AS es

i—1 n

hi(A hi(A
A ) 3 g M
j=1 ajj j=itl1 ajj
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que al sustituir ;(A) por su valor en (4.1) y tener en cuenta que A es Z-matriz toma el valor

Zn: (—aij) (1_’11(A)> _ Z": ’aij’ajj_hj(A) _ Z”: ya,,-ij(A),

j=it1 ajj j

j=it1 Ji j=it1 ajj

que de nuevo se puede calcular con SF.

Veamos cudntas operaciones elementales son necesarias para calcular los pardmetros. Como todos
los célculos descritos son SF, se realizaran cero restas. El cdlculo de los elementos diagonales a;; con i =
1,...,n supone la realizacion de n sumas. Para cada h;(A), con i = 1,...,n necesitaremos realizar n — 2

sumas ademds de un nimero de productos y cocientes que depende del indice i. Notemos, eso si, que el

. (A . .. .
célculo % se empleard tanto para calcular los 4;(A) con j < i < n asi como para obtener los elementos

extradiagonales de la columna j-ésima de AS, por lo que los calcularemos una vez y los emplearemos
. . : 1. —1
cuando sea necesario. Esto supone realizar n cocientes, Z?le i= w productos y n(n —2) sumas.

(A L .
7 (”), bastara con realizar un
1]

Para obtener los elementos extradiagonales (i, j) con i # j de AS, a;;

producto. Por tanto, se afiade el realizar n(n — 1) productos. Ahora solo queda calcular la suma de los
A;(4)

elementos de cada fila de AS. Primero, calcularemos los cocientes == para j = 2,...,n, lo que afiade
JJ

n— 1 cocientes al coste computacional. Finalmente, realizaremos @ sumas y @ productos para

obtener el valor de los dltimos n pardmetros. En total, necesitamos w sumas, 2n(n — 1) productos

y 2n — 1 cocientes. O

El siguiente resultado nos asegura el cdlculo con HRA de la inversa y de la resolucién de ciertos
sistemas lineales cuando tenemos una Z-matriz Nekrasov diagonal positiva y una condicién adicional.
Posteriormente veremos que podemos prescindir de esta condicion anadida.

Teorema 4.3. Dada una Z-matriz A = (a;j)i<i,j<n Nekrasov con entradas diagonales positivas que
cumpla hi(A) # 0 para i = 1,...,n si conocemos (4.2) con HRA entonces podemos calcular A~ y la
solucién del sistema de ecuaciones lineales Ax = b con b >0 con HRA y 0(n*) operaciones elementales.

Demostracion. Sea S la matriz diagonal dada por (4.3). Por el Teorema 4.2 podemos calcular con HRA
los elementos extradiagonales de B := AS asi como la suma de los elementos de cada una de sus filas.
También debemos tener en cuenta que las matrices Nekrasov son H-matrices, como hemos recordado
anteriormente. Asi, una Z-matriz Nekrasov con diagonal positiva tiene los signos de una matriz de
comparacion y por tanto es una M-matriz no singular. Veamos que podemos calcular B~!' con HRA. Para
ello usaremos el método de Gauss-Jordan sin pivotaje. Construimos la matriz M := (B|I|s), donde I es la
matriz identidad y s es el vector de las sumas de las filas de B, es decir, s; es la suma de los elementos de
la fila i-ésima de B. Aplicaremos la eliminacién Gaussiana de B realizando las operaciones por filas en
toda la matriz ampliada M. El primer pivote es by, que se calcula sumando a s; el valor absoluto de los
elementos extradiagonales de la primera fila. Comenzamos haciendo ceros en la primera columna debajo
de éste empleando mdltiplos de la primera fila, y, excepto los elementos diagonales de B [2,...,n],
todo elemento de M se calcula con HRA. No obstante, estos elementos los calcularemos con HRA solo
cuando necesitemos emplearlos como pivote (y el dltimo, bﬁ,’,i), cuando hayamos terminado de hacer

ceros por debajo de la diagonal). Asi, para la siguiente iteracion, solo queda calcular el elemento bgzz).

Para lograrlo con HRA basta sumar ng) y los valores absolutos de los elementos extradiagonales de la
segunda fila de B . Notemos que por la estructura de signos se corresponderd con sumar los opuestos
de los elementos.

Para realizar el segundo paso, tenemos que B(?) [2,...,n] vuelve a ser M-matriz por ser el comple-
mento de Schur de una M-matriz (véase [13] ). Por tanto, utilizando la misma estrategia que en el paso
1 sobre B [2,...,n] haremos ceros en la segunda columna. Repetimos hasta llegar a B™ con HRA, que

serd triangular superior, y la estructura de signos de M serd la siguiente:
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+ - - -1
+ - -+ 1
M = + + + 1
+(+ + ...+ 1
~ ~—
U=AM 9 s
En esta matriz, “+ quiere decir que el elemento correspondiente de M es > 0, y “—”, que es < 0.

Los elementos diagonales de U son positivos (> 0). A partir de ahora el vector s” ya no es necesario,
asi que lo omitiremos al representar M (),

Para llegar desde aqui hasta B~! basta con repetir el proceso empleando como fila pivote la fila
inferior para hacer ceros por encima de la diagonal de U: (U|C) — (D|DB~"), con D matriz diagonal.

En este procedimiento, en el paso k se emplea como pivote uflk_) kn—k> que es siempre mayor que
0 (puesto que en los pasos de esta eliminacién no se ven afectados). Al ser los extradiagonales no
positivos y los pivotes positivos, no se han realizado restas al calcular DB~! . Solamente queda realizar
el producto D~'DB~! para obtener B~!. Por tanto, hemos llevado a cabo todo el proceso sin llevar a
cabo restas (condicién SF). Observemos que A~! = SB~!. Para acabar, consideremos el problema de la
resolucion del sistema de ecuaciones lineales Ax = b, con b > 0. Utilizando la matriz AS, resolveremos
el sistema AS (S~'x) = b.

N~
By

Para ello, emplearemos cualquiera de los dos algoritmos vistos en el capitulo 3. As{ tenemos que la
solucién obtenida y = B~'b se realiza con la condicién SF. Finalmente, teniendo en cuenta que y = S~ 'x,
obtendremos la solucién buscada x = Sy.

O

Nota 4.4. Hemos conseguido resolver con HRA el problema descrito al comienzo de esta seccién
con la condicién adicional de que h;(A) # 0 para i = 1,...,n. No obstante, podemos suprimir esta
imposicion y el resultado seguird siendo cierto. Supongamos que /i (A) = 0 para algin k € {1,...,n}.
Esto implicaria que todos los elementos extradiagonales de la fila k-ésima de A son 0. En el sistema
lineal de ecuaciones Ax = b podriamos obtener de forma inmediata el valor de x;, y, para realizar el
cilculo de A~!, utilizarfamos la misma estrategia descrita en el Teorema 4.3 aplicando previamente
una permutacién simultdnea de filas y columnas (PAPT) para colocar al principio las filas i = 1,...,k
cuyo h;(A) se anulara, realizando la misma permutacién a la matriz identidad. Entonces formariamos la
matriz ampliada (B|I) y podriamos calcular la inversa de la submatriz resultante como se ha descrito, y,
a partir de ella, obtener A~!. Asi podemos enunciar el siguiente resultado:

Teorema 4.5. Dada una Z-matriz A = (a;j)1<i, j<n Nekrasov con entradas diagonales positivas si cono-
cemos (4.2) con HRA entonces podemos calcular A~ y la solucion del sistema de ecuaciones lineales
Ax=b conb >0 con HRAy O(n®) operaciones elementales.
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