
�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

6.�ANEXOS�

6.1�CONTENIDO�DE�LOS�ANEXOS�

6.2.�Algoritmos�de�optimización�basados�en�colonias�de�hormigas�(ACO)�

En�este�apartado�se�trata�de�dar�una�breve�introducción�a�los�conceptos�introducidos�por�Dorigo�y�Stützle�en�el�
libro� Ant� Colony� Optimization� (Dorigo� &� Stützle.,� 2004),� con� los� cuales� se� va� a� guiar� en� todo�momento� el�
proceso�de�desarrollo�del�programa.�De�esta�forma�todas�las�decisiones�tomadas�en�el�proceso�de�construcción�
del�mismo�podrán�ser�justificadas�haciendo�las�referencias�oportunas.�

�

6.3.�Desarrollo�del�algoritmo��

Este� es� el� apartado� fundamental� de� la� memoria.� En� él,� tras� una� introducción� explicativa� de� cómo� se� va� a�
implementar�el�algoritmo�y�de�cuales�van�a�ser�sus�bases�de�desarrollo,�respectivamente�en�los�sub�apartados�
‘6.3.1.�Base�de�trabajo�del�algoritmo’�y� ‘6.3.2.�Bases�de�desarrollo�del�algoritmo’,�se�procede�a�explicar�cada�
una�de�las�modificaciones�que�se�han�ido�desarrollando�del�programa�dentro�del�apartado�‘6.3.3.�Construcción�
del� algoritmo’.� Además� de� la� ya� citada� explicación� justificativa� de� cada� uno� de� ellos,� se� introducen� los�
resultados�obtenidos� al� aplicar� dicho�programa� a� alguno� de� los� grafos� usados� a� tal� efecto� y,� finalmente,� se�
realiza�un�análisis�de�dichos�resultados�a�fin�de�justificar�o�no�la�utilidad�de�dicho�programa,�marcando�tanto�
sus�puntos�fuertes�como�los�posibles�inconvenientes�que�estos�pudieran�tener.��

�

6.4.�Programa�definitivo�

Como�último�apartado�de�los�anexos,�se�ha�colocado�el�programa�desarrollado�a�día�4_4_2011,�el�cual,�
desarrollado�con�el�lenguaje�de�programación�Python,�ha�sido�considerado�como�el�programa�definitivo�y�con�
el�cual�se�obtuvieron�mejores�resultados,�tal�y�como�se�puede�observar�en�las�conclusiones�dadas�en�el�sub�
apartado�A�día�4_4_2011�dentro�del�apartado�‘6.3.�Desarrollo�del�algoritmo’.�

� �

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

6.2.�ALGORITMOS�DE�OPTIMIZACIÓN�BASADOS�EN�COLONIAS�DE�HORMIGAS�(ACO)�

Los�algoritmos�de�optimización�basados�en�colonias�de�hormigas�(Ant�Colony�Optimization�algorithms)�(ACO),�
son�utilizados�tanto�para�reducir�como�para�solucionar��diversos�problemas�computacionales�a�través�de�una�
búsqueda� aleatoria� de� caminos� o� trayectos� en� grafos� de� forma� que� se� vayan� mejorando� las� soluciones�
obtenidas�previamente.��Ésta�familia�de�algoritmos�se�considera�inmersa�en�el�grupo�de�optimizaciones�meta�
heurísticas,�ya�que�se�tratan�de�algoritmos�aproximados�de�optimización�y�búsqueda�de�propósito�general�y,�
además�de� eso,� son� procedimientos� iterativos� que� guían� una� heurística� subordinada� combinando� de� forma�
inteligente�distintos�conceptos�para�explorar�y�explotar�adecuadamente�el�espacio�de�búsqueda.�Para�aclarar�
el� concepto� de� algoritmo� heurístico,� éste� puede� ser� definido� como� aquel� que� abandona� uno� de� los� dos�
objetivos�fundamentales�en�computación,�encontrar�buenas�soluciones��y�ejecutarse�razonablemente�rápido.�
Sin�embargo,�es�necesario�remarcar�que,�en�caso�de�abandonar�el�segundo�objetivo,�no�hay�pruebas�de�que�
todas� las� soluciones�vayan�a� ser� correctas� y�adecuadas�o�de�que,�en� caso�de�abandonar�el�primer�objetivo,�
todas�las�soluciones�vayan�a�ser�ejecutadas�rápidamente.�

Las� ventajas� de� usar� algoritmos�meta� heurísticos,� entre� otras,� es� que� se� tratan� de� algoritmos� de� propósito�
general,�poseen�un�gran�éxito�en�la�práctica�y�además�es�sencillo�implementarlos�y�paralelizarlos.�Sin�embargo,�
esta� serie� de� algoritmos� lleva� consigo� ciertos� inconvenientes� como� el� hecho� de� que� son� altamente� no�
determinísticos� (probabilísticos),� son� aproximados,� es� decir,� no� exactos,� y� además� presentan� poca� base�
teórica.�Generalmente,�las�técnicas�meta�heurísticas�se�suelen�aplicar�a�aquellos�problemas�que�carecen�de�un�
algoritmo� o� heurística� específica� que� proporcione� soluciones� satisfactorias� o� bien� cuando� es� imposible�
implementar�ese�método�óptimo.�En�términos�generales�se�podrían�definir�las�técnicas�meta�heurísticas�como�
aquellas� que� encuentran� soluciones� aproximadas� (no� óptimas)� a� problemas� basándose� en� un� conocimiento�
anterior�(a�veces�llamado�experiencia)�de�los�mismos.�

La�base�teórica�de�ésta�serie�de�
algoritmos� de� optimización�
(ACO)�se�basa�en�un�mecanismo�
natural� observado� en� distintas�
especies� de� hormigas� cuando�
éstas�buscan�fuentes�de�comida�
alrededor� de� sus� colonias,� tal� y�
como� se� puede� observar� en� la�
Figura�1.�Generalmente,� �dichas�
hormigas� vagan� aleatoriamente�
en� su� búsqueda� de� comida� y,�
tan� pronto� como� éstas� la�
encuentran,�vuelven�a�la�colonia�

dejando� tras� de� sí� un� rastro� de�
feromonas� en� su� camino.� Una� vez�
esto� ocurre,� el� resto� de� hormigas�
de� la� colonia� dejan� de� buscar� comida� de� manera� aleatoria� y� comienzan� a� seguir� el� rastro� dejado� por� las�
anteriores� hormigas� fortaleciendo� a� su� vez� dicho� rastro� de� feromonas� en� el� camino� en� el� caso� de� que�
encontraran�dicha�fuente�de�comida.�Las�característica�principal�de�éste�rastro�de�feromonas�es�la�evaporación�
de�las�mismas�en�función�del�tiempo.�Debido�a�ello,�contra�más�tiempo�necesite�una�hormiga�para�alcanzar�la�
comida�y�volver�a�la�colonia,�más�tiempo�tendrán�las�feromonas�para�evaporarse�y,�por�tanto,�dicho�recorrido�
será� menos� atractivo� para� las� siguientes� hormigas.� Por� ejemplo,� en� el� caso� concreto� de� que� una� hormiga�

Figura�1:�Explotación�de�los�recursos�de�comida�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

encuentre�un�recorrido�suficientemente�corto�entre�la�comida�y�la�colonia,�la�densidad�de�feromonas�en�dicho�
camino� permanecerá� elevada� ya� que� no� habrá� discurrido� el� tiempo� suficiente� como� para� que� éstas� se�
evaporen� y,� por� tanto,� dicho� camino� resultará�mucho�más� atractivo� para� las� siguientes� hormigas� que�otros�
recorridos�más�largos�y,�a�su�vez,�puesto�que�éste�será�tomado�por�mas�hormigas,� las�feromonas�dejadas�en�
dicho�recorrido�irán�en�aumento,�mostrando�así�la�conveniencia�del�mismo.�El�fenómeno�de�evaporación�de�las�
feromonas�con�el�tiempo�también�tiene�la�ventaja�de�que�evita�la�convergencia�en�una�solución�óptima�local�ya�
que,�si�no�existiera�dicho�fenómeno�de�evaporación,� los�recorridos�escogidos�por� las�primeras�hormigas�que�
encontraran�una�fuente�de�comida�tenderían�a�ser�excesivamente�atractivos�para�las�siguientes,�en�cuyo�caso,�
la�exploración�del�espacio�de�soluciones�sería�restringida.��

Las� dos� características� principales� que� hacen� que� éste� sistema� usado� por� las� hormigas� para� intercambiar�
información� sea� distinto� a� otras� formas� de� comunicación� son,� en� primer� lugar,� que� se� trata� de� un� sistema�
indirecto,�no�simbólico,�llevado�a�cabo�a�través�del�medio�natural�y,�en�segundo�lugar,�que�la�información�que�
se� trasmite� tiene� un� carácter� local,� es� decir,� tan� solo� pueden� acceder� a� la� información� de� un� determinado�
punto�del�medio�aquellas�hormigas�que�discurren�por�él.��

Los� algoritmos� de� optimización� basado� en� colonias� de� hormigas� (algoritmos� ACO)� se� tratan,� como� ya� se�
comentó� anteriormente,� de� técnicas� probabilísticas� para� resolver� aquellos� tipos� de� problemas�
computacionales� que� pueden� ser� reducidos� a� encontrar� buenos� recorridos� a� través� de� grafos.� El� primer�
algoritmo�de�ésta�familia�fue�inicialmente�propuesto�en�1992�por�Marco�Dorigo�en�su�Phd�tesis,�(Dorigo,�1992)�
con�el�objetivo�de�encontrar�un�recorrido�óptimo�en�un�grafo�mediante�la�imitación�a�través�de�unas�“hormigas�
simuladas”�del�comportamiento�real�de�las�hormigas�en�su�búsqueda�de�fuentes�de�comida.�A�partir�de�éste�
primer�algoritmo,�esta�idea�original�de�estudiar�y�aplicar�el�comportamiento�natural�de�las�hormigas�diversificó�
a� fin� de� resolver� una� mayor� cantidad� de� problemas� numéricos.� La� base� en� la� cual� Dorigo� se� apoyó� para�
presentar� su�PhD�tesis� fue�el� ‘’experimento�de� los�dos�puentes’’,� realizado�en�1990�por�Deneubourg�y�otros�
(Deneubourg,� Aron,� Goss,� &� Pasteels.,� 1990)� con� el� propósito� de� investigar� el� proceso� de� depósito� de�
feromonas� por� una� colonia� de� hormigas� en� su� búsqueda� de� comida.� En� dicho� experimento,� � la� colonia� se�
encontraba� conectada� con� la� fuente� de� comida� a� través� de� dos� puentes� de� igual� longitud.� En� un� primer�
momento,�se�observó�que�cada�hormiga�seleccionaba�uno�de�los�dos�puentes�de�forma�aleatoria�debido�a�una�
serie�de�fluctuaciones�estocásticas�pero�al�cabo�de�un�tiempo�uno�de�los�dos�puentes�presentaba�una�mayor�
concentración�de�feromonas.�Como�consecuencia�de�dicha�mayor�concentración�en�uno�de� los�dos�puentes,�
éste�atraía�más�hormigas�que�el�otro�y,�por�tanto,�una�mayor�cantidad�de�feromonas�eran�depositadas�en�éste�
por� las�siguientes�hormigas� llevando�al�resultado�de�que,�al�cabo�de�un�tiempo,�toda� la�colonia�de�hormigas�
tomaba� dicho� puente� en� lugar� que� el� otro.� Dicho� experimento� fue� repetido� un� elevado� número� de� veces�
llegando�a�observarse�que�cada�puente�era�escogido�por�las�hormigas�alrededor�de�un�50%�de�las�ocasiones.�La�
principal�conclusión�de�éste�experimento�fue�que�las�hormigas�podían�llegar�a�encontrar�el�recorrido�más�corto�
entre�la�fuente�de�comida�y�su�colonia�mediante�el�uso�de�la�llamada�‘’retroalimentación�positiva’’,�basada�en�
que�el�rastro�de�feromonas�atraía�otras�hormigas�que,�a�su�vez,�fortalecían�dicho�rastro�con�el�depósito�de�más�
feromonas.��

Una�variante�de�dicho�experimento,�en�el�cual�uno�de�los�dos�puentes�era�significativamente�más�largo�que�el�
otro�fue�llevada�a�cabo�por�Goss�y�otros�(Deneubourg,�Aron,�Goss,�&�Pasteels.,�1989).�A�consecuencia�de�dicha�
diferencia�de�longitud�entre�ambos�puentes,�las�fluctuaciones�estocásticas�en�la�selección�inicial�de�un�puente�
fueron�reducidas�y,�puesto�que�las�hormigas�que�casualmente�escogían�el�puente�más�corto�regresaban�con�
comida�a� la�colonia�antes�que�aquellas�que�habían�escogido�el�camino� largo,�el�puente�con�menor�recorrido�
recibía�las�feromonas�más�rápido�que�el�largo�y,�como�consecuencia,�la�probabilidad�de�que�futuras�hormigas�
seleccionaran�éste�camino�más�corto�se� incrementaban.�La�probabilidad����de�que�una�hormiga�escogiera�el�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

primer�puente�en�un�momento�dado�fue�modelada�de�la�siguiente�manera:�

�� � � ��� � ���
��� � ��� � �� � ����

Ecuación�2�

Donde����es�el�número�de�hormigas�que�han�usado�el�primer�puente,�� �el�segundo�y� los�parámetros���y�!�
fueron�determinados�en�función�de�datos�experimentales.�Obviamente�� �
 " ��.��
Generalmente,�el�comportamiento�de�las�hormigas�en�su�búsqueda�de�comida,�el�cual�pone�las�bases�para�los�
algoritmos�de�optimización�basados�en�colonias�de�hormigas�(ACO),�está�basado�en�dos�sistemas�opuestos�de�
retroalimentación�y�puede�ser�modelado�de�la�siguiente�manera:�

1. Una�hormiga�realiza�recorridos�más�o�menos�de�forma�aleatoria�alrededor�de�la�colonia.�
2. En�caso�de�que�encuentre�comida,�ésta�retorna�a�la�colonia�más�o�menos�directamente�dejando�tras�

de�sí�en�el�camino�un�rastro�de�feromonas.�
3. Dado�que�dichas� feromonas� son�atractivas�para� las�otras�hormigas,� éstas� seguirán�más�o�menos�el�

camino�marcado.�
4. Una� vez� de� vuelta� a� la� colonia,� éstas� nuevas� hormigas� fortalecerán� la� ruta� al� dejar� tras� de� sí�más�

feromonas.�
5. Si�hubiera�más�de�un�recorrido�para�alcanzar�la�misma�fuente�de�comida,�en�un�periodo�concreto�de�

tiempo,�el�camino�más�corto�será�recorrido�por�más�hormigas�que�el�largo.�
6. El� recorrido� más� corto� irá� incrementando� su� cantidad� de� feromonas� al� ser� recorrido� por� más�

hormigas,�llegando�a�ser�cada�vez�más�atractivo�(lo�cual�se�le�denomina�retroalimentación�positiva).�
7. El�recorrido�más�largo,�eventualmente�irá�desapareciendo�debido�al�fenómeno�de�evaporación�de�las�

hormonas�(lo�cual�se�le�denomina�retroalimentación�negativa).�
8. Finalmente,�todas�las�hormigas�estarán�determinadas�a�recorrer�el�camino�más�corto.�

Es�necesario�notar�que,�a�pesar�del�hecho�de�que�ningún�camino�sería�elegido�como�mejor�si� la�cantidad�de�
feromonas� en� los� ejes� del� grafo� representativo� fuera� idéntica� a� lo� largo� del� tiempo� en� todos� los� ejes� � a�
consecuencia�de�las�opuestas�retroalimentaciones,�una�ligera�variación�en�la�cantidad�de�feromonas�en�uno�de�
ellos�provocará�que�ésta� sea�amplificada�y�por� tanto,� el� algoritmo� saldría�de�un�estado� inestable�en�el� cual�
ningún� camino� es� mejor� que� el� otro,� para� pasar� a� un� estado� estable� en� el� cual� el� mejor� camino� sería� el�
compuesto�por�los�mejores�ejes.�Como�ya�se�ha�comentado�anteriormente,�los�algoritmos�ACO�se�consideran�
mecanismos�meta�heurísticos�para�problemas�de�optimización�combinatorios.�A�fin�de�aplicar� los�mismos,�es�
básica�la�existencia�de�un�modelo,�el�cual�es�descrito�a�continuación.�

Un�modelo�# � �$% &% '��de�un�problema�de�optimización�combinatorio�consta�de:�

� Un� espacio� de� búsqueda�$ �definido� sobre� un� conjunto� finito� de� variables� de� decisión�
concretas�()% * �
%+ % ,-�

� Un�conjunto�&�de�restricciones�entre�las�variables.�
� Una�función�objetivo�'. $ / �012�a�ser�minimizada.�

La�variable�genérica��()�toma�valores�en�3) � 45)�% + % 5)67869.�Una�posible�solución�: ; $�se�trata�de�la�
completa�asignación�de� valores�a� variables� que� satisfagan� todo�el� conjunto�de� restricciones�&.�Una�
solución�:� ; $�es�llamada�óptimo�global�si�y�solo�si�'�:�� < '�:����=: ; $.��

Este�modelo�fue�utilizado�para�definir�el�comportamiento�de� las�feromonas�en�el�algoritmo�desarrollado.�Un�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�	

valor�de�feromona�es�asociado�con�cada�posible�componente�de�solución,�es�decir,�con�cada�posible�asignación�
de�un�valor�a�una�variable.�Formalmente�el�valor�de�feromona�>)?�es�asociado�con�el�componente�de�solución�

@)?�,� que� consiste� en� asignar�() � 5)?.� En� general� para� este� tipo� de� algoritmos,� una� ‘’hormiga� artificial’’�
construye� una� solución� atravesando� el� completo� grafo� conexo� de� construcción�AB�C% D�,� donde�C�es� el�
conjunto�de�vértices�y�D�es�el�conjunto�de�ejes.�Dicho�grafo�puede�ser�obtenido�a�partir�del�conjunto�de�todos�
los�posibles�componentes,�llamado��,�de�dos�maneras�diferentes,�ya�sea�mediante�la�representación�de�éstos�
componentes�por�vértices�o�por�ejes.�Al�mismo�tiempo,�es�importante�denotar�que�las�soluciones�parciales�son�
construidas�de�forma�incremental�cuando�las�hormigas�se�mueven�de�un�vértice�a�otro�a�través�de�los�ejes�del�
grafo�depositando�en�ellos�una�cierta�cantidad�de�feromona.�La�cantidad�de�feromona�que�éstas�depositan�en�
los� componentes� del� grafo� atravesados,E>,� es� dependiente� de� la� calidad� de� la� solución� encontrada� y�
posteriormente,� dicha� cantidad� de� feromona� es� usada� por� otras� hormigas� como�una� guía� en� el� espacio� de�
búsqueda.�

Básicamente,� el�procedimiento�de� trabajo�de� los�algoritmos�meta�heurísticos�ACO�es� iterar� sobre� tres� fases�
bastante�bien�definidas,�tal�y�como�se�explica�a�continuación.�Resumiendo,�en�cada�iteración,�un�determinado�
número�de�soluciones� son�construidas,�entonces,�dichas� soluciones� son�opcionalmente�mejoradas�mediante�
una�búsqueda�local�y,�como�último�paso,�el�valor�de�feromonas�es�actualizado.�

Algoritmo�meta�heurístico�basado�en�colonias�de�hormigas�

Preparación�de�parámetros,�Inicialización�de�los�rastros�de�feromonas�

mientras�condición�de�finalización�no�satisfecha�hacer:�

� �Construcción�de�soluciones�

� Aplicar�búsqueda�local�(opcional)�

� Actualizar�feromonas�

Fin�mientras�

Construcción� de� soluciones:� Un� conjunto� de���‘hormigas� artificiales’� construyen� soluciones� a� partir� de� los�
elementos�de�un�conjunto�finito�de�componentes�de�solución�disponibles�� � F@)?G% * �
%+ % ,���H �

%+ % 63)6.�La�construcción�de�una�solución�comienza�a�partir�de�una�solución�parcial�vacía�:I � �J.�En�
cada� pasa� del� proceso� de� construcción,� la� solución� parcial�:I�es� ampliada� mediante� la� adición� de�
posibles�componentes�de�solución�desde�el�conjunto�
�:I� K �,�el�cual�es�definido�como�el�conjunto�
de� componentes� que� pueden� ser� añadidos� a� la� actual� solución� parcial�:I�sin� violar� ninguna� de� las�
restricciones� en�L.� El� proceso� de� construcción� de� soluciones� puede� ser� considerado� como� un�
recorrido�en�el�grafo�de�construcción�AB � �C% D�.�La�selección�de�un�componente�de�solución�desde�

�:I� �es� guiada� por� un� mecanismo� estocástico,� el� cual� está� basado,� como� ya� se� comentó�
anteriormente,�por�la�cantidad�de�feromonas�asociadas�con�cada�elemento�de�
�:I�.�La�regla�para�la�
selección� estocástica� de� componentes� para� la� solución� varía� a� través� de� los� diferentes� tipos� de�
algoritmos�de�optimización�basados�en�colonias�de�hormigas�(algoritmos�ACO).��

�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Aplicar�búsqueda� local:�Una�vez�que� las�soluciones�ya�han�sido�construidas,�y� justo�anteriormente�a�que� las�
feromonas�sean�actualizadas,�es�común�mejorar�las�soluciones�obtenidas�por�las�hormigas�a�través�de�
una�búsqueda�local.�Ésta�fase,�que�varía�enormemente�según�el�tipo�de�problema�que�se�trate,�aun�
siendo� opcional� es� altamente� recomendable� y� generalmente� es� incluida� en� los� algoritmos� de�
optimización�basados�en�colonias�de�hormigas�más�eficientes.�

Actualizar�feromonas:�El�propósito�de�la�actualización�de�feromonas�es�incrementar�los�valores�de�feromona�
asociados�con�buenas�o�prometedoras�soluciones�a�la�vez�que�reduciendo��aquellas�que�se�asocian�a�
malas� soluciones.� Normalmente,� esto� es� conseguido,� como� ya� se� ha� comentado� anteriormente,�
reduciendo� todos� los� valores� de� feromonas� a� través� de� una� evaporación� de� las� mismas� e�
incrementando�los�niveles�de�las�mismas�en�aquellas�asociadas�al�conjunto�de�buenas�soluciones.�

Cuando�el�primer�algoritmo�ACO� fue�presentado�por�Dorigo�a�principios�de� los�90�usando� ‘’el� Problema�del�
viajante’’�como�ejemplo�de�aplicación,�dicho�algoritmo,�llamado�‘Ant�System’(sistema�de�hormiga)�proporcionó�
peores� resultados� que� los� algoritmos�más� conocidos� en� aquel�momento�para� solucionar� dicho�problema.�A�
pesar� de� ello,� los� resultados� proporcionados� por� dicho� algoritmo� fueron� alentadores� y,� hoy� en� día,� los�
algoritmos�relacionados�con�la�optimización�basada�en�colonias�de�hormigas�más�exitosos�son�extensiones�de�
este�primer�algoritmo�(AS).�Estas�extensiones�utilizan�el�mismo�mecanismo�de�actualización�de�los�valores�de�
feromonas�que�realizaba�el�primer�algoritmo�pero�añadiendo�tan�solo�algunas�simples�modificaciones.En�un�
principio,� todo� el� trabajo� desarrollado� alrededor� de� los� diferentes� algoritmos� de� optimización� basados� en�
colonias�de�hormigas�eran�desarrollados�experimentalmente�con�el�propósito�de�demostrar�que�las�ideas�bajo�
las�cuales�se�apoyaban�dichos�algoritmos�podían�llevar�a�conseguir�exitosos�resultados.�

En� general,� cuando� se� afronta� un� problema� utilizando� técnicas� meta� heurísticas,� como� en� el� caso� de� los�
algoritmos�de�optimización�basados�en�colonias�de�hormigas,�es� importante� la�aplicación�del�algoritmo�a�un�
amplio�número�de�problemas�con�el�objetivo�de�comparar�los�resultados�obtenidos�con�los�de�otras�técnicas�
que�ya�se�encuentran�actualmente�disponibles�para�resolver�dichos�problemas.�Además�de�ello,�es�necesario�
un�estudio�más�profundo�con�el�fin�de�demostrar�si�es�posible�encontrar�una�solución�óptima�al�problema,�en�
otras�palabras,�es�necesario�probar�la�convergencia�del�algoritmo�usado.�En�éste�aspecto,�Gutjahr�presentó�las�
primeras�pruebas�de�convergencia�de�un�algoritmo�de�optimización�basado�en�colonias�de�hormigas�(Gutjahr.,�
2000)� y� (Gutjahr.,� 2002),� llamado�Graph�Based�Ant� System,� el� cual� difiere� ligeramente�de� los� algoritmos� de�
optimización�basados�en�colonias�de�hormigas�más�populares�usados�en�aplicaciones�reales,�por�lo�cual,�dichos�
resultados�obtenidos�no�pueden�ser�extrapolados�directamente�a�otros�algoritmos�similares.�Sin�embargo,�M.�
Dorigo�y�T.�Stützle�(Dorigo�&�Stützle.,�2002)�y�(Dorigo�&�Stützle.,�2004),�mostraron�resultados�de�convergencia�
para� dos� de� los�más� importantes� algoritmos� de� optimización� basados� en� colonias� de� hormigas,� Ant� Colony�
System�(AS)�y�MAX�MIN�Ant�System�pero�a�pesar�de�ello,�estas�pruebas�de�convergencia�no�permiten�predecir�
cuanto�tiempo�dichos�algoritmos�necesitan�para�encontrar�una�solución�óptima.�Más�recientemente,�Gutjahr�
(Gutjahr.,�2006)�presentó�una�estructura�analítica�con�el�fin�de�poder�predecir�de�manera�teórica�la�velocidad�
de�convergencia�de�algoritmos�de�optimización�basados�en�colonias�de�hormigas�específicos.�

La� aplicación� hoy� en� día� de� los� diferentes� algoritmos� de� optimización� basados� en� colonias� de� hormigas� se�
realiza�en�un�amplio�rango�de�problemas�de�optimización�discretos.�A�pesar�del�hecho�de�que�las�aplicaciones�
se�han�incrementado�enormemente�en�los�últimos�años,�el�uso�principal�de�ésta�serie�de�algoritmos�es�resolver�
problemas�considerados�inmersos�en�el�campo�de�los�problemas�NP�duros,�es�decir,�aquellos�problemas�para�
los�cuales�los�mejores�algoritmos�conocidos�para�solucionarlos�que�garantizan�encontrar�una�solución�óptima�
toman�tiempo�exponencial.�En�éstos�casos,�los�algoritmos�ACO�pueden�son�realmente�útiles�a�fin�de�conseguir�
encontrar�soluciones�de�alta�calidad�en�un�tiempo�aceptable.�

Como� se�ha� comentado�anteriormente,� un� requisito�básico�a� la� hora�de� implementar�nuevas� técnicas�meta�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�

heurísticas,�es�la�aplicación�de�las�mismas�a�un�amplio�rango�de�problemas�a�fin�de�compararla�con�las�técnicas�
ya�existentes.�En�éste�aspecto,�los�algoritmos�ACO�han�sido�probados�en�más�de�cien�problemas�considerados�
NP�duros�como�problemas�de�ruteado�en�la�distribución�de�bienes,�problemas�de�asignación,�en�los�cuales�un�
conjunto� de� bienes� (objetos,� actividades,� etc.)� tienen� que� ser� asignados� a� un� número� dado� de� recursos�
(localizaciones,�agentes,�etc.)�sujetos�a�una�serie�de�restricciones,�o�problemas�de�organización�de�tareas,�los�
cuales,�en�el�más�amplio�sentido,�se�tratan�del�reparto�de�una�serie�de�recursos�escasos�a�una�serie�de�tareas�a�
lo� largo� del� tiempo.� Es� importante� señalar� que� en� la� gran� mayoría� de� las� aplicaciones� nombradas�
anteriormente,� los� � algoritmos� de� optimización� basados� en� colonias� de� hormigas� que� mejores� resultados�
mostraron�son�aquellos�que� �hacían�un�uso� intensivo�de� la� fase�de�búsqueda� local�que�tiene� lugar�de� forma�
opcional�en�el�algoritmo�meta�heurístico�basado�en�colonias�de�hormigas�ya�explicado�anteriormente.�Una�vez�
estudiados�los�resultados�proporcionados�por�los�algoritmos�meta�heurísticos�ACO�en�dichos�problemas�(NP�
duros),� se� ha� observado� como� en� muchos� de� los� casos,� como� problemas� de� ordenación,� problemas� de�
organización� de� horarios� en� la� apertura� de� nuevas� tiendas� o� muchas� variantes� de� problemas� de� ruteo� de�
vehículos,�dichos�algoritmos�no�solo�proporcionan�resultados�similares�a��aquellos�previos�algoritmos�utilizados�
para� resolver� dichos� problemas� sino� que� en� general� proporcionan� incluso� mejores� resultados� que� éstos.�
Debido�al�éxito�de�dichos�algoritmos�en�problemas�académicos,�numerosas�compañías�e�investigadores�están�
aplicando�dichos�algoritmos�a�aplicaciones�reales,�entre�las�cuales�destaca�AntRoute,�herramienta�desarrollada�
por� la� compañía�AntOptima,�para� conseguir� optimizar� el� ruteo�de� cientos� de� vehículos�de� compañías� como�
Migros,�la�mayor�cadena�Suiza�de�supermercados�o�Barilla,�la�mayor�compañía�productora�de�pasta�en�Italia.�
En�la�siguiente�tabla,�‘Tabla�2:�Lista�no�exhaustiva�de�las�aplicaciones�de�los�algoritmos�basados�en�colonias�de�
hormigas’,�se�muestran�algunas�de�las�aplicaciones�más�notorias�de�los�algoritmos�de�optimización�basados�en�
colonias�de�hormigas.�

Tipo�de�problema Nombre�del�problema Autores Año

Ruteo�

Traveling�salesman�
Dorigo�y�otros. 1991,�1996

Dorigo�&�Gambardella� 1997
Stützle�&�Hoss 1997,�2000

Vehicle�routing� Gambardella�y�otros.� 1999
Reimann�y�otros. 2004

Sequential�ordering Gambardella�y�Dorigo� 2000

Asignación�
Quadratic�assignment� Stützle�&�Hoss 2000

Maniezzo 1999
Course�timetabling Socha�y�otros. 2002,2003
Graph�coloring Costa�&�Hertz 1997

Organización�temporal�

Project�scheduling Merkle�y�otros. 2002

Total�weighted�tardiness� Den�Besten�y�otros. 2000
Merkle�&�Middendorf� 2000

Open�Shop Blum 2005

Subconjuntos�

Set�covering Lessing�y�otros. 2004
l�cardinality�tres Blum &�Blesa 2005
Multiple�knapsack Leguizamón�&�Michalewicz� 1999
Maximum�clique Fenet�&�Solnon 2003

Otros�

Constraint�satisfaction Solnon 2000,2002

Classification�rules� Parpinelli�y�otros. 2002
Martens�y�otros. 2006

Bayesian�networks Campos,�Fernández�Luna� 2002
Protein�folding Shmygelska�&�Hoos 2005

Docking Korb�y�otros. 2006

Tabla�2:�Lista�no�exhaustiva�de�las�aplicaciones�de�los�algoritmos�basados�en�colonias�de�hormigas�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Para� terminar� con� éste� apartado,� es� necesario� hacer� una�
referencia�a�la�dificultad�que�conlleva�el�hecho�de�determinar�
si�un�algoritmo�pertenece�o�no�al�conjunto�de�algoritmos�de�
optimización�basados�en�colonias�de�hormigas.�Ésto�se�debe�
principalmente� a� la� enorme� cantidad� de� definiciones� que�
éstos� han� recibido� por� partes� de� diversos� autores.� La�
diferencia� más� común� para� determinar� si� un� algoritmo�
pertenece� o� no� a� dicha� familia,� de� acuerdo� con� varios�
autores,� es� precisamente� el� carácter� constructivo� que� los�
mismos.� En� problemas� combinatorios,� utilizando� dichos�
algoritmos,�es�posible�que�la�mejor�solución�sea�encontrada�a�
pesar� de� que� ninguna� hormiga� haya� recorrido� exactamente�
dicha�solución,�es�decir,�la�mejor�solución�puede�ser�formada�
por� el� conjunto� de� las� mejores� soluciones� parciales.� Como�
ejemplo,�en�el� caso�del�problema�del� vendedor�viajante,�no�
es�necesario�que�una�hormiga�recorriera�la�mejor�ruta�ya�que�
dicha�ruta�puede�ser�formada�a�partir�de�los�ejes�más�fuertes�
de� las� mejores� soluciones,� como� se� puede� observar� en� la�
Figura�2.�

A� pesar� de� que� una� vez� dada� ésta� definición� parece� ser�
sencillo�clasificar�si�un�algoritmo�está�o�no�está�dentro�de�los�algoritmos�de�optimización�basados�en�colonias�
de�hormigas,�en�problemas�con�variables�reales�en�los�cuales�no�existe�una�estructura�de�‘vecinos’�como�en�el�
problema�del�vendedor�viajante,�dicha�clasificación�puede�resultar�complicada.�

El�comportamiento�social�de�conjuntos�de�insectos�es�actualmente�una�fuente�de�inspiración�para�diferentes�
investigadores.�La�amplia�variedad�de�algoritmos,�ya�sean�de�optimización�o�no,�que�plantan�sus�bases�en� la�
propia� auto�organización� de� sistemas� biológicos� ha� llevado� a� la� definición� del� concepto� de� métodos� de�
inteligencia�colectiva�(Swarm�Intelligence�methods),�en�los�cuales,�obviamente,�los�algoritmos�de�optimización�
basados�en�colonias�de�hormigas�pueden�ser�colocados.�Algunos�de�los�algoritmos�más�famosos�que�pueden�
ser� considerados� dentro� de� los� métodos� de� inteligencia� colectiva� son� los� algoritmos� genéticos� (Genetic�
algorithms),� los� algoritmos� de� recocido� simulado� (Simulated� annealing)� o� los� algoritmos� de� búsqueda� tabú�
(Tabu�search)�entre�otros.� �

Figura�2:�Recorrido�más�corto�entre�A�y�B�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

6.3.�DESARROLLO�DEL�ALGORITMO�

Durante�el�proceso�de�desarrollo�de�un�algoritmo�que�resultara�eficaz�y�útil�para�las�diferentes�instituciones�u�
organismos�interesados�en�solucionar�el�problema�de�ruteo�de�las�máquinas�quitanieves,�en�especial�cuando�
éstas�se�enfrentan�a�grandes�redes�viarias,�se�han�ido�realizando�diferentes�modificaciones�en�el�mismo�con�el�
fin�de�analizar�cada�una�de�las�soluciones�obtenidas�y,�de�ésta�forma,�considerar�si�éstas�modificaciones�actúan�
positivamente�o�negativamente�en�el�resultado�final.�

Por� tanto,� se� puede� considerar� el� proceso� de� trabajo� como� práctico� y� aplicado,� ya� que,� el� desarrollo� del�
algoritmo�ha�estado�guiado�en�todo�momento�por�los�resultados�ofrecidos�en�las�distintas�modificaciones�del�
mismo.�De�ésta�forma,�todas�y�cada�una�de�las�decisiones�tomadas�es�justificada�en�base�a�resultados�reales.�

6.3.1.�BASE�DE�TRABAJO�DEL�ALGORITMO�

Con�el�propósito�de�que�las�pruebas�realizadas�en�las�diferentes�modificaciones�del�algoritmo�fueran�aplicadas�
en� un� entorno� lo� más� próximo� a� la� realidad,� y,� por� tanto,� que� la� justificación� de� adoptar� o� no� dichas�
modificaciones�como�finales�estuvieran� totalmente� justificadas,� se�consideró�necesario�realizar�un�grafo�que�
simulara�la�verdadera�entidad�real�del�problema.�

Puesto�que�el�programa�de�intercambio�se�ha�llevado�a�cabo�en�la�Universidad�de�Rhode�Island,�y,�debido�al�
enorme�interés�mostrado�por� la� institución�para�abordar�dicho�problema,�debido�a� las�extremas�condiciones�
climáticas�que�ésta�sufre�en�cada�temporada�invernal,�teniendo�en�múltiples�ocasiones�que�suspender�clases�y�
actividades�debido�al�enorme�calado�del�problema,�se�consideró�apropiado�que�el�grafo�a�realizar,�en�el�cual�se�
aplicaran� las�diferentes�pruebas�del� algoritmo,� fuera� la� propia�universidad.�De�ésta� forma,�generando�dicho�
grafo�a�imagen�del�propio�campus�de�Kingston�de�la�Universidad,�con�201�nodos�simulando�los�cruces�de�calles�
y�más�de�260�ejes�simulando�dichas�calles,� se�consigue�obtener�un�grafo�que�aborde� la�enorme�entidad�del�
problema.���

Para�poder�llevar�a�la�práctica�dicha�idea�y�que�la�localización�de�los�nodos�(cruces�de�calles)�tuviera�un�sentido�
real,�se�utilizó�Google�Earth�con�el� fin�de� localizar�geográficamente�dichos�nodos.�Para�ello,�se�establecieron�
etiquetas�con�Google�maps�indicando�cuales�eran�dichos�puntos�y,�a�partir�de�ello,�puesto�que�dicho�programa�
proporciona� las� coordenadas� UTM� de� cada� uno� de� ellos,� los� nodos� del� grafo� fueron� implementados� en� el�
algoritmo��poniendo�como�localizador�de�los�mismos�dicha�información�geográfica.�En�la�Figura�3��se�puede�ver�
cómo�se�etiquetaron�todos�los�nodos�del�campus�gracias�a�las�aplicaciones�de�Google�y,�posteriormente,�en�la�
Figura� 4,� como� se� realizó� el� grafo� del� campus� basándose� en� la� información� obtenida.

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

�

�

Figura�3:�Establecimiento�de�etiquetas�con�Google�Earth�

���

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

�

Figura�4:�Grafo�realizado�de�la�universidad�

�

Sin�embargo,�debido�a�la�enorme�carga�computacional�que�estos�algoritmos�suponen,�se�consideró�necesario,�
a�fin�de�acelerar�las�pruebas,�utilizar�un�grafo�de�tan�solo�9�nodos�y�13�ejes�en�alguna�de�las�modificaciones�del�
algoritmo�como�paso�previo�a� la�aplicación�de�éstos�en�el�grafo�completo�de� la�universidad.�De�ésta� forma,�
además� de� acelerar� el� proceso,� se� consigue� hacer� un� seguimiento� mucho� más� detallado� del� proceso� de�
decisión�llevado�a�cabo�por�el�algoritmo.�Dicho�grafo�se�puede�apreciar�en�la�Figura�5.��

�

�

Figura�5:�Grafo�utilizado�de�prueba�

�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

6.3.2.�BASES�DE�DESARROLLO�DEL�ALGORITMO�

Como� ya� se� ha� comentado� en� el� apartado� correspondiente� a� los� algoritmos� de� optimización� basados� en�
colonias�de�hormigas,�generalmente,�para�poder�decir�que�un�algoritmo�se�encuentra�inmerso�en�dicha�familia,�
es�fundamental�que�éste�tenga�un�carácter�constructivo,�es�decir,�en�el�caso�de�los�problemas�combinatorios,�
que�la�mejor�solución�encontrada�pueda�ser�formada�por�el�conjunto�de� las�mejores�soluciones�parciales�sin�
que,� en� realidad,� ninguna� de� las� soluciones� dadas� en� las� diferentes� iteraciones� sea� en� sí� misma� la� mejor�
solución.��

Por�éste�motivo,�es�necesario�notar�que�el� �algoritmo�desarrollado�no�se�puede�considerar�inmerso�en�dicha�
familia� ya� que,� en� este� caso,� el� resultado� final� siempre� será� la� solución� completa� obtenida� en� la� mejor�
iteración,� sin� que� éste� resultado� final� pueda� ser� formado� por� distintas� soluciones� parciales� encontradas� en�
diferentes�iteraciones.�

A�pesar�de�ello,�las�bases�sobre�las�que�se�asienta�el�algoritmo�desarrollado�son�los�principios�fundamentales�
de� la� familia�de�algoritmos�de�optimización�basados�en�colonias�de�hormigas.�El�algoritmo,�el� cual� se�puede�
considerar� inmerso�en�el�campo�de�la�meta�heurística,�adopta�diferentes� ideas�de� los�métodos�más�famosos�
considerados�dentro�de�la�familia�de�‘inteligencia�colectiva’,�aunque�como�ya�se�ha�comentado,�con�un�enorme�
hincapié� en� los� algoritmos� basados� en� colonias� de� hormigas.� Además� de� ello,� con� el� fin� de� mejorar� los�
resultados� obtenidos,� varias� de� las� modificaciones� de� dicho� algoritmo� se� han� realizado� en� base� a� una�
experiencia�práctica,�es�decir,�mediante�el�uso�de�la�lógica�y�el�apoyo�de�los�resultados�obtenidos�en�el�grafo�
completo�de�la�universidad�de�Rhode�Island.�

6.3.3.�CONSTRUCCIÓN�DEL�ALGORITMO�

Tal� y� como� ya� se� puntualizó� en� la� introducción�del� presente� proyecto,� el� objetivo�principal� del�mismo�es� la�
construcción� de� un� programa� que� permita� establecer� la� ruta� más� adecuada� a� seguir� por� los� vehículos�
encargados�de�realizar�las�operaciones�de�mantenimiento�invernal�de�la�red�viaria.�Para�ello,�en�un�principio�se�
resuelve�el�problema�conocido�como�‘Chinese�Postman�Problem’,�en�el�cual,�todos�los�ejes�de�un�determinado�
grafo,�el�cual�representa�el�conjunto�viario�en�cuestión,�deben�ser�recorridos�al�menos�una�vez.�Puesto�que�los�
vehículos� deben�de� comenzar� y� terminar� su� trabajo�en� un�punto�determinado�del� grafo,� el� cual� representa�
tanto� los� depósitos� de�material,� de� nieve� o� incluso� de� vehículos,� tal� y� como� se� señaló� en� el� apartado� ‘3.2.�
Gestión� de� los� problemas� de� organización� operacionales’,� una� vez� solucionado� el� ya� nombrado� ‘Chinese�
Postman�Problem’�se�fuerza�a�los�vehículos�a�que�retornen�a�su�punto�inicial�de�partida,�con�el�propósito�de�
simular�exactamente�el�procedimiento�que�estos�siguen�durante�las�operaciones�de�mantenimiento�invernal.�

A� lo� largo� del� desarrollo� del� algoritmo,� una� vez� se� considera� que� el� ‘Chinese� Postman� Problem’� ya� ha� sido�
resuelto�de�una�manera�satisfactoria,�se�procede�a�resolver�otro�problema�de�similar�entidad�llamado�‘Rural�
Postman�Problem’,�en�el�cual,�ya�no�todos�los�ejes�de�un�grafo�deben�ser�recorridos,�sino�que�tan�solo�algunos�
de�ellos�deben�serlos.�Dicha�modificación�de� los�problemas�se� lleva�a�cabo�para�simular�de�una�manera�más�
real� dichas� operaciones� de�mantenimiento,� ya� que,� por� lo� general,� no� siempre� es� necesario� que� todas� las�
carreteras� de� un� conjunto� viario� sean� limpiadas,� sino� que� solo� un� subconjunto� de� ellas� lo� sean,� debido� a�
diferentes�clasificaciones�jerárquicas,�tal�y�como�ya�se�explicó�en�el�apartado�‘3.2.1.�Nivel�de�servicio’.��

�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

A�DÍA�18_1_2011:�

Este�primer�programa�desarrollado�trata�simplemente�de�conseguir�obtener�unos�valores�aproximados�de� la�
longitud�que�pueden�tener�los�recorridos�en�los�grafos,�y�de�esta�forma,�poder�analizar�la�conveniencia�del�uso�
de�alguna�técnica�específica�que�mejore�el�proceso.�

En�primer�lugar,�se�asigna�a�cada�eje�el�parámetro�‘weight’,�con�el�objetivo�de�memorizar�si�dicho�eje�ha�sido�
ya�recorrido�o�no�con�el�fin�de�determinar�cuando�el�programa�debe�finalizar�el�proceso.�Una�vez�un�eje�pasa�
de�no�recorrido�a�recorrido,�el�valor�del�parámetro�’weight’�se�actualiza�de�0.0�a�10.0.�Sin�embargo,�cuando�un�
eje�que� ya�ha� sido� recorrido�vuelve� a� serlo,� el� valor�del� ‘weight’�no� se�vuelve� a� actualizar,� sino�que�éste� se�
queda�en�10.0.�

El�proceso�de�selección�de�los�ejes�se�ejecuta�seleccionando�prioritariamente�aquellos�ejes�vecinos�que�todavía�
no� han� sido� recorridos,� es� decir,� de� entre� aquellos� ejes� adyacentes� con� valor� ’weight� =� 0.0’� se� realiza� una�
selección� aleatoria� de� cuál� de� ellos� debe� ser� escogido� como� el� siguiente.� En� el� caso� de� que� todos� los� ejes�
adyacentes�a�un�nodo�hayan�sido� recorridos,� es�decir,� todos� tengan� ’weight=10.0’� la� selección� se� realiza�de�
forma�totalmente�aleatoria�entre�todos�ellos.�

El�programa�continúa�con�el�proceso�hasta�que�todos�y�cada�uno�de�los�ejes�tienen�valor�10.0,�es�decir,�todos�
ellos� han� sido� recorridos.� Una� vez� esto� ocurre,� puesto� que� en� el� proceso� de� ruteo� de� las� quitanieves� es�
necesario� que� éstas� vuelvan� al� depósito,� se� utiliza� un� algoritmo� llamado� ‘shortest� path’� proporcionado� por�
Networkx,�el�cual�nos�proporciona�el�recorrido�más�corto,�es�decir,�con�menos�calles,�desde�el�nudo�en�que�el�
programa�ha�finalizado�hasta�el�depósito.�

CONCLUSIONES:�

Tras�la�aplicación�del�mismo�en�el�grafo�pequeño�de�9�nodos,�se�demostró�que�la�distancia�de�los�recorridos�
era� bastante� variable,� habiendo� desde� recorridos� de� 17� ejes� hasta� recorridos� de� 32� ejes,� por� lo� que� los�
resultados�no� son�útiles,�pero�éstos�nos�dan�una� idea�de� la�dificultad�de� realizar�un�programa�efectivo�para�
éste�tipo�de�problemas�y�planta�las�bases�para�comparar�los�resultados�de�los�siguientes�programas�realizados.�
Además,�tras�aplicar�dicho�programa�en�el�grafo�de�la�universidad�se�observa�como,�al�tratarse�de�un�programa�
de�selección�totalmente�aleatorio�y�dada�la�magnitud�del�grafo,�el�tiempo�que�el�programa�necesita�para�lograr�
una�solución,�así�como�la�calidad�de�la�misma�son�totalmente�aleatorios.�� �

A�DÍA�20_1_2011:�

Tras�el�análisis�detallado�del�procedimiento�de� trabajo�del�programa�anterior,� se�ha� considerado�como�otra�
alternativa�el�almacenar�la�información�referente�al�número�de�veces�que�un�eje�es�atravesado�y�utilizarla�en�el�
proceso� de� selección� del� siguiente� eje� a� recorrer.� Para� ello,� se� establece� en� todos� los� ejes� un� valor� de�
’weight=1.0’�y,�cada�vez�que�un�eje�es�recorrido,�se�suma�un�valor�determinado�a�dicho�parámetro,�el�cual�se�
ha�ido�cambiando�en�las�diferentes�pruebas�realizadas.�

A�diferencia�del�programa�anterior,�en�el�cual�la�selección�de�ejes�se�realizaba�de�forma�totalmente�aleatoria,�
en�éste� caso�dicha� selección�es� función�de�un�parámetro���probabilístico�dependiente�del�número�de� veces�
que� un� eje� ha� sido� recorrido.� De� ésta� forma,� no� se� tiene� en� cuenta� si� un� eje� ha� sido� o� no� recorrido�
previamente,�como�se�hacía�en�el�programa�anterior,�sino�que�se�valora�el�número�de�veces�que�éste�ha�sido�
recorrido.�

Dicha�probabilidad���para�que�un�eje�*�sea�seleccionado�se�ha�establecido�de�la�siguiente�forma:�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�) �

, "
 �

$ " M)
$ �

$ � M� � M � M� �N�MO�

Ecuación�3:�Probabilidad�de�selección�de�un�eje�

donde�$�es� la�suma�del�parámetro� ’weight’�de�todos� los�ejes�anexos�a�un�nodo�y�,�es�el�número�de�
ejes�anexos.�

Una� vez� � todos� los� ejes� adyacentes� tienen� un� valor� asociado�de� probabilidad,� el� cual� es� almacenado� en� un�
nuevo� parámetro� llamado� ’probability’,� y� puesto� que� �� � � � �� � N� �O �
 ,� se� establece� una�
probabilidad�total�a�cada�uno�de�ellos�siendo:�

���P1P�Q � � � ���
� �P1P�Q � ���P1P�Q � � �
���P1P�Q � � �P1P�Q � ���

�O�P1P�Q � ��OR��P1P�Q � ��OR���
Ecuación�4:�Probabilidades�totales�

Una�vez�esto�es�realizado�se�genera�un�número�aleatorio�� � S�%
��,�y�si�� T ���P1P�Q�el�eje�* �
�es�
seleccionado,�si����P1P�Q T � U � �P1P�Q,�el�eje�* � ��es�seleccionado�y�así�sucesivamente.�De�ésta�forma,�contra�
más�veces�un�eje�haya�sido�recorrido,�menor�es�la�probabilidad�de�que�éste�sea�elegido�de�nuevo.�

Con�éste�mecanismo�de�selección�de�recorrido,�el�cual�tiene�en�cuenta�cuantas�veces�un�eje�ha�sido�visitado�
anteriormente,�se�consigue�evitar�parcialmente�la�formación�de�bucles�en�la�solución�final�ya�que�cuando�un�
eje�ha�sido�visitado�varias�veces�la�probabilidad�de�que�éste�vuelva�a�ser�escogido�se�reduce�enormemente�
mejorando�de�ésta�forma�las�soluciones�obtenidas,�tal�y�como�se�verá�a�continuación�en�los�diferentes�
programas.�Éste�procedimiento�de�eliminación�de�bucles,�si�bien�no�es�exactamente�un�procedimiento�‘’a�
posteriori’’�de�mejora�de�las�soluciones�obtenidas,�ya�que�se�va�realizando�al�mismo�tiempo�que�se�construye�
la�solución,�se�puede�considerar�inmerso�en�la�fase�de�‘’Aplicar�búsqueda�local’’�la�cual,�como�ya�se�nombró�en�
el�capítulo�correspondiente,�aun�siendo�opcional,�se�aplica�en�la�gran�mayoría�de�los�algoritmos�de�
optimización�basados�en�colonias�de�hormigas�con�el�fin�de�mejorar�las�soluciones�obtenidas.�Por�tanto,�el�
algoritmo�usado�en�éste�programa�y�en�los�siguientes�posee�dos�fases�principales�en�lugar�de�las�tres�
habituales�en�los�algoritmos�de�optimización�basados�en�colonias�de�hormigas,�ya�que�la�primera�y�segunda�
fase�de�éstos,�‘’Construcción�de�soluciones’’�y�‘’Aplicar�búsqueda�local’’�se�encuentran�unidos�en�una�misma�
fase�en�el�programa�desarrollado�manteniendo�común�la�tercera�fase�del�algoritmo,�‘’Actualizar�feromonas’'.��

Finalmente,�una�vez�todos�los�ejes�han�sido�recorridos,�es�decir,�el�parámetro�‘weight’�de�cada�uno�de�los�ejes�
es�mayor�que�1.0,�se�utiliza�de�nuevo�el�algoritmo�‘shortest�path’�con�el�fin�de�conocer�el�camino�más�corto�al�
depósito�desde�el�último�nodo�visitado.�

CONCLUSIONES:�

El� programa,� a� pesar� de� que� una� vez� comparado� con� el� anterior� en� el� grafo� de� 9� nodos� genera� peores�
soluciones,�se�debe�considerar�que�a�la�larga,�en�grafos�mucho�más�grandes,�dicho�procedimiento�de�selección�
del�eje�en�función�del�número�de�veces�que�éste�es�recorrido�puede�llegar�a�ser�realmente�útil.�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�	

Por�tanto,�con�el�propósito�de�analizar�cuál�es�el�valor�óptimo�a�sumar�al�parámetro�’weight’�cada�vez�que�un�
eje�es� atravesado�y�así� optimizar�el� uso�de�ésta� técnica�para�posibles�posteriores�usos�de� la�misma,� se�han�
realizado�varias�pruebas�con�distintos�valores.�Los�resultados�son�mostrados�en�el�Gráfico�1�para�un�total�de�
1000�iteraciones�para�cada�uno�de�los�valores.�

�

Gráfico�1:�Promedio�establecido�con�1000�iteraciones�para�los�diferentes�valores�añadidos.�

Analizando� éstos� resultados� obtenidos� se� puede� observar� cómo�una� vez� el� valor� añadido� se� encuentra� por�
encima� de� 8.0,� los� cambios� en� los� resultados� ya� no� son� significativos,� por� lo� que� se� puede� considerar� para�
siguientes�versiones�del�programa�que�un�valor�alrededor�de�10.0�es�más�que�suficiente.�

A�DÍA�23_1_2011:�

En�esta�modificación�del�programa,�se�ha�analizado�si�es�más�favorable�realizar�el� incremento�del�parámetro�
’weight’,� a� fin� de�marcar� el� número�de� veces� que�un�eje� es� recorrido,�mediante�el�mecanismo�usado�en� el�
programa� anterior,� es� decir,� mediante� un� incremento� fijo� del� mismo� de� manera� sumatoria� o� si� es� más�
conveniente� realizarlo� de� forma�multiplicativa,� es� decir,�multiplicando� el� valor� de� dicho� parámetro� por� una�
cantidad�determinada�cada�vez�que�el�eje�es�atravesado.�

El� hecho� de� que� el� parámetro� ’weight’� se� incremente� de� forma� multiplicativa� hace� que� el� programa�
desarrollado�todavía�penalice�más�el�hecho�de�que�un�eje�haya�sido�recorrido�previamente�por�lo�que�además,�
la� condición�de�eliminación�de�bucles� todavía� se�hace�más� restrictiva.�Por� tanto,� es�necesario� comprobar� si�
éste�nuevo�mecanismo�actúa�de�manera�positiva�o�negativa�en�los�resultados�finales�del�programa.�El�resto�del�
programa�es�totalmente�idéntico�al�anterior.��

CONCLUSIONES:�

A�fin�de�analizar�los�resultados,�se�han�realizado�1000�iteraciones�del�programa�sobre�el�grafo�de�9�nodos�para�
diferentes�valores�multiplicativos�del�parámetro�‘weight’.�Dichos�resultados�se�pueden�observar�en�el�Gráfico�
2.�

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

1,0 2,0 4,0 8,0 16,0 32,0 64,0 100,0 200,0

Promedio

Valor�añadido

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

Gráfico�2:�Promedio�establecido�con�1000�iteraciones�para�los�diferentes�valores�multiplicativos.�

Una�vez�comparados�éstos�resultados�con�los�proporcionados�con�el�programa�anterior,�los�cuales�se�pueden�
observar�en�el�Gráfico�1,�en�el�cual�el�valor�del�parámetro�’weight’�se�iba�incrementando�de�manera�sumatoria,��
se�puede� ver� cómo,�en� general,� los� resultados�de�ésta� versión�del� programa� son� ligeramente�mejores� a� los�
obtenidos�en�el�caso�del�programa�anterior,�por�ello,�se�considera�como�una�medida�de�mejora�el�realizar� la�
actualización�del�parámetro�‘weight’�de�manera�multiplicativa.�

Sin� embargo,� analizando� detalladamente� éstos� resultados,� se� puede� observar� cómo,� a� partir� de� valores�
multiplicativos� de� 10.0,� los� resultados� obtenidos� ya� no� mejoran� significativamente.� Por� ello,� se� puede�
considerar�dicho�valor� como�un� límite�máximo�para� los�próximos�programas�desarrollados�que�utilicen�ésta�
técnica.�

A�DÍA�26_1_2011:�

Como� se� estudió� anteriormente� en� el� capítulo� ‘6.2.� Algoritmos� de� optimización� basados� en� colonias� de�
hormigas� (ACO)’,� una� de� las� principales� características� de� ésta� familia� de� algoritmos� es� la� existencia� de� la�
llamada�retroalimentación�negativa,�por�la�cual,�el�valor�de�feromonas�presente�en�un�eje�va�desapareciendo�
de�forma�progresiva.�Con�éste�mecanismo�se�consigue�que�la�información�que�ha�sido�depositada�en�cada�eje�
vaya�desapareciendo�con�el�paso�del�tiempo�y�de�ésta�forma,�en�aquellos�recorridos�con�peores�resultados,�es�
decir,� los�más�largos,�dichos�valores�serán�menores�que�aquellos�con�recorridos�más�cortos,�mostrando�así�la�
mayor�conveniencia�de�éstos�últimos.��

Con� el� fin� de� utilizar� dicho� concepto� de� una� manera� aproximada� en� el� programa� desarrollado,� se� ha�
introducido� un� factor� de� reducción� del� parámetro� � ’weight’� de� cada� eje,� el� cual,� como� recordatorio,� se�
incrementa�de�una�forma�multiplicativa�cada�vez�que�éste�es�atravesado�en�una�iteración,�reseteándose�dicho�
valor�a�1.0�cuando�la�iteración�ha�concluido.�De�ésta�manera�se�pretende�que�el�hecho�de�que�un�eje�que�haya�
sido�recorrido�hace�bastante�tiempo,�poco�a�poco�vaya�eliminando�sus�marcas�indicativas�de�que�éste�ha�sido�
seleccionado�anteriormente�y�de�ésta�manera�que� la�penalización�por�ello�no� sea� tan� fuerte.�Éste� factor�de�

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

2,0 3,0 4,0 5,0 6,0 10,0 20,0 50,0 100,0

Promedio

Valor�multiplicativo

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�

reducción�tiene�las�siguientes�características:�

� Es�directamente�multiplicativo�con�el�parámetro� ‘weight’�de�cada�eje,�por� lo�que�contra�menor�
sea�dicho�parámetro�de�reducción,�menor�será� la�penalización�de�que�un�eje�haya�sido�visitado�
anteriormente.�

� Éste�actúa�cada�vez�que�un�eje�es�recorrido�en�una�determinada�iteración.�
� Actúa�en�todos�los�ejes�menos�en�aquel�que�está�siendo�recorrido.�
� Solo�se�aplica�dicha�reducción�cuando�el�valor�final�del�‘weight’�tras�la�reducción�se�encuentre�por�

encima�del�valor�2.0.�Esta�característica�hace�que�se�impida�borrar�la�marca�de�que�un�eje�ya�ha�
sido�recorrido�al�menos�una�vez,�es�decir,�que�el� ‘weight’�1.0.� �La�importancia�de�evitar�esto�se�
debe�a�que�una�iteración�se�considera�finalizada�cuando�el�‘weight’�de�todos�los�ejes�es�distinta�
de�1.0�y�por�tanto,�en�caso�de�no�utilizar�ésta�regla,�la�iteración�podría�entrar�en�un�bucle�infinito.�

�

CONCLUSIONES:�

Para�analizar�el�comportamiento�de�dicha�modificación�se�ha�aplicado�el�programa�al�grafo�de�9�nodos�para�
diferentes� valores� tanto� del� factor� multiplicativo� ‘weight’� como� del� factor� reductor.� Los� valores� del� factor�
multiplicativo�se�mueven�entre�2.0�y�10.0�ya�que,�como�se�analizó�en�programas�anteriores,�valores�superiores�
a�10�no�traían�mejoras�significativas.�En�cuanto�al�factor�de�reducción�se�ha�ido�variando�desde�valores�que�no�
penalizan�tan�apenas�que�un�eje�haya�sido�recorrido,�0,1�hasta�valores�que�lo�penalizan�enormemente,�0,9.���

�

�

Gráfico�3:�Valores�obtenidos�para�valor�multiplicativo�de�2.0�

42,23 42,72 42,35 42,87 43,35 44,24 43,65 43,82 42,55

14,72 14,55 14,36 15,34 15,20 16,15 15,10 15,36 14,53

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

1 2 3 4 5 6 7 8 9

Weight�=�2

Promedio

Derivación�estandar

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

Gráfico�4:�Valores�obtenidos�para�valor�multiplicativo�de�3.0�

�

�

Gráfico�5:�Valores�obtenidos�para�valor�multiplicativo�de�4.0�

40,69 40,09 40,55 40,37 40,45 40,35
41,92

40,53 39,61

13,34 14,14 14,51 14,25 13,15 14,03 15,06 14,13 13,51

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4 5 6 7 8 9

Weight�=�3

Promedio

Derivación�estandar

38,54 38,89 39,28 39,61 40,26 39,38 38,76 38,62 38,40

12,70 13,55 13,48 13,46 14,51 13,35 12,84 13,15 12,12

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4 5 6 7 8 9

Weight�=�4

Promedio

Derivación�estandar

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

Gráfico�6:�Valores�obtenidos�para�valor�multiplicativo�de�5.0�

�

�

Gráfico�7:�Valores�obtenidos�para�valor�multiplicativo�de�6.0�

37,38 38,05 37,93 38,53 38,30 37,38 38,11 38,04 37,52

12,70 13,29 13,26 13,36 13,29 12,56 13,08 12,14 12,12

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4 5 6 7 8 9

Weight�=�5

Promedio

Derivación�estandar

37,22 36,83 36,93 37,15 36,13 35,69
37,47 37,32 36,92

12,03 13,07 12,65 12,68 12,33 12,21 12,14 11,84 11,91

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

1 2 3 4 5 6 7 8 9

Weight�=�6

Promedio

Derivación�estandar

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

Gráfico�8:�Valores�obtenidos�para�valor�multiplicativo�de�10.0�

Los�valores�observados�en�los�gráficos�anteriores,�Gráfico�3,�Gráfico�4,�Gráfico�5,�Gráfico�6,�Gráfico�7�y�Gráfico�
8,�muestran�como�tanto�la�derivación�estándar�como�el�promedio�se�incrementan�a�medida�que�se�reduce�el�
valor� multiplicativo� del� ‘weight’� como� ya� se� observó� en� pruebas� anteriores� realizadas.� Por� otra� parte,� en�
cuanto�al�factor�de�reducción�se�refiere,�se�puede�observar�como�éste�no�actúa�de�una�manera�significativa�en�
los�resultados�obtenidos,�ya�que�los�valores�de�dicho�factor�actúan�de�formas�muy�dispares�en�referencia�a�los�
diferentes�factores�multiplicativos.�

A�DÍA�2_2_2011:�

A� fin� de� realizar� una� comparativa�óptima� y� conseguir� obtener� conclusiones� finales� en� cuanto� a� las� distintas�
versiones�del�programa�que�hasta�el�momento�se�dispone,�es�necesario�aplicar�dichos�programas�a�un�grafo�de�
entidades�reales�como�es�el�grafo�de�la�Universidad�de�Rhode�Island.��

Los�resultados�para�las�tres�modificaciones�más�importantes�del�programa�hasta�el�momento�se�muestran��a�
continuación.�En�cada�uno�de�ellos�se�han�realizado�100�iteraciones�y�se�han�obtenido�el�valor�medio,�el�valor�
máximo,�el�mínimo�y�la�derivación�estándar.�Éste�último�valor�resulta�de�vital�importancia�ya�que�para�conocer�
con� detalle� un� conjunto� de� datos,� no� basta� con� conocer� las� medidas� de� tendencia� central,� sino� que�
necesitamos�conocer�también�la�desviación�que�representan�los�datos�en�su�distribución�respecto�de�la�media�
aritmética�de�dicha�distribución,�con�objeto�de�tener�una�visión�de�los�mismos�más�acorde�con�la�realidad�al�
momento�de�describirlos�e�interpretarlos�para�la�toma�de�decisiones.��

�

�

35,24
36,49

35,10 35,96 36,13 35,69 35,77 34,83 34,97

11,84 12,87
11,07 12,14 12,33 12,21 12,05 11,02 10,39

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

1 2 3 4 5 6 7 8 9

Weight�=�10

Promedio

Derivación�estandar

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Programa�a�día�1_18_2011:�

Programa�1_18_2011
Promedio 3160.61�

Derivación�estándar 1365.22�
Mínimo 1242�
Máximo 8493�

Tabla�3:�Resultados�para�el�programa�1_18_2011�

Tras�analizar�los�resultados�obtenidos,�se�puede�observar�como�el�valor�promedio�de�las�100�iteraciones�es�un�
valor�bastante�aceptable�y,�sobre�todo,�el�valor�mínimo�es�realmente�bueno.�A�pesar�de�que�el�objetivo�final�
del�programa�es�proporcionar�un�solo�recorrido�como�solución�óptima,�es�necesario�nombrar�que�dicho�valor�
mínimo�encontrado�se�trata�simplemente�de�un�valor�encontrado�de�forma�casual�y�que,�en�otras�iteraciones�
podría�llegar�a�no�darse�nunca�un�valor�de�tan�buena�calidad.�Esto�se�debe�a�que�el�procedimiento�de�recorrido�
del� grafo� se� realiza�de�una�manera� totalmente�aleatoria� cuando� los�ejes� adyacentes�a�un�nodo�ya�han� sido�
visitados.�A�consecuencia�del�carácter�aleatorio�del�programa,�también�se�puede�observar�como�el�valor�de�la�
derivación�estándar�es�realmente�grande�y,�por�tanto�inaceptable.�Por�estos�motivos,�dicho�programa�queda�
descartado�de�posibles�modificaciones�o�mejoras�futuras.���

Programa�a�día�1_23_2011:�

Programa�1_23_2011
Valor�multiplicativo� 2� 3� 4� 5� 6� 10�

Promedio� 3013.4� 2696.9� 2566� 2491.5� 2558.9� 2412.8�
Derivación�estándar� 741.4� 644.3� 623.8� 510.5� 675.1� 581.3�

Mínimo� 1708� 1645� 1409� 1447� 1348� 1442�
Máximo� 6126� 4817� 4223� 3569� 4616� 4219�

Tabla�4:�Resultados�para�el�programa�1_23_2011�

Al�igual�que�se�observó�en�las�pruebas�realizadas�en�el�grafo�de�9�nodos�al�aplicar�dicho�programa,�se�puede�
ver� como� los� mejores� resultados� son� los� obtenidos� con� un� valor� multiplicativo� de� 10.0.� Los� resultados�
promedio�son�realmente�buenos,�llegando�incluso�a�bajar�de�los�2500�ejes�visitados.�Sin�embargo,�el�aspecto�
más� importante�a� remarcar� es�el�hecho�de�que�se�obtienen�unos� valores�de�derivación�estándar� realmente�
buenos,� llegando� incluso�a�mejorar�en�más�de�un�50%� los�valores�obtenidos� con�el�programa�anterior.�Éste�
hecho�hace�que,�a�pesar�de�que�el�valor�mínimo�obtenido�no�sea�tan�bueno�como�en�el�programa�anterior,�el�
procedimiento�de�trabajo�muestra�una�fuerte�consistencia�y�por�tanto�indica�que�éste�sea�el�adecuado�a�seguir�
para�futuras�mejoras�o�modificaciones�del�programa.�

Programa�a�día�1_25_2011:�

Programa�1_25_2011
Valor�multiplicativo� 2� � �
Factor�reductor� 0.1� 0.2� 0.3 0.4 0.5 0.6 0.7� 0.8� 0.9

Promedio� 4399.0� 4611.0 4748.6 4718.2 5040.1 4452.9 5018.6� 4679.5� 4387.7
Derivación�estándar� 1539.1� 1510.3 1621.1 1689.4 1746.1 1350.0 1974.7� 1626.9� 1404.1

Mínimo� 2313� 2423 2093 1870 2376 2158 2551� 2556� 1877
Máximo� 9047� 9509� 11457� 12039� 11027� 8753� 16662� 12732� 9717�

Tabla�5:�Resultados�para�el�programa�1_25_2011�con�valor�multiplicativo�de�2.�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

Programa�1_25_2011
Valor�multiplicativo� 3� � � � � � � � �
Factor�reductor� 0.1� 0.2� 0.3� 0.4� 0.5� 0.6� 0.7� 0.8� 0.9�

Promedio� 4266.5� 4338.3� 4205.6� 4143.4� 4246.6� 4250.0� 4409.6� 4182.5� 4204.3�
Derivación�estándar� 1523.0� 1405.0� 1621.1� 1233.6� 1479.1� 1655.5� 1852.1� 1367.4� 1383.7�

Mínimo� 2264� 2317� 2078� 2282� 1951� 2063� 1794� 2111� 2228�
Máximo� 11487� 9431� 12312� 9264� 10539� 10447� 11535� 8576� 11709�

Tabla�6:�Resultados�para�el�programa�1_25_2011�con�valor�multiplicativo�de�3.�

�

Programa�1_25_2011
Valor�multiplicativo� 4� � � � � � � � �
Factor�reductor� 0.1� 0.2� 0.3� 0.4� 0.5� 0.6� 0.7� 0.8� 0.9�

Promedio� 4122.0� 3831.5� 4009.7� 3813.5� 3877.2� 4191.1� 3773.9� 3970.0� 3610.6�
Derivación�estándar� 1356.0� 1166.5� 1364.2� 1382.7� 1162.3� 1498.3� 1263.9� 1502.8� 1171.7�

Mínimo� 1511� 1566� 1688� 1876� 1826� 1879� 1728� 2004� 1930�
Máximo� 8206� 7294� 9960� 9434� 8488� 8844� 9954� 12002� 7129�

Tabla�7:�Resultados�para�el�programa�1_25_2011�con�valor�multiplicativo�de�4.�

Programa�1_25_2011
Valor�multiplicativo� 10� � � � � � � � �
Factor�reductor� 0.1� 0.2� 0.3� 0.4� 0.5� 0.6� 0.7� 0.8� 0.9�

Promedio� 3300.2� 3278.6� 3263.5� 3386.3� 3279.1� 3574.0� 3461.7� 3230.4� 3323.3�
Derivación�estándar� 1102.0� 1073.5� 1344.0� 1130.4� 1073.4� 1112.7� 1112.4� 1131.7� 1153.8�

Mínimo� 1800� 1779� 1817� 1715� 1622� 1995� 1533� 1475� 1575�
Máximo� 6884� 7764� 10665� 7223� 7545� 8169� 7531� 8422� 9997�

Tabla�8:�Resultados�para�el�programa�1_25_2011�con�valor�multiplicativo�de�10.�

Tras� una� observación� detallada� de� los� diferentes� resultados� obtenidos� al� aplicar� el� programa� con� distintos�
valores� multiplicativos� y� factores� reductores� se� puede� observar� como� la� media� de� los� resultados� va� en�
decremento� con� el� valor�multiplicativo,� cosa� que� era� de� esperar� ya� que,� como� ya� se� dijo� anteriormente,� el�
valor�multiplicativo�de�10.0�es�el�óptimo�a�utilizar.�Por�otra�parte,�se�observa�como�el�hecho�de�variar�el�factor�
reductor�entre�valores�de�0.1�y�0.9,�los�resultados�obtenidos�varían�enormemente,�por�lo�que,�al�igual�que�se�
dedujo�de� la�aplicación�del�programa�al�grafo�de�9�nodos,�dichos�valores� reductores�no�ofrecen�una�mejora�
sustancial�de� los� resultados.�Además�de�ello,�como�se�puede�observar,� los�valores�de�desviación�estándar�al�
usar� dicho� factor� reductor� son� enormes� para� todos� y� cada� uno� de� los� valores�multiplicativos� por� lo� que� se�
puede� concluir� que� la� metodología� usada� en� ésta� versión� del� � programa� no� es� la� correcta� para� futuras�
modificaciones�y,�por�tanto,�ésta�va�a�ser�descartada.�

A�DÍA�2_8_2011:�

Tras�el�análisis�de� los� resultados�anteriores�al�aplicar� los�diferentes�programas�al�grafo�de� la�Universidad�de�
Rhode�Island,�se�ha�decidido�continuar�el�desarrollo�del�programa�a�partir�del�realizado�el�día�1_23_2011�para�
un�valor�multiplicativo�de�10.0�puesto�que�éste�mostraba�las�mejores�soluciones.�

A� fin� de� continuar� con� un� desarrollo� guiado� por� los� conceptos� básicos� de� la� familia� de� algoritmos� de�
optimización� basados� en� colonias� de� hormigas,� en� ésta� modificación� del� programa� se� añade� un� nuevo�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

parámetro� a� todos� y� cada� uno� de� los� ejes� del� grafo� llamado� ‘pheromone’.� � La� misión� principal� de� éste�
parámetro�es�conseguir�marcar� la�conveniencia�de�un�recorrido�por�encima�de�otro�a�fin�de�que�posteriores�
iteraciones� mejoren� su� procedimiento� de� selección.� Éste� parámetro� trata� de� simular� de� forma� similar� el�
concepto� de� depósito� de� feromonas� estudiado� en� las� colonias� de� hormigas� cuando� éstas� encuentran� un�
camino� entre� la� fuente�de� comida� y� la� colonia.�De�ésta� forma,� aquellos� recorridos�más� cortos,� deberán� ser�
marcados�más�fuertemente�que�aquellos�más�largos�con�el�propósito�de�marcar�su�conveniencia.�

Para�calcular� los�valores�de�‘pheromone’�de�cada�eje�y,�a�partir�de�ello,�que�las�futuras� iteraciones�tengan�la�
información� necesaria� para� decidir� que� eje� visitar,� es� necesario� realizar� una� serie� de� recorridos� a�modo� de�
inicialización.� Una� vez� éste� conjunto� de� recorridos,���ya� haya� sido� realizado,� será� posible� actualizar� el�
parámetro�‘pheromone’�de�los�ejes.�

Para�ello,�el�conjunto�de�iteraciones�de�inicialización,�va�a�ser�realizado,�como�ya�se�nombró�anteriormente,�a�
partir�del�programa�desarrollado�el�1_23_2011�y�usando�un�valor�multiplicativo�de�10.0.�La�decisión�de�realizar�
un�conjunto�de�iteraciones�de�inicialización�antes�de�actualizar�el�valor�de�‘pheromone’�de�los�ejes�en�lugar�de�
realizar�dicha�actualización�tras�cada�iteración�es�debido�a�que,�de�ésta�manera,�la�información�inicial�es�mucho�
más�completa�y,�además,�el�tiempo�de�ejecución�del�programa�se�reduce�enormemente.�

�A�partir� del� conjunto� de� recorridos� ��,� obtenidos� con� las� iteraciones� de� inicialización,� se� calcula� en� primer�
lugar�cual�es�el�recorrido�más�corto�de�todos�ellos�VWX��YZ,[*\]^�_�.�Una�vez�esto�ha�sido�realizado,�se�calcula�
el� valor�de� ‘pheromone’�que� se�debe�añadir� a� cada�uno�de� los�ejes�por� los� cuales�una� iteración�ha�pasado.�
Dicho�valor�es�calculado�como�se�muestra�en�la�Ecuación�5�para�un�determinado��recorrido�(.�

�!`�Z�Z,`a � � `Rb���Rc
Q1Od)Pefg

hij��Q1Od)Pefkl�m
n
�
�

Ecuación�5:�Actualización�del�parámetro�'pheromone'�

Una�vez�dicho�valor�ha� sido� calculado,� se�procede�a�añadir�dicho�valor�a� todos� los�ejes�por� los�cuales�dicha�
iteración�(�ha�pasado.�Es�necesario�nombrar�que,�en�caso�de�que�un�eje�haya�sido�recorrido�más�de�una�vez�en�
la� misma� iteración,� el� parámetro� ‘pheromone’� que� éste� adquirirá� será� la� suma� del� dicho� parámetro�
�!`�Z�Z,`a�tantas�veces�como�éste�aparezca�en�la�iteración�(.�
Tras�realizar�el�mismo�procedimiento�para�todas�y�cada�una�de�las�iteraciones�de�inicialización,��,�los�valores�
del� parámetro� ‘pheromone’� de� cada� uno� de� los� ejes� ya� se� encuentran� en� disposición� de� ser� usados� en� las�
siguientes�iteraciones�que�lo�necesiten.�

En� este� momento,� todos� y� cada� uno� de� los� ejes� del� grafo� disponen� de� tres� parámetros� característicos,�
‘weight’=1.0,� 'probability'=0.0�y�el�valor� 'pheromone'�que�ha�sido�calculado�en�el�paso�anterior.�Es�necesario�
nombrar�que�las�soluciones�otorgadas�por�las�iteraciones�de�inicialización�son�almacenadas�a�fin�de�que�éstas�
pudieran� ser� usadas� posteriormente� en� caso� de� que� se� necesitaran.� El� siguiente� paso� en� el� desarrollo� del�
programa�es� realizar�una� serie�de� iteraciones�con�el� fin�de�que�éstas�mejoren�al� conjunto�de� iteraciones�de�
inicialización.��

Para� ello,� el� proceso� de� selección� del� recorrido� en� dicho� conjunto� de� iteraciones� finales� sigue� el� siguiente�
mecanismo.�En�cada�iteración,�el�programa�se�ha�de�ir�repitiendo�hasta�que�todos�los�ejes�hayan�sido�visitados,�
momento�en�el�cual,�al�igual�que�ocurría�en�los�programas�anteriores,�se�aplicará�el�algoritmo�‘shortest�path’�a�
fin� de� volver� al� punto� de� partida.� Cada� vez� que� un� eje� es� atravesado,� el� valor� ‘weight’� en� dicho� eje� será�
multiplicado� por� 10.0.� Hasta� éste� momento,� el� procedimiento� no� difiere� en� absoluto� de� los� programas�
anteriores�pero,�a�partir�de�aquí,�el�proceso�de�selección�de�un�eje�u�otro�difiere�considerablemente�con�el�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

procedimiento�seguido�por�las�iteraciones�de�inicialización.�

Siempre�se�procede�a�seleccionar�aquel�eje�que�no�haya�sido�recorrido�todavía,�es�decir,�aquel�eje�que�tenga�
como�parámetro� ‘weight’� un�valor� 1.0.�En� caso�de�que�exista�más�de�un�eje� incidente� al� nodo�en� el�que� la�
iteración�se�encuentra�que�todavía�no�ha�sido�recorrido,�la�decisión�de�seleccionar�uno�u�otro�se�va�a�realizar�
en�base�a�una�función�probabilística�dependiente�del�valor�del�parámetro�‘pheromone’�de�cada�uno�de�ellos�tal�
y�como�se�muestra�en�la�Ecuación�6�donde�*�es�el�eje�a�tener�en�consideración�y�o�es�un�factor�que�incrementa�
o� reduce� la� importancia� de� la� información� obtenida� en� las� anteriores� iteraciones� a� la� hora� de� otorgar� la�
probabilidad�de�que�un�eje�sea�seleccionado.�Por�el�momento,�dicho�parámetro�toma�valor�o �
.��

,`MpM`*[!\) � ��!`�Z�Z,`_�q " �!`�Z�Z,`_)O� � ��!`�Z�Z,`) " �!`�Z�Z,`_)O��
��Zrsr*Y*\t) � �,`MpM`*[!\)�u

v �,`MpM`*[!\)�uO)w�
�

Ecuación�6:�Cálculo�de�probabilidad�en�el�proceso�de�selección�

A�modo�de�ejemplo�se�añade�el�siguiente�caso�en�el�que�el�número�de�ejes�adyacentes�,�a�que�todavía�no�han�
sido�recorridos�es�tres�y�el�valor�del�parámetro�‘pheromone’�de�cada�uno�de�ellos�es�respectivamente�210,�215�
y�230.�

, � ��
�!`�Z�Z,`�5sY]`: � �
�% �
�% ����

,`Mxy)d�Pk � S���� " �
�� � ��
� " �
��z � ���
,`Mxy)d�Pn � S���� " �
�� � ��
� " �
��z � ���
,`Mxy)d�P{ � S���� " �
�� � ���� " �
��z � ���

��Zrsr*Y*\t� � ��
�� � �� � �� � �-����

��Zrsr*Y*\t � ��
�� � �� � �� � �-�	��

��Zrsr*Y*\t� � ��
�� � �� � �� � �-����

Ecuación�7:�Ejemplo�en�el�caso�de�tres�ejes�adyacentes�y�| � }�

Una� vez� obtenida� dicha� probabilidad� y� almacenada� en� el� parámetro� ‘probability’� de� cada� uno� de� ellos� se�
procede� a� la� selección� de� cada� uno� de� ellos� mediante� la� generación� de� un� número� aleatorio� siguiendo� el�
mismo�procedimiento�descrito�en� la�Ecuación�4.�Con�dicho�procedimiento�de� selección,� se�consigue�otorgar�
más�probabilidad�de�selección�a�aquellos�ejes�que�tienen�un�valor�de�‘pheromone’�más�alto.�

En�caso�de�que�todos�los�ejes�vecinos�hayan�sido�ya�recorridos,�la�selección�de�uno�u�otro�como�el�siguiente�eje�
a�ser�recorrido�se�realizará�también�en�función�del�parámetro�‘pheromone’�con�el�mismo�mecanismo�que�el�
indicado�en�la�Ecuación�5�para�calcular�la�probabilidad�y�su�posterior�procedimiento�de�selección�indicado�en�la�
Ecuación�6�con�la�única�diferencia�que,�en�éste�caso,�los�ejes�a�considerar�serán�todos�los�adyacentes�al�nodo�
en�el�cual�la�iteración�se�encuentre.�

CONCLUSIONES:�

El�programa�ha� sido�aplicado�al�grafo�de� la�Universidad�de�Rhode� Island� con�un�número�constante�de�1000�
iteraciones�finales,�es�decir,�las�cuales�utilizan�los�valores�de�‘pheromone’�calculados,�y�se�ha�variado�tanto�el�
número�de�iteraciones�de�inicialización�como�la�fórmula�de�actualización�del�parámetro�de�‘pheromone’.�Ésta�
última� modificación� ha� cambiado� la� fórmula� dada� en� la� Ecuación� 5� � por� la� misma� pero� con� un� valor�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�	

multiplicativo�de�10.0.�El�propósito�de�ésta�modificación�es�que�exista�todavía�más�diferencia�entre�la�calidad�
de� las� diferentes� iteraciones� de� inicialización� con� la�mejor� de� todas� ellas.� Los� resultados� se�muestran� en� la�
Tabla�9.�

�

Programa�2_8_2011�

Valor�multiplicativo� 10� � � �

Nº�de�iteraciones�de�inicialización� 100� 1000� 100� 1000�

Actualización�de�feromonas� `Rb���Rc
Q1Od)Pefghij�Q1Od)Pefkl�m

n
� `R�~���Rc

Q1Od)Pefghij��Q1Od)Pefkl�m
n
�

Promedio� 3862.6� 5811.3� 4864.1� 4905�

Derivación�estándar� 1856.3� 3613.8� 2607.9� 2646.1�

Mínimo� 1093� 1103� 1309� 1327�

Máximo� 18595� 28974� 18812� 20245�

Tabla�9:�Resultados�para�el�programa��2_8_2011.�

Como�se�puede�observar,�el�hecho�de�variar�el�número�de�iteraciones�de�inicialización�no�modifica�en�esencia�
los�resultados�finales,�sobre�todo�en�el�caso�de�usar�la�fórmula�más�restrictiva�de�actualización�del�parámetro�
‘pheromone’�a�pesar�de�que,�obviamente,�dicho�valor�de�actualización�de� feromonas�que�cada�eje�recibe�es�
mucho�mayor�en�el�caso�de�que�haya�1000�iteraciones�de�inicialización�en�lugar�de�100.�Además,�también�se�
puede�ver�como�el�uso�de�una�u�otra�fórmula�en�el�momento�de�actualizar�el�parámetro�‘pheromone’�tampoco�
lleva� a�una� conclusión�determinada�ya�que,�en�el� caso�de�100� iteraciones�de� inicialización�el� valor� tanto�de�
promedio�como�de�desviación�estándar�mejoran�al�aplicar�la�fórmula�más�restrictiva�pero,�en�el�caso�de�1000�
iteraciones�de�inicialización�ambos�valores�son�mejores�al�usar�la�fórmula�menos�restrictiva.���

En�general,�el�hecho�de�que�los�valores�obtenidos�de�desviación�estándar�sean�tan�elevados�en�comparación�
con�los�obtenidos�en�el�programa�anterior�hace�que�se�considere�totalmente�inapropiado�extraer�conclusiones�
definitivas�de�éste�conjunto�de�pruebas�realizadas�ya�que,�la�enorme�variación�de�los�resultados�obtenidos�guía�
a�pensar�que�el�problema�en�dicho�programa�es�debido�a�un� inapropiado�procedimiento�de�selección�de� los�
ejes�más�que�al�propio�concepto�de�aplicación�del�parámetro� ‘pheromone’.�Por�ello,�no�se�puede� llegar�a� la�
conclusión�de�que�dicho�procedimiento�de�trabajo�utilizando�el�parámetro� ‘pheromone’�actúe�de�una�forma�
apropiada�o�inapropiada�en�cuanto�a�la�calidad�de�las�soluciones�finales�se�refiere.�

A�DÍA�2_10_2011:�

A�partir�de�las�conclusiones�extraídas�en�el�programa�anterior,�se�considera�necesario�y�apropiado�el�modificar�
el� procedimiento� de� selección� de� los� ejes� en� aquellas� iteraciones� finales� que� cuentan� con� la� información�
correspondiente�a�la�calidad�de�las�iteraciones�de�inicialización.�

En�el�presente�programa�se�mantiene�tanto�el�procedimiento�de�trabajo�de�las�iteraciones�de�inicialización,�ya�
que�éste�se�consideró�apropiado�en�las�correspondientes�pruebas�realizadas�con�el�mismo,�como�el�valor�de�
cálculo� del� parámetro� ‘pheromone’� introducido� en� el� programa� anterior.� Por� tanto,� la� modificación� del�
programa�va�a�ser�realizada�tan�solo�en�el�conjunto�de�las�iteraciones�que�ya�cuentan�con�la�información�de�las�
iteraciones�de�inicialización.�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Al� igual�que�ocurría�en�el�programa�anterior,�el�grafo�va�a�ser� recorrido�hasta�que�todos� los�ejes�hayan�sido�
visitados,�momento�en�el�cual�se�aplicará�el�algoritmo�‘shortest�path’�con�el�fin�de�volver�al�eje�inicial.�Por�otra�
parte,�el�valor�del�parámetro�‘weight’�de�cada�eje�seguirá�siendo�multiplicado�por�10.0�cada�vez�que�éstos�sean�
atravesados� en� una� dada� iteración.� Además,� como� ya� se� comentó� anteriormente,� el� cálculo� del� valor� del�
parámetro�‘pheromone’�se�realizará�de�la�misma�forma�indicada�anteriormente�en�la�Ecuación�5.���

El�único�cambio�realizado�en�comparación�con�el�programa�anterior�será�el�procedimiento�de�selección�de�un�
eje� en� el� caso� de� que� todos� y� cada� uno� de� ellos� ya� hayan� sido� visitados.� En� lugar� de� acudir� al� parámetro�
‘pheromone’� como� se�hacía� en� el� programa� anterior,� usando� la� Ecuación� 6�para� calcular� la� probabilidad�de�
acudir�a�uno�u�a�otro,�en�éste�momento�se�realizará�dicha�selección�de�la�misma�manera�que�se�realizaba�en�
las� iteraciones� iniciales,� es� decir,� utilizando� el� valor� del� parámetro� ‘weight’� para� calcular� la� probabilidad� de�
selección�de�dichos�ejes,�tal�y�como�se�introdujo�en�la�Ecuación�3�y�en�la�Ecuación�4.�

CONCLUSIONES:�

Con� el� fin� de� poder� realizar� una� comparación� objetiva� de� los� resultados� obtenidos� con� ésta� variación� del�
programa,� se� ha� aplicado� el� mismo� de� la� misma� forma� que� se� realizó� el� anterior,� con� un� conjunto� 1000�
iteraciones�finales�en�el�grafo�de�la�Universidad�en�Rhode�Island.�Dichos�resultados�se�muestran�en�la�Tabla�10.�

Programa�2_10_2011�

Valor�multiplicativo� 10� � � �

Nº�de�iteraciones�de�inicialización� 100� 1000� 100� 1000�

Actualización�de�feromonas� `Rb���Rc
Q1Od)Pefghij�Q1Od)Pefkl�m

n
� `R�~���Rc

Q1Od)Pefghij��Q1Od)Pefkl�m
n
�

Promedio� 1484.6� 1509.4� 1480.4� 1492.5�

Derivación�estándar� 393.4� 388.5� 407.1� 379.9�

Mínimo� 679� 743� 677� 736�

Máximo� 3381� 3379� 3911� 3090�

Tabla�10:�Resultados�para�el�programa��2_10_2011�

Tras�el� análisis�de�dichos� resultados� se�puede�ver� claramente� como� los� resultados�obtenidos� son� realmente�
satisfactorios.�Los�valores�promedios�se�han�reducido�cerca�de�un�40%�en�comparación�con�los�obtenidos�en�el�
programa�1_25_2011,�el�cual�no�utilizaba�el�factor�‘pheromone’,��los�cuales�son�mostrados�en�la�Tabla�8�para�
valores�del�valor�multiplicativo�de�10.0.�Además,�los�valores�de�desviación�estándar�han�mejorado�en�cerca�del�
60%�lo�que�realmente�indica�que�el�procedimiento�de�trabajo�desarrollado�en�ésta�modificación�del�programa�
es�realmente�adecuado.��

Como�último�punto�a�estudiar,�se�puede�observar�cómo�tanto�las�modificaciones�del�número�de�iteraciones�de�
inicialización� como� el� uso� de� una� u� otra� fórmula� de� actualización� del� parámetro� ‘pheromone’� no� llevan� a�
variaciones�significativas�de�las�soluciones�obtenidas.�

�

�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�

A�DÍA�3_10_2011:�

A�pesar�de�que�los�resultados�obtenidos�a�partir�del�programa�anterior�son�realmente�buenos�y�alentadores,�
pudiéndose� incluso� considerar� como� definitivos,� se� va� a� modificar� dicho� programa� con� el� fin� de� intentar�
mejorar�todavía�más�dichos�resultados.�

Puesto� que� el� aspecto� fundamental� que� hace� del� programa� anterior� una� mejora� tan� sustancial� de� los�
resultados�es�el�hecho�de�usar� la� información�obtenida�en�previas� iteraciones�en� la� selección�de� los�nuevos�
recorridos�a�través�del�parámetro�‘pheromone’,�se�considera�como�una�posible�mejora�del�mismo�el�hecho�de�
utilizar�todavía�más�información�referente�a�soluciones�anteriores�a�la�hora�de�computar�las�nuevas.�

Al�igual�que�sucede�con�los�algoritmos�de�optimización�basados�en�colonias�de�hormigas,�en�los�que�se�simula�
el� proceso� de� evaporación� de� feromonas� y� el� depósito� de� las� mismas� con� el� propósito� de� mostrar� la�
conveniencia�de�uno�u�otro�recorrido,�en�éste�programa�se�actualizan�los�valores�del�parámetro�‘pheromone’�
de� una� manera� continua� y� constante� con� el� objetivo� de� ir� mejorando� la� calidad� de� la� información� previa�
disponible.�Gracias�a�ello�se�simulan�aproximadamente�ambos�mecanismos�al�mismo�tiempo,�es�decir,�tanto�el�
proceso�de�evaporación�como�el�de�depósito�de�feromonas�ya�que�la�información�es�actualizada�poco�a�poco�
por� lo�que�se�marca� la�conveniencia�de�aquellos�nuevos� recorridos� reduciendo�además� la�de� los�antiguos�y,�
puesto�que�teóricamente�los�nuevos�mejoran�a�los�antiguos,�dicha�información�se�va�haciendo�más�valiosa�a�
cada�una�de�las�actualizaciones.�

Para�ello,�en�primer�lugar,�se�realizan�una�serie�de�iteraciones�de�inicialización�y�el�correspondiente�cálculo�del�
valor� del� parámetro� ‘pheromone’� tal� y� como� se� mostró� en� los� anteriores� programas� con� el� propósito� de�
obtener�una�información�inicial�suficiente�y�valiosa.�

Una� vez� éste� proceso�de� inicialización�ha� sido� finalizado,� la� idea� es� realizar� un� conjunto� de� iteraciones� que�
tengan� como� base� dicha� información� y,� al� finalizar,� volver� a� realizar� la� actualización� del� parámetro�
‘pheromone’� usando� para� ello� todos� los� recorridos� que� hayan� surgido� hasta� el� momento,� es� decir,� tanto�
aquellos�de� inicialización�como�los�del�primer�bloque�de� iteraciones.�Una�vez�ya�se�hayan�actualizado�dichos�
valores� de� ‘pheromone’� se� realiza� otro� conjunto� de� nuevas� iteraciones� pero� en� éste� caso� � tomando� como�
información� los�recientes�valores�del�parámetro� ‘pheromone’,�y�al� finalizar�el�nuevo�conjunto,� se�volverán�a�
actualizar� dichos� valores� de� nuevo� teniendo� en� cuenta� todos� los� recorridos� disponibles.� Éste� proceso� se�
repetirá�un�determinado�número�de�veces.�

Por�otra�parte,�es�necesario�nombrar�que,�a�pesar�de�que�el�proceso�óptimo�sería�que�dicha�actualización�de�
feromonas� se� realizara� � lo�más� frecuentemente� posible,� es� decir,� al� final� de� cada� iteración� comparar� dicho�
valor�con� los�anteriores�y�actualizar�el�parámetro,�se�considera�que�éste�método�retrasaría�enormemente�el�
tiempo�de�ejecución�del�programa�por�lo�que,�debido�a�ello,�dichas�actualizaciones�se�realizan�al�final�de�cada�
bloque�de�iteraciones�en�lugar�de�al�finalizar�cada�una�de�ellas.�

CONCLUSIONES:�

Tras�aplicar�dicho�programa�al�ya�conocido�grafo�de�la�Universidad�de�Rhode�Island�se�han�obtenido�los�datos�
mostrados� en� la� Tabla� 11.� Como� se� puede� observar,� se� han� realizado� 15� bloques� diferenciados�más� el� de�
inicialización�estando�cada�uno�de�ellos�compuesto�por�50�iteraciones.����

�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Programa�3_10_2011�

Bloque� INIZ.� 1� 2� 3� 4� 5� 6� 7�
Promedio� 2377.7� 1462.5� 1495.5� 1400.7� 1415.7� 1426.5� 1452.2� 1357.5�

Derivación�estándar� 531.9� 326.7� 495.2� 420.9� 452.2� 394.9� 394.9� 352.58�
Mínimo� 1526� 970� 744� 792� 708� 750� 869� 845�
Máximo� 3842� 2666� 3554� 2578� 3605� 2399� 2603� 2394�

� � � � � � � � �
Bloque� 8� 9� 10� 11� 12� 13� 14� 15�

Promedio� 1445.4� 1564.9� 1390.6� 1429.7� 1382.4� 1330.4� 1429.7� 1362.2�
Derivación�estándar� 385.4� 491.9� 423.9� 490.2� 349.6� 411.7� 499.5� 331.8�

Mínimo� 834� 782� 838� 696� 864� 813� 744� 843�
Máximo� 2697� 3118� 2994� 3369� 2244� 3182� 3070� 2413�

Tabla�11:�Resultados�para�el�programa��3_10_2011�

Como�se�puede�analizar�de�los�resultados�obtenidos,�una�vez�tanto�el�promedio�como�la�derivación�estándar�
mejoran� enormemente� en� el� paso� del� bloque� de� inicialización,� en� el� que� no� se� usan� feromonas,� al� primer�
bloque,� el� cual� ya� usa� dicho� parámetro� en� su� decisión,� los� resultados� de� los� siguientes� bloques� no�
proporcionan�una�mejora�significativa�ya�que�tanto�valores�mínimos,�promedios�y�derivaciones�estándar�van�
variando�de�forma�aleatoria�entre�ellos�aunque�siempre�mostrando�unos�resultados�realmente�buenos,�al�igual�
que�sucedía�con�el�programa�anterior.�Se�puede�observar�como,�por�ejemplo,�la�diferencia�en�los�resultados�al�
usar�como�información�previa�500�recorridos�previos,�como�es�el�caso�de�la�10ª�iteración,�no�es�mejor�que�el�
hacerlo�teniendo�en�cuenta�tan�solo�150�recorridos,�como�es�el�caso�de�la�3ª�iteración.����

Por� este� motivo,� se� llega� a� la� conclusión� de� que� ya� se� ha� alcanzado� el� límite� de� mejora� usando� este�
procedimiento�de�decisión�basado�en�el�parámetro�‘pheromone’.��

A�DÍA�3_17_2011�

Tal�y�como�se�comentó�en�la�sección�‘3.�Puntos�clave�en�el�mantenimiento�invernal�de�la�red�viaria’,�en�la�gran�
mayoría� de� las� operaciones� de� mantenimiento� invernal� que� implican� el� ruteo� de� vehículos,� tales� como� el�
esparcimiento� de� químicos� y� abrasivos,� la� recogida� de� nieve� y,� en� especial,� la� retirada� de� la� misma� con�
máquinas�quitanieves,�es�necesario�establecer�un�determinado�nivel�de�servicio�a�cada�una�de� las�carreteras�
que� conforman� el� conjunto� viario� a� tratar� dependiente� de� la� importancia� que� cada� una� de� éstas� tiene.� La�
motivación�de�realizar�ésta�clasificación�se�debe,�como�ya�se�nombró�anteriormente,�a�las�necesidad�de�que�un�
subconjunto�de�carreteras�deban�de�ser�limpiadas�u�operadas�en�un�periodo�determinado�de�tiempo�debido�a�
la�mayor�importancia�de�éstas�dentro�del�conjunto�total�de�la�red�viaria.�Dicha�importancia�puede�ser�basada�
en�diversos�factores�como�motivos�políticos,�económicos�o�simplemente,�necesidad�de�un�servicio�más�rápido.�

Hasta�el�momento,�en� todos� los�programas�anteriores�se�ha�considerado�que�se�debían�visitar� todos�y�cada�
uno�de�los�ejes�al�menos�una�vez,�es�decir,�se�ha�estado�solucionando�el�conocido�‘Chinese�Postman�Problem’,�
sin� embargo,� a� partir� de� éste� momento,� los� algoritmos� desarrollados� resolverán� una� variante� de� dicho�
problema� llamada� ’Rural� Chinese� Postman� Problem’� en� el� cual� tan� solo� un� conjunto� de� ejes� deben� de� ser�
recorridos�obligatoriamente.�

Con� el� fin� de� implementar� dicho�problema,� el� primer� cambio� obvio� a� realizar� es� añadir� a� todos� los� ejes� un�
nuevo�parámetro�el�cual�debe�indicar�si�dicho�eje�se�encuentra�en�el�subconjunto�de�ejes�a�visitar,�es�decir,�si�
dicho�eje�ha�de�ser�recorrido�obligatoriamente.�A�dicho�parámetro�se�la�otorgado�el�nombre�de�‘mandatory’�y�
puede�tener�bien�valores�de�0,�en�el�caso�de�que�el�eje�no�se�encuentre�en�el�subconjunto�de�ejes�a�visitar�o�de�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

1�en�caso�contrario.�Una�vez�éste�parámetro�ha�sido�añadido,�se�ha�cambiado�la�condición�principal�por�la�cual�
una�hormiga�debía�de�finalizar�su�proceso�de�recorrido�en�el�grafo.�Anteriormente,�un�recorrido�se�consideraba�
terminado�cuando�todos�los�ejes�habían�sido�recorridos�al�menos�una�vez,�sin�embargo,�de�aquí�en�adelante,�la�
condición� para� finalizar� dicho� recorrido� es� que� todos� los� ejes� con� el� parámetro� ‘mandatory=1’� hayan� sido�
recorridos�al�menos�una�vez.�

Por� otra� parte,� en� éste� programa� y� en� los� siguientes,� en� los� cuales� se� trata� de� resolver� el� ‘Rural� Chinese�
Postman� Problem’,� la� información� adquirida� en� las� iteraciones� previas� y� almacenada� en� el� parámetro�
‘pheromone’� es� mucho� más� importante� que� en� el� caso� del� ’Chinese� Postman� Problem’� ya� que,� al� no� ser�
necesario�recorrer�todos�los�ejes�del�grafo,�la�información�obtenida�en�previas�iteraciones�acerca�del�recorrido�
realizado�adquiere�mucho�más�valor.�Por�esa� razón�principalmente,� se�ha�decidido�modificar� ligeramente�el�
procedimiento�de�selección�de�probabilidad�de�los�ejes�en�función�de�el�parámetro�’pheromone’�que�se�daba�
en� la�Ecuación�6.�A�partir�de�ahora,�el�parámetro�o�que�actúa�como�potenciador�del�valor�de� la� información�
previa�depositada�en�el�parámetro�‘pheromone’�pasa�a�ser�2�en�lugar�de�1�como�hasta�ahora.�A�fin�de�mostrar�
como�dicho�cambio�afecta�en�las�probabilidades�de�que�un�eje�u�otro�sea�seleccionado,�se�realizan�los�cálculos�
para� los� mismos� valores� de� ‘pheromone’� que� se� dieron� en� la� Ecuación� 7:� Ejemplo� en� el� caso� de� tres� ejes�
adyacentesEcuación� 7,� viendo� cómo� se� incrementan� las� diferencias� de� probabilidad� de� selección� de� un� eje�
frente�a�otro�con�respecto�a�las�probabilidades�obtenidas�usando�o �
.��

, � ��
�!`�Z�Z,`�5sY]`: � �
�% �
�% ����

,`Mxy)d�Pk � S���� " �
�� � ��
� " �
��z � ���
,`Mxy)d�Pn � S���� " �
�� � ��
� " �
��z � ���
,`Mxy)d�P{ � S���� " �
�� � ���� " �
��z � ���
��Zrsr*Y*\t� �

����
���� � ���� � ���� � �-
���

��Zrsr*Y*\t �
����

���� � ���� � ���� � �-����

��Zrsr*Y*\t� �
����

���� � ���� � ���� � �-�
��

Ecuación�8:�Ejemplo�en�el�caso�de�tres�ejes�adyacentes�y�| � ��

A� pesar� de� los� cambios� introducidos,� el� procedimiento� general� de� trabajo� del� programa� no� varía� de� forma�
sustancial� con� respecto� a� los�programas� anteriores.� En� primer� lugar,� se� realiza�un�bloque�de� iteraciones� de�
inicialización�con�el�mismo�procedimiento�que�el�seguido�hasta�ahora,�es�decir,�simplemente�seleccionando�los�
ejes� de� forma� probabilística� inversamente� proporcional� al� parámetro� ‘weight’,� el� cual� se� va� incrementando�
cada�vez�que�un�eje�es�recorrido,�con�la�única�diferencia�de�que�la�condición�de�finalización�de�la�iteración�ha�
cambiado,� siendo�ahora�necesario�que� tan�solo� los�ejes�con� ‘mandatory’=1�hayan�sido�visitados.�A�partir�de�
ahí,� se� calcula� el� parámetro� ‘pheromone’� de� la� misma� forma� que� la� indicada� en� la� Ecuación� 5� con� la�
información� obtenida� de� las� iteraciones� de� inicialización.� Con� dichos� valores� ya� calculados,� se� realizan�
diferentes�bloques�de� iteraciones�usando�el�mismo�procedimiento�que�se�ha� llevado�a�cabo�hasta�ahora,�es�
decir,� realizando� la� selección� de� entre� aquellos� ejes� que� todavía� no� han� sido� recorridos� mediante� la�
información�almacenada�en�el�parámetro� ‘pheromone’� aunque,� como�ya� se�nombró�anteriormente,�usando�
o � ��en�el�cálculo�de�dicha�probabilidad�de�selección�mostrada�en�la�Ecuación�6.�Además,�tal�y�como�se�viene�
desarrollando� hasta� el� momento,� en� el� caso� de� que� todos� los� ejes� adyacentes� a� un� nodo� ya� hayan� sido�
visitados,� el� procedimiento� de� selección� probabilística� se� basará� en� el� parámetro� ‘weight’� que� nos� indica�
cuantas�veces�un�eje�ya�ha�sido�visitado,�eliminando�de�ésta�forma�gran�parte�de�los�bucles�que�se�pudieran�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

formar.��

En� cuanto� a� los� valores� de� actualización� del� parámetro� ‘pheromone’� se� considera� como� una� medida� más�
apropiada� en� éste� caso� el� considerar� tan� solo� la� información� obtenida� en� el� último� bloque� de� iteraciones�
realizadas.� La� enorme� importancia� que�en� el� ‘Rural� Chinese� Postman�Problem’� tiene�el� valor�del� parámetro�
‘pheromone’�a�la�hora�de�realizar�dicha�selección�de�los�nuevos�recorridos,�ya�que�nos�indicará�la�conveniencia�
de� seleccionar� uno�u� otro,� hace� necesario� que�dicha� información� sea� de� la�mayor� calidad� posible.� Por� ello,�
puesto�que�teóricamente,�los�resultados�mejoran�de�un�bloque�de�iteraciones�a�otro,�se�va�a�utilizar�tan�solo�el�
último� de� los� bloques� realizados� con� el� propósito� de� usar� tan� solo� la� mejor� información� disponible.� Éste�
mecanismo�de�actualización�tiene�el�mismo�propósito�que�el�proceso�de�evaporación�de�feromonas�usado�en�
los�algoritmos�de�optimización�basados�en�colonias�de�hormigas�estudiados�en�la�sección�‘6.2.�Algoritmos�de�
optimización�basados�en�colonias�de�hormigas�(ACO)’.�

CONCLUSIONES:�

Con�el�propósito�de�analizar�los�resultados�proporcionados�con�el�programa�en�un�entorno�lo�más�parecido�a�la�
realidad,�se�ha�aplicado�dicho�programa�al�grafo�de� la�universidad�de�Rhode� Island.�Puesto�que�el�programa�
debe�de� contemplar� qué�ejes� del� grafo�es�obligatorio� atravesar� y� cuáles�no,� se� ha�estimado� como�un� valor�
apropiado�el�que�alrededor�de�un�25%�de�los�ejes�del�campus�sean�obligatorios,�es�decir,�tengan�el�parámetro�
‘mandatory’=1.� La� selección�de�qué�ejes�de� los�257�ejes�del�grafo�deben�ser�obligatorios� se�ha� realizado�de�
manera� totalmente� aleatoria� ya� que� es� considerado� simplemente� un� ejemplo� a� fin� de� poder� aplicar� los�
distintos�programas.��

A�pesar�de�ello,�es�obvio�notar�que,�en�posteriores�aplicaciones�reales�del�programa,�sería�obligatorio�realizar�
un�estudio�detallado�de�cuales�son�aquellos�ejes�que�necesitan�de�un�mayor�nivel�de�servicio.�Para�ello,�como�
ya�se�nombró�en�el�apartado�‘3.2.1.�Nivel�de�servicio’,�diversos�factores�deberían�ser�considerados�y�analizados�
en�profundidad.�Por�tanto,�a�modo�de�prueba�se�han�seleccionado�74�ejes�como�obligatorios�de�una�manera�
aleatoria,�los�cuales,�van�a�permanecer�siendo�obligatorios�en�las�próximas�variaciones�del�programa�a�fin�de�
que� sea� posible� realizar� una� comparación� adecuada� de� los� resultados� obtenidos� entre� cada� uno� de� los�
diferentes�programas.�

Tal� y� como� se� nombró� en� la� sección� ‘2.5.� Herramientas� y� técnicas� utilizadas’,� la� gran� cantidad� de� datos� a�
calcular� y� la� carga� de�memoria� que� éstos� requieren,� hacen� que� sea� totalmente� necesaria� la� utilización� del�
ordenador�de�dos�núcleos�del� laboratorio.�Por�ello,� todos� los� resultados�mostrados�a� continuación�han� sido�
obtenidos�mediante�dicho�ordenador�con�el�propósito�de�agilizar�la�obtención�de�los�mismos.��

En�un�primer� lugar,� tal� y� como� se�muestra� en� la� Tabla� 12� ,� se� ha� ejecutado�el� programa� con�un�bloque�de�
inicialización�de� 500� iteraciones,� realizando�posteriormente�11� diferentes�bloques� de� 1000� iteraciones� cada�
uno.��

�

�

�

�

�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Programa�3_17_2011�

Bloque� INIZ.� 1� 2� 3� 4� 5�
Iteraciones� 500� 1000� 1000� 1000� 1000� 1000�
Promedio� 2035.9� 1269.4� 1164.4� 1125.9� 1155.0� 1125.3�

Derivación�estándar� 614.4� 380.5� 360.7� 374.4� 379.1� 360.5�
Mínimo� 1062� 568� 532� 453� 496� 469�
Máximo� 4508� 3787� 3040� 4520� 3035� 3172�

� � � � � � �
Bloque� 6� 7� 8� 9� 10� 11�

Iteraciones� 1000� 1000� 1000� 1000� 1000� 1000�
Promedio� 1116.2� 1113.9� 1123.5� 1135.0� 1111.9� 1119.7�

Derivación�estándar� 339.6� 352.9� 355.9� 354.0� 333.3� 360.1�

Mínimo� 515� 490� 489� 523� 487� 506�
Máximo� 2807� 3298� 2688� 2905� 2736� 3132�

Tabla�12:�Resultados�para�el�programa��3_17_2011�con�bloques�de�1000�iteraciones�

Como� se�puede�observar,� los� valores�de� derivación�estándar� permanecen� en� torno� a� 360,� lo� cual� se� puede�
considerar�como�buenos�resultados�y�las�diferencias�entre�el�valor�promedio�de�cada�bloque�de�iteraciones�son�
totalmente�despreciables,�estando�entorno�a�un�valor�de�1100,� lo�cual� también� indica�que�el�programa�está�
proporcionando� resultados�más� que� aceptables.� Por� otra� parte,� tal� y� como� se� observa� en� el� Gráfico� 9� ,� se�
puede�ver�como�los�valores�mínimos�de�cada�bloque�de�iteraciones�no�varían�tan�apenas.��De�la�misma�forma,�
se�observa�como�éstos�valores�proporcionados�son�realmente�buenos,�llegando�incluso�a�realizar�en�el�bloque�
3� un� recorrido� de� 453.� Como� conclusión� de� éstos� resultados� se� puede� llegar� a� decir� que� el� programa�
desarrollado� ya� ha� alcanzado� un� nivel� muy� bueno� de� soluciones,� teniendo� que�modificarse� el� mismo� si� se�
desea�intentar�conseguir�todavía�mejores�resultados.�

�

Gráfico�9:�Valores�mínimos�de�cada�bloque�de�1000�iteraciones�para�el�programa�3_17_2011�

1062

568 532
453 496 469 515 490 489 523 487 506

0

200

400

600

800

1000

1200

Mejor�iteración�de�cada�bloque

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�

A� fin� de� asegurarse� de� que� las� conclusiones� obtenidas� gracias� a� las� pruebas� realizadas� anteriormente� son�
correctas,� y,� por� tanto,� el� programa� ya� ha� alcanzado� su� propio� límite� de�mejora,� ya� que� no� se� aprecia� tan�
apenas�modificación�en�los�valores�mínimos�de�las�iteraciones�de�cada�bloque,�es�necesario�volver�a�aplicar�el�
programa� de� una� manera� distinta� para� de� ésta� forma� comprobar� si� éstos� valores� mínimos� realmente� se�
mantienen�aproximadamente�constantes�a�lo�largo�de�los�diferentes�bloques�de�iteraciones.�

Además� de� comprobar� que� el� programa� ya� ha� alcanzado� un� límite� de� mejora,� se� va� a� analizar� qué�
procedimiento� es� más� conveniente,� realizar� grandes� bloques� de� iteraciones� y� posteriormente� actualizar� el�
valor� del� parámetro� ‘pheromone’� o� bien,� realizar� más� bloque� s� de� iteraciones� pero� con� un� número� más�
reducido�de�iteraciones,�por�lo�que�dicho�parámetro�‘pheromone’�se�actualizará�más�constantemente�pero�con�
menor�cantidad�de�información.��

Para�ello,�se�ha�aplicado�el�programa�de�nuevo�haciendo�un�bloque�de�inicialización�de�tan�solo�100�iteraciones�
y,� posteriormente,� 46� nuevos� bloques� de� otras� 100� iteraciones� cada� uno.� De� ésta� forma,� los� valores� de�
‘pheromone’� se� van� actualizando� de� una� manera� más� constante� teniendo� solo� en� cuenta� las� 100� últimas�
iteraciones� realizadas,� a� diferencia� de� las� 1000� iteraciones� que� se� tenían� en� cuenta� en� la� prueba� realizada�
anteriormente.�Los�resultados,�así�como�sus�valores�medios�se�pueden�observar�en�la�Tabla�13.�

�
�
�

Programa�3_17_2011�

Bloque� INIZ.� 1� 2� 3� 4� 5� 6� 7�
Promedio� 1957.8� 1265.0� 1193.3� 1146.5� 1205.1� 1152.5� 1185.1� 1240.8�

Derivación�estándar� 585.4� 387.0� 404.5� 327.9� 325.0� 311.5� 365.7� 420.0�
Mínimo� 1136� 616� 651� 616� 570� 571� 648� 669�
Máximo� 3970� 2563� 2716� 2129� 2281� 2309� 2434� 3398�

� � � � � � � � �
Bloque� 8� 9� 10� 11� 12� 13� 14� 15�

Promedio� 1254.4� 1157.5� 1200.1� 1165.9� 1210.7� 1160.9� 1220.1� 1244.1�
Derivación�estándar� 396.9� 411.8� 439.4� 348.2� 388.9� 340.9� 355.9� 357.3�

Mínimo� 649� 617� 591� 611� 579� 689� 700� 536�
Máximo� 2983� 2882� 3083� 2334� 2527� 2241� 2173� 2327�

� � � � � � � � �
Bloque� 16� 17� 18� 19� 20� 21� 22� 23�

Promedio� 1151.9� 1168.2� 1272.2� 1200.9� 1189.7� 1107.4� 1173.8� 1124.8�

Derivación�estándar� 375.8� 333.0� 420.8� 349.8� 402.4� 351.2� 335.6� 352.8�
Mínimo� 640� 673� 688� 711� 526� 537� 558� 628�
Máximo� 2352� 2433� 2780� 2606� 2543� 2939� 2106� 2454�

� � � � � � � � �
Bloque� 24� 25� 26� 27� 28� 29� 30� 31�

Promedio� 1096.9� 1186.6� 1102.3� 1094.6� 1060.5� 1212.6� 1157.1� 1153.9�
Derivación�estándar� 330.1� 334.5� 287.3� 295.1� 317.4� 332.0� 338.3� 319.0�

Mínimo� 550� 502� 542� 625� 537� 602� 639� 631�
Máximo� 2312� 2572� 1998� 1849� 2495� 2160� 2412� 2600�

� � � � � � � � �

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

Bloque� 32� 33� 34� 35� 36� 37� 38� 39�
Promedio� 1231.9� 1192.5� 1119.4� 1155.8� 1252.5� 1181.7� 1109.5� 1135.8�

Derivación�estándar� 375.3� 334.1� 355.2� 332.2� 441.5� 405.1� 345.6� 364.0�
Mínimo� 641� 661� 518� 675� 569� 589� 431� 564�
Máximo� 2399� 2416� 2766� 2423� 3471� 2910� 2046� 2471�

� � � � � � � � �
Bloque� 40� 41� 42� 43� 44� 45� 46� PROM.�

Promedio� 1079.9� 1120.1� 1147.2� 1162.1� 1137.2� 1247.0� 1109.1� 1170.4�
Derivación�estándar� 336.3� 307.1� 342.0� 294.1� 269.5� 398.9� 319.0� 353.8�

Mínimo� 600� 521� 683� 717� 572� 686� 583� 606.8�
Máximo� 2749� 2071� 2399� 2607� 1853� 2547� 2569� 2493.2�

Tabla�13:�Resultados�para�el�programa�3_17_2011�con�bloques�de�100�iteraciones�

Una�vez�analizados�éstos�datos�se�puede�observar�cómo,�en�primer�lugar,�los�resultados�obtenidos�en�cuanto�a�
los� valores� mínimos� obtenidos� son� peores� en� éste� caso� en� el� caso� estudiado� anteriormente,� el� cual� se�
mostraba�en� la�Tabla�12,�con�grandes�bloques�de� iteraciones�y�actualizaciones�con�mayor�cantidad�de�datos�
que� en� la� presente� prueba.� Por� ello,� se� puede� considerar� como� adecuado� que� en� los� próximos� programas�
desarrollados�dichas�actualizaciones�se�lleven�a�cabo�con�gran�cantidad�de�información�y�con�grandes��bloques�
de�iteraciones.��

Por�otra�parte,�tal�y�como�se�puede�observar�en�el�Gráfico�10,�se�comprueba�que,�efectivamente,�el�programa�
desarrollado�ha�alcanzado�su�límite�de�mejora�ya�que�los�valores�mínimos�de�cada�bloque�de�iteraciones�tan�
apenas�varían�de�un�bloque�a�otro.�

�

Gráfico�10:�Valores�mínimos�de�cada�bloque�de�100�iteraciones�para�el�programa�3_17_2011�

�

�

�

1136

570 617 579

700

536

711

526
628

502

625
537 518

675
589

431

521

717 686
583

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0
Mejor�iteración�de�cada�bloque

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�A�DÍA�4_4_2011�

Puesto� que� el� programa� realizado� anteriormente� nos� ofrece� unos� resultados� realmente� buenos,� éste�
constituirá�la�base�a�partir�de�la�cual�se�realizará�la�presente�modificación.�

Tal�y�como�se�estudió�anteriormente,�el�programa�ya�ha�llegado�a�un�límite�máximo�de�mejora�por�lo�que,�las�
modificaciones� a� realizar� en� el� mismo� deben� simplemente� añadir� nuevas� restricciones� al� programa� ya�
desarrollado�y,�en�todo�caso,�añadir�mejoras�locales�a�las�soluciones�ya�obtenidas.�

Por�ello,�como�restricción�a�añadir�al�programa,�se�introduce�un�límite�máximo�de�longitud�que�cada�iteración�
puede�tener.�En�el�caso�de�que�una�iteración�sobrepase�ese�límite�máximo,�ésta�no�será�tenida�en�cuenta�en�el�
proceso�de�actualización�de�feromonas�por�lo�que,�de�ésta�forma,�se�asegura�que�la�información�a�partir�de�la�
cual�las�feromonas�son�actualizadas�es�una�información�adecuada�y�valiosa,�no�habiendo,�como�anteriormente,�
diferentes�iteraciones�que�añadían�recorridos�realmente�negativos�para�la�mejora�de�las�soluciones.�

Para�ello,�se�ha�considerado�adecuado�el�establecer�dicho�valor�máximo�de�cada�iteración�como�un�valor�de�

%� � �`:\p:Zp's�,�donde��`:\p:Zp's�es�el�recorrido�más�corto�hasta�el�momento.�

A�fin�de�no�ralentizar�el�programa�enormemente,�en�lugar�de�analizar�al�final�de�cada�iteración�si�ésta�es�mejor�
que� la� mejor� encontrada� hasta� el� momento� (�`:\p:Zp's�),� al� acabar� cada� bloque� de� iteraciones� se�
comprueba�si�alguna�de�las�iteraciones�de�dicho�bloque�es�mejor�que�la�que�hasta�el�momento�se�consideraba�
la�mejor�y,�en�caso�de�que�así�sea,�se�aplica�la�nueva�limitación�de�longitud�al�siguiente�bloque�de�iteraciones.�

En�cuanto�al�proceso�llevado�a�cabo�en�cada�bloque�de�iteraciones,�salvo�en�el�primer�bloque�de�iteraciones�de�
inicialización,� justo�antes�de� iniciar�el�mismo�se�establece�cual�es�el� límite�máximo�que�una� iteración�puede�
alcanzar,� siendo�dicha� limitación�basada,�como�ya�se�comentó�anteriormente,�en� la�mejor� iteración�hasta�el�
momento.�Una�vez�establecido�dicho�límite,�se�comienzan�a�hacer�iteraciones�de�forma�que�cuando�alguna�de�
ellas� supera� dicho� límite,� ésta� es� anulada� y� se� vuelve� a� comenzar� la� misma� hasta� que� se� consigue� que� la�
longitud�de�la�misma�se�encuentre�por�debajo�del�límite�establecido,�momento�en�el�cual,�dicho�recorrido�es�
almacenado� en� la� memoria.� Éste� procedimiento� se� realiza� tantas� veces� como� sea� necesario� hasta� que� se�
consigue�un�bloque�de�X�iteraciones�en�las�que�todas�ellas�se�encuentran�por�debajo�del�límite�establecido.�En�
ése� momento,� se� procede� a� la� actualización� de� feromonas� para� el� siguiente� bloque� con� el� conjunto� de�
iteraciones� almacenadas� del� último� bloque� realizado.� Una� vez� esto� finaliza,� se� repite� de� nuevo� el� proceso,�
analizando�si�alguna�de�las�soluciones�del�último�bloque�es�mejor�que�la�mejor�solución�que�había�hasta�ahora�
y,�en�caso�de�que�la�haya,�modificando�el�límite�máximo�para�el�siguiente�bloque�de�iteraciones.�

CONCLUSIONES:�

Tal�y�como�se�realizó�en�el�programa�anterior,�ase�va�a�realizar�la�prueba�usando�dos�metodologías�distintas,�
aplicando�el�programa�con�pocos�bloques�pero�de�un�gran�número�de�iteraciones�y,�por�otra�parte,�aplicando�
el�mismo� con�muchos� bloques� de� iteraciones� pero� de� pocas� iteraciones� cada�uno.�De� ésta� forma� se� puede�
comprobar�exactamente� la�diferencia�en� los� resultados�entre�el�programa�anterior�y�el�presente�además�de�
asegurar�las�conclusiones�que�se�obtuvieron�del�estudio�de�los�resultados�del�programa�anterior.�

En�la�Tabla�14�,�se�muestra�el�caso�de�un�bloque�de�inicialización�de�500�iteraciones�y�11�posteriores�bloques�
de� 1000� iteraciones� cada� uno.� Además,� se� puede� analizar� al� igual� que� en� el� programa� anterior,� como� los�
valores�mínimos�de�cada�bloque�de�iteraciones�van�variando�en�el�Gráfico�11.��

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�	

Programa�4_4_2011�

Bloque� INIZ.� 1� 2� 3� 4� 5�
Iteraciones� 500� 1000� 1000� 1000� 1000� 1000�
Promedio� 2050.1� 1051.1� 765.3� 617.4� 614.9� 609.6�

Derivación�estándar� 610.3� 178.2� 82.5� 42.7� 45.7� 42.3�
Mínimo� 898� 587� 448� 457� 444� 413�
Máximo� 4889� 1346� 880� 672� 672� 666�

� � � � � � �
Bloque� 6� 7� 8� 9� 10� 11�

Iteraciones� 1000� 1000� 1000� 1000� 1000� 1000�
Promedio� 575.92� 573.84� 564.30� 563.14� 563.98� 545.53�

Derivación�estándar� 34.72� 37.35� 34.64� 34.42� 34.26� 31.24�

Mínimo� 432� 404� 402� 405� 388� 406�
Máximo� 619� 619� 606� 603� 603� 582�

Tabla�14:�Resultados�para�el�programa��4_4_2011�con�bloques�de�1000�iteraciones�

�

�

Gráfico�11:�Valores�mínimos�de�cada�bloque�de�1000�iteraciones�para�el�programa�4_4_2011�

�

En�comparación�con�los�resultados�obtenidos�en�el�programa�anterior�al�aplicar�el�mismo�número�de�bloques�
de�iteraciones�y�el�mismo�número�de�iteraciones�en�cada�uno�de�ellos,�Tabla�12,�se�puede�observar�como�los�
resultados�obtenidos�son�realmente�buenos,�consiguiendo�pasar�de�un�promedio�en�cada�bloque�de�alrededor�
a�1100�en�el�programa�anterior�a�unos�valores�alrededor�de�600�en�el�presente�programa.�Además,�en�cuanto�
a�la�desviación�estándar�se�refiere,�los�resultados�obtenido�por�este�programa�muestran�un�valor�decreciente,�
desde� alrededor� de� 80� hasta� incluso� valores� de� 30� en� los� últimos� bloques� de� iteraciones,� lo� cual,� en�

898

587

448 457 444 413 432 404 402 405 388 406

0

100

200

300

400

500

600

700

800

900

1000

Mejor�iteración�de�cada�bloque

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

comparación�con�el�promedio�obtenido�en�el�programa�realizado�el�día�3_17_2011,�alrededor�de�360,�muestra�
una�mejora� increíble.�Por�otra�parte,� se�observa�como�el� valor�mínimo�desciende�globalmente�en� todos� los�
bloques� de� iteraciones� siendo� en� este� caso� el� mejor� recorrido� 388,� un� valor� realmente� bueno� y� adecuado�
teniendo�en�cuenta�el�número�de�ejes�que�se�han�considerado�como�obligatorios�de�recorrer.�

Por� otra� parte,� en� la� Tabla� 15,� se�muestran� los� datos� obtenidos� al� aplicar� el� programa� con� 46� bloques� de�
iteraciones�de�100�iteraciones�cada�uno�además�de�un�bloque�de�inicialización�de�también�100�iteraciones.�

Programa�4_4_2011�

Bloque� INIZ.� 1� 2� 3� 4� 5� 6� 7�
Promedio� 1893.7� 1106.0� 875.0� 777.1� 708.1� 701.5� 691.8� 701.3�

Derivación�estándar� 461.8� 202.9� 112.9� 88.7� 50.1� 54.6� 56.4� 53.1�
Mínimo� 974� 715� 597� 518� 549� 565� 535� 560�
Máximo� 3116� 1449� 1072� 895� 777� 777� 773� 775�

� � � � � � � � �

Bloque� 8� 9� 10� 11� 12� 13� 14� 15�
Promedio� 699.0� 676.9� 680.4� 660.1� 623.4� 620.2� 593.0� 585.7�

Derivación�estándar� 57.8� 55.4� 57.0� 55.2� 39.7� 49.5� 35.2� 40.2�
Mínimo� 497� 497� 486� 450� 481� 423� 462� 433�
Máximo� 773� 745� 745� 728� 675� 675� 633� 634�

� � � � � � � � �
Bloque� 16� 17� 18� 19� 20� 21� 22� 23�

Promedio� 590.6� 586.8� 594.4� 583.2� 588.7� 590.4� 592.8� 587.7�
Derivación�estándar� 36.7� 38.0� 35.2� 36.3� 32.2� 38.1� 32.3� 44.5�

Mínimo� 431� 488� 469� 485� 486� 453� 488� 439�
Máximo� 634� 634� 634� 634� 634� 634� 634� 634�

� � � � � � � � �
Bloque� 24� 25� 26� 27� 28� 29� 30� 31�

Promedio� 589.3� 584.4� 587.5� 584.1� 587.9� 579.6� 583.0� 554.0�
Derivación�estándar� 37.2� 44.6� 37.8� 37.6� 40.5� 44.0� 47.2� 32.7�

Mínimo� 438� 438� 476� 450� 449� 444� 395� 431�
Máximo� 634� 634� 634� 632� 634� 634� 634� 591�

� � � � � � � � �
Bloque� 32� 33� 34� 35� 36� 37� 38� 39�

Promedio� 550.5� 555.5� 555.7� 552.3� 555.7� 557.6� 552.6� 558.5�
Derivación�estándar� 31.9� 30.0� 32.4� 32.1� 33.1� 29.7� 38.4� 29.0�

Mínimo� 467� 446� 453� 441� 433� 439� 419� 463�
Máximo� 592� 592� 592� 592� 592� 592� 592� 592�

� � � � � � � � �

Bloque� 40� 41� 42� 43� 44� 45� 46� PROM.�
Promedio� 549.2� 552.6� 552.0� 552.0� 554.7� 558.6� 556.0� 616.9�

Derivación�estándar� 30.0� 30.5� 32.0� 34.8� 33.0� 27.2� 34.2� 45.7�
Mínimo� 462� 461� 449� 427� 453� 482� 464� 473.6�
Máximo� 592� 592� 589� 592� 592� 592� 592� 676.1�

Tabla�15:�Resultados�para�el�programa�4_4_2011�con�bloques�de�100�iteraciones�

�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�

A�continuación,�en�el�Gráfico�12,�se�muestra�como�dichos�valores�mínimos�de�cada�bloque�de�iteraciones�van�
variando�a�lo�largo�de�la�ejecución�del�programa,�además�de�mostrar�el�valor�exacto�de�algunos�de�los�valores�
más�relevantes.�

�

�

Gráfico�12:�Valores�mínimos�de�cada�bloque�de�100�iteraciones�para�el�programa�4_4_2011�

Se�puede�observar�cómo,�al�igual�que�sucedía�en�la�aplicación�del�presente�programa�con�11�grandes�bloques�
de�iteraciones�en�comparación�con�los�resultados�obtenidos�con�el�programa�a�día�3_17_2011,�en�este�caso,�al�
aplicar� 46� bloques� de� un� reducido� número� de� iteraciones� también� se� consiguen� unas� mejoras� realmente�
buenas�con�el� respectivo�programa�aplicado�el�día�3_17_2011.�Los�valores�de�promedio� se�han�reducido�de�
cerca� de�1200� a� casi� la�mitad,� alrededor� de�600,� los� valores�de� derivación�estándar,� al� igual� que� sucedía� al�
comparar�ambos�programas�aplicando�grandes�bloques�de�iteraciones,�se�han�reducido�enormemente,�de�un�
promedio�de�alrededor�de�350�a�un�promedio�de�cerca�de�45.�Por�otra�parte,� si�bien�el�valor�mínimo�no�se�
reduce� enormemente,� este� sufre� una� ligera�mejora,� del� valor�obtenido�por� el� programa� anterior� de�431,� al�
valor�del�presente�programa�de�423.�

Por�tanto,�tal�y�como�se�observó�en�el�análisis�de�los�resultados�realizado�para�el�programa�del�día�3_17_2011,�
se� puede� decir� finalmente� que,� la� aplicación� de� menos� bloques� de� iteraciones� con� mayor� cantidad� de�
iteraciones�en�cada�uno�de�ellos�proporciona�unos�valores�ligeramente�mejores�que�el�uso�de�más�bloques�de�
iteración�pero�con�menos� iteraciones�en�cada�uno�de�ellos�por� lo�que�el� futuro�método�de�aplicación�de� los�
mismos�será�procediendo�de�la�primera�manera,�es�decir�con�grandes�bloques�de�iteraciones.�

Como�ya�se�comentó�anteriormente,�los�resultados�que�se�han�obtenido�con�esta�modificación�del�programa�
proporcionan�unos�resultados�realmente�buenos�y�satisfactorios�para�el�problema�tratado,�por�lo�cual,�se�va�a�
considerar�el�mismo�como�el�resultado�final�del�presente�proyecto,�dejando�para�futuras�ampliaciones�del�
mismo,�las�posibles�mejoras�que�pudieran�realizarse�a�partir�del�esta�última�modificación�del�programa.�

� �

974

715

518 535

497
450

423

433
488 453

439

476
395

467 441 419 427

464

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0
Mejor�iteración�de�cada�bloque

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

6.4.�PROGRAMA�DEFINIFTIVO�

A�continuación,�a�modo�de�conclusión�de�los�anexos,�se�expone�el�programa�desarrollado�A�día�4_4_2011,�con�
el� cual,� tal� y� como� se� comentó� anteriormente,� se� obtuvieron� los� mejores� resultados.� El� lenguaje� de�
programación�ha�sido�Python.�
�
#��*��coding:�cp1252��*��
import�networkx�as�nx�
import�matplotlib.pyplot�as�plt�
import�math�
import�random�as�rd�
import�copy�
#�Put�it�only�if�IDLE�is�used�and�we�want�to�depure�
#import�pdb�
#pdb.set_trace()�
�
#���
#�CREATION�OF�THE�GRAPH�
#���
G�=�nx.Graph()�
�
#�Location�of�nodes�with�UTM�coordinates�(http://www.mundivideo.com/coordenadas.htm)�
#�Nodes�are�assigned�in�Google�Maps�(URI)�
�
nbunch=��{��0:�(287092.96,4595420.82),\�
������������1:�(287805.32,4596225.97),\�
������������2:�(287617.43,4596298.07),\�
������������3:�(287808.21,4596429.14),\�
������������4:�(287774.67,4596249.21),\�
������������5:�(287476.20,4596144.09),\�
������������6:�(288124.75,4596174.25),\�
������������7:�(288194.87,4596470.46),\�
������������8:�(288070.32,4595985.15),\�
������������9:�(287938.59,4596001.02),\�
�����������10:�(288287.88,4596451.17),\�
�����������11:�(288220.89,4596155.75),\�
�����������12:�(288334.74,4596436.46),\�
�����������13:�(288351.22,4596510.99),\�
�����������14:�(288537.94,4596459.06),\�
�����������15:�(288527.13,4596395.03),\�
�����������16:�(288448.74,4596411.67),\�
�����������17:�(288441.02,4596353.77),\�
�����������18:�(288505.24,4596343.89),\�
�����������19:�(288445.27,4596256.30),\�
�����������20:�(288507.58,4596269.70),\�
�����������21:�(288403.14,4596255.76),\�
�����������22:�(288372.67,4596285.21),\�
�����������23:�(288374.84,4596299.48),\�
�����������24:�(288375.87,4596328.90),\�
�����������25:�(288377.76,4596347.63),\�
�����������26:�(288263.95,4596350.52),\�
�����������27:�(288256.51,4596310.51),\�
�����������28:�(288251.92,4596290.53),\�
�����������29:�(288332.08,4596228.84),\�
�����������30:�(288303.97,4596139.43),\�
�����������31:�(288301.95,4596193.05),\�
�����������32:�(288242.73,4596054.21),\�
�����������33:�(288218.73,4595680.63),\�
�����������34:�(288274.12,4595674.56),\�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�����������35:�(288363.97,4595663.93),\�
�����������36:�(288380.17,4595880.04),\�
�����������37:�(288343.82,4595577.84),\�
�����������38:�(288217.36,4595434.64),\�
�����������39:�(289125.94,4595462.04),\�
�����������40:�(288136.96,4595445.89),\�
�����������41:�(288271.24,4595650.53),\�
�����������42:�(288193.95,4595659.47),\�
�����������43:�(288163.56,4595557.68),\�
�����������44:�(288203.72,4595550.72),\�
�����������45:�(289341.93,4595767.44),\�
�����������46:�(288127.99,4595413.59),\�
�����������47:�(287850.38,4595470.42),\�
�����������48:�(287783.51,4595515.28),\�
�����������49:�(287911.52,4595461.07),\�
�����������50:�(287917.42,4595493.90),\�
�����������51:�(287932.62,4595584.58),\�
�����������52:�(287974.62,4595640.46),\�
�����������53:�(288024.37,4595564.43),\�
�����������54:�(287998.80,4595473.62),\�
�����������55:�(287846.54,4595507.54),\�
�����������56:�(288742.19,4596348.95),\�
�����������57:�(288640.45,4596073.33),\�
�����������58:�(288386.00,4596161.58),\�
�����������59:�(288377.45,4596123.49),\�
�����������60:�(288503.63,4596101.01),\�
�����������61:�(288517.55,4596134.05),\�
�����������62:�(288413.76,4596156.32),\�
�����������63:�(288726.84,4596056.02),\�
�����������64:�(288641.03,4595942.07),\�
�����������65:�(288645.57,4595865.93),\�
�����������66:�(288640.37,4595796.96),\�
�����������67:�(288583.25,4595789.63),\�
�����������68:�(288554.01,4595938.29),\�
�����������69:�(288505.37,4595977.72),\�
�����������70:�(288509.35,4596036.50),\�
�����������71:�(288553.67,4596020.53),\�
�����������72:�(288425.97,4595883.14),\�
�����������73:�(288620.60,4595478.60),\�
�����������74:�(288413.86,4595424.43),\�
�����������75:�(288471.23,4595408.86),\�
�����������76:�(288590.20,4595367.81),\�
�����������77:�(288211.76,4595397.69),\�
�����������78:�(288293.28,4595379.29),\�
�����������79:�(288438.14,4595548.74),\�
�����������80:�(288452.68,4595357.61),\�
�����������81:�(288425.72,4595338.73),\�
�����������82:�(288570.60,4595297.93),\�
�����������83:�(288498.75,4595857.34),\�
�����������84:�(288755.87,4596051.61),\�
�����������85:�(288762.04,4596125.11),\�
�����������86:�(288813.95,4596334.40),\�
�����������87:�(288787.66,4596141.36),\�
�����������88:�(288832.45,4596124.38),\�
�����������89:�(288829.92,4596037.89),\�
�����������90:�(288953.28,4596041.39),\�
�����������91:�(288930.34,4596117.07),\�
�����������92:�(289001.62,4596054.31),\�
�����������93:�(289028.74,4596156.20),\�
�����������94:�(289109.80,4596153.39),\�
�����������95:�(289138.71,4596282.01),\�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�����������96:�(289289.24,4596235.16),\�
�����������97:�(289255.46,4596137.02),\�
�����������98:�(289084.72,4596107.23),\�
�����������99:�(289064.26,4596067.60),\�
����������100:�(289160.48,4596060.78),\�
����������101:�(289036.50,4596052.85),\�
����������102:�(289213.43,4596048.12),\�
����������103:�(289372.57,4596109.93),\�
����������104:�(289473.41,4596077.98),\�
����������105:�(289494.71,4596149.26),\�
����������106:�(289181.60,4595971.26),\�
����������107:�(289339.35,4595925.21),\�
����������108:�(289441.71,4595899.44),\�
����������109:�(289156.12,4595897.00),\�
����������110:�(289049.69,4595906.44),\�
����������111:�(288952.41,4595906.07),\�
����������112:�(288940.30,4595766.29),\�
����������113:�(289121.21,4595746.22),\�
����������114:�(289120.06,4595675.24),\�
����������115:�(288938.13,4595677.89),\�
����������116:�(288863.01,4595683.65),\�
����������117:�(288871.63,4595764.18),\�
����������118:�(288856.05,4595599.95),\�
����������119:�(288629.80,4595587.35),\�
����������120:�(288708.84,4595578.25),\�
����������121:�(288772.69,4595584.05),\�
����������122:�(288668.15,4595444.20),\�
����������123:�(288800.13,4595388.11),\�
����������124:�(288781.48,4595301.98),\�
����������125:�(288771.77,4595247.36),\�
����������126:�(288745.43,4595326.70),\�
����������127:�(288822.10,4595236.45),\�
����������128:�(289008.68,4595192.65),\�
����������129:�(289143.58,4595161.81),\�
����������130:�(288983.61,4595346.96),\�
����������131:�(289012.22,4595482.37),\�
����������132:�(288960.67,4595497.21),\�
����������133:�(288969.96,4595617.51),\�
����������134:�(289121.36,4595473.84),\�
����������135:�(289263.11,4595829.64),\�
����������136:�(289127.40,4595803.60),\�
����������137:�(289203.26,4595883.17),\�
����������138:�(289186.14,4595835.00),\�
����������139:�(289223.83,4595711.99),\�
����������140:�(289242.47,4595783.79),\�
����������141:�(289297.41,4595762.07),\�
����������142:�(289271.49,4595701.60),\�
����������143:�(289347.52,4595804.40),\�
����������144:�(289355.16,4595682.27),\�
����������145:�(289406.36,4595669.99),\�
����������146:�(289348.09,4595623.46),\�
����������147:�(289521.26,4595584.07),\�
����������148:�(289680.89,4596106.83),\�
����������149:�(289634.86,4595958.04),\�
����������150:�(289603.15,4595853.61),\�
����������151:�(289589.84,4595812.44),\�
����������152:�(289571.92,4595750.95),\�
����������153:�(289472.99,4595418.90),\�
����������154:�(289385.97,4595108.84),\�
����������155:�(289247.77,4595135.55),\�
����������156:�(289179.62,4595548.93),\�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

����������157:�(289284.14,4595490.98),\�
����������158:�(289275.50,4595441.11),\�
����������159:�(289362.73,4595449.35),\�
����������160:�(289329.14,4595329.31),\�
����������161:�(289145.85,4595208.20),\�
����������162:�(288958.62,4595275.35),\�
����������163:�(288941.75,4595232.95),\�
����������164:�(289127.50,4595209.18),\�
����������165:�(289144.87,4595234.68),\�
����������166:�(289114.52,4595240.01),\�
����������167:�(288016.94,4596196.08),\�
����������168:�(288079.07,4596451.07),\�
����������169:�(289145.69,4595325.67),\�
����������170:�(289119.77,4595556.90),\�
����������171:�(289274.03,4595668.52),\�
����������172:�(289349.58,4595645.76),\�
����������173:�(289127.44,4595896.50),\�
����������174:�(289683.29,4595790.60),\�
����������175:�(289842.63,4595982.43),\�
����������176:�(289762.04,4595969.55),\�
����������177:�(289850.52,4595914.75),\�
����������178:�(289774.48,4595857.51),\�
����������179:�(290053.73,4596118.30),\�
����������180:�(288810.17,4596036.69),\�
����������181:�(288789.88,4595820.25),\�
����������182:�(288739.47,4595796.72),\�
����������183:�(288802.83,4595771.64),\�
����������184:�(288804.66,4595802.82),\�
����������185:�(288765.87,4595705.27),\�
����������186:�(288747.39,4595579.02),\�
����������187:�(288792.98,4595617.80),\�
����������188:�(288813.22,4595589.98),\�
����������189:�(288758.25,4595659.04),\�
����������190:�(288776.29,4595647.29),\�
����������191:�(288363.84,4595918.86),\�
����������192:�(288544.18,4595893.46),\�
����������193:�(288576.04,4595911.30),\�
����������194:�(288664.68,4595831.03),\�
����������195:�(288721.79,4596020.50),\�
����������196:�(288285.64,4595073.14),\�
����������197:�(288491.54,4595169.34),\�
����������198:�(287947.01,4595127.31),\�
����������199:�(289206.94,4595717.38),\�
����������200:�(289500.81,4595774.03),\�
����������201:�(288671.66,4595452.99)}�
�
#�Adding�nodes�to�the�graph�������������
G.add_nodes_from(nbunch,�attr_dict=None)�
�
#�Function�to�calculate�distances�between�2�points�(UTM)�
def�distance(N1,N2):�
����X1=nbunch[N1][0];�
����X2=nbunch[N2][0];�
����Y1=nbunch[N1][1];�
����Y2=nbunch[N2][1];�
����dist=�math.sqrt(((X2�X1)**2)+((Y2�Y1)**2));�
����return�dist�;�
�
#�List�of�all�the�edges�with�their�'weight'�
ebunch=(0,1,{'mandatory':�1.0}),(0,47,{'mandatory':�0.0}),\�
�������(1,4,{'mandatory':�0.0}),(1,167,{'mandatory':�0.0}),\�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�������(2,5,{'mandatory':�1.0}),(2,4,{'mandatory':�1.0}),\�
�������(3,4,{'mandatory':�0.0}),\�
�������(6,167,{'mandatory':�0.0}),(6,11,{'mandatory':�0.0}),(6,7,{'mandatory':�0.0}),(6,8,{'mandatory':�0.0}),\�
�������(7,10,{'mandatory':�0.0}),\�
�������(8,9,{'mandatory':�0.0}),\�
�������(10,12,{'mandatory':�1.0}),(10,26,{'mandatory':�0.0}),\�
�������(11,28,{'mandatory':�0.0}),(11,30,{'mandatory':�1.0}),(11,32,{'mandatory':�0.0}),\�
�������(12,13,{'mandatory':�0.0}),(12,16,{'mandatory':�0.0}),\�
�������(13,14,{'mandatory':�0.0}),\�
�������(14,15,{'mandatory':�0.0}),\�
�������(15,16,{'mandatory':�0.0}),(15,18,{'mandatory':�1.0}),(15,56,{'mandatory':�0.0}),\�
�������(16,17,{'mandatory':�1.0}),\�
�������(17,18,{'mandatory':�1.0}),(17,23,{'mandatory':�0.0}),\�
�������(18,20,{'mandatory':�1.0}),\�
�������(19,20,{'mandatory':�0.0}),(19,21,{'mandatory':�0.0}),(19,62,{'mandatory':�0.0}),\�
�������(21,22,{'mandatory':�0.0}),(21,58,{'mandatory':�1.0}),\�
�������(22,23,{'mandatory':�0.0}),\�
�������(23,24,{'mandatory':�0.0}),\�
�������(24,25,{'mandatory':�0.0}),(24,26,{'mandatory':�1.0}),\�
�������(26,27,{'mandatory':�0.0}),\�
�������(27,28,{'mandatory':�1.0}),\�
�������(28,29,{'mandatory':�0.0}),\�
�������(30,31,{'mandatory':�1.0}),(30,59,{'mandatory':�0.0}),\�
�������(32,33,{'mandatory':�0.0}),(32,59,{'mandatory':�0.0}),\�
�������(33,34,{'mandatory':�1.0}),\�
�������(34,35,{'mandatory':�1.0}),(34,41,{'mandatory':�0.0}),\�
�������(35,36,{'mandatory':�0.0}),(35,37,{'mandatory':�1.0}),\�
�������(36,72,{'mandatory':�1.0}),(36,191,{'mandatory':�0.0}),\�
�������(37,38,{'mandatory':�0.0}),(37,79,{'mandatory':�0.0}),\�
�������(38,40,{'mandatory':�0.0}),\�
�������(39,134,{'mandatory':�0.0}),(39,158,{'mandatory':�0.0}),(39,169,{'mandatory':�0.0}),\�
�������(40,44,{'mandatory':�1.0}),(40,46,{'mandatory':�0.0}),\�
�������(41,42,{'mandatory':�0.0}),(41,44,{'mandatory':�0.0}),\�
�������(42,43,{'mandatory':�1.0}),\�
�������(43,44,{'mandatory':�0.0}),\�
�������(45,143,{'mandatory':�0.0}),\�
�������(46,49,{'mandatory':�1.0}),(46,77,{'mandatory':�0.0}),\�
�������(47,49,{'mandatory':�1.0}),(47,55,{'mandatory':�0.0}),\�
�������(48,55,{'mandatory':�0.0}),\�
�������(49,50,{'mandatory':�0.0}),\�
�������(50,51,{'mandatory':�1.0}),(50,54,{'mandatory':�0.0}),\�
�������(51,52,{'mandatory':�0.0}),(51,53,{'mandatory':�0.0}),\�
�������(56,86,{'mandatory':�1.0}),(56,57,{'mandatory':�0.0}),\�
�������(57,60,{'mandatory':�0.0}),(57,63,{'mandatory':�0.0}),(57,64,{'mandatory':�1.0}),\�
�������(58,59,{'mandatory':�1.0}),(58,62,{'mandatory':�0.0}),\�
�������(59,60,{'mandatory':�0.0}),\�
�������(60,70,{'mandatory':�0.0}),\�
�������(61,62,{'mandatory':�1.0}),\�
�������(63,84,{'mandatory':�0.0}),(63,195,{'mandatory':�0.0}),\�
�������(64,65,{'mandatory':�1.0}),\�
�������(65,66,{'mandatory':�1.0}),(65,194,{'mandatory':�0.0}),\�
�������(66,67,{'mandatory':�0.0}),(66,119,{'mandatory':�0.0}),(66,194,{'mandatory':�0.0}),\�
�������(67,193,{'mandatory':�0.0}),\�
�������(68,69,{'mandatory':�0.0}),(68,71,{'mandatory':�1.0}),(68,192,{'mandatory':�0.0}),(68,193,{'mandatory':�0.0}),\�
�������(70,71,{'mandatory':�0.0}),\�
�������(72,83,{'mandatory':�0.0}),\�
�������(73,76,{'mandatory':�0.0}),(73,79,{'mandatory':�0.0}),\�
�������(74,75,{'mandatory':�1.0}),(74,79,{'mandatory':�1.0}),\�
�������(75,76,{'mandatory':�0.0}),(75,80,{'mandatory':�0.0}),\�
�������(76,82,{'mandatory':�0.0}),\�
�������(77,78,{'mandatory':�0.0}),(77,198,{'mandatory':�0.0}),\�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�������(78,81,{'mandatory':�1.0}),(78,196,{'mandatory':�1.0}),\�
�������(81,82,{'mandatory':�0.0}),(81,197,{'mandatory':�0.0}),\�
�������(82,125,{'mandatory':�0.0}),\�
�������(83,192,{'mandatory':�0.0}),\�
�������(84,85,{'mandatory':�0.0}),(84,180,{'mandatory':�0.0}),\�
�������(86,87,{'mandatory':�1.0}),(86,95,{'mandatory':�0.0}),\�
�������(87,88,{'mandatory':�0.0}),\�
�������(88,89,{'mandatory':�0.0}),\�
�������(89,90,{'mandatory':�1.0}),(89,180,{'mandatory':�0.0}),\�
�������(90,91,{'mandatory':�0.0}),(90,92,{'mandatory':�0.0}),\�
�������(92,93,{'mandatory':�0.0}),(92,101,{'mandatory':�1.0}),\�
�������(93,94,{'mandatory':�1.0}),\�
�������(94,95,{'mandatory':�0.0}),(94,96,{'mandatory':�0.0}),(94,97,{'mandatory':�1.0}),(94,98,{'mandatory':�0.0}),\�
�������(95,96,{'mandatory':�0.0}),\�
�������(96,97,{'mandatory':�1.0}),(96,105,{'mandatory':�0.0}),\�
�������(97,103,{'mandatory':�0.0}),(97,102,{'mandatory':�0.0}),\�
�������(98,99,{'mandatory':�0.0}),(98,100,{'mandatory':�0.0}),(98,101,{'mandatory':�0.0}),\�
�������(99,100,{'mandatory':�0.0}),(99,101,{'mandatory':�0.0}),\�
�������(100,102,{'mandatory':�1.0}),\�
�������(101,110,{'mandatory':�0.0}),\�
�������(102,106,{'mandatory':�1.0}),\�
�������(103,104,{'mandatory':�0.0}),(103,107,{'mandatory':�0.0}),\�
�������(104,105,{'mandatory':�1.0}),(104,108,{'mandatory':�0.0}),\�
�������(105,148,{'mandatory':�0.0}),\�
�������(106,107,{'mandatory':�1.0}),(106,109,{'mandatory':�0.0}),\�
�������(107,108,{'mandatory':�0.0}),\�
�������(108,150,{'mandatory':�0.0}),\�
�������(109,136,{'mandatory':�0.0}),(109,137,{'mandatory':�1.0}),(109,173,{'mandatory':�0.0}),\�
�������(110,111,{'mandatory':�0.0}),(110,173,{'mandatory':�0.0}),\�
�������(111,112,{'mandatory':�0.0}),\�
�������(112,113,{'mandatory':�1.0}),(112,115,{'mandatory':�0.0}),(112,117,{'mandatory':�0.0}),\�
�������(113,114,{'mandatory':�1.0}),(113,136,{'mandatory':�0.0}),(113,199,{'mandatory':�1.0}),\�
�������(114,115,{'mandatory':�1.0}),(114,170,{'mandatory':�0.0}),\�
�������(115,116,{'mandatory':�1.0}),\�
�������(116,117,{'mandatory':�1.0}),(116,118,{'mandatory':�0.0}),\�
�������(118,122,{'mandatory':�1.0}),(118,188,{'mandatory':�0.0}),\�
�������(119,120,{'mandatory':�0.0}),\�
�������(120,201,{'mandatory':�0.0}),(120,186,{'mandatory':�0.0}),\�
�������(121,186,{'mandatory':�0.0}),(121,187,{'mandatory':�1.0}),(121,188,{'mandatory':�0.0}),(121,190,{'mandatory':�0.0}),\�
�������(122,123,{'mandatory':�0.0}),(122,132,{'mandatory':�1.0}),\�
�������(123,124,{'mandatory':�0.0}),(123,130,{'mandatory':�0.0}),\�
�������(124,125,{'mandatory':�0.0}),(124,126,{'mandatory':�0.0}),\�
�������(125,127,{'mandatory':�0.0}),\�
�������(127,128,{'mandatory':�0.0}),\�
�������(128,129,{'mandatory':�1.0}),\�
�������(129,161,{'mandatory':�0.0}),(129,155,{'mandatory':�0.0}),\�
�������(130,131,{'mandatory':�1.0}),(130,169,{'mandatory':�0.0}),\�
�������(131,132,{'mandatory':�0.0}),(131,134,{'mandatory':�0.0}),\�
�������(132,133,{'mandatory':�1.0}),\�
�������(134,169,{'mandatory':�0.0}),(134,158,{'mandatory':�0.0}),(134,170,{'mandatory':�1.0}),\�
�������(135,137,{'mandatory':�0.0}),(135,140,{'mandatory':�1.0}),(135,143,{'mandatory':�0.0}),\�
�������(136,173,{'mandatory':�1.0}),\�
�������(137,138,{'mandatory':�0.0}),\�
�������(139,140,{'mandatory':�0.0}),(139,142,{'mandatory':�0.0}),(139,199,{'mandatory':�0.0}),\�
�������(140,141,{'mandatory':�0.0}),\�
�������(141,142,{'mandatory':�1.0}),\�
�������(142,144,{'mandatory':�0.0}),(142,171,{'mandatory':�0.0}),\�
�������(143,144,{'mandatory':�0.0}),\�
�������(144,145,{'mandatory':�0.0}),(144,172,{'mandatory':�1.0}),\�
�������(146,172,{'mandatory':�0.0}),(146,147,{'mandatory':�1.0}),\�
�������(147,152,{'mandatory':�1.0}),(147,153,{'mandatory':�0.0}),\�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

�������(148,149,{'mandatory':�0.0}),(148,179,{'mandatory':�1.0}),\�
�������(149,150,{'mandatory':�0.0}),(149,176,{'mandatory':�0.0}),\�
�������(150,151,{'mandatory':�1.0}),\�
�������(151,152,{'mandatory':�0.0}),(151,200,{'mandatory':�0.0}),\�
�������(152,174,{'mandatory':�0.0}),\�
�������(153,154,{'mandatory':�0.0}),(153,159,{'mandatory':�0.0}),\�
�������(154,155,{'mandatory':�1.0}),\�
�������(156,170,{'mandatory':�0.0}),(156,157,{'mandatory':�1.0}),(156,199,{'mandatory':�0.0}),\�
�������(157,158,{'mandatory':�0.0}),\�
�������(158,159,{'mandatory':�0.0}),\�
�������(159,160,{'mandatory':�1.0}),\�
�������(161,164,{'mandatory':�0.0}),(161,165,{'mandatory':�0.0}),\�
�������(162,163,{'mandatory':�0.0}),(162,164,{'mandatory':�0.0}),\�
�������(163,164,{'mandatory':�0.0}),\�
�������(165,166,{'mandatory':�0.0}),(165,169,{'mandatory':�0.0}),\�
�������(167,168,{'mandatory':�1.0}),\�
�������(171,172,{'mandatory':�0.0}),\�
�������(175,176,{'mandatory':�1.0}),(175,177,{'mandatory':�0.0}),\�
�������(176,178,{'mandatory':�1.0}),\�
�������(180,181,{'mandatory':�0.0}),\�
�������(181,182,{'mandatory':�1.0}),(181,184,{'mandatory':�0.0}),\�
�������(183,184,{'mandatory':�0.0}),\�
�������(185,189,{'mandatory':�1.0}),\�
�������(186,189,{'mandatory':�0.0}),\�
�������(187,190,{'mandatory':�1.0}),(187,188,{'mandatory':�0.0}),\�
�������(189,190,{'mandatory':�0.0}),\�
�������(192,193,{'mandatory':�0.0})�
��������
#�Adding�edges�to�the�graph��
edge_data�=�{'weight':�1.0,�'pheromone':0.0,�'probability':�0.0}�
�
G.add_edges_from(ebunch,attr_dict=edge_data)�
�
mandatory_edges=[]�
for�u,v�in�G.edges_iter():�
��������if�(G.get_edge_data(u,v,�default=0.0)['mandatory']�==�1.0):�
������������mandatory_edges.append((u,v))�
�����������
print�'Number�of�edges�=',len(ebunch)�
print�'Number�of�mandatory�edges�=',�len(mandatory_edges)�
�
#���
#�CREATION�OF�THE�DIFFERENT�RANDOM�PATHS�GIVEN�FOR�THE�FIRST�'ANTS'�(not�using�'pheromone'�values)�
#���
�
#�An�empty�dictionary�is�created�to�allow�memorize�all�the�paths�produced�by�the�first�random�'ants'�
dict_of_paths={}�
�
#�An�empty�list�is�created�in�which�the�edges�traversed�will�be�added�
visited=[]�
�����
#�Added�a�flag�which�will�advise�when�all�the�mandatory�edges�have�been�already�recovered������
continue_flag�=�0.0�
�
print�'Calculating�the�block�of�initialization....'�
�
iteration=0�
while�(iteration�<�500):�
����
����#print�"Iteration�number�=",�iteration�
�����

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�	

����#�Obtaining�the�minimum�weight�of�all�the�edges(Valid�in�directed�and�undirected�graphs)�
����start_node�=�current�=�1��#�this�is�the�origin�node�
�����
����#�Checking�if�the�mandatory�edges�have�been�already�recovered�
����for�u,v�in�G.edges_iter():�
��������if�(G.get_edge_data(u,v,�default=0.0)['weight']�==�\�
������������G.get_edge_data(u,v,�default=0.0)['mandatory']):�
������������continue_flag�=�1.0�
���������
����#print�"INITIAL�INFORMATION"�
����#print�"Start�node�=�",�start_node�
����#print�"Minimum�weight�of�all�the�edges�=�",�min_total_weight�
����#print�"��"�
�
����while�(continue_flag�==�1.0):�
��������#print�"Not�all�the�edges�of�the�graph�have�been�recovered"�
��������list_all_neighbors�=�G.neighbors(current)�
��������num_neighbors�=�len(list_all_neighbors)�
���������
��������#Information�regarding�the�neighbors���������
��������#print�"Current�node�=�",�current���������������������������
��������#print�"List�of�all�neighbors�=�",�list_all_neighbors�
��������#print�"Weight�of�the�neighbors�=�",�[G.get_edge_data(current,v,�default=1000)['weight']�\�
��������#�������������������������������������for�v�in�(list_all_neighbors)]��
�����������������
��������#�Information�about�the�value�of�S�(sum�of�the�weight�of�all�the�neighbors)�
��������sum_weight_neighbors�=�0.0�
��������for�X�in�(list_all_neighbors):�
������������sum_weight_neighbors�=�sum_weight_neighbors�+�\�
������������G.get_edge_data(current,X,default=1000)['weight']�
��������#print�"Total�sum�of�the�weight�of�all�the�neighbors�(S)�=�",�sum_weight_neighbors�
���������
���������
��������#Information�about�the�calculus�of�the�probability�in�each�edge�����
��������for�X�in�(list_all_neighbors):������
������������#print�"Calculating�probability�of�edge...",�[current,�X]�
������������#print�"Weight�of�this�edge�=�"�,�G.get_edge_data(current,X,�default=1000)['weight']�
������������if�num_neighbors==1:�
����������������G[current][X]['probability']�=�1.0�
����������������#print�'There�are�only�one�neighbor'�
������������elif�num_neighbors!=1:�
�����������������a�=�(1.0/(num_neighbors���1.0))�
�����������������b�=�sum_weight_neighbors���G.get_edge_data(current,X,�default=1000)['weight']�
�����������������c�=�(b/sum_weight_neighbors)�
�����������������G[current][X]['probability']�=�a*c�
�����������������#print�"a",a�
�����������������#print�"b",b�
�����������������#print�"c",c�
������������#print�"Probability�of�the�edge�=�",�G[current][X]['probability']�
���������
��������#Information�about�the�procedure�of�selecting�the�next�edge�
��������random�=�rd.random()�
��������#print�"Selecting�the�next�edge...."�
��������#print�"random�=",�random�
��������total_probability�=�0.0�
��������flag�=�0���
��������for�X�in�(list_all_neighbors):�
�������������total_probability�=�total_probability�+�\�
�������������G.get_edge_data(current,X,�default=1000)['probability']�
�������������#print�"X",�X�
�������������#print�"Total�probability�for�the�neighbor",�[X],"is...",�total_probability�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

��������������
�������������if�random�<�total_probability�and�flag!=1:�
�����������������next_node�=�X�
�����������������#print�"Next�node�will�be:"�,�next_node�
�����������������flag�=�1�
����
��������#�Adding�the�new�edge�traversed�to�our�list�of�edges�traversed�
��������visited�=�visited�+�[(current,�next_node)]�
��������#�Updating�edges'�information�
��������G[current][next_node]['weight']�=�G[current][next_node]['weight']�*�10;�
���������
��������#Information�about�the�selected�edge���������
��������#print�"The�edge�selected�is..",�[current,�next_node]�
���������
��������#Resetting�the�probability�of�the�edges�
��������for�X�in�(list_all_neighbors):�
������������G[current][X]['probability']�=�0.0�
���������
��������#Assigning�next�node�as�a�current�to�start�the�procedure�again�
��������current�=�next_node�
���������
��������#�Stop�the�procedure�until�was�checked�if�the�mandatory�edges�have�been�recovered�
��������continue_flag=�0.0�
���������
��������#�Checking�if�the�mandatory�edges�have�been�already�recovered�
��������for�u,v�in�G.edges_iter():�
������������if�(G.get_edge_data(u,v,�default=0.0)['weight']�==\�
����������������G.get_edge_data(u,v,�default=0.0)['mandatory']):�
����������������continue_flag=1.0�
��������
��������#print�"���"�
�
���#�Once�all�edges�have�been�traversed,�the�shortest�path�between�the�current�node�and��
���#�the�'start_node'�is�calculated�taking�into�account�the�weight�of�the�edges�(if�weighted=True)��
���#�and�it�is�represented�in�BLUE�DOTTED�LINE.�In�the�case�that�all�the�edges�had�the�same�'weight'��
���#�it�could�be�more�than�one�shortest�path�so�only�one�will�be�represented.�In�the�case�that�all��
���#�the�edges�had�the�same�weight�or�the�parameter�weighted=False,�the�shortest�path�will�be��
���#�calculated�assigning�the�same�'weight'�to�every�of�them.�This�is�the�case�of�the�most�common��
���#�programs�we�are�developing�because�in�our�case�the�parameter�'weight'�is�increasing�as�much��
���#�times�as�one�edge�is�recovered,�so�it�is�no�sense�to�use�the�algorithm�'shortest_path'�with�the��
���#�parameter�weighted=True,�because�this�parameter�doesn't�represent�in�our�case�distances,time...��
�
����#print�"Last�node�visited�before�'shortest�path'�=�",�current�
����nodes_shortest�=�nx.shortest_path(G,�source=current,�target=start_node,�weighted=False)�
����I�=�G.subgraph(nodes_shortest)�
�
����#�Added�the�edges�of�the�shortest�path�
����visited�=�visited�+�I.edges()�
�
����#Summary�of�the�iteration�
����#print�"List�of�edges�visited�=�",visited�
����#print�len(visited)�
�����
����#Saving�the�list�into�the�correspondent�place�in�the�dictionary�
����dict_of_paths[iteration]�=�visited�
�����
����#�Reinitializing�parameters�for�the�next�iteration�
����iteration�=�iteration�+�1�
�����
����#Reseting�the�list�of�visited�edges�
����visited�=�[]��

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

�

�����
����#�Reseting�the�weight�of�all�edges�in�order�to�be�able�to�generate�another�iteration��
����#�(the�value�'weight'�indicates�in�the�program�if�an�edge�has�or�hasn't�been�already�recovered��
����#�and�we�use�that�to�know�when�the�iteration�finishes)�
����for�u,v�in�G.edges_iter():�
��������G[u][v]['weight']=�1.0��
�����
����#print�"Final�of�the�present�iteration"�
����#print�"&&"�
�
�
�
#���
#�FINAL�RESUME�OF�THE�FIRST�BLOCK�OF�ITERATIONS�
#���
�
print�"��"�
print�"����������FINAL�RESUME�OF�THE�BLOCK�OF�INITIALIZATION�����������������������"�
print�"��"�
�
print�"Length�of�the�paths:"�
for�X�in�dict_of_paths.keys():�
����print�len(dict_of_paths[X])��
�
�
print�'Calculating�and�updating�the�pheromone�values�for�the�next�block�of�iterations'�
�
#���
#�ONCE�THE�FIRST�ANTS�HAVE�FINISHED�ALL�THE�ITERATIONS�WE�CALCULATE�A�'PHEROMONE'�VALUE�DEPENDING�TO��
#�THE�QUALITY�OF�THE�SOLUTION�OBTAINED�AND�THIS�VALUE�IS�STORED�IN�EACH�EDGE�OF�THE�GRAPH�
#���
�
#�The�program�has�finished�to�develop�the�'random'�iterations�and�all�the�data�have�been�saved�in�a��
#�dictionary�with�the�name�of�dict_of_paths�on�which�the�keys�are�the�iteration�number�and�the�items��
#�are�the�list�of�the�edges�recovered�in�the�correspondent�iteration.�
�
#Creation�of�a�list�with�the�distances�of�all�the�iterations�
list_of_lengths�=�[]�
for�X�in�dict_of_paths.keys():�
����list_of_lengths.append(�len(dict_of_paths[X])�);�
�
#�Information�of�the�distances�taken�in�the�different�iterations�and�the�minimum�of�all�of�them��
#�(shortest_path_length)�as�a�float�number�in�order�to�be�able�to�do�operations�later.�
shortest_path_length�=�float(min(list_of_lengths))�
#print�'List�of�the�lengths�of�the�different�iterations�=�',�list_of_lengths�
#print�'Shortest�length�of�the�different�iterations',�shortest_path_length�
�
#�Iteration�over�all�the�paths�created�(all�the�iterations)�
for�X�in�dict_of_paths.keys():�
����#�Getting�the�length�of�the�iteration�which�is�being�studied�
����current_path_length�=�float(len(dict_of_paths[X]))�
�����
����#�Calculating�the�value�('pheromone')�to�update�in�all�the�edges�of�the�current�path��
����pheromone_value_to_update�=�\�
����((math.e)**(�4.0*(1.0���(current_path_length�/�shortest_path_length))**2))�
�����
����#�Information�about�the�values�to�update�in�the�current�path�
����#print�'Path�n�:',�X�
����#print�'Length�of�the�current�path',�current_path_length�
����#print�'Pheromone�value�to�update�for�all�the�edges�of�this�path�=�',�pheromone_value_to_update�
�����

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

����#�In�the�path�who�is�being�studied�actualization�of�the�'pheromone�value�for�all�the�edges��
����#�this�path�contains�
����for�u,v�in�dict_of_paths[X]:�
�������G[u][v]['pheromone']=�G[u][v]['pheromone']�+�pheromone_value_to_update��
�
#�Checking�if�the�results�are�coherent�
�
print�'Edges...'�
for�u,v�in�G.edges_iter():�
����print�[u,v]�
�
print�'Pheromone�values...'�
for�u,v�in�G.edges_iter():�����
����print�G.get_edge_data(u,v,�default=0)['pheromone']�
�
#�Introducing�another�constrain�to�the�program�
best_so_far�=�shortest_path_length�
limit_of_length=�1.5�*�best_so_far�
print�'Best�so�far:',�best_so_far�
print�'Limit�of�length:',�limit_of_length�
�
#print�
'&&'���
�
number_of_blocks�=�0�
while�(number_of_blocks�<�12):�
�����
����#��
����#�CREATION�OF�THE�PATHS�TAKEN�INTO�ACCOUNT�ALSO�THE�'PHEROMONE'�VALUE�OF�ALL�THE�EDGES�AND�USING��
����#�THE�VALUE�'WEIGHT'�TO�KNOW�IF�AN�EDGE�HAS�OR�HASN'T�BEEN�RECOVERED�AND�TO�KNOW�IN�THIS�WAY���
����#�WHEN�ALL�THE�EDGES�HAVE�BEEN�RECOVERED.�
����#�ALSO�THE�PARAMETER�'PROBABILITY'�WILL�BE�RE�USED�TO�SELECT�WITH�A�PROBABILISTIC�METHOD�WITH���
����#�EDGE�TO�CHOOSE.��
����#��
�����
����#�Reseting�the�values�of�the�dictionary�to�memorize�the�next�block�of�iterations�
����dict_of_paths={}�
�����
����#�An�empty�list�is�created�in�which�the�edges�traversed�will�be�added�
����visited=[]�
�����
����#�Added�a�flag�which�will�advise�when�all�the�mandatory�edges�have�been�already�recovered������
����continue_flag�=�0.0�
�����
����print�'Calculating�the�next�block�of�iterations...'�
�����
����iteration=0�
����while�(iteration�<�1000):�
��������print�'Iteration�n�=',�iteration�
���������
��������start_node�=�current�=�1��#�this�is�the�origin�node�
��������
��������#�Checking�if�the�mandatory�edges�have�been�already�recovered�
��������for�u,v�in�G.edges_iter():�
������������if�(G.get_edge_data(u,v,�default=0.0)['weight']�==�\�
����������������G.get_edge_data(u,v,�default=0.0)['mandatory']):�
����������������continue_flag�=�1.0�
�����
��������#print�"INITIAL�INFORMATION"�
��������#print�"Start�node�=�",�start_node�
��������#print�"Minimum�weight�of�all�the�edges�=�",�min_total_weight�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

��������#print�"��"�
�����
��������while�(continue_flag�==�1.0):�
�������������
������������#print�"Not�all�the�edges�of�the�graph�have�been�recovered"�
������������list_all_neighbors�=�G.neighbors(current)�
������������num_neighbors�=�len(list_all_neighbors)�
������������min_neighbors_weight=�min(G.get_edge_data(current,v,�default=1000)['weight']�\�
��������������������������������������for�v�in�(list_all_neighbors))���
�����������������������
������������#Information�regarding�the�neighbors���������
������������#print�"Current�node�=�",�current���������������������������
������������#print�"List�of�all�neighbors�=�",�list_all_neighbors�
�������������
������������#�Selection�of�the�edge�in�case�that�there�exists�some�'virgin'edge�
������������if�min_neighbors_weight�==�1.0:�
����������������list_neighbors_to_take=[]�
����������������for�X�in�(list_all_neighbors):�
��������������������if�(G.get_edge_data(current,X,�default=1000)['weight']�==�1.0):�
����������������������������list_neighbors_to_take.append(X)�
����������������#print�'List�of�neighbors�to�consider...',�list_neighbors_to_take�
�����������������
����������������#In�case�there�were�only�ONE�'virgin'�edge�the�probability�will�be�100%�
����������������if�len(list_neighbors_to_take)==1:�
��������������������for�X�in�list_neighbors_to_take:�
������������������������G[current][X]['probability']=�1.0�
������������������������#print�'Probability�edge',[current,X],'=',G[current][X]['probability']��
�����������������
����������������#In�case�there�were�more�than�one�'virgin'�edge�we�have�to�calculate�the�probability��
����������������#taking�into�account�the�'pheromone'�value�
����������������else:�
���������������������
��������������������#Creation�of�a�list�with�all�the�useful�'pheromone'�values�in�this�selection�and��
��������������������#creation�of�a�dictionary�with�'keys'�the�number�of�the�node�considered�and�the��
��������������������#'values'�the�'pheromone'�value.�
��������������������list_pheromones=[]�
��������������������pheromone_values={}�
��������������������for�X�in�(list_neighbors_to_take):�
������������������������pheromone_values[X]=�(G.get_edge_data(current,X,�default=1000)['pheromone'])�
������������������������list_pheromones.append(G.get_edge_data(current,X,�default=1000)['pheromone'])�
�����������������
��������������������#�Procedure�to�calculate�the�'probability'�(differs�to�the�first�'ants'��
��������������������#�procedure�of�selection)�
��������������������minimum_pheromone�=�min(list_pheromones)�
��������������������maximum_pheromone�=�max(list_pheromones)�
�������������������������
��������������������#�Creation�to�a�dictionary�with�the�'keys'�the�number�of�the�nodes�and�the��
��������������������#�'values'�the�'new_weight'�used�to�calculate�the�value�of�probability.�
��������������������new_weights={}�
��������������������for�X�in�pheromone_values.keys():�
������������������������current_edge_pheromone�=�pheromone_values[X]�
������������������������new_weights[X]=(maximum_pheromone�minimum_pheromone)+\�
������������������������(current_edge_pheromone�minimum_pheromone)�
������������������������#�print�'Node',�X,'New_weight',�new_weights[X]�
�����������������
��������������������sum_new_weights_squared�=�0.0�
��������������������for�X�in�new_weights.keys():�
������������������������sum_new_weights_squared�=�sum_new_weights_squared�+�((new_weights[X])**2)�����
��������������������#print�'Denominator..',�sum_new_weights_squared�
�����������������������������
��������������������for�X�in�new_weights.keys():�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

������������������������G[current][X]['probability']=(((new_weights[X])**2)/sum_new_weights_squared)�
������������������������#print�'Probability�edge',[current,X],'=',G[current][X]['probability']������������������
�
����������������#Information�about�the�procedure�of�selecting�the�next�edge�
����������������random�=�rd.random()�
����������������#print�"Selecting�the�next�edge...."�
����������������#print�"random�=",�random�
����������������total_probability�=�0.0�
����������������flag�=�0���
����������������for�X�in�(list_all_neighbors):�
��������������������total_probability�=�total_probability�+�\�
��������������������G.get_edge_data(current,X,�default=1000)['probability']�
��������������������#print�"X",�X�
��������������������#print�"Total�probability�for�the�neighbor",�[X],"is...",�total_probability�
������������������
��������������������if�random�<�total_probability�and�flag!=1:�
������������������������next_node�=�X�
������������������������#print�"Next�node�will�be:"�,�next_node�
������������������������flag�=�1.0�
�������������
������������#�Selection�of�the�edge�in�case�that�there�not�exists�any�'virgin'edges�
������������else:�
����������������list_neighbors_to_take=[]�
����������������for�X�in�(list_all_neighbors):�
��������������������if�(G.get_edge_data(current,X,�default=1000)['weight']�!=�1.0):�
����������������������������list_neighbors_to_take.append(X)�
����������������#print�'List�of�neighbors�to�consider...',�list_neighbors_to_take�
�����������������
����������������num_neighbors�=�len(list_neighbors_to_take)�
�����������������
����������������#�Information�about�the�value�of�S�(sum�of�the�weight�of�all�the�neighbors)�
����������������sum_weight_neighbors�=�0.0�
����������������for�X�in�(list_neighbors_to_take):�
��������������������sum_weight_neighbors�=�sum_weight_neighbors�+�\�
��������������������G.get_edge_data(current,X,default=1000)['weight']�
��������������������#print�"Total�sum�of�the�weight�of�all�the�neighbors(S)=�",�sum_weight_neighbors�
�������������
����������������#Information�about�the�calculus�of�the�probability�in�each�edge�����
����������������for�X�in�(list_neighbors_to_take):������
����������������#print�"Calculating�probability�of�edge...",�[current,�X]�
����������������#print�"Weight�of�this�edge�=�"�,�G.get_edge_data(current,X,�default=1000)['weight']�
��������������������if�num_neighbors==1:�
������������������������G[current][X]['probability']�=�1.0�
������������������������#print�'There�are�only�one�neighbor'�
��������������������else:�
������������������������a�=�(1.0/(num_neighbors���1.0))�
������������������������b�=�sum_weight_neighbors��G.get_edge_data(current,X,�default=1000)['weight']�
������������������������c�=�(b/sum_weight_neighbors)�
������������������������G[current][X]['probability']�=�a*c�
������������������������#print�"a",a�
������������������������#print�"b",b�
������������������������#print�"c",c�
������������������������#print�'Probability�edge',[current,X],'=',G[current][X]['probability']�������������
�������������
����������������#Information�about�the�procedure�of�selecting�the�next�edge�
����������������random�=�rd.random()�
����������������#print�"Selecting�the�next�edge...."�
����������������#print�"random�=",�random�
����������������total_probability�=�0.0�
����������������flag�=�0���
����������������for�X�in�(list_neighbors_to_take):�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

��������������������total_probability�=�total_probability�+�\�
��������������������G.get_edge_data(current,X,�default=1000)['probability']�
��������������������#print�"X",�X�
��������������������#print�"Total�probability�for�the�neighbor",�[X],"is...",�total_probability�
������������������
��������������������if�random�<�total_probability�and�flag!=1:�
�������������������������next_node�=�X�
�������������������������#print�"Next�node�will�be:"�,�next_node�
�������������������������flag�=�1�
������������������������������
������������������������������
������������#�Adding�the�new�edge�traversed�to�our�list�of�edges�traversed�
������������visited�=�visited�+�[(current,�next_node)]�
�������������
������������#�Updating�edges'�information�
������������G[current][next_node]['weight']�=�G[current][next_node]['weight']�*�10;�
������������#print�"current�and�next",�current,�next_node�
�����
������������#Information�about�the�selected�edge���������
������������#print�"The�edge�selected�is..",�[current,�next_node]�
�������������
������������#Reseting�the�probability�of�the�edges�
������������for�X�in�(list_all_neighbors):�
����������������G[current][X]['probability']�=�0.0�
�����������������
������������#Assigning�next�node�as�a�current�to�start�the�procedure�again�
������������current�=�next_node�
�������������
������������#�Stop�the�procedure�until�was�checked�if�the�mandatory�edges�have�been�recovered�
������������continue_flag=�0.0�
���������
�������������#�Checking�if�the�mandatory�edges�have�been�already�recovered�
������������for�u,v�in�G.edges_iter():�
����������������if�(G.get_edge_data(u,v,�default=0.0)['weight']�==\�
��������������������G.get_edge_data(u,v,�default=0.0)['mandatory']):�
��������������������continue_flag=1.0�
����������������
������������#print�"���"�
�����
��������#Once�all�edges�have�been�traversed,�the�shortest�path�between�the�current�node�and��
��������#the�'start_node'�is�calculated�taking�into�account�the�weight�of�the�edges(weighted=True)��
��������#and�it�is�represented�in�BLUE�DOTTED�LINE.�In�the�case�that�all�the�edges�had�the�same�'weight'��
��������#it�could�be�more�than�one�shortest�path�so�only�one�will�be�represented.�In�the�case�that��
��������#all�the�edges�had�the�same�weight�or�the�parameter�weighted=False,�the�shortest�path�will�be��
��������#calculated�assigning�the�same�'weight'�to�every�of�them.�This�is�the�case�of�the�most�common��
��������#programs�we�are�developing�because�in�our�case�the�parameter�'weight'�is�increasing�as�much��
��������#times�as�one�edge�is�recovered,�so�it�is�no�sense�to�use�the�algorithm�'shortest_path'�with��
��������#parameter�weighted=True,because�this�parameter�doesn't�represent�in�our�case�distances,time...�
�����
��������#print�"Last�node�visited�before�'shortest�path'�=�",�current�
��������nodes_shortest�=�nx.shortest_path(G,�source=current,�target=start_node,�weighted=False)�
��������I�=�G.subgraph(nodes_shortest)�
�����
��������#�Added�the�edges�of�the�shortest�path�
��������visited�=�visited�+�I.edges()�
�����
��������#Summary�of�the�iteration�
��������#print�"List�of�edges�visited�=�",visited�
��������#print�len(visited)�
���������
��������#Only�saving�the�path�in�the�case�that�the�length�is�less�or�equal�to�the�limit_of_length�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

��������#If�it�is�longer�than�the�limit,�the�path�is�not�saved�and�the�number�of�iteration�remains��
��������#constants�for�what�it�is�repeated�again.�
��������if�(len(visited)�<=�limit_of_length):�
������������#Saving�the�list�into�the�correspondent�place�in�the�dictionary�
������������dict_of_paths[iteration]�=�visited�
������������#�Reinitializing�parameters�for�the�next�iteration�
������������iteration�=�iteration�+�1�
�����������������
��������#Reseting�the�list�of�visited�edges�
��������visited�=�[]��
�
��������#Reseting�the�weight�of�all�edges�
��������for�u,v�in�G.edges_iter():�
������������G[u][v]['weight']=�1.0��
���������
��������#print�"Final�of�the�present�iteration"�
��������#print�"&&&"�
�����
����#��
����#�FINAL�RESUME�OF�THE�LAST�BLOCK�
����#��
�����
����print�"��"�
����print�"������FINAL�RESUME�OF�THE�BLOCK�OF�ITERATIONS�������������������������������������"�
����print�"��"�
�����
����print�"Length�of�the�paths:"�
����for�X�in�dict_of_paths.keys():�
��������print�len(dict_of_paths[X])��
�����
�����
����print�'Calculating�and�updating�the�pheromone�values�for�the�next�block�of�iterations'�
�����
����#�Removing�all�the�'pheromone'�values�of�the�previous�block�
����for�u,v�in�G.edges_iter():�
��������G[u][v]['pheromone']=�0.0�
����������
����#���
����#ONCE�THE�FIRST�ANTS�HAVE�FINISHES�ALL�THE�ITERATIONS�WE�CALCULATE�A�'PHEROMONE'�VALUE�DEPENDING��
����#TO�THE�QUALITY�OF�THE�SOLUTION�OBTAINED�AND�THIS�VALUE�IS�STORED�IN�EACH�EDGE�OF�THE�GRAPH�
����#���
�����
����#The�program�has�finished�to�develop�the�'random'�iterations�and�all�the�data�have�been�saved�in��
����#a�dictionary�with�the�name�of�dict_of_paths�on�which�the�keys�are�the�iteration�number�and�the��
����#items�are�the�list�of�the�edges�recovered�in�the�correspondent�iteration.�
�����
����#Creation�of�a�list�with�the�distances�of�all�the�iterations�
����list_of_lengths�=�[]�
����for�X�in�dict_of_paths.keys():�
��������list_of_lengths.append(�len(dict_of_paths[X])�);�
�����
����#�Information�of�the�distances�taken�in�the�different�iterations�and�the�minimum�of�all�of�them��
����#�(shortest_path_length)�as�a�float�number�in�order�to�be�able�to�do�operations�later.�
����shortest_path_length�=�float(min(list_of_lengths))�
����#print�'List�of�the�lengths�of�the�different�iterations�=�',�list_of_lengths�
����#print�'Shortest�length�of�the�different�iterations',�shortest_path_length�
�����
����#�Iteration�over�all�the�paths�created�(all�the�iterations)�
����for�X�in�dict_of_paths.keys():�
��������#�Getting�the�length�of�the�iteration�which�is�being�studied�
��������current_path_length�=�float(len(dict_of_paths[X]))�

�

Análisis�de�los�procedimientos�de�mantenimiento�invernal�de�la�red�viaria�
Junio�de�2011� �

�

�

��

���������
��������#�Calculating�the�value�('pheromone')�to�update�in�all�the�edges�of�the�current�path��
��������pheromone_value_to_update�=�\�
��������((math.e)**(�4.0*(1.0���(current_path_length�/�shortest_path_length))**2))�
���������
��������#�Information�about�the�values�to�update�in�the�current�path�
��������#print�'Path�n�:',�X�
��������#print�'Length�of�the�current�path',�current_path_length�
��������#print�'Pheromone�value�to�update�for�all�the�edges�of�this�path=',pheromone_value_to_update�
���������
��������#�In�the�path�who�is�being�studied�actualization�of�the�'pheromone�value�for�all�the�edges��
��������#�this�path�contains�
��������for�u,v�in�dict_of_paths[X]:�
�����������G[u][v]['pheromone']=�G[u][v]['pheromone']�+�pheromone_value_to_update��
�����
����#�Checking�if�the�results�are�coherent�
�����#print�'Edges...'�
����#for�u,v�in�G.edges_iter():�
����#����print�[u,v]�
�����
����print�'Pheromone�values...'�
����for�u,v�in�G.edges_iter():�����
��������print�G.get_edge_data(u,v,�default=0)['pheromone']�
�����
����#print�'&&&'��
�����#�Introducing�another�constrain�to�the�program�
����if��shortest_path_length�<�best_so_far:�
��������best_so_far�=�shortest_path_length�
���������
����limit_of_length=�1.5�*�best_so_far�
����print�'Best�so�far:',�best_so_far�
����print�'Limit�of�length�for�the�next�block:',�limit_of_length�
�����
����#�Increasing�the�counter�of�number�of�blocks�
����number_of_blocks�=�number_of_blocks�+�1�
��
#���
#�ORDERS�TO�REPRESENT�A�GRAPH�
#���
nx.draw(G,�pos=nbunch,�with_labels=True)�
�
nx.draw_networkx_edges(G,�pos=nbunch,�edgelist=None,�width=1.0,�edge_color='k',�style='solid',\�
�����������������������edge_cmap=None,�edge_vmin=None,�edge_vmax=None,�ax=None,�arrows=True)�
�
#�Mandatory�edges�����������
nx.draw_networkx_edges(G,pos=nbunch,edgelist=mandatory_edges,width=3.0,edge_color='r',style='solid',\�
�����������������������edge_cmap=None,�edge_vmin=None,�edge_vmax=None,�ax=None,�arrows=True)�
�
nx.draw_networkx_edges(I,�pos=nbunch,�width=5.0,�edge_color='b',�style='dotted',�arrows=True)�
�
#���
#�MATPLOTLIB�ORDERS�
#���
�
plt.suptitle('Rural�Chinese�Postman�Problem')�
plt.text(1.5,��1.2,�"Shortest�path�between�last�node�and�start�node�is�the�dotted�blue�line",\�
���������horizontalalignment='center',�verticalalignment='center')�
plt.savefig("Graph.png")�

plt.show()�

