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1. DEFINICION DEL PROYECTO 
1.1 TITULO DEL PROYECTO 

Análisis estructural de zonas críticas en vehículo basculante de aluminio mediante 

la técnica del submodeling. 

 

1.2 OBJETO DEL PROYECTO 

El  presente  proyecto  fin  de  carrera  tiene  como  objetivo  localizar  y  analizar  los 

puntos donde se presentan mayores esfuerzos mediante  la  técnica del submodeling, en 

un chasis para basculante de cilindros centrales fabricado en aluminio. 

Este proyecto nace a consecuencia de la petición de la empresa LECIÑENA S.A. de 

la verificación de un chasis completo de aluminio inicialmente creado por ellos mismos. El 

estudio  de  sus  componentes  servirá  de  base  a  futuros  proyectos  relacionados  con  el 

cálculo y diseño de chasis para la misma empresa. 

Para el  cálculo  justificativo del  chasis  y  sus  componentes han  sido desarrollados 

modelos  numéricos  basados  en  el  Método  de  los  Elementos  Finitos  mediante  los 

programas  de  diseño  y  cálculo MSC.PATRAN  y Dassault  Systèmes ABAQUS,  capaces  de 

simular  el  comportamiento  de  las  estructuras  analizadas,  sujetas  a  unas  determinadas 

condiciones  de  contorno,  ante  las  cargas  aplicadas.  De  este  modo,  se  obtendrá 

información sobre el estado de las deformaciones y tensiones existentes. 

Por último, partiendo de los resultados obtenidos en la simulación de los modelos 

iniciales  del  chasis,  la  investigación  se  centrará  sobre  las  zonas  que  se  consideren más 

desfavorables. Aplicando  la  técnica del  submodeling para obtener unos  resultados más 

precisos en dichas zonas criticas, de las cuales se propondrán una serie de optimizaciones 

para mejorar  su  resistencia  y  disminuir  la  deformación,  y  así  conseguir  que  las  cargas 

aplicadas sean superadas con garantía. 
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2. PLANIFICACION DEL PROYECTO 
2.1 EL METODO DE LOS ELEMENTOS FINITOS 

 

El  Método  de  los  Elementos  Finitos  (MEF)  es  un  método  numérico  para  la 

resolución de sistemas de ecuaciones diferenciales. Su desarrollo desde los años cincuenta 

hasta la actualidad ha sido constante y actualmente puede considerarse como el método 

numérico más extendido en  la mayoría de  los ámbitos de  la  ingeniería. Son muchas  las 

facetas de  la  ingeniería en  las que  se precisa determinar  la distribución de  tensiones  y 

deformaciones  en  un  continuo  elástico.  Los  casos  particulares  de  dichos  problemas 

pueden variar desde problemas bidimensionales de tensión o deformación plana, sólidos 

de  revolución  y  flexión  de  placas  y  láminas,  hasta  el  análisis más  general  de  sólidos 

tridimensionales. 

 

El MEF consiste en su formulación física en la división del dominio espacial, ya sea 

uni, bi o tridimensional en una serie de subdominios de geometría simple, a los cuales se 

le denomina elementos. Estos elementos se encuentran formados por una serie de puntos 

que  definen  su  geometría  y  se  denominan  nodos.  En  el  interior  de  cada  elemento  se 

interpola una  función de desplazamientos que  se  formula en  función de  los  valores de 

desplazamientos que existen en los nodos. 

 

La  forma  de  trabajo  de  estos  elementos  consiste  en  aplicar  las  ecuaciones  de 

compatibilidad y comportamiento y obtener una  relación entre  la  fuerza aplicada sobre 

los elementos y  los desplazamientos de  los nodos. Esta  relación se expresa mediante  la 

matriz  elemental,  la  cual  depende  del  número  de  nodos,  situación  de  estos, material 

utilizado, geometría del elemento y tipo de problema. 

Dependiendo del tipo de formulación del problema se determina si el problema es  lineal 

(elasticidad  lineal)  o  si  es  no  lineal  (grandes  desplazamientos  o  deformaciones, 

comportamiento del material complejo) 
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A continuación se expresa el proceso de cálculo con el MEF: 

• Planteamiento  de  continuidad  de  desplazamientos  y  equilibrio  de 

fuerza entre elementos. 

• Sistema de ecuaciones globales de la estructura 

• Tipo de formulación inicial (lineal o no lineal) 

• Resolución 

• Obtención de los desplazamientos nodales (incógnitas básicas) 

• Obtención de otras variables: deformaciones y tensiones 

 

La aproximación de los elementos finitos no requiere la selección del tipo de ecuación 

que  será usada para modelar  la estructura.  Los  códigos disponibles en el mercado han 

definido  previamente  los  elementos  para  los  cuales  la matriz  de  rigidez  individual  del 

elemento ha sido resuelta. 

 

De esta  forma, el usuario necesita definir únicamente el  tipo de elemento. Una vez 

que el elemento ha sido definido el procedimiento es el siguiente: 

 

1. Decidir la geometría requerida para modelar correctamente el problema. 

• 1D (cables, vigas) 

• 2D (tensión o deformación plana) 

• 2D axisimétrica (láminas y sólidos de revolución) 

• 3D (láminas y sólidos) 

 

2.  Seleccionar  el  tipo  de  elemento  y  formular  la matriz  de  rigidez  del  elemento  si  se 

requiere: 

• Definir la matriz que relaciona las deformaciones del elemento con los 

desplazamientos nodales {B} 

• Definir la matriz de la ley constitutiva {D} 

• Aplicar  una  rutina  numérica  cuadrática  para  evaluar  la  rigidez  del 

elemento sobre el volumen del elemento,  ∫ {B}T{D}{B}dv 
V
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El MEF  consiste  en  dividir  un medio  continuo  en  un  número  finito  de  partes  cuyo 

comportamiento  se  especifica  con  un  número  finito  de  parámetros,  pasando  de  un 

sistema  con  infinitos  grados  de  libertad  a  otro  con  un  número  fijo,  con  similares 

propiedades  físicas  y  geométricas,  en  el  que  las  ecuaciones  de  equilibrio  se  pueden 

expresar mediante un sistema algebraico de ecuaciones simultáneas con un determinado 

número  de  incógnitas,  obteniéndose  la  solución  del  sistema  completo  mediante  el 

ensamblaje de las soluciones para cada elemento finito. 

 

3. Discretizar la geometría en una malla. 

• Definir las localizaciones de los nodos de los elementos. 

• Refinar el mallado en zonas de concentración de tensiones. 

 

4. Definir las propiedades locales del elemento. 

• anisótropo 

• isótropo 

• ortótropo 

 

5. Siguiendo los pasos anteriores obtenemos la matriz de rigidez del elemento. 

 

6. Transformar la matriz de rigidez local del elemento en coordenadas globales. 

 

7. Obtener el ensamblaje de  la matriz de  rigidez  superponiendo  las matrices de  rigidez 

globales de los elementos 

 

8. Definir las condiciones de contorno aplicadas al sistema y formular el vector de fuerzas 

nodales {F} así como definir desplazamientos, nodos fijos, contactos, cargas, temperatura, 

etc. 

9. Resolver el conjunto de ecuaciones algebraicas lineales resultante usando los métodos 

apropiados. 
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10.  Resolver  tensiones  y  deformaciones  locales  de  elementos.  Calcular  tensiones  y 

deformaciones en lámina y comparar con los criterios de rotura. 

Una  vez  que  se  han  establecido  las  características  de  los  nodos  o  los  elementos  las 

ecuaciones individuales deben ensamblarse para formar un sistema global de ecuaciones 

que  describa  la  respuesta  general  del  sistema.  Este  ensamblaje,  el  cual  aparece  en  el 

punto 9, da lugar a un conjunto de ecuaciones algebraicas lineales cuya forma básica es la 

siguiente: 

[K]{u}={f} 

en donde: 

 

[K] es una matriz (nxn) de rigidez del sistema;  

{u} es un vector columna  (nx1) que normalmente  representa  las deflexiones del sistema 

que son desconocidas 

{f},  es  un  vector  columna  (nx1)  que  normalmente  son  las  cargas  aplicadas  que  son 

conocidas. 
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2.2 SOTWARE UTILIZADO: 

 
2.2.1 ABAQUS: PROGRAMA ELEMENTOS FINITOS 

Un programa de  cálculo de Elementos  finitos,  sea  cual  sea el  tipo de problema, 

tiene tres partes (o módulos) claramente diferenciadas, ver Figura 2.1. 

 
 

Figura 2.1: Partes de un Programa de Elementos Finitos 

Podemos  observar  los  nombres  de  los  programas  comerciales  utilizado  en  cada 

uno de los módulos o partes. 

A  continuación  se  explican  las  características  de  dichos  programas  comerciales 

utilizados para la realización de este proyecto. 
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2.1.1.1 PATRAN 

Patran es el módulo de Preproceso utilizado en este caso con salida a Abaqus, en él 

se define el elemento a estudiar y el tipo de discretización deseada para la resolución del 

problema. Para ello se siguen los siguientes pasos: 

∙  GEOMETRIA:  El  objeto  a  estudio  se  define  su  geometría  por  medio  de 

coordenadas u otros elementos de ayuda auxiliar (rectas, circunferencia, etc.,..). 

∙ DISCRETIZACION: El sólido que queremos analizar se divide en nodos, en donde 

se consideran  los grados de  libertad del objeto a estudio, y elementos,  los cuales 

forman  la malla de nuestro estudio conectando  los nodos. Este apartado es muy 

importante ya que hay que definir el elemento  con el  cual  se va a discretizar el 

objeto. Una vez elegido el elemento a utilizar la discretización se puede realizar de 

forma automática o generando elemento a elemento. 

Abaqus  posee  una  librería muy  amplia  de  elementos  que  pueden  ser  utilizados 

dependiendo  del  tipo  de  geometría  sobre  la  que  se  quiera  efectuar  el  cálculo  y  de  la 

precisión  que  se  desea  en  el mismo  dentro  del  propio  elemento.  En  la  Figura  2.2  se 

muestran los distintos tipos de elementos: 

Elemento 
Membrana 

Elemento tipo 
Shell 

Elemento  
Viga 

Elemento 
Infinito 

Elemento tipo 
3D 

Elemento 
Rígido 

ELEMENTOS CONECTORES 
como muelles y 
amortiguadores 

Elemento tipo 
Entramado 

 
Figura 2.2 Tipos de Elementos 
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Abaqus  tiene  un  criterio  a  la  hora  de  nombrar  los  distintos  elementos  de  su 

librería. A continuación  se detalla  la manera que  tiene este programa de nombrar a  los 

elementos. 

a) Elementos unidimensionales, bidimensionales, tridimensionales axisimétricos. 

 

Opcional: 
Transferencia de calor convección/difusión (D)
Temperatura-desplazamiento (T) 
Piezoeléctrico (E) o Presión (P) 

C    3D     20     R     H     T
 

Híbrido (opcional)

Opcional: 
Integración reducida (D) 
Modo incompatible (I) o modificado (M) 

Número de nodos

Carga-desplazamiento (C), Transferencia de calor o difusión de masa (DC), 
Transferencia de calor Convección/Difusión (DCC) o acústica (AC) 

Unidimensional (1D), Tensión Plana (PS), 
Deformación Plana generalizada (GPE), 
bidimensional (2D), tridimensional (3D), axisimétrico 
(AX) o axisimétrico con torsión (GAX) 

 

b) Elementos axisimétricos con deformación no lineal asimétrica. 

C    AXA    8    R    H    P    N 
 

Híbrido (opcional)

Integración reducida (Opcional) 

Número de nodos

Tensión/desplazamiento 

Axisimétrico con no linealidad, deformación asimétrica

Número de modos de Fourier

Presión (opcional) 
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• Materiales: Se define la característica del material del cual esta hecho nuestro 
sólido  (módulo  elástico,  coeficiente  de  dilatación,  etc).  En  Patran  se  puede 
introducir la curva del material (pares de valores tensión – deformación) con la 
precisión que se quiera (tantos pares de valores como se precise). 

• Cargas y condiciones de contorno: Por último  se definen  las cargas a  las que 

está sometido el sólido, condiciones de apoyo en desplazamiento y contactos 

entre distintas superficies. 

Una vez llegado a este paso la etapa en Patran ha finalizado pero antes éste prepara 

la  información  para  ser  enviada  a  la  siguiente  etapa,  procesador  o  programa 

principal, e imprime o dibuja por pantalla de forma interactiva la geometría inicial y 

las condiciones para que sean verificadas por el usuario. 

Posteriormente,  deberá  obtenerse  un  fichero  de  datos  (input)  en  el  cual  se 

especifica  todos  los  parámetros  necesarios  para,  posteriormente,  llevar  a  cabo  el 

cálculo. Este fichero contiene la siguiente información: 

• En primer  lugar, aparece un  listado de  todos  los nodos que  forman parte del 

modelo  y  con  las  coordenadas  espaciales  de  cada  uno  de  pendiendo  del 

sistema de referencia utilizado. 

• A  continuación, aparecen  los distintos grupos de elementos existentes. Cado 

uno  de  los  grupos  se  especifican  de  la  siguiente  forma:  primero  aparece  un 

listado  del  conjunto  de  nodos  que  forman  parte  de  dicho  grupo  (NSET)  y, 

después,  se  enumera  cada  elemento  detallando  el  conjunto  de  nodos  que 

forma parte del mismo (ELSET). 

• En  el  siguiente  bloque  se  asigna  a  cada  uno  de  los  grupos  el  material 

correspondiente según las especificaciones dadas. Además, cuando se trata de 

elementos tipo 3D (Solidos) se especifican sus características que lo definen. 
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• Después,  se definen  los materiales utilizados. En este bloque  se especifica el 

nombre  del  material  y  las  distintas  propiedades  asociadas  a  los  mismos 

(densidad, módulo elástico, límite de rotura, etc). 

• Posteriormente, se define el  tipo de cálculo que va a realizarse  (en este caso 

estático). 

• Por último,  se especifican  tanto  las condiciones de contorno como  las cargas 

aplicadas. En este caso aparece un listado de los nodos en los cuales se aplican 

las condiciones de contorno con sus correspondientes valores de restricción, y 

otro  listado  de  los  nodos  en  los  que  deben  aplicarse  las  cargas  con  el 

correspondiente valor de las mismas. 

• Una vez obtenido y comprobado el fichero anterior, se realizará el proceso de 

cálculo  en  sí  del modelo.  En  este  caso,  va  a  utilizarse  el módulo  de  cálculo 

mediante elementos finitos Abaqus descrito a continuación. 

 

2.2.1.2. ABAQUS 

Es  el  bloque  en  donde  se  da  lugar  el  cálculo,  realizando  éste  por medio  de  la 

aplicación del método de los elementos finitos a partir de la introducción e interpretación 

de los datos de la geometría, mallado, cargas, apoyo, contactos y material utilizados. 

Este  bloque  no  necesita  ninguna  interacción  con  el  usuario  y  la  manera  de 

ejecutarlo es decirle por medio de un comando que  fichero queremos calcular. Una vez 

que se le ha ordenado la ejecución, el programa revisa el fichero obtenido del preproceso 

para obtener algún posible  fallo de estructura de datos y si no hay errores da paso a  la 

etapa de cálculo. 
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Abaqus posee dos tipos de cálculo diferenciados que son los siguientes: 

• Abaqus/Standard. Corresponde con el método general de cálculo estático del 

programa.  Es  el  más  ampliamente  utilizado  en  el  cálculo  de  geometrías  y 

permite  calcular  el  comportamiento  mecánico  en  cuanto  a  tensiones  y 

deformaciones de  cualquier estructura que  le  sea  introducida  y en  cualquier 

dirección. En este módulo de  cálculo  se obtienen  los  resultados aplicando  la 

teoría del Método de  los Elementos Finitos mediante  integración  implícita,  lo 

que implica mayor gasto computacional pero también mayor precisión.  

• Abaqus/explicit. Corresponde con el otro módulo de cálculo convencional de 

ABAQUS  y  está  desarrollado  con  una  estructura  completamente  vectorizada 

para su utilización en supercomputadores. El análisis dinámico con explicit está 

basado en la implementación de una regla de integración explícita junto con el 

uso de matrices masa diagonales o agrupadas. Permite el cálculo de cualquier 

estructura sometida a cargas dinámica en el tiempo. 

 

2.2.1.3. ABAQUS/POST 

Este  bloque  es  el  encargado  de  presentar  la  información  obtenida  durante  el 

cálculo. Los módulos de cálculo, en este caso ABAQUS, escriben los resultados del cálculo 

en  unos  fichero  de  texto  los  cuales  recogen  toda  la  información  por  nodo  y  elemento 

pudiendo saber de esta manera  los desplazamientos de  los nodos, mapas de tensiones o 

deformaciones, deformada de la estructura, etc. 

Como el usuario no puede manejar de forma efectiva todo este volumen de datos 

es en este momento cuando intervienen los postprocesadores. Éstos representan de una 

forma  gráfica  todos  los  resultados  obtenidos  en  el  cálculo,  pudiendo  así  obtener  los 

resultados pedidos mediante un mapa de colores y tonalidades, y realizar a su vez vistas 

de cualquier ángulo posible. 
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2.3 DESCRIPCION DEL CHASIS 

2.3.1 INTRODUCCIÓN 

 
Un  chasis  se  podría  definir  como  una  estructura  cuyo  propósito  es  conectar 

rígidamente  la  suspensión  delantera  y  trasera  y  al  mismo  tiempo  ofrecer  puntos  de 

amarre para  los diferentes  sistemas del  vehículo, así  como el de proteger al  conductor 

frente a la colisión. Los diseños rara vez se someten a tensiones del orden de este caso de 

esfuerzo último.  

El chasis debe ser rígido para deformarse poco y así no alterar las características de 

la conducción. La construcción de un chasis es el compromiso entre la rigidez, el peso y el 

espacio, teniendo en cuenta que todo ello repercute en el costo final. Deben considerarse 

la resistencia estática y la fatiga, la estabilidad de los miembros estructurales, la capacidad 

de carga de las uniones, la fabricación y el montaje.  

Uno  de  los  mayores  desafíos  en  la  industria  de  fabricación  de  chasis  para 

diferentes  aplicaciones,  es  resolver  la  demanda  creciente  de  este  tipo  de  vehículos  y 

mejorar  día  a  día  sus  actuaciones,  bajar  de  peso,  incrementar  la  vida  útil  de  sus 

componentes, mejorar  los  procesos  de  fabricación,  diseño  y  prestación,  incorporando 

nuevos  materiales,  utilizando  herramientas  informáticas  que  permitan  acelerar  los 

procesos y lograr diseños más resistentes, de menor peso, optimizados de tal manera que 

los costos de las unidades sean razonables para el cliente y para el fabricante. 

Debido a que el chasis es un elemento complejo, se requiere un estudio especial 

desde el punto de vista de diseño geométrico.  

Para  su  estudio  se  hace  necesario  el  empleo  de modernas  técnicas  de  análisis 

numérico  y medición experimental.  Sobre el  chasis  se  apoyan directa o  indirectamente 

todos los conjuntos y órganos de trabajo que conforman el vehículo. El chasis debe resistir 

y  tener  la  rigidez  suficiente para  soportar  las  cargas máximas que  aparecen durante el 

trabajo del vehículo, para determinar estas cargas  se  realizan  las pruebas en  regímenes 

extremos de funcionamiento, que si bien a lo largo de la vida del vehículo no ocupan gran 

parte  de  la misma,  provocan  grandes  esfuerzos  debidos  a  la  acción  de  las  fuerzas  de 

inercia de las diversas masas.  
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Estos  regímenes  extremos  que  aparecen,  fundamentalmente  en  los 

desplazamientos  de  la máquina,  se  tienen  en  cuenta  en  los  cálculos  de  resistencia,  no 

considerándose los mismos para los cálculos de fiabilidad o durabilidad.  

 

 

2.3.2 DESCRIPCIÓN DE COMPONENTES 

En  la siguiente figura puede verse un plano general del chasis sometido a estudio 

(Figura  2.3).  Todos  los  planos  utilizados  en  este  proyecto  han  sido  proporcionados  en 

formato digital por el departamento técnico de LECIÑENA y son propiedad de la empresa, 

por lo tanto, no han sido incluidos en este proyecto de forma implícita por petición de la 

misma. 

 
Figura 2.3 Vista isométrica del chasis de aluminio 

 

El chasis se puede considerar simétrico a lo largo de su eje longitudinal. Por tanto 

puede ser simplificado y de esta manera se trabajará sólo con mitad del modelo inicial. Los 

elementos  presentados  a  continuación  son  los  que  componen  los  submodelos  que 

posteriormente serán analizados y por ello sometidos a un mayor estudio. 
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1 

2 

1‐ Larguero superior 
2‐ Alma 
3‐ Larguero inferior 
4‐ Casquillo 
5‐ Escudo protección 
6‐ Placas protección 

5 

4 

6 

3

 

Figura 2.4 Despiece del chasis de aluminio 

 

2.3.3 DESCRIPCIÓN DE UNIONES ENTRE COMPONENTES 

Los elementos de  la figura anterior están fabricados en su mayoría por chapas de 

un  espesor  determinado,  cortadas,  plegadas  y  deformadas  hasta  obtener  la  forma 

necesaria. Una vez obtenidas en el proceso de fabricación esto se ensamblan entre ellas. 

Tras el montaje, y para darle mayor resistencia al conjunto, se añaden varios cordones de 

soldadura mediante  las máquinas  correspondientes.  Las propiedades de estos  cordones 

serán distintas a las del elemento base ya que al tratarse de cordones de aluminio la zona 

soldada  tendrá  peor  características  que  el  resto  de  material.  En  particular  las  zonas 

afectadas  térmicamente  (ZAT’s)  de  las  piezas  a  unir  (Figura  2.5).  La  profundidad  de 

garganta de dichos cordones es aproximadamente de unos 6 mm. 

 

 

 

 

 
 

 

Figura 2.5 Zonas afectadas térmicamente (ZAT’s) al aplicar el cordón de soldadura. 
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2.4 FASES DEL PROYECTO 

2.4.1 IMPORTAR GEOMETRÍA 

En esta primera etapa se parte, como ya se ha citado, del modelo que la empresa 

Leciñena nos ha facilitado para el análisis del chasis. Dicho modelo ha sido realizado con el 

programa Solid Edge en formato IGS, compatible con el programa de análisis PATRAN.  

Una vez  importado el chasis a PATRAN toda  la geometría se divide en grupos, es 

decir, para cada componente del modelo inicial (alma, largueros, casquillo, etc) se crea un 

grupo.  De  esta manera  se  divide  el modelo  y  se  trabaja  de  una manera mucho más 

cómoda. Además los resultados posteriores se podrán obtener individualmente para cada 

grupo. 

 

2.4.2 MODIFICAR GEOMETRÍA 

El modelo inicial, como ya se ha indicado, se puede simplificar ya que es simétrico 

a lo largo de un eje longitudinal. Tras eliminar los elementos innecesarios se aíslan los dos 

submodelos de las zonas sometidas a estudio. 

Los dos submodelos de trabajo son los representados en la Figura 2.6 

 

Figura 2.6 Detalle submodelos 1 y 2
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Estos dos  submodelos están  formados únicamente por elementos  sólidos  lo que 

dificulta su posterior mallado, por  lo que es necesario crear  todas  las superficies planas 

del contorno, así como los puntos y vectores que definan la extrusión de estas superficies 

en sólidos. 

La existencia de varias superficies para definir una única cara de un sólido se debe 

a  las proyecciones de unas piezas sobre otras. Por esto en ambos modelos se empieza a 

trabajar por el alma y a partir de este componente se continúa por el resto de  las piezas 

en contacto. En la figura 2.7 se puede observar el alma de los dos submodelos dividida en 

varias  superficies,  correspondientes  a  las  zonas de  los  largueros  superior  e  inferior,  las 

chapas de protección y el casquillo. 

          
Figura 2.7 Almas  formadas por varias superficies planas 

 

El modelo inicial del que partíamos ha sido creado para la fabricación del conjunto 

por  lo que presentaba  las  tolerancias necesarias para  su montaje. Se debe modificar  la 

geometría  de  los  submodelos  para  que  las  superficies  que  vayan  a  estar  en  contacto 

compartan puntos geométricos y posteriormente nodos. 

Esta  modificación  implica  una  variación  insignificante  en  las  medidas  entre  el 

modelo real y el analizado, sin afectar a los resultados finales. 
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Otra comprobación necesaria para conocer la magnitud de los resultados finales es 

escalar  los  submodelos  hasta  obtener  las  cotas  en  valores  de mm.  Así  tras  aplicar  las 

cargas en Newton se obtendrán los resultados en MPa. 

Ya  que  los  cordones  de  soldadura  no  son  componentes  necesarios  para  la 

fabricación  del  chasis  sino  que  son  añadidos  posteriormente  no  están  incluidos  en  el 

modelo inicial aportado por la empresa. Por lo tanto será necesario crearlos, para ello se 

crea una  superficie  con  forma de  cuarto de  círculo, que  será extruida  a  lo  largo de  las 

piezas a soldar. 

 

 
 

 

 

 
Figura 2.8 Detalle sección cordones soldadura 
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2.4.3 MALLAR 

Una  vez  que  tenemos  ambos  submodelos  con  toda  la  geometría  definida  el 

siguiente paso es convertir  las  superficies planas de cada pieza en mallas de elementos 

también planos, que posteriormente  serán  extruidos  a  lo  largo de  la  longitud de dicha 

pieza.  

   
Figura 2.9 Almas con malla plana 

 

El submodelo número 1 se compone de 3 partes diferenciadas: Larguero superior, 

larguero inferior y alma. El mallado de este submodelo se hace pieza a pieza, teniendo en 

cuenta que  la malla de una pieza debe  coincidir  con  la  contigua. Para ello  como  se ha 

indicado anteriormente  facilita el trabajo  la división de  la pieza en diferentes superficies 

geométricas, que  serán malladas  con el mismo número de elementos que  la  superficie 

idéntica de  la pieza contigua en contacto. A  la hora de mallar si una superficie es regular 

se realiza con el tipo de malla ISOMESH y en el caso de tratarse de una superficie irregular 

el tipo de malla es la denominada PAVER. 

Los elementos utilizados para estos componentes  son  tipo SHELL  (3D), de  forma 

Hex8,  es  decir,  cubos  formados  por  8  nodos.  Estos  cubos  deben  tener  la  forma más 

regular posible, sin distorsiones importantes ni nodos dentro de un mismo elemento que 

sean coincidentes. De lo contrario el proceso de cálculo posterior daría error. 
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La unión entre componentes a la hora de la fabricación se hace por ensamblaje con 

una  tolerancia de  apriete. Pese  a  ello para dar mayor  resistencia  al  conjunto  se  echan 

cuatro cordones de soldadura en las correspondientes uniones entre alma y largueros.  

Los elementos utilizados para mallar  los cordones de soldadura son  los  llamados 

SHELL (3D), de forma Wedge6, es decir, cuñas formadas por 6 nodos. 

La zona a estudio más importante en el submodelo 1 es el cambio de sección que 

existe en el larguero inferior.  

 

El  submodelo número 2  se compone de  las  siguientes partes: Larguero  superior, 

alma, larguero inferior, escudos de protección, chapas de unión y casquillo. 

El mallado de este  submodelo  se  realiza exactamente  como en el  caso anterior, 

pieza a pieza comenzando por el alma central. Hay que tener en cuenta que las mallas de 

piezas con zonas próximas deben coincidir. Cada pieza se divide en diferentes superficies, 

que serán malladas con el mismo número de elementos que  la superficie  idéntica de  la 

pieza en conctacto. 

La  unión  entre  alma  y  largueros  se  hace  por  ensamblaje  con  una  tolerancia  de 

apriete. Pese a ello para dar mayor  resistencia al conjunto se echan varios cordones de 

soldadura en las uniones entre alma, largueros, escudos y chapas de protección. 

En este submodelo las zonas más críticas serán los agujeros en los escudos y en el 

alma ya que trabajan como concentradores de tensiones. 

Una vez malladas todas las partes de un submodelo ya que hay nodos coincidentes 

entre las piezas en contacto se debe realizar una simplificación. Todo aquel nodo que este 

duplicado ya que forma parte de 2 elementos distintos en contacto podrán ser eliminados 

consiguiendo  de  esta manera  un  gran  ahorro  de  espacio  en  el modelo,  al  disminuir  la 

cantidad de información con la que se trabaja. 

A  continuación  aparecen  reflejados  el  número  de  elementos  que  componen  la 

malla de los submodelos 1 y 2. 
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2.10 Zonas críticas submodelos – Concentradores de tensiones 

 

De  la  tabla  anterior  destaca  el  elevado  número  de  elementos  que  forman  el 

submodelo  1  con  respecto  al  submodelo  2.  Esto  se  debe  a  que  el  submodelo  1  está 

formado únicamente por 3  componentes  (alma,  larguero  superior  y  larguero  inferior) y 

por  tanto de menos zonas “comunes” en  las que compartir elementos. El  tamaño de  la 

malla  se  puede  hacer  con más  elementos.  En  cambio  en  el  submodelo  2  se  utiliza  un 

tamaño de elemento pequeño donde aparecen zonas de contacto entre componentes y se 

utiliza un tamaño de elemento mayor para el resto del componente conforme se aleja de 

la  zona en  contacto. De otra manera el modelo  tendría  tal  cantidad de elementos que 

dificultaría el trabajo y su posterior cálculo. 

 

DENOMINACION 

SUBMODELO 1 

Nº DE ELEMENTOS 

352.876 

TIPO DE ELEMENTOS 

Hex8; 

Wedge 6 

MATERIALES 

Al‐5383‐H34; 

Al‐6082‐T6 
 

 

DENOMINACION 

SUBMODELO 2 

Nº DE ELEMENTOS 

68.596 

TIPO DE ELEMENTOS 

Hex8; 

Wedge 6 

MATERIALES 

Al‐5383‐H34; 

Al‐6082‐T6 
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La  siguiente  tabla muestra  el material,  tipo  y  número  de  elementos  que  forma  cada 

componente de los submodelos 1 y 2. 

SUBMODELO 1 

DENOMINACION  IMAGEN 
Nº DE 

ELEMENTOS 
TIPO DE 

ELEMENTOS 
MATERIAL 

LARGUERO 

SUPERIOR 

 

136.994  Hex8  Al‐6082 T6 

ALMA 

 

76.507  Hex8  Al‐5383‐H34 

LARGUERO 

INFERIOR 

 

134.173  Hex8  Al‐6082 T6 

CORDON 

SUPERIOR 

 

2.574  Wedge6 
Al‐

Soldaduras 
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CORDON 

INFERIOR 

 

2.628  Wedge6  Al‐Soldaduras 

 

 

SUBMODELO 2 

DENOMINACION  IMAGEN 
Nº DE 

ELEMENTOS
TIPO DE 

ELEMENTOS 
MATERIAL 

LARGUERO 

SUPERIOR 

 

4.968  Hex8  Al‐6082 T6 

ALMA 

 

8.538  Hex8  Al‐5383 H34 

LARGUERO 

INFERIOR 

 

26.082  Hex8  Al‐6082 T6 
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CHAPAS 

 

2.158  Hex8  Al‐5383 H34 

ESCUDOS 

 

11.192  Hex8  Al‐5383 H34 

CORDONES 

INFERIORES 

 

2.168  Wedge6  Al‐Soldaduras 

CORDONES 

SUPERIORES 

 

434  Wedge6  Al‐Soldaduras 

CORDONES 

INTERMEDIOS 

 

488  Wedge6  Al‐Soldaduras 
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CASQUILLO 

 

12.568  Hex8  S355 

 

La  técnica  del  submodeling  se  caracteriza  por  estudiar  una  zona  concreta  con 

mayor precisión que en un análisis previo general de todo el conjunto. Es decir, en nuestro 

caso  los dos  submodelos al  tener una malla más  fina nos darán  información con mayor 

precisión que  el modelo  inicial del que partían. Para  ello  el número de  elementos que 

forman  las mallas  debe  ser mayor.  Esto  sería  prácticamente  imposible  de  hacer  en  el 

modelo  inicial  ya  que  dado  su  complejidad  alcanzaría  un  número  de  elementos  tan 

elevado que resultaría imposible su cálculo. 

En  las  tablas anteriores se puede observar el elevado número de elementos que 

forman cada componente. A continuación se presentan unas capturas en los que se puede 

comprobar este aumento de elementos respecto al modelo inicial. 

Se aprecia que el tamaño de elemento es menor, por tanto se obtiene una malla 

más fina en comparación con el modelo global del que partíamos. 

Además en el análisis previo del chasis se simulaban las alas superior e inferior con 

elementos planos,  sin espesor. Como  se observa en  la Figura 2.11 en el mallado de  los 

submodelos al utilizar elementos 3D se les ha aplicado su espesor real. 

Otro detalle añadido que acerca los submodelos al modelo real es el redondeo de 

las aristas en los extremos. Con una malla con tamaño de elementos pequeños se puede 

aproximar mejor los chaflanes y redondeos en los cantos de las piezas. 
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Figura 2.11 Comparación malla submodelo 2‐modelo inicial 
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2.4.4 MATERIALES Y PROPIEDADES. 

Las  propiedades  necesarias  para  la  correcta  definición  de  cada  uno  de  los 

materiales para la realización de los cálculos mediante el método de los elementos finitos 

son las que se recogen en la siguiente tabla: 

 

PROPIEDADES UTILIZADAS  UNIDADES CONSIDERADAS 

E  Módulo elástico  MPa 

ν  Coeficiente de Poison  Adimensional 

ρ  Densidad  Kg/mm3 

σp 
Límite elástico 

(correspondiente a un As1 % de deformación) 
Mpa 

σm 
Resistencia mecánica 

(correspondiente a un As2 % de deformación) 
Mpa 

As1  % de alargamiento dado para cada valor de σp  Valor en % 

As2  % de alargamiento dado para cada valor de σm  Valor en % 
 

Tabla 2.12: Propiedades utilizadas en la definición de los materiales. 

Como  aproximación  va  a  tenerse  en  cuenta  que  todos  los  aluminios 

considerados  (componentes,  cordones  de  soldadura  y  ZAT´s)  van  a  tener  los mismos 

valores  de  E,  ν  y  ρ  correspondientes  al  aluminio  base  y  que  son  las mostradas  en  la 

siguiente tabla: 

 

MATERIAL  E  Limite Elástico  Limite Rotura  Alargamiento Rotura  ν 

Al 5383 H34  70.000 Mpa  270 MPa  340 MPa  8 %  0,3 

Al 6082 T6  70.000 Mpa  310 Mpa  340 Mpa  11 %  0,3 

S 355  210.000 Mpa  355 MPa  550 MPa  21.7 %  0,3 

Al ‐ Soldaduras  70.000 Mpa  110 MPa  240 MPa  17 %  0,3 

 

Ya  que  se  plantea  que  los modelos  analizados  no  alcanzan  valores  de  tensión 

superiores  a  su  límite  elástico  no  se  han  considerado  sus  correspondientes  curvas 

plásticas.
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Otras propiedades del Aluminio Al 6082 T6 son las siguientes: 

PROPIEDAD  VALOR 

Punto de fusión  555ºC 

Resistividad eléctrica  0,038∙10‐6 Ω∙m 

Conductividad térmica  180  W/m∙K 

Expansión térmica  24∙10‐6/K 

Dureza Vickers (HV)  100 

 

2.4.5 CONDICIONES DE CONTORNO: 

 

MTOTAL 

Coeficiente de mayoración

Figura 2.12 Caso de carga mas desfavorable, basculante a 0º 

 

Para  la  aplicación  de  las  condiciones  de  contorno  y  casos  de  carga  se  toma  la 

referencia del cálculo en el modelo global.  

Para ello  se aplican en Patran  las  solicitaciones  requeridas para  la  situación más 

desfavorable, que en nuestro caso será  instantes antes de que comience  la elevación del 

basculante, considerando por tanto un ángulo inicial de α=0º. (Ver figura 2.12) 

A partir del cálculo del modelo inicial (modelo global), lo que se hace en Patran es 

crear un campo de desplazamientos únicamente en la zona del submodelo a estudiar, de 

forma que se obtienen los desplazamientos de cada nodo en las tres direcciones. Después 

se  importa el submodelo y se  le hace coincidir con  la parte correspondiente del modelo 
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global.  Los  desplazamientos  para  el  submodelo  los  obtendrá  Patran  mediante  una 

interpolación lineal, es decir, como tenemos un mayor número de nodos que en el modelo 

inicial, estos nuevos nodos  tomaran un valor  intermedio que proviene de  los valores de 

los nodos que los rodean. 

Una vez transformada la geometría, mallado el submodelo, aplicados materiales y 

propiedades y establecidas  las condiciones de contorno se podrán calcular y analizar  los 

resultados obtenidos. 

Para  analizar  los  resultados  se  debe  utilizar  la  herramienta  ABAQUS,  que  nos 

permite trabajar con archivos de resultados obtenidos mediante el cálculo en PATRAN. 

 

 

2.4.6 ANÁLISIS DE TENSIONES Y RESULTADOS: 

Lo que se quiere analizar en el cálculo de los submodelos es el mapa de tensiones 

que indicará las que zonas están sometidas a mayor carga. 

De esta forma se podrán proponer varias soluciones encaminadas, en primer lugar, 

a cumplir los coeficientes de seguridad en los submodelos con los materiales empleados, y 

en segundo lugar y si fuera posible, a mejoras para aligerar dichos submodelos. 

  A  la hora de analizar  las tensiones obtenidas  lo primero que se debe de tener en 

cuenta es que nuestros submodelos tienen unos límites impuestos por nosotros desde el 

principio que no son sus fronteras reales, sino todo lo contrario, simplemente una sección 

extraída del modelo global. Además dado que el número de elementos es mayor en estos 

submodelos  que  en  el modelo  global  de  partida  los  resultados  en  las  fronteras  no  se 

pueden considerar.  

Por  tanto  los  valores  dados  en  las  fronteras  del  submodelo  deben  ser 

despreciados. Para  ello  se  recorta  los  extremos de  la pieza  en  el propio ABAQUS,  esto 

genera un nuevo mapa de tensiones con un nuevo máximo situado en otro punto. 

  A  continuación  se muestra  una  tabla  que muestra  la  variación  en  el mapa  de 

tensiones  en  ambos  submodelos  al  eliminar  los  primeros  nodos  en  los  límites  de  los 

submodelos. 
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SUBMODELO 1 
Antes de eliminar la frontera 

SUBMODELO 1 
Después de eliminar la frontera 

 

 

 

 

 

SUBMODELO 2 
Antes de eliminar la frontera 

SUBMODELO 2 
Después de eliminar la frontera 
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2.4.6.1 Análisis de tensiones del Submodelo 1: 

El valor máximo de  tensión obtenido para el submodelo 1 es de 241,7 MPa y se 

encuentra en el cambio de sección del larguero inferior. 

 

MÁXIMA TENSIÓN EN EL SUBMODELO 1 
 

 
 

 

Zona de máxima tensión del submodelo 1 

σmax = 241,7 MPa 
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Análisis de los componentes del submodelo 1: 

MAPA DE TENSIONES COMPONENTES SUBMODELO 1 

 

 

   105,1 MPa
   96,59 MPa
   88,1 MPa
   79,61 MPa
   71,13 MPa
   62,64 MPa
   54,15 MPa
   45,67 MPa
   37,18 MPa
   28,69 MPa
   20,21 MPa
   11,72 MPa
   3,234 MPa

 

 

Ala superior. Tensión máxima equivalente de Von Misses = 105,1 MPa 
El ala superior transmite la carga aplicada al resto de componentes por eso existe una 

distribución de tensiones uniforme a lo largo de ella. 

 

 

   159,3 MPa
   146,7 MPa
   134, 1 MPa
   121,4 MPa
   108,8 MPa
   96,13 MPa
   83,49 MPa
   70,85 MPa
   58,21 MPa
   45,57 MPa
   32,93 MPa
   20,29 MPa
   7,64 MPa

 

 

Alma. Tensión máxima equivalente de Von Misses = 159,3 MPa 
Se observa una distribución de tensiones prácticamente simétrica desde el centro de la 
pieza. La zona central no recibe casi esfuerzo. Es lo que se conoce como línea neutra. 
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241,7 MPa 
222,3 MPa 
202,9 MPa 
183 MPa 
164 MPa 
144 MPa 
125,2 MPa 
105,8 MPa 
86,37 MPa 
66,95 MPa 
47,53 MPa 
28,11 MPa 
8,686 MPa 

 
 

Ala inferior. Contiene el máximo valor de tensión equivalente de Von Misses del 
submodelo 1, igual a 241,7 MPa. 

 

 

   105,34 MPa
   101,02 MPa
   96,7 MPa
   92,38 MPa
   88,06 MPa
   83,74 MPa
   79,41 MPa
   75,09 MPa
   70,77 MPa
   66,45 MPa
   62,13 MPa
   57,81 MPa
   53,49 MPa

 
 

Cordón de soldadura superior. Máxima tensión equivalente de Von Misses = 105,34 MPa. 
Ya que este valor máximo se da en el extremo se puede concluir que no es determinante. 

El resto del cordón trabaja en torno a los 90 Mpa de tensión. 
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   101,350 MPa
   93,618  MPa
   85,887  MPa
   85,918  MPa
   70,423  MPa
   62,692  MPa
   54,968  MPa
   47,236  MPa
   39,504  MPa
   31,773  MPa
   24,041  MPa
   16,309  MPa
   8,586  MPa

 
 

Cordón de soldadura inferior. Máxima tensión equivalente de Von Misses = 101,35 MPa 
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2.4.6.2 Análisis de tensiones del Submodelo 2: 

Los valores máximos de tensión obtenidos para el submodelo 2 son de 105,1 MPa 

y 148,5 Mpa y se encuentran respectivamente en  la zona donde apoya el casquillo en el 

alma y en el agujero practicado en las placas de protección. 

Estos puntos son las zonas más críticas ya que al tratarse de un agujero perforado 

actúa como concentrador de tensiones. 

 

MAXIMA TENSIÓN EN EL SUBMODELO 2 

 

 
 

 

Vista ampliada de las regiones de máxima tensión del submodelo 2. 

σmax = 105,1 MPa 

σmax = 148,5 MPa 
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Análisis de componentes del submodelo 2: 

MAPA DE TENSIONES SUBMODELO 2 

 

 

147,8 MPa 
137,8 MPa 
127,8 MPa 
117,9 MPa 
107,9 MPa 
97,96 MPa 
87,99 MPa 
78,03 MPa 
68,06 MPa 
58,10 MPa 
48,14 MPa 
38,17 MPa 
28,21 MPa 

 

 

Ala superior. Tensión máxima equivalente Von Misses = 147,8 MPa. Esta tensión no se 
puede tener en cuenta ya que se da en la frontera del submodelo y no es representativa. 

Se observa que la pieza trabaja en torno a los 100 MPa en su gran mayoría. 

 

 

105,1 MPa 
96,59 MPa 
88,1 MPa 
79,61 MPa 
71,13 MPa 
62,64 MPa 
54,15 MPa 
45,67 MPa 
37,18 MPa 
28,69 MPa 
20,21 MPa 
11,72 MPa 
3,234 MPa 

 

 

Alma. Tensión máxima equivalente Von Misses = 105,1 MPa 
Se observan tres zonas diferenciadas. La parte superior donde transmite la carga el ala 

superior, la zona intermedia en contacto con el ala inferior, cercana a la zona donde dicha 
ala superior también tiene su máxima tensión, y por último el agujero donde apoya el 

casquillo que actúa como concentrador de tensiones. 
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101 MPa 
92,5 MPa 
84,1 MPa 
75,74 MPa 
67,3 MPa 
58,93 MPa 
50,53 MPa 
42,13 MPa 
33,72 MPa 
25,32 MPa 
16,91 MPa 
8,509 MPa 
1,04 MPa 

 

 

Larguero Inferior. Tensión máxima equivalente de Von Misses = 101 MPa. 
En este mapa de tensiones se ve muy bien reflejado como trabaja el ala inferior ya que es 

en la parte superior de esta donde más esfuerzo transmite la carga aplicada. 
 

89,33 MPa 
81,92 MPa 
74,5 MPa 
67,08 MPa 
59,66 MPa 
52,25 MPa 
44,83 MPa 
37,41 MPa 
30 MPa 

22,58 MPa 
15,16 MPa 
7,74 MPa 
0,327 MPa 

 

 

Chapas de protección. Tensión máxima equivalente Von Misses = 89,33 MPa 
Se observa una distribución de tensiones uniforme con valores bajos en su gran mayoría. 
Existe una zona puntual con un gradiente de tensiones. Al estar localizado en el extremo 

junto a la frontera del modelo este valor se puede despreciar.  
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148,5 MPa 
136,3 MPa 
124,1 MPa 
111,9 MPa 
99,73 MPa 
87,54 MPa 
75,34 MPa 
63,1 MPa 
50,95 MPa 
38,75 MPa 
26,56 MPa 
14,36 MPa 
2,16 MPa 

 

Placas de protección.  Tensión máxima equivalente Von Misses = 148,5 MPa. 
Al igual que sucede con el alma, el agujero realizado para apoyar el casquillo actúa como 

concentrador de tensiones. 

 

 

   96,4  MPa 
   93,13  MPa 
   89,85  MPa 
   86,57  MPa 
   83,29  MPa 
   80,01  MPa 
   76,73  MPa 
   73,45  MPa 
   70,17  MPa 
   66,89  MPa 
   63,61  MPa 
   60,33  MPa 
   57,05  MPa 

 
 

Cordones de soldadura superiores. Tensión máxima equivalente Von Misses = 96,4 MPa. 
La zona de máxima tensión aparece cercana a una de las zonas de máxima tensión del 

modelo, a la altura intermedia del alma. 
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81,04 MPa 
75,24 MPa 
69,44 MPa 
63,64 MPa 
57,84 MPa 
52,04 MPa 
46,25 MPa 
40,45 MPa 
34,65 MPa 
28,85 MPa 
23,05 MPa 
17,20 MPa 
11,45 MPa 

 
 

Cordones de soldadura intermedios. Tensión máxima equivalente Von Misses = 81,04 MPa. 
Se observa que la tensión aumenta al acercarse al extremo ya que en esta zona se encuentra la 

zona de tensión máxima del alma inferior. 

 

   119,9 MPa
   110 MPa
   100,1 MPa
   90,71 MPa
   80,24 MPa
   70,32 MPa
   60,39 MPa
   50,46 MPa
   40,53 MPa
   30,61 MPa
   20,68 MPa
   10,75 MPa
   8,271 MPa

 

Cordones de soldadura inferiores. Tensión máxima equivalente Von Misses = 119,9 MPa. 
La zona de máxima tensión coincide como en el caso anterior en la posición en que se encuentra la 

máxima tensión en el alma inferior a la que pertenece este cordón. 
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   319,6 MPa
   293,1 MPa
   266,6 MPa
   240,1 MPa
   213,6 MPa
   187,1 MPa
   160,6 MPa
   134,1 MPa
   107,6 MPa
   81,08 MPa
   54,58 MPa
   28,08 MPa
   1,575 MPa

 
 

Casquillo de Acero. Tensión máxima equivalente Von MIsses = 319,6 MPa. 
Sobre este casquillo actúa la barra horizontal del chasis basculante, transmitiendo la carga a dicho 

casquillo y el resto del modelo. 
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2.4.6.3 Calculo coeficientes de seguridad: 
 

Una vez analizadas todas  las piezas de ambos submodelos se pueden calcular  los 

coeficientes de seguridad para cada una de ellas.  

El coeficiente de seguridad (Cs) se podría definir como la relación entre la tensión 

máxima a la que puede estar sometido un elemento estructural sin llegar a romperse y la 

tensión máxima a la que tenemos que va a estar sometido: 

max

max

σ
σ admCs =  

Cs SUBMODELO 1 

COMPONENTE  σmax admisible (Mpa)  σmax (Mpa)  Cs 

ALA SUPERIOR  310  105,1  2,950 

ALMA  270  159,3  1,695 

ALA INFERIOR  310  241,7  1,283 

CORDON SUPERIOR  110  105,34  1,044 

CORDON INFERIOR  110  101,35  1,085 

 

Cs SUBMODELO 2 

COMPONENTE  σmax admisible (Mpa)  σmax (Mpa)  Cs 

ALA SUPERIOR  310  147,5  2,102 

ALMA  270  105,1  2,569 

ALA INFERIOR  310  101  3,069 

CHAPAS  270  89,33  3,023 

ESCUDOS  270  148,5  1,819 

CORDONES INFERIORES  110  119,9  0,920 

CORDONES SUPERIORES  110  96,4  1,141 

CORDONES INTERMEDIOS  110  81,05  1,357 

CASQUILLO  355  319,6  1,111 
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3. OPTIMIZACIONES 

Gracias a  los  resultados obtenidos de coeficiente de seguridad  (Cs)  reflejados en 

las tablas anteriores se pueden proponer una serie de medidas encaminadas a aligerar el 

chasis  y por  tanto  cumplir  el objetivo de  ahorrar material  en  la  fabricación  y  consumo 

posterior en el transporte de mercancías sin afectar a la resistencia del chasis. 

En el submodelo 1 se puede concluir que la parte superior trabaja muy por debajo 

de  sus  valores máximos  admisibles  ya  que  tenemos  un  valor  de  Cs  igual  a  2,95.  Una 

modificación geométrica que  se podría aplicar es una  reducción en el espesor del alma 

superior.  El  valor  concreto  que  podría  alcanzar  el  espesor  no  ha  sido  objeto  de  este 

estudio pero  siempre y cuando  se cumpla el compromiso entre espesor y  resistencia  la 

pieza podría ser modificada.  

Por  el  mismo  motivo  anterior,  otra  posible  mejora  tendría  que  ver  con  la 

transmisión  de  esfuerzos.  Ya  que  se  ha  comprobado  que  las  mayores  tensiones  se 

encuentran  en  el  ala  inferior  se  podría  intentar  repartir  los  esfuerzos  que  ahí  se 

concentran  a  la  zona  superior  que  está  menos  solicitada.  Para  conseguir  esto  se 

propondría  el  uso  de  cartabones  de  una  forma  aproximada  a  como  se  indica  en  la 

siguiente figura: 
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En el alma del submodelo 1 se tiene un valor de Cs  igual a 1,7. Pese a no ser un 

valor elevado se plantea  lo siguiente: Ya que en el mapa de distribución de tensiones se 

observa que  la zona central tiene tensiones muy bajas, en esta zona se podría hacer una 

perforación, circular u ovalada, a lo largo de toda su longitud. Esta modificación implicaría 

un aumento de tensión en toda la pieza al actuar estos agujeros como concentradores de 

tensiones.  El  objetivo  sería  alcanzar  un  compromiso  entre  el  tamaño  del  agujero  y  la 

resistencia para conseguir valores en  los que el modelo soportará  las cargas en régimen 

elástico consiguiendo un gran ahorro de material y por tanto de peso. 

En el caso del submodelo 2  las modificaciones geométricas son más complejas ya 

que modificar un componente afecta directamente al que se encuentra en contacto con 

él. Por esto las chapas de protección que tienen valores muy bajos de tensión y ya que no 

tienen una  función  resistiva evidente  sino  la de proteger como una carcasa al  resto del 

modelo se pueden aligerar, disminuyendo su espesor hasta un valor determinado. 

En ambos modelos tienen especial interés el análisis de los cordones de soldadura 

de  aluminio  ya  que  como  se  ha  citado  anteriormente  se  caracterizan  por  tener menor 

resistencia que el resto del modelo. Han sido simulados aproximando su geometría a la de 

cordones homogéneos y continuos. Esto es difícil de conseguir en  la práctica, por mucho 

que se empleen robots y máquinas preparadas. Por ello  los valores obtenidos deben ser 

orientativos.  Si  bien  tanto  en  el  submodelo  1  como  en  el  submodelo  2,  los  cordones 

inferiores  nos  dan  un  CS  bajo  y  se  debería  proponer  su  rediseño  con  un  aumento  del 

tamaño  del  cordón  para  aumentar  su  resistencia,  o  comprobar  si  con  las  medidas 

anteriormente propuestas estos cordones trabajan a menor tensión. 
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4. CONCLUSIONES 

En  el  presente  proyecto  fin  de  carrera  se  han  localizado  y  analizado  las  zonas 

donde  presentan mayores  esfuerzos  dos  submodelos  de  un  chasis  para  basculante  de 

cilindros  centrales  fabricado  en  aluminio.  Para  ello  se  ha  aplicado  una  técnica  poco 

generalizada que permite obtener mayor información a lo largo de las diferentes fases del 

proyecto denominada “submodeling”. 

Todos  los  cálculos  teóricos  de  la  estructura  asociados  a  este  estudio  han  sido 

realizados mediante  la aplicación del método de  los elementos finitos muy extendido en 

procesos de cálculo en la actualidad.  

El  estudio  se  comienza  con  el  análisis  de  la  geometría  del modelo mediante  la 

herramienta  informática  Patran  que  permite  también  la  creación  de  modelos  de 

elementos  finitos  en  los  que  son  posible  definir  todas  y  cada  una  de  las  variables  del 

problema a analizar (materiales, condiciones de contorno, conjunto de solicitaciones,...).  

El conjunto de solicitaciones reales que actúan sobre el chasis y por tanto sobre los 

submodelos han  sido obtenidas por medio de análisis  anteriores de  los departamentos 

técnicos  de  la  empresa  Leciñena  y  el  departamento  de  Ingeniería  Mecánica  de  la 

Universidad de Zaragoza. 

Una vez aplicadas dichas solicitaciones se ha pasado a realizar el cálculo de ambos 

submodelos mediante  la aplicación  informática Abaqus. Con  los resultados obtenidos de 

los mapas de tensiones se ha procedido al análisis de  los dos submodelos componente a 

componente.  

Al  análisis  global  de  los  submodelos  se  ha  añadido  el  análisis  de  los  valores 

obtenidos en los cordones de soldadura.  

Por último se han comprobado que ambos submodelos nos orientan sobre cómo 

podría optimizarse el chasis con el fin de aligerar la masa del mismo, entendiéndose que 

esta misma actuación podría ser llevada a cabo también en otras zonas del modelo global 

previo estudio y análisis de cada una de ellas. 
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