
 
 
 
 
 
 

 
 

Trabajo Fin de Máster 
 
 

RECONOCIMIENTO NO INTRUSIVO DE CARGAS 
ELÉCTRICAS DOMÉSTICAS MEDIANTE REDES 

NEURONALES PARA IMPLEMENTACIÓN EN 
DISPOSITIVOS DE BAJO CONSUMO 

 
NON INTRUSIVE APPLIANCE RECOGNITION BY 

MEANS OF NEURAL NETWORKS FOR THE 
IMPLEMENTATION INTO LOW POWER DEVICES 

 
 

Autor 

 

Álvaro Valerio RAMÍREZ LADISLAO 
 

 
Director 

 
Roberto José CASAS NEBRA 

 
 

 
ESCUELA DE INGENIERÍA Y ARQUITECTURA, UNIVERSIDAD DE ZARAGOZA. 

AÑO 2016



 
 

RECONOCIMIENTO NO INTRUSIVO DE 
CARGAS ELÉCTRICAS DOMÉSTICAS 

MEDIANTE REDES NEURONALES PARA 
IMPLEMENTACIÓN EN DISPOSITIVOS DE 

BAJO CONSUMO 
 
 

RESUMEN: 
 

El presente trabajo aborda un enfoque novedoso a la hora de la identificación de cargas 
eléctricas de forma no invasiva, centrándose en cuantificar las prestaciones que una red 
neuronal artificial puede alcanzar para el caso de usar dispositivos computacionales de 
bajo consumo y medias prestaciones.  

Basándose en la impronta que cualquier carga eléctrica fija en la corriente que consume 
se idea un sistema electrónico capaz de, mediante una red neuronal, clasificar dicha carga 
únicamente capturando la onda de corriente en la acometida de cualquier usuario. 

Empezando con una adquisición detallada de los datos, se eligen aquellas 
características que se extraerán de la corriente así medida y se analizan las posibles 
técnicas de ahorro operacional y de adquisición de datos 

Posteriormente se realizan comparativas entre diversos tipos de redes neuronales 
artificiales en función de sus requerimientos de memoria frente a sus resultados 
clasificatorios. 

 



Pag 3 de 128 

 
 

TR
A

B
A

JO
S 

D
E 

FI
N

 D
E 

G
R

A
D

O
 /

 F
IN

 D
E 

M
Á

ST
ER

 
 

DECLARACIÓN DE 
AUTORÍA Y ORIGINALIDAD 

 

 
(Este documento debe acompañar al Trabajo Fin de Grado (TFG)/Trabajo Fin de 

Máster (TFM) cuando sea depositado para su evaluación). 
 

 
 
 
 
 

D./Dª.  Álvaro Valerio RAMÍREZ LADISLAO  , 

con nº de DNI  17744396B en aplicación de lo dispuesto en el art. 

14 (Derechos de autor) del Acuerdo de 11 de septiembre  de 2014, del Consejo 
 

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la 
 

Universidad de Zaragoza, 
 

Declaro que el presente Trabajo de Fin de (Grado/Máster) 
 

 MÁSTER EN INGENIERÍA ELECTRÓNICA , (Título del Trabajo) 
 

RECONOCIMIENTO NO INTRUSIVO DE CARGAS ELÉCTRICAS DOMÉSTICAS 
MEDIANTE REDES NEURONALES PARA IMPLEMENTACIÓN EN DISPOSITIVOS 
DE BAJO CONSUMO 

 
 
 
 
 
 

 
  , es  

de mi autoría y es original, no habiéndose utilizado fuente sin ser citada 

debidamente. 

 
 

 
Zaragoza,  a  25  de  Octubre  de  2016  

 
 
 
 
 
 
 
 
 
 
 
 
 



Pag 4 de 128 

TABLA DE CONTENIDOS      
 
1. INTRODUCCIÓN ................................................................................................................... 6 

1.1. MOTIVACIONES ........................................................................................................... 6 

1.2. OBJETO ........................................................................................................................ 6 

2. ESTADO DE LA IDENTIFICACION DE CARGAS................................................................... 8 

2.1. MÉTODOS DE IDENTIFICACIÓN.................................................................................. 8 

2.1.1. MÉTODOS HEURÍSTICOS .................................................................................... 8 

2.1.2. MÉTODOS ESTADÍSTICOS ................................................................................ 11 

2.1.3. REDES NEURONALES ....................................................................................... 12 

2.2. ELECCION DE LA LÍNEA DE INVESTIGACION .......................................................... 14 

3. SISTEMA ADQUISICIÓN ..................................................................................................... 15 

3.1. ADQUISICIÓN ............................................................................................................. 15 

3.1.1. ENSAYO TRANSFORMADOR DE CORRIENTE ................................................. 15 

3.1.2. ENSAYO TRANSFORMADOR DE TENSIÓN ...................................................... 18 

3.2. ACONDICIONAMIENTO, DIGITALIZACIÓN Y ENVÍO ................................................. 18 

3.3. ALMACENAMIENTO ................................................................................................... 20 

4. ANÁLISIS DE LOS DATOS .................................................................................................. 21 

4.1. BASE DE DATOS ........................................................................................................ 21 

4.1.1. PROCEDIMIENTO DE CAPTURA ....................................................................... 22 

4.2. PROCESADO .............................................................................................................. 23 

4.2.1. EXTRACCIÓN DEL PERIODO DE FUNCIONAMIENTO ...................................... 23 

4.2.2. EXTRACCIÓN DE LOS PASOS POR CERO DE LA TENSIÓN. ........................... 24 

4.2.3. EXTRACCIÓN DE LOS PASOS POR CERO DE LA CORRIENTE. ...................... 24 

4.3. EXTRACIÓN DE CARACTERÍSTICAS ........................................................................ 26 

4.3.1. CALCULO DEL VALOR EFICAZ .......................................................................... 26 

4.3.2. CENTROIDE DE CONCORDIA ............................................................................ 26 

4.3.3. TRANSFORMADA DE FOURIER ......................................................................... 28 

4.3.4. VALOR DE PICO ................................................................................................. 30 

4.3.5. VALOR DE INTER SEMIPERIODO ...................................................................... 30 

4.3.6. DESFASE TENSION CORRIENTE ...................................................................... 31 

4.4. EVALUACIÓN DE LAS CARACTERÍSTICAS ELEGIDAS ............................................ 32 

4.5. REDUCCIÓN DEL COSTE COMPUTACIONAL ........................................................... 33 

4.5.1. REDUCCION DE LA FRECUENCIA DE MUESTREO. ......................................... 33 

4.5.2. REDUCCION DEL NUMERO DE CARÁCTERÍSTICAS. ....................................... 33 

4.5.3. DETECCION DE EVENTOS ................................................................................ 34 

4.6. SOLUCION ADOPTADA .............................................................................................. 36 

5. REDES NEURONALES ....................................................................................................... 37 

5.1. RED MAPA AUTO ORGANIZADO(SOM)..................................................................... 37 

5.2. RED LINEAL PERCEPTRON ...................................................................................... 40 

5.3. RED PERCEPTRON MULTICAPA (MLP) .................................................................... 43 

5.4. RED LEARNING VECTOR QUANTIZATION (LVQ) ..................................................... 47 



 

Pag 5 de 128 

5.5. GASTO COMPUTACIONAL ........................................................................................ 50 

6. CONCLUSIONES ................................................................................................................ 51 

6.1. RESUMEN .................................................................................................................. 51 

6.2. TRABAJOS FUTUROS ................................................................................................ 51 

7. RESEÑAS............................................................................................................................ 52 

ANEXO I ..................................................................................................................................... 54 

ANEXO II .................................................................................................................................... 55 

ANEXO III ................................................................................................................................... 86 

ANEXO IV ................................................................................................................................... 91 

ANEXO V .................................................................................................................................... 94 

ANEXO VI ................................................................................................................................. 118 

 
 
 
 



1. INTRODUCCIÓN 

 Pag 6 de 128 

1. INTRODUCCIÓN 

1.1. MOTIVACIONES 

Desde siempre me ha interesado la producción, conversión y generación de energía eléctrica. Mi 
proyecto final de carrera versaba sobre cálculos de centrales hidroeléctricas, obteniendo el caudal 
óptimo instalado según el perfil del caudal disponible. Cuando tuve que elegir el trabajo fin de máster 
intenté profundizar sobre estos temas: energía, optimización y cálculos, aplicando los nuevos 
conocimientos y técnicas adquiridas. 

Fruto de estas inquietudes surge este estudio que pretende avanzar un modesto paso más en el 
control de la energía. 

1.2. OBJETO 

El presente trabajo fin de máster parte de estudios y técnicas para el reconocimiento de cargas 
eléctricas mediante el análisis de la impronta que éstas generan sobre determinados parámetros 
eléctricos, medibles de forma no invasiva (por sus siglas en ingles N.I.L.M, non intrusive load 
monitoring). De esta manera es posible conocer las cargas conectadas a un nodo eléctrico, sin 
necesidad de intervenir aguas abajo de dicho nodo. 

Esta información puede resultar útil tanto para el usuario final, que en cualquier momento puede 
saber el consumo no sólo de su hogar, sino también de cada dispositivo tanto en tiempo real como 
histórico, como para las compañías distribuidoras de energía eléctrica que podrían guiarse por la 
información así obtenida para mejorar el servicio (obviando distintos matices éticos referidos a la 
intimidad de las personas). 

Como se verá más adelante, estos sistemas han sido ya desarrollados por muchos investigadores, 
con diversas implementaciones de los algoritmos de reconocimiento (sistemas estadísticos, redes 
neuronales, lógica difusa, etc.). 

Todos tienen en común un esquema muy similar al de la figura 1 
 

 

Fig. 1 Esquema genérico de un sistema N.I.L.M. 

 

Estos sistemas aprovechan la gran capacidad y rapidez de los ordenadores personales para 
ejecutar los algoritmos de reconocimiento en cualquiera de sus versiones y obtener y almacenar los 
resultados. 



1. INTRODUCCIÓN 

Pag 7 de 128 

Sin embargo, estos sistemas son voluminosos, caros y ellos mismos consumen una energía 
considerable; por ello resulta ventajoso que el sistema de reconocimiento sea pequeño, consuma 
poca energía y sea capaz de obtener resultados similares. Es en este matiz del bajo consumo en el 
que se centrará este estudio, por lo que los algoritmos y funcionamiento se orientarán hacia este 
objetivo: conseguir un sistema de adquisición, procesado y un algoritmo eficiente energéticamente 
hablando. 

El acondicionamiento, ensayos y obtención de algoritmos se han realizado mediante scripts en 
MatLab, anexados a este documento. 

TDC  

 



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

 Pag 8 de 128 

2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Los sistemas NILM desde su concepción [HART 92] han tratado de obtener el consumo, y por 
tanto la potencia, desde la acometida o desde puntos de distribución, y no midiendo directamente 
en el electrodoméstico. Esto plantea el inconveniente de que la corriente que se puede medir en 
esto lugares centralizados es una suma de corrientes de todas las cargas allí conectadas. Discernir 
qué cargas están conectadas y qué porción de la corriente medida corresponde a cada cuál es el 
centro de las investigaciones en este campo. 

En este punto se realizará un estudio de las diversas técnicas empleadas desde sus comienzos 
hasta nuestros días, haciendo especial hincapié en las técnicas relacionadas con las redes 
neuronales, y su contraposición a técnicas estadísticas o más clásicas y a algoritmos heurísticos. 

El sistema de identificación de cargas (dado que no se mide cada carga individualmente, sino el 
conjunto de ellas) se sustenta en la teoría de que cada carga imprime en la corriente consumida o 
tensión soportada una “huella” que permite distinguirla del resto (disgregación). Es la búsqueda de 
esta huella única que permita la identificación, la que ha generado tan abundantes y variados 
sistemas. 

2.1. MÉTODOS DE IDENTIFICACIÓN 

El sistema de identificación propiamente dicho es el mecanismo por el cual al observar unas 
determinadas medidas, se obtiene cierta información de lo que está conectado aguas abajo del 
sistema de captación. 

Esta información es extraída mediante diferentes métodos, que podemos clasificar en tres grupos 
estudiados en los siguientes puntos: 

 Métodos heurísticos. 

 Sistemas estadísticos. 

 Redes Neuronales y lógica difusa. 

2.1.1. MÉTODOS HEURÍSTICOS 

Se basan principalmente en la investigación del funcionamiento de ciertas cargas, cómo se 
comportan, y cómo son usadas normalmente. Suelen usar reglas lógicas de uso y funcionamiento. 
Debido al estudio del modo de funcionamiento, el resultado de los algoritmos no es en tiempo real, 
sino que necesita de cierto tiempo de observación del funcionamiento. La frecuencia de muestreo 
suele ser baja. Usan pocos parámetros para la identificación.  

[HART 92] propone el uso de un plano P-Q (potencia activa-potencia reactiva respectivamente; 
figura 2). 

 
Fig. 2 Plano de clasificación P-Q 

 



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Pag 9 de 128 

Y asemeja las cargas a MEF (Maquinas de Estados Finitos, figura 3) que siguen unas reglas 

 
Fig. 3 MEF de algunas cargas. 

 

De esta forma se hacen corresponder los cambios producidos en la potencia con los estados de 
la máquina. (50W+50W+50W-150W corresponde a la carga “c”) 

[NORFORD 96] incluye el transitorio a ON como signatura a tener en cuenta en la clasificación, y 
propone usar las órdenes de los buses de comunicación de la automatización, si la hubiere, para 
conocer qué aparato se va a conectar.  

Así mismo, el sistema tolera cierto solapamiento (simultaneidad) de transitorios (figura 4) 

 

 

Fig. 4 Solapamiento en los transitorios 

 

Este sistema no es capaz de solucionar el problema de cargas lentamente variables. Para 
solucionarlo propone medir los fenómenos responsables de ésta variación en la carga (temperatura, 
presión, caudal…). 



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Pag 10 de 128 

Mejorando el sistema de reconocimiento basado en el régimen permanente y para separar más 
las clases que se identifiquen, [LAUGHMAN 03] amplia el plano P-Q a un espacio tridimensional, 
figura 5 con la inclusión de una dimensión relacionada con el contenido armónico. 

 

   
Fig. 5 Ampliación del plano P-Q a espacio P-Q-D 

 

[GILREATH 06] resuelve una técnica para cuantificar los armónicos que producen cargas no 
lineales, evitando la transformada de Fourier, aliviando los cálculos y memoria necesarios. Para ello 
usa una modificación de la transformada de Concordia, en la que el centroide (figura 6) se desplaza 
del origen.  

 

 

Fig. 6 Resultado de la modificación de la trasformada de Concordia. 

 

Este sistema no es un clasificador propiamente dicho, pero se incluye en este estudio debido a 
que podría ser un complemento de los sistemas no intrusivos. 

En esta tabla 1 se consigna un resumen de los métodos expuestos: 

 

 Signaturas Régimen de análisis 
Distinción 

cargas 

múltiples 

Distinción 
cargas 

conexión 

simultánea 

Distinción 
cargas 

lentamente 

variables 

Modo 
Identificación 

[HART 92]: 
Admitancia, 
Armónicos 

Permanente Sí No No 
Reglas 

heurísticas 

[NORFORD 96]: P,Q Permanente/Transitorio Sí Sí 

No Cambio de 
media / 

distancias 
vectoriales 

[LAUGHMAN 03]: P,Q,D Permanente/Transitorio Sí Sí Sí 
Mínimos 

cuadrados 

[GILREATH 06]: I neutro Permanente --- --- --- 
Transformada 

Concordia 

Tab. 1 Resumen métodos heurísticos. 

 

  



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Pag 11 de 128 

2.1.2. MÉTODOS ESTADÍSTICOS  

Los métodos estadísticos difieren respecto de los vistos; mientras que en los ejemplos anteriores 
el reconocimiento de las cargas se realiza basándose en algoritmos guiados por la experimentación, 
usan reglas más o menos empíricas y analizan las curvas temporales de las signaturas, los métodos 
estadísticos emplean una fuerte carga de cómputo matemático, y funciones más o menos actuales. 
Hacen uso del desarrollo que han experimentado las ramas de la estadística y la probabilidad en el 
campo de la minería de datos. 

En [LIN 10] el reconocimiento se produce usando un filtro bayesiano (figura 7) que calcula la 
posibilidad de que se dé el estado At dadas las observaciones desde O1 hasta Ot. Así mismo 
compara los resultados con diferentes versiones del mismo y con otras técnicas como KNN (K 
nearest neighbors), .Naïve Bayes, SVM (Supported Vector Machine). 

 

 
Fig. 7 Esquema filtro bayesiano 

 

El resultado arrojado por el método del filtro bayesiano discretizado es superior en una 
comparación general (OA) al resto presentado con un 86.4%. 

[RAHIMI 11] Experimenta con la distancia de Mahalanobis para el reconocimiento de una única 
carga, en régimen permanente y sin que ésta pueda variar lentamente. La precisión es del 100%. 

[WANG 12] toma la corriente eficaz y la asemeja a figuras geométricas simples como se aprecia 
en la figura 8, de forma que almacenar y tratar esa información resulta más liviano, desde el punto 
de vista de la computación. La frecuencia de muestreo es muy baja, 10Hz. 

 

 
Fig. 8 Segmentación de la corriente en triángulos y rectángulos 

 

También plantea una primera clasificación en cargas muy variables, variables y poco variables. 

 

 

 

  



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Pag 12 de 128 

El siguiente cuadro (Tab 2) resume las técnicas estadísticas 

 

 Signaturas Régimen de análisis 
Distinción 

cargas 
múltiples 

Distinción cargas 
conexión 

simultánea 

Distinción cargas 
lentamente 
variables 

Modo 
Identificación 

[LIN 10] 

Potenciai-7 

Pmed 
Pmax 

Prms 
PDesviación estandar 

PFactor Cresta 

Pmax/ Pmed 

Lugar de Pmax 

Permanente Sí No No 
Filtro 

bayesiano 

[RAHIMI 11] P,Q Permanente No No No 
Distancia 

Mahalanobis 

[WANG 12] Irms,Vrms, P Permanente/Transitorio No No No Mean-shift 

[YUN 12] P Permanente No No No Fuzzy Logic 

Tab. 2 Resumen técnicas estadísticas. 

2.1.3. REDES NEURONALES  

Por último, veremos los sistemas de reconocimiento de cargas que usan redes neuronales. El 
sistema es parecido a lo ya visto, salvo que el procedimiento de clasificación es realizado por una 
red neuronal. 

Contrariamente a lo que pueda parecer, los sistemas basados en redes neuronales no son 
sistemas recientes, sino que ya desde los primeros momentos en los que aparecen los estudios 
para la identificación de cargas, año 1992 en el que aparece la génesis de estos sistemas con la 
publicación de [HART 92], se empiezan a usar estas redes para la identificación, como demuestra 
la publicación del trabajo en 1994, tan solo dos años después, de [ROOS 94] 

[ROOS 94] utiliza un sistema tal y como hemos comentado de recolección de datos en la 
acometida y son tratados siguiendo estos procesos. 

 Captura de datos en formato vector. 

 Preprocesado y filtrado; en caso necesario se separa en trozos más significativos. 

 Extracción de información, eliminando redundancias y disminuyendo así la dimensión. 

 Clasificación por la red neuronal previamente entrenada. 

 

La red neuronal usada para la clasificación es una red de perceptrones multicapa, entrenados 
mediante la técnica de back propagation, de forma tal, que se realiza una clasificación en cascada 
según el esquema de la figura 9: 

 

 
Fig. 9 Red en cascada de perceptrones clasificadores en niveles 



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Pag 13 de 128 

A cada nivel le correspondería un perceptrón. 

En el año 2007 se publica [PATEL 07]. La adquisición se realiza en cualquier punto de circuito 
eléctrico sensando únicamente la tensión. La signatura utilizada para la detección es el ruido 
eléctrico que se produce en el encendido y en el apagado de los dispositivos. Este ruido se propaga 
por todo el circuito y es capturado en cualquier toma de corriente perteneciente al mismo capturando 
un vector de frecuencias y amplitudes asociadas. 

Este vector se preprocesa mediante FFT (Fast Fourier Transform) y se aplica a una red neuronal 
del tipo SVM (Support Vector Machine) entrenada. El número de ejemplares para el aprendizaje 
ronda los 3000. 

[YANG 07] comparan dos métodos de aprendizaje neuronales para obtener cuál es el óptimo para 
la clasificación de cargas: 

 Learning Vector Quantization. 

  Back Propagation 

ambos aplicados a un Perceptrón Multicapa. El resultado es una supremacía del aprendizaje Back 
Propagation sobre el primero; otra conclusión obtenida es que la energía del transitorio a ON se 
mantiene prácticamente constante en cada conexión de la carga y para la conexión con cualquier 
ángulo de la tensión de red. 

[TSAI 11] optimiza una faceta de la identificación. Hasta ahora, las medidas que se presentaban 
al sistema de identificación eran elegidas por el diseñador en base a pruebas realizadas y la propia 
intuición. En este artículo, esta tarea se realiza usando GA (algoritmos genéticos). Así de una 
población de posibles medidas (corriente, potencia, pico de corriente, armónicos…) se extraen 
aquellos individuos que proporcionaran mayor información para el reconocimiento. La función fitness 
de este GA es el criterio de Fisher. 

También realiza una comparación entre los sistemas de identificación KNNR (K Nearest Neigbor 
Rule) MLP con BP y MLP con LVQ. El elegido es el KNNR, debido a su sencillez y eficacia (98%). 

[LIN 12] es el último artículo relacionado con la identificación de cargas. En este artículo, el sistema 
de identificación es un reconocedor de patrones neuro fuzzy con Linguisitc Hedges. 

Se expone a continuación la tabla 3 como resumen de las redes neuronales. 

 

 Signaturas Régimen de análisis 
Distinción 

cargas 
múltiples 

Distinción 

cargas 
conexión 

simultánea 

Distinción 

cargas 
lentamente 
variables 

Modo 
Identificación 

[ROOS 94] 

I,P,Contorno 
Impedancia, 

armónicos de I, 
THD de P 

Permanente Sí No No 
Red 

Perceptrones 

[PATEL 07] V Transitorio Sí 
Depende 

tiempo entre 
evento 

Sí SVM 

[YANG 07] 
P,Q,,V,I,VHD,IHD, 
VTHD, ITHD,US,UD 

Permanente/Transitorio Sí Sí Sí Perceptrón +BP 

[CHANG 10] P,Q,Us Permanente/Transitorio Sí Sí Sí Perceptrón +BP 

[TSAI 11] IRMS, IPP, Ptrans Transitorio Sí No No K-NNR 

[LIN 12] 

IFactor Cresta, 

Periodo 
Transitorio 

Transitorio Sí No No NeuroFuzzy+LH 

Tab. 3 Resumen redes neuronales. 

 

  



2. ESTADO DE LA IDENTIFICACION DE CARGAS 

Pag 14 de 128 

2.2. ELECCION DE LA LÍNEA DE INVESTIGACION 

Se han visto las principales líneas de investigación concernientes a los sistemas de monitorización 
de cargas de forma no intrusiva y los logros obtenidos por cada uno de ellas. A la vista de los 
resultados, no se puede decir que ninguno de los tres principales métodos (heurístico, estadístico, 
redes neuronales) posea una supremacía sobre los otros. Sin embargo, ajustándonos a los 
requerimientos de bajo consumo expuestos podemos declinarnos por uno de ellos. 

Los sistemas heurísticos a priori requieren de menos carga computacional, menor frecuencia en 
el muestreo de las características que adquieren; por el contrario, precisan de una mayor 
intervención externa para fijar reglas lógicas o introducción de normas de funcionamiento, siendo 
menos versátiles. Los sistemas estadísticos requieren de una fuerte carga computacional para la 
obtención de resultados, siendo semejantes en cuanto al número de signaturas a las redes 
neuronales. Las redes neuronales, por su parte, requieren de una carga computacional media 
(dependiente de la red y la configuración) permitiendo ser fácilmente implementadas en 
computadores de rango medio, de propósito general. Se elegirán las redes neuronales como modelo 
de reconocimiento. 

Otros parámetros importantes que definen el sistema son las signaturas elegidas y la frecuencia 
de muestreo que se tratará más adelante sobre ellas.  

Un pilar fundamental sobre el que se basa este trabajo es el realizado por [TSAI 11], debido a que 
usa gran cantidad de parámetros extraídos de la forma de onda de la corriente, el uso de algoritmos 
genéticos en la elección de signaturas y su comparativa entre redes neuronales. 

 

 

TDC  

 
 



3. SISTEMA ADQUISICIÓN 

 Pag 15 de 128 

3. SISTEMA ADQUISICIÓN 

El sistema físico de adquisición sigue un diagrama de bloques como el descrito en la figura 10: 
adquisición, acondicionamiento, digitalización y envío para el almacenamiento. Según los sistemas 
vistos, estos bloques varían poco en cuanto a su funcionalidad, diferenciándose en las prestaciones 
conforme el paso de tiempo.  

 

 
Fig. 10 Diagrama de bloques del sistema. 

 

Es necesario obtener ciertos parámetros que constituirán las entradas a la red neuronal. Debido 
al compromiso de realizar un sistema de medias prestaciones, se usará como base el mismo sistema 
de adquisición que se usará para implementar el procesamiento, acercándose al sistema real y 
evitando la incertidumbre que podría provocar el paso del entorno de laboratorio al entorno real. 

A continuación describiremos el sistema físico completo utilizado. 

3.1. ADQUISICIÓN 

La onda de corriente será obtenida mediante transformador de corriente tipo “pinza amperimétrica” 
modelo SCT0400-025 de MAGNELAB; proporciona una tensión de 0.333V a 25 Amperios de fondo 
de escala y fue sometida a una prueba de atenuación de señal, ya que el fabricante especifica la 
frecuencia máxima de operación en 400Hz por debajo de la de adquisición como se verá. 

De la tensión, sólo se capturarán los pasos por cero de la misma mediante un transformador 
230V/3.7V 4.8VA modelo ACP-7E de NOKIA para determinar el desfase corriente-tensión de la 
carga. 

3.1.1. ENSAYO TRANSFORMADOR DE CORRIENTE 

MATERIAL: 

 Fuente de potencia  

 Transformador de corriente SCT0400-25 (MAGNELAB) 

 Resistencia de potencia 

 Osciloscopio  
 

  



3. SISTEMA ADQUISICIÓN 
 

Pag 16 de 128 

DESCRIPCION: 

Debido a que la frecuencia máxima de trabajo de la fuente es de 500Hz, por debajo de 2500Hz, 
la frecuencia de muestreo (como se verá más a delante), resulta imposible establecer una relación 
de ganancia directamente. Por ello, se excitará el esquema de la figura 11 en dos fases tal como se 
explica: 

 
Fig 11 Ensayo del transformador de corriente. 

  

Primera fase: excitación mediante senoides de frecuencias 50, 100, 500Hz 

 Vfuente:110Vpico senoidal. 

 Ffuente: 50,100Hz y 500Hz 

 R: Resistencia cerámica de 10Ω 5% 

 IL:11Apico.  
 

Se obtiene los siguientes valores de pico de la tabla 4: 

 

Frec.(Hz) Vsensor (mV)  

50 146 

100 146 

500 146 

Tab. 4 Resultado del ensayo del transformador 

 de corriente primera fase. 

 

No se aprecia atenuación. 

 

Segunda fase: Excitación mediante una onda cuadrada de tensión comprobando que la 
respuesta frecuencial de la onda obtenida en el sensor no contiene atenuaciones en la banda de 
interés (despreciando la inductancia real de la resistencia). 

 

Con los siguientes datos: 

 Vfuente:110Vpico 

 Ffuente: 500Hz 

 R: Resistencia cerámica de 10Ω 5% 

 IL:11Apico.  
 

Se obtienen los siguientes valores, mostrados en Tabla 5, para las frecuencias armónicas de la 
fundamental en valores normalizados: 

  



3. SISTEMA ADQUISICIÓN 
 

Pag 17 de 128 

 

Frec.(Hz) Vfuente Vsensor  Vfuente/Vsensor 

500 1.0000 1.0000 1.0000 

1500 0.3133 0.3043 0.9713 

2500 0.1500 0.1408 0.9387 

3500 0.1129 0.1033 0.9149 

4500 0.0931 0.0821 0.8819 

5500 0.0689 0.0549 0.7968 

6500 0.0619 0.0419 0.6770 

7500 0.0537 0.0277 0.5155 

8500 0.0438 0.0138 0.3154 

Tab. 5 Resultado del ensayo del transformador de corriente. 

 

La figura 12 muestra el resultado del ensayo 

 

 

Fig. 12 Resultado del ensayo del transformador de corriente. 

 

Como se puede apreciar existe una ligera atenuación hasta la frecuencia de 4500Hz 
pronunciándose a partir de la misma. Para la frecuencia de Niquist la ganancia resulta ser superior 
al 0.9 

 

Tercera fase: excitación mediante senoide de frecuencia 50Hz, para determinar el desfase entre 
la onda de excitación y la onda resultante; el resultado es un desfase de 6.3º. 

  

0 2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 1500

Y: 0.9713

Frecuencia (Hz)

V
fu

e
n

te
/V

s
e

n
s
o

r



3. SISTEMA ADQUISICIÓN 
 

Pag 18 de 128 

3.1.2. ENSAYO TRANSFORMADOR DE TENSIÓN 

MATERIAL: 

 Transformador de tensión ACP-7E (NOKIA) 

 Osciloscopio  
 

DESCRIPCION: 

Se somete al transformador a un ensayo de desfase entre bobinados según el esquema de la 
figura 13.  

 

 
Fig. 13 Ensayo del transformador de tensión. 

 

El resultado es un desfase de 4.95 grados 

3.2. ACONDICIONAMIENTO, DIGITALIZACIÓN Y ENVÍO 

El sistema se basa en la placa comercial Flyport WIFI de OpenPICUS, que consta de un 
microcontrolador, un regulador de tensión, y un módulo wifi; a esta base hardware se le dota de una 
placa aneja (figura 14) que es la encargada del acondicionamiento de señal. El Flyport realiza la 
conversión digital, y la comunicación a PC para el almacenamiento de los datos. Mediante el 
transformador de campo magnético a tensión conectado a J2 se realiza el muestreo de la forma de 
onda de la corriente; un transformador de tensión conectado a J1 registra la onda de tensión: 

 

 
Fig. 14 Esquema de la placa acondicionadora de señal. 

 

  



3. SISTEMA ADQUISICIÓN 
 

Pag 19 de 128 

El amplificador operacional está configurado como filtro Sallen Key de segundo orden con 
fc=1223.5 Hz y amplificación de 3 (figura 15). La masa virtual necesaria para elevar las señales 
provenientes del sensor (±0.333Vpico) y que sean positivas a fin de usar el amplificador con 
alimentación simple resulta del punto medio del divisor resistivo formado por R6 y R5, con un valor 
de 0.3V sobre la masa de alimentación. Esto permite usar el sistema para cargas de hasta 5.18Kw. 

 

 
Fig. 15 Diagrama de Bode del filtro. 

 

La digitalización la realiza el conversor de aproximaciones sucesivas de 10 bits incorporado en el 
microcontrolador de la placa FlyPort; la referencia es externa al microcontrolador y de 2.048V. La 
frecuencia de muestreo se fija en 2500Hz, máxima frecuencia de muestreo que ha soportado el 
sistema sin pérdida de datos en la conexión WiFi entre el sistema de adquisición y el 
almacenamiento.  

  



3. SISTEMA ADQUISICIÓN 
 

Pag 20 de 128 

3.3. ALMACENAMIENTO 

Para la recepción de los datos enviados mediante conexión WiFi, se dispone de un ordenador PC 
con el programa MatLab encargado de la recepción y almacenamiento de todas las ondas 
capturadas. Posteriormente se procederá al análisis de estas señales (ANEXO II y siguientes). La 
tabla 6 resume los parámetros característicos del sistema físico. 

 

Sensor de corriente 

Fondo escala del sensor de corriente 0.333V a 25 A 

Ganancia 50Hz-1250Hz >0.9 

Desfase 6.3º 

Transformador de tensión 

V primario 230V 

V secundario 3.7 Vrms 

Desfase 4.95º 

Acondicionamiento 

Frecuencia corte del filtro 1223.5Hz 

Margen de fase 68.2º a 1780Hz 

Ganancia filtro 3 

Masa virtual 0.3V 

Potencia máxima medible 5.18Kw 

Digitalización 

Nº Bits ADC 10 

Referencia 2.048V 

Frecuencia muestreo 2500Hz 

Tab. 6 Parámetros del sistema. 

 

TDC  

 

 



4. ANÁLISIS DE LOS DATOS 

 Pag 21 de 128 

4. ANÁLISIS DE LOS DATOS 

Una vez descrito el sistema de adquisición, se realiza una base de datos con las señales 
capturadas para su posterior análisis. 

4.1. BASE DE DATOS 

La base de datos consta de diversos ficheros en los que se han capturado la forma de onda de 
corriente y pasos por cero de la tensión de los electrodomésticos testados (tabla 7): 

 

Designación de carga 
Nº Cargas 

simultáneas 
Potencia Nominal(W) Observaciones 

Bat1 1 750 Batidora 

Bat2 1 750 Batidora 

Bat3 1 750 Batidora 

Expr 1 20 Exprimidor 

Micr 1 800 Microondas 

Sand 1 750 Sandwichera 

Ven1 1 60 Ventilador 

MicrOnYSandOn 2 1550 Agregada de anteriores 

SandOnYBat3On 2 1500 Agregada de anteriores 

Ven1OnYBat3On 2 810 Agregada de anteriores 

Ven1OnYMicrOnYSandOn 3 1610 Agregada de anteriores 

Tab. 7 Población de cargas. 

 

Notas: 

 Las cargas denominadas Bat1, Bat2 y Bat3 se refieren a la misma batidora regulada mediante 
mando deslizante y triac, en las posiciones más baja, a la mitad de recorrido del mando y 
en la posición más alta, respectivamente en vacío. 

 El exprimidor es usado normalmente (no en vacío) por lo que el par resistente es dependiente 
de la fuerza ejercida en cada instante. 

 El microondas, a la vista del perfil de la corriente, sigue una secuencia de dos fases al aplicar 
toda su potencia. Es usado en modo Quick (toda la potencia durante el máximo tiempo 
posible). 

 Sandwichera usada normalmente. 

 Ventilador usado normalmente a la velocidad 3 (máxima velocidad). 

 Las cargas agregadas son una sucesión de conexiones y desconexiones en el orden indicado 
por el nombre. 

 

  



4. ANÁLISIS DE LOS DATOS 

Pag 22 de 128 

4.1.1. PROCEDIMIENTO DE CAPTURA 

Se realizan 10 trials por cada carga siguiendo el siguiente protocolo: 

Protocolo: 

 Comienzo de grabación de datos. 

 Espera de 3 segundos 

 Conexión de la carga a la red. 

 Espera de 3 segundos. 

 Conexión de segunda o sucesivas cargas cada 3 segundos. 

 Desconexión de la última carga conectada (orden inverso). 

 Espera de 3 segundos. 

 Desconexión de penúltima o predecesoras cargas cada 3 segundos (orden inverso). 

 Finalización de grabación de datos. 
 

Como resultado se obtienen 110 ficheros de datos, con al menos una conexión y desconexión por 
carga. Ejemplo de un fichero es el de la figura 16 y detalle de la conexión de una carga agregada la 
figura 17. 

 

 
Fig. 16 Corriente obtenida de un trial de la carga Ven1OnYMicrOnYSandOn. 

 

 
Fig. 17 Detalle de la conexión del microondas agregada a la señal del ventilador. 

0 1 2 3 4 5 6 7

x 10
4

0

200

400

600

800

1000

1200
cargaVen1OnYMicrOnYSandOn

Nº Muestras

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n

Conexión

Ventilador

Conexión Microondas

en dos tiempos

Conexión Sandwichera Desconexión Sandwichera

Desconexión

Microondas

Desconexión

Ventilador

1.6 1.65 1.7 1.75

x 10
4

200

300

400

500

600

700

800

900

cargaVen1OnYMicrOnYSandOn

Nº Muestras 

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n



4. ANÁLISIS DE LOS DATOS 

Pag 23 de 128 

Las muestras con valor cero son ficticias y se han intercalado durante el muestreo para indicar el 
momento del paso por cero de la tensión. Posteriormente serán separadas, marcando así el desfase 
corriente-tensión.  

Como se observa del protocolo, no se han tenido en cuenta conexiones simultáneas de cargas. 

Otro aspecto a destacar es la diferencia del transitorio al régimen permanente, lo que proporciona 
información valiosa del electrodoméstico conectado como constatan [NORFORD 96], [LAUGHMAN 
03] [WANG 12] [YANG 07] [TSAI 11] [LIN 12]. 

4.2. PROCESADO 

Las ondas así capturadas, se someterán a un acondicionamiento de la señal para posteriormente 
obtener las características para las entradas de la red neuronal. El código de esta simulación de 
procesado puede consultarse a partir de la línea 150 del ANEXO II. 

4.2.1. EXTRACCIÓN DEL PERIODO DE FUNCIONAMIENTO 

Como se ha visto en la descripción del protocolo, existe un periodo entre el comienzo de captura 
y la conexión de 3 segundos (al igual que en la desconexión) y de funcionamiento en régimen 
estacionario antes de la conexión de otro dispositivo. Hay que identificar el momento de éstos 
eventos a fin de extraer los intervalos en los que únicamente están la o las cargas de interés. En el 
caso de cargas únicas, el intervalo de interés es el correspondiente al estado de conexión 
(incluyendo el transitorio); en el caso de cargas agregadas, el intervalo es el correspondiente a estar 
todas las cargas conectadas a la vez. Se siguió inspección visual para determinar el momento de la 
conexión y desconexión. En el ejemplo de la carga batidora en la velocidad media (Bat2) se puede 
señalar como momento de la conexión el señalado en la figura 18. Aplicando el mismo criterio a las 
cargas no agregadas y agregadas, se obtienen el periodo de ON (ANEXO II líneas 150-164). 

 

 
Fig. 18 Detalle de la conexión de la carga Bat2. 

 

  

3500 3600 3700 3800 3900 4000 4100 4200 4300

300

350

400

450

500

550

600

650

X: 3703

Y: 479

Nº Muestras

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n



4. ANÁLISIS DE LOS DATOS 

Pag 24 de 128 

4.2.2. EXTRACCIÓN DE LOS PASOS POR CERO DE LA TENSIÓN. 

Como se ha mencionado, para no sobrecargar el canal WiFi, no se envía la señal completa de 
tensión, sino que mediante un algoritmo de comparación y filtrado en el microcontrolador se 
determina el momento del cruce por cero con tendencia decreciente de la misma, momento en el 
que se incluye un valor cero en los datos de la onda de corriente. De esta manera queda registrado 
y sincronizado el cruce por cero de la tensión. Por lo cual, ahora es necesario eliminar ese registro, 
guardando el valor que ocupaba en la secuencia para posteriormente obtener el corriente-tensión 
tal y como se ilustra en el siguiente esquema de vectores (tabla 8) (ANEXO II líneas 373-413): 

 

                

 Índice n n+1 n+2 n+3 n+4 n+5 … … k k+1 k+2 k+3 k+4  

 Valor 
onda 

454 485 0 487 492 500 … … 450 462 0 470 478  

                

 Índice n n+1 n+2 n+3 n+4 n+5 … k k+1 k+2 k+3 k+4 …  

 Valor 
onda 

454 485 487 492 500 … … 450 462 470 478 … …  

                

 Pasos 
por 
cero 

… n+2 k+2 …  
 

      
  

                

Tab. 8 Esquema de la extracción de pasoso por cero. 

4.2.3. EXTRACCIÓN DE LOS PASOS POR CERO DE LA CORRIENTE. 

Para la determinar cuándo se producen los pasos por cero de la corriente se comienza eliminando 
la componente continua de la señal, mediante un filtro de mediana, el cual resta a cada punto, la 
mediana de la totalidad de ella misma. A la vista de los resultados obtenidos en la figura 19 para la 
carga Bat1, determinar el momento del paso por cero resulta imposible debido a que la señal puede 
cambiar de signo varias veces en un periodo. Se opta por someter a la señal a un filtrado digital, 
que permita determinar el momento del cruce por cero con pendiente negativa (ANEXO II líneas 
417-496). 

 

 
Fig. 19 Detalle de los pasos por cero de la corriente. 

1.225 1.23 1.235 1.24 1.245 1.25

x 10
4

-30

-20

-10

0

10

20

30

cargaBat1

Nº Muestras

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n



4. ANÁLISIS DE LOS DATOS 

Pag 25 de 128 

 

 
Fig. 20 Ganancia del filtro digital. 

 

En la figura 20 se observa el diagrama de Bode de la ganancia del filtro; se ha optado por un filtro 
paso banda con frecuencias de corte 40 y 60Hz tal y como se aprecia para obtener la componente 
correspondiente a los 50 Hz. El resto de parámetros del filtro se pueden consultar en el Anexo I. 

El resultado de aplicar tal filtro a la carga BAT1 puede observarse en la figura 21 donde se ha 
corregido el retardo de grupo correspondiente a 50 muestras. De esta señal filtrada puede extraerse 
el cruce por cero. 

 

 
Fig. 21 Corriente en crudo y corriente filtrada. 

 

Para este tipo de cargas activadas mediante interruptores controlados, hay que notar que el 
resultado no corresponde con el factor de potencia ni el ángulo de la impedancia debido a que las 
formas de onda de la corriente alimentadas mediante estos interruptores (tipo triac, etc) rompen con 
la excitación permanente sinusoidal, condición necesaria para que el factor de potencia coincida con 
el desfase entre tensión y corriente. Por tanto, este parámetro es otra impronta de la corriente de la 
carga, sin ser estrictamente un parámetro convencional. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-70

-60

-50

-40

-30

-20

-10

0

 

 

Frequencia (kHz)

G
a

n
a

n
c
ia

 (
d

B
)

Magnitude Response (dB)

1460 1480 1500 1520 1540 1560

-25

-20

-15

-10

-5

0

5

10

15

20

cargaBat1

Nº Muestras

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n



4. ANÁLISIS DE LOS DATOS 

Pag 26 de 128 

A partir de estos datos, se obtiene el desfase entre las ondas de tensión y corriente restando 
ambos pares de ordenadas (posiciones del paso por cero de la corriente y de la tensión). 

4.3. EXTRACIÓN DE CARACTERÍSTICAS 

A partir de este momento, la onda se encuentra preparada para extraer las características que 
servirán como entrada a la red neuronal; han sido seleccionadas en su mayoría siguiendo el criterio 
de [TSAI 11], otras debido a que han sido elegidas por la mayoría de las fuentes consultadas, 
mientras que algunas han sido escogidas a criterio del autor del presente. 

 Valor eficaz. 

 Centroide del patrón de Concordia modificado. 

 Amplitudes de espectro del primer, tercer y quinto armónico. 

 Valor de pico. 

 Valor a cuarto de onda. 

 Desfase corriente-tensión. 
 

El archivo resultante del acondicionamiento de la señal tras haber obtenido el periodo de 
funcionamiento, extraídos los pasos por cero de la tensión y eliminada la componente continua se 
divide en ventanas de ciclos completos con el fin de obtener por una parte, una cantidad de señal 
significativa sobre la que operar al ser mayor de un único ciclo, y por otra parte, obtener una gran 
cantidad de muestras o individuos.  

Se ha fijado un ancho de ventana de 10 ciclos completos de señal. 

4.3.1.  CALCULO DEL VALOR EFICAZ 

El valor RMS de la onda se calcula mediante la siguiente fórmula: 

 

𝐼𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 

 

Siendo N el número de muestras por ventana e igual a 500. (Frecuencia de muestreo dividido por 
50 ciclos por segundo de la red y multiplicado por el ancho de ventana: 10) (ANEXO II líneas 893-
1164). 

4.3.2.  CENTROIDE DE CONCORDIA 

Haciendo uso de las características del centroide de los patrones de la Conversión de Concordia 
modificada, [GILREATH 06], se puede obtener información del contenido armónico de la onda. 

Para ello es necesario tener un sistema trifásico equilibrado; puesto que no es el caso de estudio, 
se genera un sistema trifásico ficticio, triplicando la onda de corriente, posteriormente desfasándolas 
y eliminando las muestras sobrantes del desfase (Figura 22) (ANEXO II líneas 893-1164). 



4. ANÁLISIS DE LOS DATOS 

Pag 27 de 128 

 
Fig. 22 Sistema trifásico ficticio. 

 

Posteriormente se calcula la transformada de Concordia según estas fórmulas: 

𝑖𝛼 = √
2

3
𝑖𝑎 −

1

√6
𝑖𝑏 −

1

√6
𝑖𝑐 

𝑖𝛽 =
1

√2
𝑖𝑏 −

1

√2
𝑖𝑐 

 

Siendo ia, ib e ic la onda de corriente original y las desfasadas. 

 

Se realiza la modificación de la transformada propuesta en el artículo, tomando valor absoluto 
alguna de las coordenadas iα o iβ, obteniendo así los pares [iα, |iβ|] o bien [|iα|, iβ]. 

En la figura 23 se puede ver una comparativa entre los contornos obtenidos mediante este método 
para la carga agregada de ventilador, microondas y sandwichera (a) y la teórica mostrada en el 
artículo mencionado. 

 

 

Fig 23 a) 
 

Fig 23 b) 

Fig. 23 Comparativa entre contornos 

 

  

100 110 120 130 140 150 160 170 180 190

-25

-20

-15

-10

-5

0

5

10

15

20

25

Nº Muestras

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n
 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

Ialfa

|I
b
e
ta

|



4. ANÁLISIS DE LOS DATOS 

Pag 28 de 128 

A continuación se obtiene el centroide de estos contornos mediante las formulas: 

𝐶𝛼 =
∑ 𝑖𝛼𝑖
𝑁
𝑖=1

𝑁
 

𝐶𝛽 =
∑ |𝑖𝛽𝑖|
𝑁
𝑖=1

𝑁
 

Donde Cα y Cβ (Cbeta) son las coordenadas del centroide para los ejes α y β respectivamente, iα 
e iβ los valores instantáneos de la onda capturada y N el total de muestras para una captura. 

Estos pares de coordenadas del centroide serán las correspondientes entradas de la red neuronal. 
El espacio creado por todos los individuos centorides para las diferentes cargas puede observarse 
en la figura 24 

 

 
Fig. 24 Espacio de centroides 

4.3.3. TRANSFORMADA DE FOURIER 

Otras características que se obtienen de la señal es la potencia de los armónicos. Para ello se 
calcula la transformada de Fourier para el armónico fundamental o primero, tercer y quinto. En la 
figura 25 se puede ver como la carga microondas (a) presenta cierto contenido armónico de tercer 
y quinto armónico, mientras que en la carga batidora2 (b) el contenido es mucho mayor, con escasa 
diferencia entre quinto y tercero (ANEXO II líneas 893-1164). 

 

 

Fig. 25 a) 

 

Fig. 25 b) 

Fig. 25 Potencia de la transformada de Fourier. Rojo: 1º armónico. Verde: 3º armónico. Azul: 5º armónico. 

0 50 100 150 200 250 300
-14

-12

-10

-8

-6

-4

-2

0

2

Calfa

C
b

e
ta

microondas +
sandwichera

ventilador +
microondas +
sandwichera

batidora3 + 
sandwicherasandwichera

microondas

batidora3 +
ventilador

batidora1,
batidora2,
batidora3,
exprimidor y
ventilador

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Nº muestra

P
o
t 
F

F
T

 

 

1º arm

3º arm

5º arm

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

11

Nº muestra

P
o
t 
F

F
T

 

 

1º arm

3º arm

5º arm



4. ANÁLISIS DE LOS DATOS 

Pag 29 de 128 

Por cargas, podemos apreciar las potencias del primer, tercer y quinto armónico en las figuras 26 
27 y 28 respectivamente. 

 

 
Fig. 26 Boxplot potencia del primer armónico por cargas. 

 

 
Fig. 27 Boxplot potencia del tercer armónico por cargas. 

 

 
Fig. 28 Bloxplot potencia del quinto armónico por cargas. 

0

50

100

150

200

250

300

B
A

T
1

B
A

T
2

B
A

T
3

E
X

P
R

M
IC

R

S
A

N
D

V
E

N
T

M
_
S

S
_
B

3

V
_
B

3

V
_
M

_
S

Cargas

P
o

te
n

c
ia

 p
ri
m

e
r 

a
rm

ó
n

ic
o

0

10

20

30

40

50

B
A

T
1

B
A

T
2

B
A

T
3

E
X

P
R

M
IC

R

S
A

N
D

V
E

N
T

M
_
S

S
_
B

3

V
_
B

3

V
_
M

_
S

Cargas

P
o

te
n

c
ia

 t
e

rc
e

r 
a

rm
ó

n
ic

o

0

2

4

6

8

10

12

14

16

18

20

B
A

T
1

B
A

T
2

B
A

T
3

E
X

P
R

M
IC

R

S
A

N
D

V
E

N
T

M
_
S

S
_
B

3

V
_
B

3

V
_
M

_
S

Cargas

P
o

te
n

c
ia

 d
e

 q
u

in
to

 a
rm

ó
n

ic
o



4. ANÁLISIS DE LOS DATOS 

Pag 30 de 128 

4.3.4.  VALOR DE PICO 

El valor de pico se elige como el máximo valor de cada ventana o individuo. En la figura 29 se 
puede observar la variabilidad de los resultados (ANEXO II líneas 1165-1364). 

 

 
Fig 29 Boxplot del valor de pico referido a cada carga. 

4.3.5.  VALOR DE INTER SEMIPERIODO 

Este parámetro es el valor de la onda de corriente en la posición correspondiente a la máxima 
diferencia que existe entre una onda sinusoidal pura, y otra sinusoidal afectada por una distorsión 
de tercer armónico igual a una onda cuadrada. Para calcular esta posición, se resta punto a punto 
(figura 30(b)) una sinusoide de amplitud unidad, menos la composición de esa misma sinusoide más 
el tercer armónico de una onda cuadrada de amplitud unidad (figura 30(a)). Es decir, a un décimo 
aproximadamente del período completo; intenta ser una medida de la distorsión producida por el 
tercer armónico, de forma que ese valor diferirá del valor de una sinusoide pura en tanto en cuanto 
aumente el contenido de ese tercer armónico(ANEXO II líneas 1165-1364). 

 

Fig. 30a) Fig. 30b) 

Fig. 30 Elección del valor inter semiperiodo. 

 

Para el caso de las señales de corriente, este valor en posición obtenida es dividido por el valor 
de pico obteniendo estos resultados de la figura 31. El valor negativo proviene de haber elegido el 
paso por cero en el momento decreciente, y por consiguiente el semiperiodo negativo. 

 

0

50

100

150

200

250

300

350

400

450

B
A

T
1

B
A

T
2

B
A

T
3

E
X

P
R

M
IC

R

S
A

N
D

V
E

N
T

M
_
S

S
_
B

3

V
_
B

3

V
_
M

_
S

Carga

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
io

n

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1

1.5

X: 31

Y: 0.9388

Periodo en grados sexagesimales

A
m

p
lit

u
d
 n

o
rm

a
liz

a
d
a

X:31
Y:0.9388

0 50 100 150 200 250 300 350 400
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X: 31

Y: 0.4244

Período en grados sexagesimales

D
if
e
re

n
c
ia

 d
e
 a

m
p
lit

u
d
e
s

X:31
Y:0.4244



4. ANÁLISIS DE LOS DATOS 

Pag 31 de 128 

 
Fig. 31 Boxplot del valor de intersemiperiodo referido a cada carga. 

 

4.3.6.  DESFASE TENSION CORRIENTE 

Como se ha mencionado con anterioridad, se capturaron los pasos por cero de la tensión, y se 
sometió a la señal de corriente a un filtrado para obtener un único punto de cruce por cero. El desfase 
de tensión y corriente se obtiene restando uno a uno cada punto así obtenido. La figura 32 recoge 
los resultados (ANEXO II líneas 500-891). 

 

 
Fig. 32 Boxplot de la diferencia en muestras entre tensión y corriente. 

  

  

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

B
A

T
1

B
A

T
2

B
A

T
3

E
X

P
R

M
IC

R

S
A

N
D

V
E

N
T

M
_
S

S
_
B

3

V
_
B

3

V
_
M

_
S

Carga

V
a

lo
r 

d
e

 i
n

te
rs

e
m

ip
e

ri
o

d
o

-2

0

2

4

6

8

10

12

B
A

T
1

B
A

T
2

B
A

T
3

E
X

P
R

M
IC

R

S
A

N
D

V
E

N
T

M
_
S

S
_
B

3

V
_
B

3

V
_
M

_
S

Carga

D
if
e

re
n

c
ia

 (
m

u
e

s
tr

a
s
)



4. ANÁLISIS DE LOS DATOS 

Pag 32 de 128 

4.4. EVALUACIÓN DE LAS CARACTERÍSTICAS ELEGIDAS 

Hasta este momento, se ha descrito el método utilizado para acondicionar y extraer características 
de las señales capturadas dentro de conjunto de electrodomésticos elegidos. Y tal como se ha 
comentado, la clasificación se realizará mediante una red neuronal. Sin embargo, antes de realizar 
la selección de la red neuronal para elegir aquella que más se ajuste a los requerimientos, se evalúa 
el conjunto de características, a fin de tener una línea base sobre la que comparar las modificaciones 
y tratamientos que se realizara al sistema.  

Para ello, el conjunto de datos obtenido como se ha mencionado hasta ahora se presenta a una 
red neuronal que sirva de primera medida de la posible calidad del sistema; esta red es un mapa 
auto organizado. Todo el conjunto de características se divide en dos grupos: uno de entrenamiento 
y otro de verificación. El conjunto de entrenamiento es el que se usa para generar las regiones o 
clusters de neuronas y calcular los pesos de los enlaces entre neuronas vecinas. El grupo de 
verificación servirá para calcular cómo de buena ha sido la clasificación, mediante el parámetro 
kappa, que varía de 0 a 1 (con 1 como clasificación perfecta) (ANEXO II líneas 1634-1747). 

El conjunto de datos se dividió al 80% como grupo de entrenamiento y 20% como grupo de 
verificación. Esta división tuvo en cuenta la proporción de las clases dentro del conjunto, puesto que 
no hay igual cantidad de individuos en cada clase; así se extrajo el mencionado porcentaje de cada 
clase. 

El tamaño de la red neuronal se eligió de 26x13 neuronas. 

El resultado de la clasificación del grupo de validación se expone en la tabla 9 con formato de 
matriz de confusión  

 

 
Bat1 Bat2 Bat3 Expr Micr Sand Ven1 

MicrO
nYSan
dOn 

SandO
nYBat3

On 

Ven1O
nYBat3

On 

Ven1OnYMi
crOnYSand

On 

Bat1 20 8 0 0 0 0 0 0 0 0 0 

Bat2 1 8 6 0 0 0 0 0 0 0 0 

Bat3 0 0 11 0 0 0 0 0 0 16 0 

Expr 2 0 0 39 0 0 0 0 0 0 0 

Micr 0 0 0 0 19 0 0 0 0 0 0 

Sand 0 0 0 0 0 99 0 0 0 0 0 

Ven1 0 0 0 0 0 0 42 0 0 0 0 

MicrOnYSandOn 0 0 0 0 0 0 0 30 0 0 0 

SandOnYBat3On 0 0 0 0 0 0 0 0 22 0 0 

Ven1OnYBat3On 0 0 0 0 0 0 0 0 0 6 0 

Ven1OnYMicrOn
YSandOn 0 0 0 0 0 0 0 0 0 0 33 

TOTAL 
INDIVIDUOS 23 16 17 39 19 99 42 30 22 22 33 

Tab. 9. Primera evaluación del sistema clasificador. 
 

El resultado de aplicar el mencionado  coeficiente kappa, que nos indica la bondad del clasificador 
es: 

𝐾𝑎𝑝𝑝𝑎 = 0.9081 

 

Lo que resulta en un clasificador muy bueno. 

  



4. ANÁLISIS DE LOS DATOS 

Pag 33 de 128 

4.5. REDUCCIÓN DEL COSTE COMPUTACIONAL 

Sin embargo, como se mencionó en el objeto de este trabajo, se intentará reducir el coste 
computacional (y por tanto energético) del sistema usando diferentes técnicas. En base a esta 
primera aproximación del clasificador, se puede tener una idea de cómo pueden influir estas técnicas 
en el resultado final del posible clasificador por comparación con el primero.  

4.5.1. REDUCCION DE LA FRECUENCIA DE MUESTREO. 

Una medida para reducir el consumo consiste en reducir la tasa de muestreo, e intentar mantener 
el sistema en estado de muy bajo consumo (dormido o sleep) el tiempo inter muestras. Cabe esperar 
que esta medida empeore la clasificación debido a un empeoramiento de las características 
elegidas.  

Se simula una disminución de la tasa de muestreo mediante la técnica de subsampleo, en la que 
de la señal original se conservan muestras en proporción una de cada dos, una de cada tres, una 
de cada cuatro,… de forma correlativa, con lo que el efecto es como dividir la frecuencia de muestreo 
por dos, tres, cuatro,… respectivamente (ANEXO II líneas 1634-1747).  

El resultado se puede apreciar en la figura 33 

 

 
Fig. 33 Degradación del valor Kappa al disminuir la frecuencia de muestreo. 

4.5.2. REDUCCION DEL NUMERO DE CARÁCTERÍSTICAS. 

Igualmente se han elegido unas características de la onda de corriente que son las encargadas 
de definir cada una de las cargas. Reducir el número de características también empeoraría el 
clasificador, sin embargo, reduciría el coste energético de calcularlas y acondicionarlas. Sin 
embargo, esta reducción o eliminación de entradas de la red neuronal no puede hacerse de forma 
sistemática; la forma de ver si una característica contiene mucha información útil para la red, es 
probando. Por ello se ha utilizado un algoritmo iterativo de comprobación, por el cual a una red tipo 
mapa auto organizado se presentan subconjuntos del total de las características calculadas, 
obteniendo las combinaciones que cuentan con un kappa mayor. Para esta reducción, no se ha 
reducido la frecuencia de muestreo, puesto que el resultado buscado es el subconjunto de entradas 
que menos degrada el valor kappa cualitativamente y no cuantitativamente (ANEXO II líneas 1750-
1825). 

  

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

MUESTRAS DESCARTADAS

K
A

P
P

A



4. ANÁLISIS DE LOS DATOS 

Pag 34 de 128 

El resultado puede verse en la tabla 10: 

 

KAPPA RMS CCDA CCDB FFT1 FFT2 FFT3 FP PICO CUARTO 

0.9638 0 1 1 1 1 1 1 1 1 

0.9666 1 1 1 1 1 1 1 0 1 

0.9749 1 1 1 1 1 1 1 1 0 

0.9777 0 1 1 1 1 1 1 1 0 

0.9833 1 1 1 1 1 0 1 1 0 

0.9833 1 0 1 1 1 0 1 1 0 

0.9861 1 1 1 0 1 0 1 1 0 

Tab. 10 Indice Kappa en función de las características presentadas 

 

De esta tabla se puede deducir que hay características que posiblemente introduzcan ruido al 
sistema como puede ser la entrada “cuarto” ya que el algoritmo la ha descartado en varias 
ocasiones. 

Para reducir el coste computacional y a la vista que hay características que podrían introducir 
ruido se eliminarán: 

 Valor de Inter Semiperiodo (CUARTO). 

 Valores de la transformada de Fourier (FFT1, FFT2, FFT3). 

4.5.3. DETECCION DE EVENTOS 

Siguiendo con el propósito de reducir el coste computacional, reduciendo la frecuencia de 
muestreo, También se ha estudiado el efecto de la modulación de muestreo. Esta modulación 
consiste en una vez elegida la frecuencia de muestreo, en lugar de realizar un muestreo continuo 
se modula el tiempo de durante el que se muestrea y el tiempo durante el que no se realiza acción 
alguna, permitiendo al sistema cambiar a un modo de muy bajo consumo; esta modulación tiene su 
base en la técnica PWM en el que se fija un tiempo de trabajo (adquisición a la frecuencia 
seleccionada) y un tiempo de espera (bajo consumo), pero en este caso los tiempos son mucho 
mayores que el periodo de la señal. 

Se han desechado características propias de los transitorios, las cuales podrían suceder inter 
muestreo. A pesar de ello, es necesario evaluar un algoritmo de detección de eventos, que inicie el 
proceso de captura, cálculo y clasificación. 

El algoritmo resta a cada valor de la ventana de muestras del tamaño elegido (teniendo en cuenta 
también el número de muestras variable en función del subsampleo aplicado) el valor de la mediana 
de la propia ventana, eliminado la componente continua. Posteriormente se suman los valores 
absolutos de la totalidad de las muestras de la ventana, comparándolas con el resultado de la 
ventana anterior y según que el resultado de esta comparación esté por encima del valor positivo 
de un umbral o por debajo del valor negativo de ese umbral se habrá producido una conexión o una 
desconexión de alguna carga, respectivamente. 

Podría darse el caso de que el periodo de captura coincidiera con el transitorio, por lo que al 
extraerse características únicamente del periodo permanente, habrá que elegir otra ventana 
temporal como muestra. Esto se realiza mediante una comparación con gradiente, comparando una 
ventana con la siguiente de forma que se supone que la señal ha alcanzado el régimen estable si 
entre dos ventanas consecutivas la diferencia de su suma es menor que un valor denominado 
gradiente (ANEXO V). 



4. ANÁLISIS DE LOS DATOS 

Pag 35 de 128 

En la figura 34 se muestra un ejemplo de la captura discontinua enventanada, en la que cada 
rectángulo amarillo corresponde a un periodo de muestreo. Para el caso de una detección de evento 
conexión, la ventana quedaría en color verde y de color rojo para la desconexión. 

 
Fig. 34 Ejemplo de muestreo discontinuo, carga simple. 

 

Puede observarse que la ventana elegida como muestra en la conexión, no es la correspondiente 
por modulación, sino que se encuentra en la zona de onda ya estabilizada para los dos casos de 
evento conexión (verde) y desconexión (roja). 

Igualmente sucede con otros eventos en cargas agregadas. La figura 35 recoge estos eventos. 

 

 
Fig. 35 Ejemplo de muestreo discontinuo, carga compuesta. 

0 2000 4000 6000 8000 10000 12000
-150

-100

-50

0

50

100

150
cargaBat3

Nº muestras

V
a

lo
r 

d
e

c
im

a
l 
d

e
 c

o
n

v
e

rs
ió

n

0 1 2 3 4 5 6

x 10
4

-400

-300

-200

-100

0

100

200

300

400

500
cargaVen1OnYMicrOnYSandOn

Nº muestra

V
a

lo
r 

d
e

c
im

a
l 
d

e
 l
a

 c
o

n
v
e

rs
ió

n



4. ANÁLISIS DE LOS DATOS 

Pag 36 de 128 

 

En este caso la tercera ventana de conexión corresponde al segundo estado de funcionamiento 
del microondas (el segundo evento detectado correspondería al primer estado de conexión del 
microondas). 

También se pueden observar una falsa conexión al final del primer tercio de la onda 
correspondiente a la conexión de la sandwichera y otra falsa conexión al finalizar la captura del trial. 

4.6. SOLUCION ADOPTADA 

Tras presentar las medidas adoptadas encaminadas al uso de un sistema de bajo consumo y baja 
complejidad computacional, se eligen las soluciones y parámetros para evaluar las posibles redes 
neuronales (tabla 11). 

 

FRECUENCIA MUESTREO 625 Hz 
SUBSAMPLEO 1/4 
TAMAÑO DE INDIVIDUO 10 CICLOS 

FRECUENCIA INTERMUESTREO 1 Hz 
VENTANA DETECTOR EVENTOS 10 CICLOS=130MUESTRAS 
THRESHOLD EVENTO 270 UDS. CONVERSION 
GRADIENTE INTER VENTANAS 70 UDS. CONVERSION 

DATA SET ENTRENAMIENTO/VERIFICACION 80% / 20% 

VALOR RMS INCLUIDA 

CENTROIDE CONCORDIA COMPONENTE α INCLUIDA 

CENTROIDE CONCORDIA COMPONENTE β INCLUIDA 

PRIMER ARMONICO DESECHADA 

TERCER ARMONICO DESECHADA 

QUINTO ARMONICO DESECHADA 
DESFASE TENSION CORRIENTE INCLUIDA 

VALOR PICO INCLUIDA 

VALOR INTER SEMIPERIODO DESECHADA 
Tab. 11 Configuracion de los parámetros de extracción de datos. 

 

TDC  

 

 



5. REDES NEURONALES 

 Pag 37 de 128 

5. REDES NEURONALES 

Los datos han sido procesados, elegidas las características que serán la entrada de la red 
neuronal y configurado el entorno de adquisición así como definido el parámetro que nos evaluará 
las redes neuronales puestas a prueba. 

Las redes evaluadas son: 

 SOM (Self Organizing Maps). 

 PERCEPTRON LINEAL. 

 PERCEPTRON MULTICAPA (MLP). 

 APRENDIZAJE DE CUANTIFICACIÓN VECTORIAL(LVQ). 

5.1. RED MAPA AUTO ORGANIZADO(SOM) 

Un mapa auto-organizado (SOM por sus siglas en inglés) es un tipo de red neuronal artificial, que 
es entrenada usando aprendizaje no supervisado para producir una representación discreta del 
espacio de las muestras de entrada, llamado mapa (figura 36) (ANEXO II líneas 1831-1836). 

 

 
Fig. 36 Esquema de una red SOM. 

 

Este mapa una vez entrenado dispondrá de diferentes grupos de neuronas capaz de activarse en 
función de las entradas mostradas, generando zonas definas para entradas similares. De esta 
forma, ante una entrada concreta se activarán las neuronas más afines que identificarán qué tipo de 
entrada es. 

Las características de la red neuronal usada son: 

 Inicialización de los pesos aleatoria. 

 Modo de entrenamiento batch. 

 Tamaño del mapa 26x20 neuronas. 

 Disposición hexagonal. 
 

Una vez entrenado el SOM con el grupo de individuos de entrenamiento, elegidos aleatoriamente 
con la proporción ya indicada se etiquetan los grupos de neuronas de forma que una vez generados 
los dominios se pueda saber a qué clase pertenecen las neuronas activadas y se presentan los 
individuos de verificación. Los resultados se exponen a continuación.  

En la figura 37 se aprecia la topología del mapa, con cada celda representando una neurona. Las 
líneas más oscuras tanto de la U-matrix como de la D-matrix, definen regiones, grupos de neuronas 
que se activan ante cierto tipo de clases. Los marcadores de tamaño y la similitud por coloración 
representan el mismo fenómeno, pero con otra representación. 

 



5. REDES NEURONALES 

Pag 38 de 128 

 
Fig. 37 Dominios del mapa auto organizado en diferentes vistas 

 

En la figura 38 Se observa la activación por las clases de individuos. Las clases más similares 
(BAT1,BAT2 y BAT3 por ejemplo) se encuentran en la misma zona, sin separación bien definida. 

Sin embargo, las clases compuestas MicroOnySandOn no activan la unión de las neuronas de las 
clases primitivas (Micr y Sand). 

 

 
Fig. 38 Activación por clases de individuos. 

SOM 19-Oct-2016

Fuzzy response

 

 

0

58.1

116

Bat1

 

 

0

184

367
Bat2

 

 

0

184

367
Bat3

 

 

0

184

367
Expr

 

 

0

184

367

Micr

 

 

0

184

367
Sand

 

 

0

184

367
Ven1

 

 

0

184

367
MicrOnYSandOn

 

 

0

184

367

SandOnYBat3On

 

 

0

184

367
Ven1OnYBat3On

 

 

0

184

367
Ven1OnYMicrOnYSandOn

 

 

0

184

367



5. REDES NEURONALES 

Pag 39 de 128 

En cuanto a la activación por características, se puede observar el resultado en la figura 39. Las 
zonas de activación por características son muy similares. 

Fig. 39 Activación por características. 

 

Para esta red neuronal se ha extraído la matriz de confusión en la tabla 12: 

 

  
Bat1 Bat2 Bat3 Expr Micr Sand Ven1 

MicrO
nYSan
dOn 

SandO
nYBat3

On 

Ven1O
nYBat3

On 

Ven1OnYMi
crOnYSand

On 

Bat1 15 4 0 1 0 0 0 0 0 0 0 

Bat2 4 11 0 0 0 0 0 0 0 0 0 

Bat3 1 0 15 1 0 0 1 0 0 0 0 

Expr 2 0 0 36 0 0 0 0 0 0 0 

Micr 0 0 0 0 19 0 0 0 0 0 0 

Sand 0 0 0 0 0 91 0 0 7 0 0 

Ven1 0 0 1 0 0 0 33 0 0 4 0 

MicrOnYSandOn 0 0 0 0 0 0 0 20 0 0 22 

SandOnYBat3On 0 0 0 0 0 8 0 0 14 0 0 

Ven1OnYBat3On 0 0 0 0 0 0 8 0 0 17 0 

Ven1OnYMicrOn
YSandOn 

0 0 0 0 0 0 0 9 0 0 11 

TOTAL 
INDIVIDUOS 

68% 73% 94% 95% 100% 92% 79% 69% 67% 81% 33% 

Tab. 12 Configuración de los parámetros de extracción de datos. 

 

Se puede observar la similitud de clases en los errores cometidos en la clasificación, al observar 
la simetría respecto de la diagonal, marcados con flechas dobles, en las que aunque las cantidades 
no coinciden dan una idea de que individuos que debían estar marcados como una clase son 
marcados como la otra y viceversa. 

Para este caso, el índice Kappa obtenido es: 0.7937 

RMS

 

 

d 
3.64

126

248
CCDA

 

 

d 
4.02

148

293

CCDB

 

 

d 
3.34

125

247
FP

 

 

d 
0

1.14

2.29

SOM 19-Oct-2016

PICO

 

 

d 
6.86

217

427

U-matrix

 

 

0

184

367



5. REDES NEURONALES 

Pag 40 de 128 

5.2. RED LINEAL PERCEPTRON 

La red lineal de perceptores se caracteriza por disponer de dos capas (figura 40), que procesan 
secuencialmente. La primera de ellas correspondería a las entradas con los pesos correspondientes 
y la segunda capa la capa de salida que en este caso clasificarían a cada individuo, realizada con 
neuronas logarítmicas sigmoideas (ANEXO II líneas 1865-1898). 

Es claro que al estar fijadas el número de entradas y salidas, la red es invariante respecto al 
número de neuronas. 

 

 
Fig. 40 Esquema red neuronal lineal. 

 

Una peculiaridad de estas redes es que existe el peligro del sobre entrenamiento. Esto ocurre por 
un exceso de presentaciones de los mismos patrones a la red, lo que produce un sobre ajuste y 
memorización de los patrones presentados a la red, empeorando la capacidad generalizadora de la 
misma. Para evitar esto se usa la técnica de la “parada anticipada” que previene este hecho. Más 
adelante se usará esta técnica.  

En primera instancia, para seleccionar el tipo de entrenamiento, se elige una red que se someterá 
a diversos tipos de entrenamientos. 

Las características de la red neuronal usada son: 

 Inicialización de los pesos aleatoria. 

 Esquema 5-11 (nºNeuronasEntrada - nºNeuronasCapaSalida) 

 Modo de entrenamiento: variable 

 Tipos de neuronas: Capa salida: logarítmica sigmoidea. 

 Numero de ciclos:500. 

 Error objetivo: 5e-4. 
 

Mediante un algoritmo de repetición se entrena y valida la red neuronal variando el algoritmo de 
entrenamiento. A pesar de ser pocas iteraciones, el resultado será suficiente para poder elegir el 
entrenamiento. Para conseguir un valor fiable, con cada tipo de entrenamiento se repite el proceso 
5 veces obteniendo el resultado en la figura 41.  

 



5. REDES NEURONALES 

Pag 41 de 128 

 
Fig. 41 Boxplot del indice Kappa en función del tipo de entrenamiento. 

 

La equivalencia de entrenamientos es la siguiente.  

Trainlm: Levenberg-Marquardt 

Trainbr: Regularización Bayesiana 

Traingdm: Descenso del gradiente con momento 

Trainrp: Descenso del gradiente con derivadas signo (DG flexible) 

Traingda: Descenso del gradiente con factor de aprendizaje adaptable 

Traingdx: Descenso del gradiente con factor de aprendizaje adaptable y momento 

Traincgf: Descenso del gradiente conjugado, método de Fletcher-Reeves 

Traincgp: Descenso del gradiente conjugado, método de Polack-Riviere 

Traincgb: Descenso del gradiente conjugado, método de Powell-Beale 

Trainscg: Descenso del gradiente conjugado, método de escalado 

Trainbfg: Método cuasi-Newton BFGS 

Trainoss: Método cuasi-Newton de secante a un paso 

 

Obtenido el resultado se escoge como método de entrenamiento Levenberg-Marquardt. A la vista 
de la varianza de los resultados obtenidos, se opta por obtener un pool de redes entrenadas y 
escoger la mejor de ellas (figura 42). En este caso sí que se ha tenido en cuenta el sobre 
entrenamiento y se ha aplicado la parada anticipada, con un valor máximo 10 ciclos de 
entrenamiento seguidos donde el conjunto de validación genere errores crecientes o constantes.  

Para poder realizar esta técnica el dataset se ha divido en tres grupos como sigue: 

 Grupo entrenamiento:60%. 

 Grupo validación: 20%. 

 Grupo test:20%  
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
lm

T
ra

in
b
r

T
ra

in
g
d
m

T
ra

in
rp

T
ra

in
g
d
a

T
ra

in
g
d
x

T
ra

in
c
g
f

T
ra

in
c
g
p

T
ra

in
c
g
b

T
ra

in
s
c
g

T
ra

in
b
fg

T
ra

in
o
s
s

K
a

p
p

a



5. REDES NEURONALES 

Pag 42 de 128 

 
Fig. 42 Pool de redes generadas. 

 

La red con mejores resultados es la número 10 con un Kappa de 0.8522 de la que se expone la 
matriz de confusión en la figura 43.  

 

 
Fig. 43 Matriz de confusión de la red escogida. 

 

En este caso concreto se ha detenido el entrenamiento debido a que la red ha alcanzado el valor 
de ciclos previsto por la parada anticipada. En la figura 44 se observa el error de la red para los 
conjuntos de entrenamiento, validación y test; en el ciclo 12 se observa el menor error del grupo de 
validación. A partir de ese ciclo, el error se mantiene constante o aumenta, indicado sobre 
entrenamiento 

1 2 3 4 5 6 7 8 9 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

X: 10

Y: 0.8522

Nº red generada

K
a

p
p

a



5. REDES NEURONALES 

Pag 43 de 128 

 

 
Fig. 44 Error generado por los tres grupos de datos. 

 

5.3. RED PERCEPTRON MULTICAPA (MLP) 

Otra red neuronal que se prueba es el perceptrón multicapa, red neuronal de aprendizaje 
supervisado, en la que las neuronas se disponen tal y como indica la figura 45, pudiendo existir 
varias capas intermedias. La capa de entrada tiene por dimensión (número de neuronas) igual a las 
características electas, las capas intermedias tiene un número no definido de neuronas y la de salida 
igual a las clases que esperamos clasificar. En este caso el número es conocido, puesto que es 
supervisado. (ANEXO II líneas 1901-1940) 

 
Fig. 45 Esquema de perceptron multicapa. 

 

Las características de la red neuronal usada son: 

 Inicialización de los pesos aleatoria. 

 Esquema 5-XX-11 (nºNeuronasEntrada-nºNeuronasCapaOculta-nºNeuronasCapaSalida) 

 Modo de entrenamiento: backpropagation con función de entrenamiento: Levenberg-
Marquardt. 

 Tipos de neuronas: Capa intermedia: tangente sigmoidea; capa salida: lineal. 

 Numero de ciclos:1000. 

 Error objetivo: 5e-4. 

 Parada anticipada:5 



5. REDES NEURONALES 

Pag 44 de 128 

Según [XX] un número de neuronas para la única capa intermedia estaría alrededor del doble de 
la de neuronas en la capa de salida. Se realizan pruebas para determinarlo mediante iteraciones de 
entrenamiento de la siguiente manera. 

Mediante un algoritmo de repetición se entrena y valida la red neuronal variando el número de 
neuronas ocultas, con un máximo de 1000 iteraciones de entrenamiento Levenberg-Marquardt. Se 
incluye nuevamente la parada anticipada para el resultado será suficiente para poder elegir 
configuración. Para conseguir un valor fiable, con cada valor de neuronas en la capa oculta se repite 
el entrenamiento y validación 10 veces obteniendo una mediana de los distintos valores. El resultado 
puede observarse en la figura 46 

 

 
Fig. 46 Índice Kappa en función del número de neuronas de la capa oculta. 

 

Se aprecia una tendencia clara conforme el aumento de neuronas ocultas hasta un valor cercano 
a los 10, tal y como avanzaba [XX], lo que indica que tras alcanzar un valor de unas 10 neuronas, 
sobrecargar la red neuronal con una capa oculta más compleja, no mejora mucho la clasificación. 

Definido el mínimo de neuronas ocultas para un clasificación aceptable, se determina si con 
algunas neuronas más el sistema estaría sobre dimensionado. El entrenamiento por regularización  
bayesiana nos indicará cuantos pesos realmente aportan información a la clasificación; de esta 
manera se puede ver si el sistema está sobredimensionado ya que informaría de un bajo número 
de pesos usados. El proceso se repite 5 veces y se obtiene la mediana; el resultado obtenido informa 
que de 181 pesos en la red, se usan 172, lo que indica que no hay sobredimensionamiento. Si el 
número de pesos efectivos fuera mucho menor que el de pesos totales se podría hablar de red 
sobredimensionada. 

A la vista de los resultados se elige la configuración 5-10-11 (5 entradas, 10 neuronas en la capa 
oculta y 11 neuronas de salida). Con la configuración elegida, se entrena nuevamente un pool de 
redes MLP con las características antes descritas, y con 1000 iteraciones. Extrapolando los 
resultados de entrenamientos del punto anterior, se elige el mismo tipo de entrenamiento, 
Levenberg-Marquardt. El resultado de este pool es el de la figura 47. 

 

5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

1

X: 9

Y: 0.9376

Nº neuronas capa oculta

K
a

p
p

a

X: 12

Y: 0.9563



5. REDES NEURONALES 

Pag 45 de 128 

 
Fig. 47 Resultados del pool de redes generadas 

 

Para obtener un valor aproximado y comparable de la capacidad de clasificación de este pool, es 
necesario promediar el resultado, lo que da un kappa de 0.9461. 

Se muestra a continuación en la figura 48 la matriz de confusión de la red de perceptrones elegida 
y el diagrama de barras en la figura 49 para cada clase e individuo. 

 

  
Fig. 48 Matriz de confusión de la red MLP 5-10-11. 

 

0 2 4 6 8 10 12 14 16 18 20
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Nº red generada

K
a

p
p

a



5. REDES NEURONALES 

Pag 46 de 128 

 
Fig. 49 Grafico de barras de la red MLP 5-10-11. 

 

La figura del error conforme se ha ido entrenando la red puede verse en la figura 50 

 

 
Fig. 50 Error de la red conforme avanza el entrenamiento. 

 

La parada anticipada puede observarse en la siguiente figura (figura 51) 

 



5. REDES NEURONALES 

Pag 47 de 128 

 
Fig. 51 Evolución de parámetros de la red. 

 

Puede observarse cómo el gradiente va disminuyendo hasta que a partir de la iteración 56 
(aumento del número de iteraciones con gradiente no descendiente) no continua el descenso, por 
lo que se decide parar el entrenamiento. 

5.4. RED LEARNING VECTOR QUANTIZATION (LVQ) 

Una red LVQ es parecida a una red SOM en cuanto a su funcionamiento y aprendizaje, pero está 
más orientada a la clasificación y entrenamiento supervisado, necesitando menos neuronas, siendo 
por ello un modelo más sencillo y eficaz (ANEXO II líneas 1942-1961).  

El esquema de la red es similar al perceptrón simple (red lineal) de la figura 52: 

 
Fig. 52 Esquema red LVQ. 

 

Esta red presenta también el inconveniente de la elección del número de neuronas de salida, 
puesto que aunque podría funcionar con una neurona de salida por clase, aumentar el número de 
neuronas por clase, mejora la clasificación. 

  



5. REDES NEURONALES 

Pag 48 de 128 

Por ello se realiza una repetición sistemática de resultados de la red variando el número de 
neuronas de salida con el objetivo de seleccionar dicho número. Para esta aproximación se realizan 
3 repeticiones medianadas en la red con los siguientes parámetros: 

 Inicialización de los pesos aleatoria. 

 Esquema 5-XX (nºNeuronasEntrada-nºNeuronasCapaSalida) 

 Modo de entrenamiento: Entrenamiento aleatorio de orden incremental. 

 Función de aprendizaje:LVQ1 

 Numero de ciclos:20. 

 Factor aprendizaje: 0.2 

 Error objetivo: 5e-4. 
 

El resultado puede observarse en la siguiente gráfica (figura 53) 

 

 
Fig. 53 Kappa en función de neuronas de salida. 

 

Puede observarse el incremento del índice Kappa al aumentar el número de neuronas. Indicar 
que por debajo de 20 neuronas hay clases que la red no habría podido clasificar ningún individuo, 
por lo que se elige un valor superior, 21. 

A la vista de los resultados, se entrena una red LVQ con los parámetros descritos y esquema    5-
21. Según expone [KOHONEN 95] el entrenamiento mediante el algoritmo LVQ1 no debe superar  
de 30 a 50 veces el muestrario de entrenamiento (el 80% del total de las muestras, o sea 1422 
muestras). En este caso se opta por una posición conservadora eligiendo 300 ciclos de 
entrenamiento. 

  

10 15 20 25

0.65

0.7

0.75

0.8

0.85

0.9

0.95

X: 21

Y: 0.8636

Nº neuronas Salida

K
a

p
p

a



5. REDES NEURONALES 

Pag 49 de 128 

Se expone la matriz de confusión (figura 54 ) y el historial del error a lo largo del entrenamiento 
(figura 55).  

 

 
Fig. 54 Matriz de confusión de la red LVQ. 

 

 
Fig. 55 Evolución del error durante el entrenamiento. 

 

Con un Kappa de 0.8807 

  



5. REDES NEURONALES 

Pag 50 de 128 

5.5. GASTO COMPUTACIONAL 

Cada neurona responde a un esquema como el de la figura 56.  

 

 
Fig 56 Esquema de computación de una neurona genérica. 

 

Al resultado de multiplicar las entradas por sus pesos más el bías o valor de activación, se le aplica 
la función de activación, tal y como indica la ecuación: 

𝑦(𝑡) = 𝑓𝑖 (∑𝑤𝑖𝑗𝑥𝑗
𝑗

− θ𝑖) 

Donde  

 i: es la neurona 

 j:es la entrada correspondiente 

 w: es el valor del peso 

 x: es el valor de la entrada 

 θ: es el valor de activación 

 f: función de activación (lineal, sigmoidea, etc.) 
 

Por simplificación en la representación, muchas veces el bias es considerado una entrada más, 
con el signo negativo correspondiente. 

Dentro del funcionamiento de la red, hay una relación directa entre el número de pesos y el número 
de operaciones que debe realizar el sistema. En esta tabla 13 se resumen las redes neuronales 
desde el punto de vista computacional y la relación Kappa-número de pesos, que nos indica el 
rendimiento de cada red  

 

RED ESQUEMA NEURONAS PESOS KAPPA KAPPA/PESOS 
SOM 26x20 520 3120 0.7937 2.54 e-4 

PERCEPTRON LINEAL 5-11 16 60 0.8522 142 e-4 

MLP 5-10-11 26 181 0.9461 52.27 e-4 

LVQ 5-21 26 126 0.8807 69.89 e-4 

Tab. 13 Redes neuronales y rendimiento computacional. 
 

Dado que por cada peso se ha de realizar una multiplicación, desde el punto de vista de 
rendimiento energético la red que mejor resuelve el problema con menor coste es el perceptrón 
lineal. 

Por el contrario, el algoritmo de entrenamiento puede requerir incluso mayores recursos que la 
propia red. En el caso del perceptrón multicapa, este entrenamiento superaría los requisitos de 
cualquier microprocesador de rango medio, quedando excluido el entrenamiento de la integración 
en el dispositivo, debiéndose entrenar en un PC para luego clonar la red entrenada en el dispositivo. 

TDC  



6. CONCLUSIONES 

 Pag 51 de 128 

6. CONCLUSIONES 

6.1. RESUMEN 

En este trabajo fin de máster se ha partido de los sistemas no intrusivos para el reconocimiento 
de cargas eléctricas, que hasta ahora han sido sistemas de grandes prestaciones, voluminosos, 
caros y de grandes requerimientos energéticos, usados y afinados para obtener los mejores 
resultados clasificatorios, para avanzar en la dirección de las tendencias actuales de los sistemas 
de monitorización sensado y procesado: nodos cada vez más independientes, muy eficientes 
energéticamente hablando y distribuidos.  

Con la premisa de usar sistemas de bajo consumo, pequeño volumen y bajo costo, se han elegido 
características de la onda de corriente que necesiten de poco cómputo, y se han ajustado 
parámetros del funcionamiento del sistema como la frecuencia de muestreo y el algoritmo de 
detección de eventos, obteniendo un compromiso entre energía consumida y exactitud en la 
clasificación. 

Se han evaluado nuevas características capaces de suplantar la potente información 
proporcionada por la Transformada de Fourier, más compleja de obtener, y se han evitado 
conversiones a unidades físicas, usando siempre las unidades directas de conversión del propio 
conversor analógico digital. También se han detectado características que, bien no aportan nueva 
información, bien introducen ruido al sistema. 

Se han elegido ciertas redes neuronales que por su simplicidad de implementación o por su 
potencia de clasificación resultan muy convenientes para estos sistemas descritos, y se han 
obtenido rendimientos de clasificación frente a computación 

6.2. TRABAJOS FUTUROS 

Existe un colectivo de personas centradas en esta faceta del reconocimiento de cargas de forma 
no intrusiva [NILM 16], que celebra congresos y disponen de data sets de libre acceso para 
investigadores. Es por tanto un área de estudio en vigencia.  

Esta posible línea de trabajo queda abierta a muchos más proyectos, siguiendo la idea de un 
sistema clasificador no intrusivo de bajo consumo: desde la propia implementación de la red en el 
microcontrolador hasta optimizaciones funcionales de las redes.  

Un siguiente paso muy concreto, siguiendo con el trabajo aquí expuesto, se centraría en que el 
sistema fuera capaz de detectar las cargas compuestas como sumas de dos o tres cargas, en lugar 
de como una única carga, disminuyendo la memoria necesaria, al reducir el número de clases (una 
carga compuesta no sería una nueva clase, sino combinación de las ya conocidas).  

Existen muchos datos sobre el uso y consumo de electrodomésticos en media, por habitante, por 
país, etc. Sin embargo, es en la proximidad del individuo donde más útil resultará este tipo de 
información. 

 

TDC  

 

 



7. RESEÑAS. 

Pag 52 de 128 

7. RESEÑAS. 

[HART 92]: GEORGE W. HART, NONINTRUSIVE APPLIANCE LOAD MONITORING (1992). 
Proceedings of the IEEE 

[NORFORD 96]: LESLIE K. NORFORD, NON-INTRUSIVE ELECTRICAL LOAD MONITORING IN 
COMMERCIAL BUILDINGS BASED ON STEADY-STATE AND TRANSIENT 
LOAD-DETECTION ALGORITHMS (17 Septiembre 1995). Energy and 
Buildings, Volume 24, Issue 1, 1996, Pages 51–64 

[LAUGHMAN 03]: CHRISTOPHER LAUGHMAN, POWER SIGNATURE ANALYSIS (Abril 2003). IEEE 
power & energy magazine 

[GILREATH 06]: PHIL GILREATH, A NOVEL TECHNIQUE FOR IDENTIFICATION AND CONDITION 
MONITORING OF NONLINEAR LOADS IN POWER SYSTEMS (2006). Power 
Electronics, Drives and Energy Systems, 2006. PEDES '06. International 
Conference on. 

[LIN 10]: GU-YUAN LIN, APPLYING POWER METERS FOR APPLIANCE RECOGNITION 
ON THE ELECTRIC PANEL (Junio 2010). Industrial Electronics and 
Applications (ICIEA), 2010 the 5th IEEE Conference on. 

[RAHIMI 11]: SABA RAHIMI, USAGE MONITORING OF ELECTRICAL DEVICES IN A SMART 
HOME (Agosto 2011). 33rd Annual International Conference of the IEEE EMBS 
Boston, Massachusetts USA. 

[WANG 12]: ZHENYU WANG, RESIDENTIAL APPLIANCES IDENTIFICATION AND 
MONITORING BY A NONINTRUSIVE METHOD. IEEE transactions on smart 
grid, vol. 3, no. 1, March 2012 

[YUN 12]: GAO YUN, NON-INTRUSIVE LOAD IDENTIFICATION BY FUZZY CLUSTER 
ANALYSIS BASED ON ACTIVE POWER (MARZO 2012). Power and Energy 
Engineering Conference (APPEEC), 2012 Asia-Pacific 

[ROOS 94]: JG ROOS, USING NEURAL NETWORKS FOR NON-INTRUSIVE MONITORING OF 
INDUSTRIAL ELECTRICAL LOADS (Mayo 1994) Instrumentation and 
Measurement Technology Conference, 1994. IMTC/94. Conference 
Proceedings. 10th Anniversary. Advanced Technologies in I & M., 1994 IEEE 

[PATEL 07]: SHWETAK N. PATEL, AT THE FLICK OF A SWITCH: DETECTING AND 
CLASSIFYING UNIQUE ELECTRICAL EVENTS ON THE RESIDENTIAL 
POWER LINE. 9th International Conference, UbiComp 2007, Innsbruck, 
Austria, September 16-19, 2007. 

[YANG 07]: HONG-TZER YANG, DESIGN A NEURAL NETWORK FOR FEATURES 
SELECTION IN NON-INTRUSIVE MONITORING OF INDUSTRIAL 
ELECTRICAL LOADS (2007). Proceedings of the 2007 11th International 
Conference on Computer Supported Cooperative Work in Design. 

[CHANG 10]: HSUEH-HSIEN CHANG, LOAD IDENTIFICATION IN NONINTRUSIVE LOAD 
MONITORING USING STEADY-STATE AND TURN-ON TRANSIENT 
ENERGY ALGORITHMS (Abril 2010). Proceedings of the 2010 14th 
International Conference on Computer Supported Cooperative Work in Design. 

[TSAI 11] DEVELOPMENT OF A NON-INTRUSIVE MONITORING TECHNIQUE FOR 
APPLIANCE IDENTIFICATION IN ELECTRICITY ENERGY MANAGEMENT. 
The International Conference on Advanced Power System Automation and 
Protection (2011) 

[ALAHMAD 11]: MAHMOUD ALAHMAD, NON-INTRUSIVE ELECTRICAL LOAD MONITORING AND 
PROFILING METHODS FOR APPLICATIONS IN ENERGY MANAGEMENT 
SYSTEMS (2011). Architectural Engineering -- Faculty Publications University 
of Nebraska. 

 



7. RESEÑAS. 

Pag 53 de 128 

[LIN 12]: YU-HSIU LIN, APPLICATION OF NEURO-FUZZY PATTERN RECOGNITION FOR 
NON-INTRUSIVE APPLIANCE LOAD MONITORING IN ELECTRICITY 
ENERGY CONSERVATION. WCCI 2012 IEEE World Congress on 
Computational Intelligence June, 10-15, 2012 - Brisbane, Australia. 

 

[KOHONEN 95]: THE LEARNING VECTOR QUANTIZATION PROGRAM PACKAGE VERSION 3.1 
(APRIL 7, 1995) Archivo de ayuda del programa LVQ_PAK de la Universidad 
de Helsinki 

 

 

[NILM 16]: 3rd International Workshop on Non-Intrusive Load Monitoring (May 14 2016) 
Vancouver, Canada (http://nilmworkshop.org/2016/) 

 

 

  

 

TDC  

 

 

http://nilmworkshop.org/2016/


ANEXO I 

Pag 54 de 128 

ANEXO I 

 

PARÁMETROS DEL FILTRO DIGITAL 

 

Se exponen a continuación los parámetros del filtro digital aplicado a la señal de corriente. 

 

Discrete-Time FIR Filter (real)        

-------------------------------        
Filter Structure   : Direct-Form FIR    
Filter Length     : 101                

Stable            : Yes                
Linear Phase      : Yes (Type 1)       

                                       

Design Method Information              
Design Algorithm   : window              
                                       

Design Options                         
ScalePassband   : true                   
Window        : hamming                
                                       

Design Specifications                  
Sampling Frequency   : 2.542 kHz         
Response           : Bandpass          
Specification      : N,Fc1,Fc2         

FilterOrder        : 100               
Fcutoff1           : 40 Hz             

Fcutoff2           : 60 Hz             
                                       

Measurements                           
Sampling Frequency      : 2.542 kHz    

First Stopband Edge     : Unknown      
First 6-dB Point        : 26.2517 Hz   

First 3-dB Point        : 33.0918 Hz   
First Passband Edge     : Unknown      
Second Passband Edge    : Unknown      

Second 3-dB Point       : 67.2323 Hz   
Second 6-dB Point       : 73.8605 Hz   

Second Stopband Edge    : Unknown      
First Stopband Atten.   : Unknown      
Passband Ripple         : Unknown      

Second Stopband Atten.  : Unknown      
First Transition Width  : Unknown      

Second Transition Width : Unknown 
Group delay response  : 50 samples      
                                       

Implementation Cost                    
Number of Multipliers            : 101 
Number of Adders                 : 100 

Number of States                 : 100 
Multiplications per Input Sample : 101 
Additions per Input Sample       : 100 

 

TDC  

 

 



ANEXO II 

Pag 55 de 128 

ANEXO II 

 

SCRIPT CAPTURA, ACONDICIONAMIENTO Y SIMULACION 

clc; 1 
clear all; 2 
close all; 3 
  4 
  5 
  6 
%% CONSTANTES 7 
%%%%% 8 
%%MASCARA ELECCION DE 11 ELECTRODOMESTICOS 9 
%%%           BAT1  BAT2  BAT3  EXPR  MICR  SAND  VENT   M_S   S_B3  V_B3  V_M_S 10 
MASCARA_ELECTR=[1    1     1     1     1     1     1      1      1     1     1]; 11 
  12 
CARACTERISTICAS = {'RMS','CCDA','CCDB','FFT1','FFT2','FFT3','FP','PICO','CUARTO'}; 13 
  14 
  15 
Kappatemp=[]; 16 
subsampleVsKappa=[]; 17 
for subsamples=4:4                              %repeticiones con cambio de sampleo  18 
                                                %(1=sin subsampleo)(4=> subsampleo = FS/4) 19 
    for veces=1:1                               %repeticiones para media en la reduccion de entradas 20 
        %adquisicion 21 
        TRIALS=10; 22 
        CLASES=11; 23 
        %names = {'RMS','CCDA','CCDB','FFT1','FFT2','FFT3','FP','PICO','CUARTO'}; 24 
        VENTANA_EST=10;                         %número de ciclos que componenen un muestra 25 
        %COMP_CONTINUA=600; 26 
        % FS=2542; %Frecuencia de sampleo original 27 
        SUBSAMPLE=subsamples;                   %se guarda una de cada SUBSAMPLE muestras 28 
        FS=round(2542/SUBSAMPLE);               %Frecuencia de sampleo 29 
        MUESTRAS_CICLO=round(FS*0.02);          %número de adquisiciones en cada ciclo  30 
        INC_VENT=VENTANA_EST*MUESTRAS_CICLO;    %desplazamiento 31 
  32 
        %FFT 33 
        T=1/FS;                                  %periodo 34 
        NFFT = 2^nextpow2(INC_VENT);            % Next power of 2 from length of y 35 
        FRC_BUSQ_FFT=[40 60 120 180 200 300];   %rango frecuencias para buscar las CARACTERISTICAS FFT 36 
        VECTOR_FRECUENCIA = FS/2*linspace(0,1,NFFT/2+1); 37 
  38 
  39 
        %filtro paso banda 40 
        N=100;              %orden del filtro 41 
        FC1=40;             %Frecuencia de corte inferior 42 
        FC2=60;             %Frecuencia de corte superior 43 
        INICIO_FILTR=50; 44 
        DESF_FILTRO=50;     %muestras de desfase entre señal original y filtrada.  45 
  46 
        %Medida tension 47 
        DESFASE_TRAFO_TENSION=0;                %desfase que introduce el trafo de medida de tension 48 
        SEP_PASOS_0=round(MUESTRAS_CICLO/3.33); %umbral para aceptar pasos por cero 49 
        MAY_MEN_0=0; 50 
         51 
        %evento conexion-desconexion 52 
        ANCHO_VENTANA=3*MUESTRAS_CICLO;                         %ancho ventana de evento a on 53 
        THRESHOLD=120;                                            %umbral para considerar un evento a ON 54 
        CUARTO_SEMIPERIODO= round (MUESTRAS_CICLO/11.6129);     %donde más se nota el 3º armonico, con 5º y 7º 10% del 3º  55 
        VALOR_CUARTO_SEMIPERIODO_NORMALIZADO=0.4226;            %Tanto por uno del valor de pico que se obtendría en un 56 



ANEXO II 
 

Pag 56 de 128 

                                                                % seno puro en el cuarto del segundo semiperiodo 57 
        PORC_ENTRENAMIENTO=80/100;                              %porcentaje del data set destinado al entrenamiento     58 
  59 
         60 
        %indices para recortar el fichero visualmente 61 
  62 
        inicioCargaBat1=[7449,5690,7410,4324,5272,4552,4192,3348,3962,7233,5232,3802,2829,3704,2859]; 63 
        finCargaBat1=[13827,12302,12227,10597,12226,9589,11776,10693,9398,12556,11560,11375,7912,8637,7144]; 64 
  65 
        inicioCargaBat2=[6228,4135,4921,4036,4153,3532,2820,1932,3812,3547,3325,3388,2844,2858,3862]; 66 
        finCargaBat2=[14459,8466,9500,6876,8633,7632,6830,5611,7456,7548,7258,8170,8422,9084,8843]; 67 
  68 
        inicioCargaBat3=[6142,4009,2984,4210,3188,3048,3694,4386,3372,3710,3297,2941,3570,2730,4218]; 69 
        finCargaBat3=[14274,7892,6445,8744,7288,7207,7690,9216,7829,8591,8577,8470,8650,7460,9496]; 70 
  71 
        inicioCargaExpr=[535,6210,1961,1157,2462,1529,1907,2151,1761,3037,102928,3228,5863,8080,3394]; 72 
        finCargaExpr=[34486,15672,9335,10589,9787,7808,7831,9058,8935,10392,122613,9052,13974,16991,16840]; 73 
  74 
        inicioCargaMicr=[7227,7261,7487,7120,6242,6041,7640,6068,6510,7082,10599,9468,8420,7638,7805,]; 75 
        finCargaMicr=[12861,11299,13171,12554,9207,11353,14619,11035,12415,12217,16421,15290,14790,14655,13180,]; 76 
  77 
        inicioCargaSand=[121872,11550,9588,11444,5729,9019,7459,7310,6713,6837,5822,5234,3808,4801,10800]; 78 
        finCargaSand=[256228,18393,21697,26456,19607,22046,21506,23103,21360,22576,13787,14142,11177,12417,19251]; 79 
  80 
        inicioCargaVen1=[12585,7160,5809,7362,7904,7394,6886,6759,6280,7526,7800,7369,6905,6840,6182]; 81 
        finCargaVen1=[22158,18468,18074,19423,20356,20353,16606,18519,15745,17491,19092,17787,20162,18256,17478]; 82 
  83 
        inicioCargaMicrOnYSandOffTramo1=[14925,14380,9807,11733,12483,8217,12366,11434,10657,8858]; 84 
        finCargaMicrOnYSandOffTramo1=[18075,18245,14536,17937,16142,12895,17349,16505,15130,13281]; 85 
  86 
        inicioCargaMicrOnYSandOn=[18683,18548,14942,18188,16447,13097,17604,16808,15589,13635]; 87 
        finCargaMicrOnYSandOn=[26103,26128,22314,28455,24886,21590,25279,24839,21433,21920]; 88 
  89 
        inicioCargaMicrOnYSandOffTramo2=[26358,26128,22569,28864,25089,21794,25584,25248,25295,22277]; 90 
        finCargaMicrOnYSandOffTramo2=[34334,33140,23992,35576,32511,28253,32854,31450,32414,25528]; 91 
  92 
        inicioCargaSandOnYBat3OffTramo1=[7754,6033,6137,4960,6465,5395,5478,5142,6127,7047]; 93 
        finCargaSandOnYBat3OffTramo1=[19491,14120,14573,14621,14908,13583,13660,11191,13346,13859]; 94 
  95 
        inicioCargaSandOnYBat3On=[20491,15052,15234,15586,15618,14344,14320,12868,14160,14672]; 96 
        finCargaSandOnYBat3On=[27062,20577,21640,20978,21873,20039,20728,18460,19447,20470]; 97 
  98 
        inicioCargaSandOnYBat3OffTramo2=[28638,21544,21790,21384,22381,20497,21234,19375,20007,20977]; 99 
        finCargaSandOnYBat3OffTramo2=[38953,27902,29620,29114,29551,26039,27945,27865,26313,27993]; 100 
  101 
  102 
        inicioCargaVen1OnYBat3OffTramo1=[6857,6307,6431,6218,5535,5270,5332,5608,5487,5756]; 103 
        finCargaVen1OnYBat3OffTramo1=[17072,17792,16442,17096,15748,14982,15501,15982,16218,16386]; 104 
  105 
        inicioCargaVen1OnYBat3On=[17936,19116,18019,18326,16815,16250,16579,16899,17135,17352]; 106 
        finCargaVen1OnYBat3On=[23679,24647,23813,23917,22863,21392,23137,23318,23647,23251]; 107 
  108 
        inicioCargaVen1OnYBat3OffTramo2=[23882,25314,24174,24259,23115,22657,23385,23663,25729,23605]; 109 
        finCargaVen1OnYBat3OffTramo2=[32117,33647,34329,33612,23115,30843,32788,33425,33460,33824]; 110 
  111 
  112 
        inicioCargaVen1OnYMicrOffYSandOffTramo1=[5921,5994,5459,4824,5618,8271,5485,6004,6734,5549]; 113 
        finCargaVen1OnYMicrOffYSandOffTramo1=[16497,16720,15269,16312,16343,16909,15954,17541,15175,16173]; 114 
  115 
        inicioCargaVen1OnYMicrOnYSandOffTramo1=[22456,22470,20865,21602,21685,22298,21497,23135,21073,21510]; 116 
        finCargaVen1OnYMicrOnYSandOffTramo1=[25450,27199,25134,23993,27632,28145,27292,28216,28089,26541]; 117 
  118 
        inicioCargaVen1OnYMicrOnYSandOn=[25548,27349,25233,24143,27782,28296,27492,28370,29089,26695]; 119 
        finCargaVen1OnYMicrOnYSandOn=[34295,36451,33571,33239,33189,37285,37647,37210,39070,36251]; 120 
  121 



ANEXO II 
 

Pag 57 de 128 

        inicioCargaVen1OnYMicrOnYSandOffTramo2=[34549,27349,33727,33392,37542,37849,38323,37413,39274,36455]; 122 
        finCargaVen1OnYMicrOnYSandOffTramo2=[42125,44433,42213,42948,46126,46642,45034,45242,46948,44033]; 123 
  124 
        inicioCargaVen1OnYMicrOffYSandOffTramo2=[42677,44882,42413,43202,46432,46945,45388,45598,47354,44386]; 125 
        finCargaVen1OnYMicrOffYSandOffTramo2=[50509,51903,50552,51028,55121,55789,54439,53834,49591,53592]; 126 
  127 
  128 
        %% CARGA FICHEROS Y ACONDICIONAMIENTO 129 
  130 
  131 
        %Carga ficheros 132 
        for i=1:TRIALS 133 
            cargaBat1{i}=load(strcat('PICUS_BAT1_TRIAL',num2str(i),'.txt'));  134 
            cargaBat2{i}=load(strcat('PICUS_BAT2_TRIAL',num2str(i),'.txt'));  135 
            cargaBat3{i}=load(strcat('PICUS_BAT3_TRIAL',num2str(i),'.txt'));  136 
            cargaExpr{i}=load(strcat('PICUS_EXPR_TRIAL',num2str(i),'.txt')); 137 
            cargaMicr{i}=load(strcat('PICUS_MICR_TRIAL',num2str(i),'.txt')); 138 
            cargaSand{i}=load(strcat('PICUS_SAND_TRIAL',num2str(i),'.txt')); 139 
            cargaVen1{i}=load(strcat('PICUS_VEN1_TRIAL',num2str(i),'.txt')); 140 
        %    cargaVen2{i}=load(strcat('PICUS_VEN2_TRIAL',num2str(i),'.txt')); 141 
            cargaVen1{i}=load(strcat('PICUS_VEN1_TRIAL',num2str(i),'.txt')); 142 
            cargaMicrOnYSandOn{i}=load(strcat('PICUS_MICR_SAND_SAND_MICRO_TRIAL',num2str(i),'.txt'));  143 
            cargaSandOnYBat3On{i}=load(strcat('PICUS_SAND_BAT3_BAT3_SAND_TRIAL',num2str(i),'.txt'));  144 
            cargaVen1OnYBat3On{i}=load(strcat('PICUS_VEN1_BAT3_BAT3_VENT1_TRIAL',num2str(i),'.txt'));  145 
            cargaVen1OnYMicrOnYSandOn{i}=load(strcat('PICUS_VEN1_MICR_SAND_SAND_MICR_VEN1_TRIAL',num2str(i),'.txt')); 146 
        end 147 
  148 
  149 
        %recorte de la señal para tener solo la onda de ON. 150 
        for i=1:TRIALS 151 
            cargaBat1{1,i}=cargaBat1{1,i}(inicioCargaBat1(i):finCargaBat1(i)); 152 
            cargaBat2{1,i}=cargaBat2{1,i}(inicioCargaBat2(i):finCargaBat2(i)); 153 
            cargaBat3{1,i}=cargaBat3{1,i}(inicioCargaBat3(i):finCargaBat3(i)); 154 
            cargaExpr{1,i}=cargaExpr{1,i}(inicioCargaExpr(i):finCargaExpr(i)); 155 
            cargaMicr{1,i}=cargaMicr{1,i}(inicioCargaMicr(i):finCargaMicr(i)); 156 
            cargaSand{1,i}=cargaSand{1,i}(inicioCargaSand(i):finCargaSand(i)); 157 
            cargaVen1{1,i}=cargaVen1{1,i}(inicioCargaVen1(i):finCargaVen1(i)); 158 
        %    cargaVen2{1,i}=cargaVen1{1,i}(inicioCargaVen2(i):finCargaVen2(i)); 159 
            cargaMicrOnYSandOn{1,i}=cargaMicrOnYSandOn{1,i}(inicioCargaMicrOnYSandOn(i):finCargaMicrOnYSandOn(i));  160 
            cargaSandOnYBat3On{1,i}=cargaSandOnYBat3On{1,i}(inicioCargaSandOnYBat3On(i):finCargaSandOnYBat3On(i));  161 
            cargaVen1OnYBat3On{1,i}=cargaVen1OnYBat3On{1,i}(inicioCargaVen1OnYBat3On(i):finCargaVen1OnYBat3On(i));  162 
            cargaVen1OnYMicrOnYSandOn{1,i}=cargaVen1OnYMicrOnYSandOn{1,i}(inicioCargaVen1OnYMicrOnYSandOn(i):finCargaVen1OnYMicrOnYSandOn(i)); 163 
        end 164 
  165 
         166 
        %Subsampleo 167 
        %recorremos el vector de uno en uno y si encontramos un cero se guarda 168 
        %como el cero no es parte de la onda, incremento el indice de subsampleo a  169 
        %la siguiente muestra. Si coincide muestra leida con el indice subsampleo 170 
        %guardo esa muestra y e incremento el indiceSub en SUBSAMPLE 171 
        for i=1:TRIALS 172 
            cargaBat1Temp{i}=[]; 173 
            cargaBat2Temp{i}=[]; 174 
            cargaBat3Temp{i}=[]; 175 
            cargaExprTemp{i}=[]; 176 
            cargaMicrTemp{i}=[]; 177 
            cargaSandTemp{i}=[]; 178 
            cargaVen1Temp{i}=[]; 179 
            % cargaVen2Temp{1}=[]; 180 
            cargaMicrOnYSandOnTemp{i}=[]; 181 
            cargaSandOnYBat3OnTemp{i}=[]; 182 
            cargaVen1OnYBat3OnTemp{i}=[]; 183 
            cargaVen1OnYMicrOnYSandOnTemp{i}=[]; 184 
  185 
  186 



ANEXO II 
 

Pag 58 de 128 

            indiceSub=1; 187 
            j=1; 188 
            while (j<size(cargaBat1{1,i},2)) 189 
                if(cargaBat1{1,i}(j)==0) 190 
                   cargaBat1Temp{1,i}(end+1)=0; 191 
                    indiceSub=indiceSub+1; 192 
                end 193 
                if (j==indiceSub) 194 
                    cargaBat1Temp{1,i}(end+1)=cargaBat1{1,i}(j); 195 
                    indiceSub=indiceSub+SUBSAMPLE; 196 
                end 197 
                j=j+1; 198 
            end 199 
  200 
            indiceSub=1; 201 
            j=1; 202 
            while (j<size(cargaBat2{1,i},2)) 203 
                if(cargaBat2{1,i}(j)==0) 204 
                   cargaBat2Temp{1,i}(end+1)=0; 205 
                    indiceSub=indiceSub+1; 206 
                end 207 
                if (j==indiceSub) 208 
                    cargaBat2Temp{1,i}(end+1)=cargaBat2{1,i}(j); 209 
                    indiceSub=indiceSub+SUBSAMPLE; 210 
                end 211 
                j=j+1; 212 
            end 213 
  214 
            indiceSub=1; 215 
            j=1; 216 
            while (j<size(cargaBat3{1,i},2)) 217 
                if(cargaBat3{1,i}(j)==0) 218 
                   cargaBat3Temp{1,i}(end+1)=0; 219 
                    indiceSub=indiceSub+1; 220 
                end 221 
                if (j==indiceSub) 222 
                    cargaBat3Temp{1,i}(end+1)=cargaBat3{1,i}(j); 223 
                    indiceSub=indiceSub+SUBSAMPLE; 224 
                end 225 
                j=j+1; 226 
            end 227 
  228 
            indiceSub=1; 229 
            j=1; 230 
            while (j<size(cargaExpr{1,i},2)) 231 
                if(cargaExpr{1,i}(j)==0) 232 
                   cargaExprTemp{1,i}(end+1)=0; 233 
                    indiceSub=indiceSub+1; 234 
                end 235 
                if (j==indiceSub) 236 
                    cargaExprTemp{1,i}(end+1)=cargaExpr{1,i}(j); 237 
                    indiceSub=indiceSub+SUBSAMPLE; 238 
                end 239 
                j=j+1; 240 
            end 241 
  242 
            indiceSub=1; 243 
            j=1; 244 
            while (j<size(cargaMicr{1,i},2)) 245 
                if(cargaMicr{1,i}(j)==0) 246 
                   cargaMicrTemp{1,i}(end+1)=0; 247 
                    indiceSub=indiceSub+1; 248 
                end 249 
                if (j==indiceSub) 250 
                    cargaMicrTemp{1,i}(end+1)=cargaMicr{1,i}(j); 251 



ANEXO II 
 

Pag 59 de 128 

                    indiceSub=indiceSub+SUBSAMPLE; 252 
                end 253 
                j=j+1; 254 
            end 255 
  256 
            indiceSub=1; 257 
            j=1; 258 
            while (j<size(cargaSand{1,i},2)) 259 
                if(cargaSand{1,i}(j)==0) 260 
                   cargaSandTemp{1,i}(end+1)=0; 261 
                    indiceSub=indiceSub+1; 262 
                end 263 
                if (j==indiceSub) 264 
                    cargaSandTemp{1,i}(end+1)=cargaSand{1,i}(j); 265 
                    indiceSub=indiceSub+SUBSAMPLE; 266 
                end 267 
                j=j+1; 268 
            end 269 
  270 
            indiceSub=1; 271 
            j=1; 272 
            while (j<size(cargaVen1{1,i},2)) 273 
                if(cargaVen1{1,i}(j)==0) 274 
                   cargaVen1Temp{1,i}(end+1)=0; 275 
                    indiceSub=indiceSub+1; 276 
                end 277 
                if (j==indiceSub) 278 
                    cargaVen1Temp{1,i}(end+1)=cargaVen1{1,i}(j); 279 
                    indiceSub=indiceSub+SUBSAMPLE; 280 
                end 281 
                j=j+1; 282 
            end 283 
  284 
            indiceSub=1; 285 
            j=1; 286 
            while (j<size(cargaMicrOnYSandOn{1,i},2)) 287 
                if(cargaMicrOnYSandOn{1,i}(j)==0) 288 
                   cargaMicrOnYSandOnTemp{1,i}(end+1)=0; 289 
                    indiceSub=indiceSub+1; 290 
                end 291 
                if (j==indiceSub) 292 
                    cargaMicrOnYSandOnTemp{1,i}(end+1)=cargaMicrOnYSandOn{1,i}(j); 293 
                    indiceSub=indiceSub+SUBSAMPLE; 294 
                end 295 
                j=j+1; 296 
            end 297 
  298 
            indiceSub=1; 299 
            j=1; 300 
            while (j<size(cargaSandOnYBat3On{1,i},2)) 301 
                if(cargaSandOnYBat3On{1,i}(j)==0) 302 
                   cargaSandOnYBat3OnTemp{1,i}(end+1)=0; 303 
                    indiceSub=indiceSub+1; 304 
                end 305 
                if (j==indiceSub) 306 
                    cargaSandOnYBat3OnTemp{1,i}(end+1)=cargaSandOnYBat3On{1,i}(j); 307 
                    indiceSub=indiceSub+SUBSAMPLE; 308 
                end 309 
                j=j+1; 310 
            end 311 
  312 
            indiceSub=1; 313 
            j=1; 314 
            while (j<size(cargaVen1OnYBat3On{1,i},2)) 315 
                if(cargaVen1OnYBat3On{1,i}(j)==0) 316 



ANEXO II 
 

Pag 60 de 128 

                   cargaVen1OnYBat3OnTemp{1,i}(end+1)=0; 317 
                    indiceSub=indiceSub+1; 318 
                end 319 
                if (j==indiceSub) 320 
                    cargaVen1OnYBat3OnTemp{1,i}(end+1)=cargaVen1OnYBat3On{1,i}(j); 321 
                    indiceSub=indiceSub+SUBSAMPLE; 322 
                end 323 
                j=j+1; 324 
            end 325 
  326 
            indiceSub=1; 327 
            j=1; 328 
            while (j<size(cargaVen1OnYMicrOnYSandOn{1,i},2)) 329 
                if(cargaVen1OnYMicrOnYSandOn{1,i}(j)==0) 330 
                   cargaVen1OnYMicrOnYSandOnTemp{1,i}(end+1)=0; 331 
                    indiceSub=indiceSub+1; 332 
                end 333 
                if (j==indiceSub) 334 
                    cargaVen1OnYMicrOnYSandOnTemp{1,i}(end+1)=cargaVen1OnYMicrOnYSandOn{1,i}(j); 335 
                    indiceSub=indiceSub+SUBSAMPLE; 336 
                end 337 
                j=j+1; 338 
            end 339 
  340 
            cargaBat1{1,i}=cargaBat1Temp{1,i}; 341 
            cargaBat2{1,i}=cargaBat2Temp{1,i}; 342 
            cargaBat3{1,i}=cargaBat3Temp{1,i}; 343 
            cargaExpr{1,i}=cargaExprTemp{1,i}; 344 
            cargaMicr{1,i}=cargaMicrTemp{1,i}; 345 
            cargaSand{1,i}=cargaSandTemp{1,i}; 346 
            cargaVen1{1,i}=cargaVen1Temp{1,i}; 347 
        %    cargaVen2{1,i}=cargaVen1Temp{1,i}; 348 
            cargaMicrOnYSandOn{1,i}=cargaMicrOnYSandOnTemp{1,i}; 349 
            cargaSandOnYBat3On{1,i}=cargaSandOnYBat3OnTemp{1,i}; 350 
            cargaVen1OnYBat3On{1,i}=cargaVen1OnYBat3OnTemp{1,i}; 351 
            cargaVen1OnYMicrOnYSandOn{1,i}=cargaVen1OnYMicrOnYSandOnTemp{1,i}; 352 
  353 
        end 354 
  355 
            clear cargaBat1Temp{1,i}; 356 
            clear cargaBat2Temp{1,i}; 357 
            clear cargaBat3Temp{1,i}; 358 
            clear cargaExprTemp{1,i}; 359 
            clear cargaMicrTemp{1,i}; 360 
            clear cargaSandTemp{1,i}; 361 
            clear cargaVen1Temp{1,i}; 362 
        %   clear  cargaVen2Temp{1,i}; 363 
            clear cargaMicrOnYSandOnTemp{1,i}; 364 
            clear cargaSandOnYBat3OnTemp{1,i}; 365 
            clear cargaVen1OnYBat3OnTemp{1,i}; 366 
            clear cargaVen1OnYMicrOnYSandOnTemp{1,i}; 367 
            clear indiceSub; 368 
  369 
  370 
  371 
  372 
        %extraccion de los pasos por cero. 373 
        %el paso por cero es en la muestra actual menos el número de  374 
        %pasos por cero anteriores. 375 
        for i=1:TRIALS 376 
            pasosCeroVBat1{i}=find(cargaBat1{1,i}==0)+DESFASE_TRAFO_TENSION; 377 
            pasosCeroVBat1{1,i}=pasosCeroVBat1{1,i}-[0:size(pasosCeroVBat1{1,i},2)-1]; 378 
  379 
            pasosCeroVBat2{i}=find(cargaBat2{1,i}==0)+DESFASE_TRAFO_TENSION; 380 
            pasosCeroVBat2{1,i}=pasosCeroVBat2{1,i}-[0:size(pasosCeroVBat2{1,i},2)-1]; 381 



ANEXO II 
 

Pag 61 de 128 

  382 
            pasosCeroVBat3{i}=find(cargaBat3{1,i}==0)+DESFASE_TRAFO_TENSION; 383 
            pasosCeroVBat3{1,i}=pasosCeroVBat3{1,i}-[0:size(pasosCeroVBat3{1,i},2)-1]; 384 
  385 
            pasosCeroVExpr{i}=find(cargaExpr{1,i}==0)+DESFASE_TRAFO_TENSION; 386 
            pasosCeroVExpr{1,i}=pasosCeroVExpr{1,i}-[0:size(pasosCeroVExpr{1,i},2)-1]; 387 
  388 
            pasosCeroVMicr{i}=find(cargaMicr{1,i}==0)+DESFASE_TRAFO_TENSION; 389 
            pasosCeroVMicr{1,i}=pasosCeroVMicr{1,i}-[0:size(pasosCeroVMicr{1,i},2)-1]; 390 
  391 
            pasosCeroVSand{i}=find(cargaSand{1,i}==0)+DESFASE_TRAFO_TENSION; 392 
            pasosCeroVSand{1,i}=pasosCeroVSand{1,i}-[0:size(pasosCeroVSand{1,i},2)-1]; 393 
  394 
            pasosCeroVVen1{i}=find(cargaVen1{1,i}==0)+DESFASE_TRAFO_TENSION; 395 
            pasosCeroVVen1{1,i}=pasosCeroVVen1{1,i}-[0:size(pasosCeroVVen1{1,i},2)-1]; 396 
  397 
        %    pasosCeroVVen2{i}=find(cargaVen2{1,i}==0)+DESFASE_TRAFO_TENSION; 398 
        %    pasosCeroVVen2{1,i}=pasosCeroVVen2{1,i}-[0:size(pasosCeroVVen2{1,i},2)-1]; 399 
  400 
            pasosCeroVMicrOnYSandOn{i}=find(cargaMicrOnYSandOn{1,i}==0)+DESFASE_TRAFO_TENSION; 401 
            pasosCeroVMicrOnYSandOn{1,i}=pasosCeroVMicrOnYSandOn{1,i}-[0:size(pasosCeroVMicrOnYSandOn{1,i},2)-1]; 402 
  403 
            pasosCeroVSandOnYBat3On{i}=find(cargaSandOnYBat3On{1,i}==0)+DESFASE_TRAFO_TENSION; 404 
            pasosCeroVSandOnYBat3On{1,i}=pasosCeroVSandOnYBat3On{1,i}-[0:size(pasosCeroVSandOnYBat3On{1,i},2)-1]; 405 
  406 
            pasosCeroVVen1OnYBat3On{i}=find(cargaVen1OnYBat3On{1,i}==0)+DESFASE_TRAFO_TENSION; 407 
            pasosCeroVVen1OnYBat3On{1,i}=pasosCeroVVen1OnYBat3On{1,i}-[0:size(pasosCeroVVen1OnYBat3On{1,i},2)-1]; 408 
  409 
            pasosCeroVVen1OnYMicrOnYSandOn{i}=find(cargaVen1OnYMicrOnYSandOn{1,i}==0)+DESFASE_TRAFO_TENSION; 410 
            pasosCeroVVen1OnYMicrOnYSandOn{1,i}=pasosCeroVVen1OnYMicrOnYSandOn{1,i}-[0:size(pasosCeroVVen1OnYMicrOnYSandOn{1,i},2)-1]; 411 
  412 
        end 413 
  414 
  415 
  416 
        %eliminacion de los pasos por cero y de la comp. continua y filtrado 417 
  418 
        f2=fdesign.bandpass('n,fc1,fc2',N,FC1,FC2,FS); 419 
        filtro=design(f2); 420 
        %fvtool(filtro) 421 
  422 
        for i=1:TRIALS 423 
            cargaBat1{1,i}=nonzeros(cargaBat1{1,i}); 424 
            cargaBat1{1,i}=(cargaBat1{1,i})'-median(cargaBat1{1,i}); 425 
            cargaBat1Filtr{1,i}=filter(filtro,cargaBat1{1,i}); 426 
            cargaBat1Filtr{1,i}=cargaBat1Filtr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 427 
            cargaBat1{1,i}= cargaBat1{1,i}(INICIO_FILTR:end); %de la filtrada y del la original 428 
  429 
            cargaBat2{1,i}=nonzeros(cargaBat2{1,i}); 430 
            cargaBat2{1,i}=(cargaBat2{1,i})'-median(cargaBat2{1,i}); 431 
            cargaBat2Filtr{1,i}=filter(filtro,cargaBat2{1,i}); 432 
            cargaBat2Filtr{1,i}=cargaBat2Filtr{1,i}(INICIO_FILTR:end); 433 
            cargaBat2{1,i}= cargaBat2{1,i}(INICIO_FILTR:end); 434 
  435 
            cargaBat3{1,i}=nonzeros(cargaBat3{1,i}); 436 
            cargaBat3{1,i}=(cargaBat3{1,i})'-median(cargaBat3{1,i}); 437 
            cargaBat3Filtr{1,i}=filter(filtro,cargaBat3{1,i}); 438 
            cargaBat3Filtr{1,i}=cargaBat3Filtr{1,i}(INICIO_FILTR:end); 439 
            cargaBat3{1,i}= cargaBat3{1,i}(INICIO_FILTR:end); 440 
  441 
            cargaExpr{1,i}=nonzeros(cargaExpr{1,i}); 442 
            cargaExpr{1,i}=(cargaExpr{1,i})'-median(cargaExpr{1,i}); 443 
            cargaExprFiltr{1,i}=filter(filtro,cargaExpr{1,i}); 444 
            cargaExprFiltr{1,i}=cargaExprFiltr{1,i}(INICIO_FILTR:end); 445 
            cargaExpr{1,i}= cargaExpr{1,i}(INICIO_FILTR:end); 446 



ANEXO II 
 

Pag 62 de 128 

  447 
            cargaMicr{1,i}=nonzeros(cargaMicr{1,i}); 448 
            cargaMicr{1,i}=(cargaMicr{1,i})'-median(cargaMicr{1,i}); 449 
            cargaMicrFiltr{1,i}=filter(filtro,cargaMicr{1,i}); 450 
            cargaMicrFiltr{1,i}=cargaMicrFiltr{1,i}(INICIO_FILTR:end); 451 
            cargaMicr{1,i}= cargaMicr{1,i}(INICIO_FILTR:end); 452 
  453 
            cargaSand{1,i}=nonzeros(cargaSand{1,i}); 454 
            cargaSand{1,i}=(cargaSand{1,i})'-median(cargaSand{1,i}); 455 
            cargaSandFiltr{1,i}=filter(filtro,cargaSand{1,i}); 456 
            cargaSandFiltr{1,i}=cargaSandFiltr{1,i}(INICIO_FILTR:end); 457 
            cargaSand{1,i}= cargaSand{1,i}(INICIO_FILTR:end); 458 
  459 
            cargaVen1{1,i}=nonzeros(cargaVen1{1,i}); 460 
            cargaVen1{1,i}=(cargaVen1{1,i})'-median(cargaVen1{1,i}); 461 
            cargaVen1Filtr{1,i}=filter(filtro,cargaVen1{1,i}); 462 
            cargaVen1Filtr{1,i}=cargaVen1Filtr{1,i}(INICIO_FILTR:end); 463 
            cargaVen1{1,i}= cargaVen1{1,i}(INICIO_FILTR:end); 464 
  465 
        %    cargaVen2{1,i}=nonzeros(cargaVen2{1,i}); 466 
        %    cargaVen2{1,i}=(cargaVen2{1,i})'-median(cargaVen2{1,i}); 467 
        %    cargaVen2Filtr{1,i}=filter(filtro,cargaVen2{1,i}); 468 
        %    cargaVen2Filtr{1,i}=cargaVen2Filtr{1,i}(INICIO_FILTR:end); 469 
        %    cargaBat1{1,i}= cargaBat1{1,i}(INICIO_FILTR:end); 470 
  471 
            cargaMicrOnYSandOn{1,i}=nonzeros(cargaMicrOnYSandOn{1,i}); 472 
            cargaMicrOnYSandOn{1,i}=(cargaMicrOnYSandOn{1,i})'-median(cargaMicrOnYSandOn{1,i}); 473 
            cargaMicrOnYSandOnFiltr{1,i}=filter(filtro,cargaMicrOnYSandOn{1,i}); 474 
            cargaMicrOnYSandOnFiltr{1,i}=cargaMicrOnYSandOnFiltr{1,i}(INICIO_FILTR:end); 475 
            cargaMicrOnYSandOn{1,i}= cargaMicrOnYSandOn{1,i}(INICIO_FILTR:end); 476 
  477 
            cargaSandOnYBat3On{1,i}=nonzeros(cargaSandOnYBat3On{1,i}); 478 
            cargaSandOnYBat3On{1,i}=(cargaSandOnYBat3On{1,i})'-median(cargaSandOnYBat3On{1,i}); 479 
            cargaSandOnYBat3OnFiltr{1,i}=filter(filtro,cargaSandOnYBat3On{1,i}); 480 
            cargaSandOnYBat3OnFiltr{1,i}=cargaSandOnYBat3OnFiltr{1,i}(INICIO_FILTR:end); 481 
            cargaSandOnYBat3On{1,i}= cargaSandOnYBat3On{1,i}(INICIO_FILTR:end); 482 
  483 
            cargaVen1OnYBat3On{1,i}=nonzeros(cargaVen1OnYBat3On{1,i}); 484 
            cargaVen1OnYBat3On{1,i}=(cargaVen1OnYBat3On{1,i})'-median(cargaVen1OnYBat3On{1,i}); 485 
            cargaVen1OnYBat3OnFiltr{1,i}=filter(filtro,cargaVen1OnYBat3On{1,i}); 486 
            cargaVen1OnYBat3OnFiltr{1,i}=cargaVen1OnYBat3OnFiltr{1,i}(INICIO_FILTR:end); 487 
            cargaVen1OnYBat3On{1,i}= cargaVen1OnYBat3On{1,i}(INICIO_FILTR:end); 488 
  489 
            cargaVen1OnYMicrOnYSandOn{1,i}=nonzeros(cargaVen1OnYMicrOnYSandOn{1,i}); 490 
            cargaVen1OnYMicrOnYSandOn{1,i}=(cargaVen1OnYMicrOnYSandOn{1,i})'-median(cargaVen1OnYMicrOnYSandOn{1,i}); 491 
            cargaVen1OnYMicrOnYSandOnFiltr{1,i}=filter(filtro,cargaVen1OnYMicrOnYSandOn{1,i}); 492 
            cargaVen1OnYMicrOnYSandOnFiltr{1,i}=cargaVen1OnYMicrOnYSandOnFiltr{1,i}(INICIO_FILTR:end);  493 
            cargaVen1OnYMicrOnYSandOn{1,i}= cargaVen1OnYMicrOnYSandOn{1,i}(INICIO_FILTR:end); 494 
  495 
        end 496 
  497 
  498 
  499 
        %% FACTOR POTENCIA, PASO POR CERO 500 
  501 
        %valor desfase V-I 502 
        %calculamos el desfase entre tension e intensiadad, flanco bajada de 503 
        %corriente 504 
        %con el vector pasosCeroVxxx y calculando el paso por cero  505 
        %de la onda de corriente filtrada(primer paso por cero, obviando los rebotes) 506 
  507 
        pasosCeroIBat1=cell(1,TRIALS); 508 
  509 
        for i=1:TRIALS 510 
            k=1;% indice de fila de los ceros de corriente 511 



ANEXO II 
 

Pag 63 de 128 

            pasosCeroIBat1{1,i}(k)=-SEP_PASOS_0; 512 
            for j=1:size(cargaBat1Filtr{1,i},2)-1%j recorre toda la onda de corriente 513 
                if (cargaBat1Filtr{1,i}(j)>MAY_MEN_0)&&(cargaBat1Filtr{1,i}(j+1)<=0)%si los pasos por cero 514 
                    if j-pasosCeroIBat1{1,i}(k)>=SEP_PASOS_0; %estan separados, se añade 515 
                        if abs(cargaBat1Filtr{1,i}(j))<abs(cargaBat1Filtr{1,i}(j+1))%el que está mas cerca de cero 516 
                            pasosCeroIBat1{1,i}(k+1)=j; 517 
                        else 518 
                            pasosCeroIBat1{1,i}(k+1)=j+1; 519 
                        end 520 
                        k=k+1; 521 
                    end 522 
                end    523 
            end 524 
            pasosCeroIBat1{1,i}=pasosCeroIBat1{1,i}(2:end);%eliminamos el primer valor 525 
        end                                                  %que es cero  526 
  527 
  528 
  529 
        pasosCeroIBat2=cell(1,TRIALS); 530 
  531 
        for i=1:TRIALS 532 
            k=1;% indice de fila 533 
            pasosCeroIBat2{1,i}(k)=-SEP_PASOS_0; 534 
            for j=1:size(cargaBat2Filtr{1,i},2)-1 535 
                if (cargaBat2Filtr{1,i}(j)>MAY_MEN_0)&&(cargaBat2Filtr{1,i}(j+1)<=0) 536 
                    if j-pasosCeroIBat2{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 537 
                        if abs(cargaBat2Filtr{1,i}(j))<abs(cargaBat2Filtr{1,i}(j+1)) 538 
                            pasosCeroIBat2{1,i}(k+1)=j;%estan separados, se añade 539 
                        else 540 
                            pasosCeroIBat2{1,i}(k+1)=j+1;%el que está mas cerca de cero 541 
                        end 542 
                        k=k+1; 543 
                    end 544 
                end    545 
            end 546 
            pasosCeroIBat2{1,i}=pasosCeroIBat2{1,i}(2:end);%eliminamos el primer valor 547 
        end                                                  %que es cero   548 
  549 
  550 
        pasosCeroIBat3=cell(1,TRIALS); 551 
  552 
        for i=1:TRIALS 553 
            k=1;% indice de fila 554 
            pasosCeroIBat3{1,i}(k)=-SEP_PASOS_0; 555 
            for j=1:size(cargaBat3Filtr{1,i},2)-1 556 
                if (cargaBat3Filtr{1,i}(j)>MAY_MEN_0)&&(cargaBat3Filtr{1,i}(j+1)<=0) 557 
                    if j-pasosCeroIBat3{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 558 
                        if abs(cargaBat3Filtr{1,i}(j))<abs(cargaBat3Filtr{1,i}(j+1)) 559 
                            pasosCeroIBat3{1,i}(k+1)=j;%estan separados, se añade 560 
                        else 561 
                            pasosCeroIBat3{1,i}(k+1)=j+1;%el que está mas cerca de cero 562 
                        end 563 
                        k=k+1; 564 
                    end 565 
                end    566 
            end 567 
            pasosCeroIBat3{1,i}=pasosCeroIBat3{1,i}(2:end);%eliminamos el primer valor 568 
        end                                                  %que es cero   569 
  570 
  571 
        pasosCeroIExpr=cell(1,TRIALS); 572 
  573 
        for i=1:TRIALS 574 
            k=1;% indice de fila 575 
            pasosCeroIExpr{1,i}(k)=-SEP_PASOS_0; 576 



ANEXO II 
 

Pag 64 de 128 

            for j=1:size(cargaExprFiltr{1,i},2)-1 577 
                if (cargaExprFiltr{1,i}(j)>MAY_MEN_0)&&(cargaExprFiltr{1,i}(j+1)<=0) 578 
                    if j-pasosCeroIExpr{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 579 
                        if abs(cargaExprFiltr{1,i}(j))<abs(cargaExprFiltr{1,i}(j+1)) 580 
                            pasosCeroIExpr{1,i}(k+1)=j;%estan separados, se añade 581 
                        else 582 
                            pasosCeroIExpr{1,i}(k+1)=j+1;%el que está mas cerca de cero 583 
                        end 584 
                        k=k+1; 585 
                    end 586 
                end    587 
            end 588 
            pasosCeroIExpr{1,i}=pasosCeroIExpr{1,i}(2:end);%eliminamos el primer valor 589 
        end                                                  %que es cero   590 
  591 
  592 
        pasosCeroIMicr=cell(1,TRIALS); 593 
  594 
        for i=1:TRIALS 595 
            k=1;% indice de fila 596 
            pasosCeroIMicr{1,i}(k)=-SEP_PASOS_0; 597 
            for j=1:size(cargaMicrFiltr{1,i},2)-1 598 
                if (cargaMicrFiltr{1,i}(j)>MAY_MEN_0)&&(cargaMicrFiltr{1,i}(j+1)<=0) 599 
                    if j-pasosCeroIMicr{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 600 
                        if abs(cargaMicrFiltr{1,i}(j))<abs(cargaMicrFiltr{1,i}(j+1)) 601 
                            pasosCeroIMicr{1,i}(k+1)=j;%estan separados, se añade 602 
                        else 603 
                            pasosCeroIMicr{1,i}(k+1)=j+1;%el que está mas cerca de cero 604 
                        end 605 
                        k=k+1; 606 
                    end 607 
                end    608 
            end 609 
            pasosCeroIMicr{1,i}=pasosCeroIMicr{1,i}(2:end);%eliminamos el primer valor 610 
        end                                                  %que es cero   611 
  612 
  613 
        pasosCeroISand=cell(1,TRIALS); 614 
  615 
        for i=1:TRIALS 616 
            k=1;% indice de fila 617 
            pasosCeroISand{1,i}(k)=-SEP_PASOS_0; 618 
            for j=1:size(cargaSandFiltr{1,i},2)-1 619 
                if (cargaSandFiltr{1,i}(j)>MAY_MEN_0)&&(cargaSandFiltr{1,i}(j+1)<=0) 620 
                    if j-pasosCeroISand{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 621 
                        if abs(cargaSandFiltr{1,i}(j))<abs(cargaSandFiltr{1,i}(j+1)) 622 
                            pasosCeroISand{1,i}(k+1)=j;%estan separados, se añade 623 
                        else 624 
                            pasosCeroISand{1,i}(k+1)=j+1;%el que está mas cerca de cero 625 
                        end 626 
                        k=k+1; 627 
                    end 628 
                end    629 
            end 630 
            pasosCeroISand{1,i}=pasosCeroISand{1,i}(2:end);%eliminamos el primer valor 631 
        end                                                  %que es cero   632 
  633 
  634 
        pasosCeroIVen1=cell(1,TRIALS); 635 
  636 
        for i=1:TRIALS 637 
            k=1;% indice de fila 638 
            pasosCeroIVen1{1,i}(k)=-SEP_PASOS_0; 639 
            for j=1:size(cargaVen1Filtr{1,i},2)-1 640 
                if (cargaVen1Filtr{1,i}(j)>MAY_MEN_0)&&(cargaVen1Filtr{1,i}(j+1)<=0) 641 



ANEXO II 
 

Pag 65 de 128 

                    if j-pasosCeroIVen1{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 642 
                        if abs(cargaVen1Filtr{1,i}(j))<abs(cargaVen1Filtr{1,i}(j+1)) 643 
                            pasosCeroIVen1{1,i}(k+1)=j;%estan separados, se añade 644 
                        else 645 
                            pasosCeroIVen1{1,i}(k+1)=j+1;%el que está mas cerca de cero 646 
                        end 647 
                        k=k+1; 648 
                    end 649 
                end    650 
            end 651 
            pasosCeroIVen1{1,i}=pasosCeroIVen1{1,i}(2:end);%eliminamos el primer valor 652 
        end                                                  %que es cero   653 
  654 
        %  655 
        % pasosCeroIVen2=cell(1,TRIALS); 656 
        %  657 
        % for i=1:TRIALS 658 
        %     k=1;% indice de fila 659 
        %     pasosCeroIVen2{1,i}(k)=-SEP_PASOS_0; 660 
        %     for j=1:size(cargaVen2Filtr{1,i},2)-1 661 
        %         if (cargaVen2Filtr{1,i}(j)>MAY_MEN_0)&&(cargaVen2Filtr{1,i}(j+1)<=0) 662 
        %             if j-pasosCeroIVen2{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 663 
        %                 if abs(cargaVen2Filtr{1,i}(j))<abs(cargaVen2Filtr{1,i}(j+1)) 664 
        %                     pasosCeroIVen2{1,i}(k+1)=j;%estan separados, se añade 665 
        %                 else 666 
        %                     pasosCeroIVen2{1,i}(k+1)=j+1;%el que está mas cerca de cero 667 
        %                 end 668 
        %                 k=k+1; 669 
        %             end 670 
        %         end    671 
        %     end 672 
        %     pasosCeroIVen2{1,i}=pasosCeroIVen2{1,i}(2:end);%eliminamos el primer valor 673 
        % end                                                  %que es cero   674 
        %  675 
  676 
        pasosCeroIMicrOnYSandOn=cell(1,TRIALS); 677 
  678 
        for i=1:TRIALS 679 
            k=1;% indice de fila 680 
            pasosCeroIMicrOnYSandOn{1,i}(k)=-SEP_PASOS_0; 681 
            for j=1:size(cargaMicrOnYSandOnFiltr{1,i},2)-1 682 
                if (cargaMicrOnYSandOnFiltr{1,i}(j)>MAY_MEN_0)&&(cargaMicrOnYSandOnFiltr{1,i}(j+1)<=0) 683 
                    if j-pasosCeroIMicrOnYSandOn{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 684 
                        if abs(cargaMicrOnYSandOnFiltr{1,i}(j))<abs(cargaMicrOnYSandOnFiltr{1,i}(j+1)) 685 
                            pasosCeroIMicrOnYSandOn{1,i}(k+1)=j;%estan separados, se añade 686 
                        else 687 
                            pasosCeroIMicrOnYSandOn{1,i}(k+1)=j+1;%el que está mas cerca de cero 688 
                        end 689 
                        k=k+1; 690 
                    end 691 
                end    692 
            end 693 
            pasosCeroIMicrOnYSandOn{1,i}=pasosCeroIMicrOnYSandOn{1,i}(2:end);%eliminamos el primer valor 694 
        end                                                  %que es cero   695 
  696 
        pasosCeroISandOnYBat3On=cell(1,TRIALS); 697 
  698 
        for i=1:TRIALS 699 
            k=1;% indice de fila 700 
            pasosCeroISandOnYBat3On{1,i}(k)=-SEP_PASOS_0; 701 
            for j=1:size(cargaSandOnYBat3OnFiltr{1,i},2)-1 702 
                if (cargaSandOnYBat3OnFiltr{1,i}(j)>MAY_MEN_0)&&(cargaSandOnYBat3OnFiltr{1,i}(j+1)<=0) 703 
                    if j-pasosCeroISandOnYBat3On{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 704 
                        if abs(cargaSandOnYBat3OnFiltr{1,i}(j))<abs(cargaSandOnYBat3OnFiltr{1,i}(j+1)) 705 
                            pasosCeroISandOnYBat3On{1,i}(k+1)=j;%estan separados, se añade 706 



ANEXO II 
 

Pag 66 de 128 

                        else 707 
                            pasosCeroISandOnYBat3On{1,i}(k+1)=j+1;%el que está mas cerca de cero 708 
                        end 709 
                        k=k+1; 710 
                    end 711 
                end    712 
            end 713 
            pasosCeroISandOnYBat3On{1,i}=pasosCeroISandOnYBat3On{1,i}(2:end);%eliminamos el primer valor 714 
        end                                                  %que es cero   715 
  716 
        pasosCeroIVen1OnYBat3On=cell(1,TRIALS); 717 
  718 
        for i=1:TRIALS 719 
            k=1;% indice de fila 720 
            pasosCeroIVen1OnYBat3On{1,i}(k)=-SEP_PASOS_0; 721 
            for j=1:size(cargaVen1OnYBat3OnFiltr{1,i},2)-1 722 
                if (cargaVen1OnYBat3OnFiltr{1,i}(j)>MAY_MEN_0)&&(cargaVen1OnYBat3OnFiltr{1,i}(j+1)<=0) 723 
                    if j-pasosCeroIVen1OnYBat3On{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 724 
                        if abs(cargaVen1OnYBat3OnFiltr{1,i}(j))<abs(cargaVen1OnYBat3OnFiltr{1,i}(j+1)) 725 
                            pasosCeroIVen1OnYBat3On{1,i}(k+1)=j;%estan separados, se añade 726 
                        else 727 
                            pasosCeroIVen1OnYBat3On{1,i}(k+1)=j+1;%el que está mas cerca de cero 728 
                        end 729 
                        k=k+1; 730 
                    end 731 
                end    732 
            end 733 
            pasosCeroIVen1OnYBat3On{1,i}=pasosCeroIVen1OnYBat3On{1,i}(2:end);%eliminamos el primer valor 734 
        end                                                  %que es cero   735 
  736 
        pasosCeroIVen1OnYMicrOnYSandOn=cell(1,TRIALS); 737 
  738 
        for i=1:TRIALS 739 
            k=1;% indice de fila 740 
            pasosCeroIVen1OnYMicrOnYSandOn{1,i}(k)=-SEP_PASOS_0; 741 
            for j=1:size(cargaVen1OnYMicrOnYSandOnFiltr{1,i},2)-1 742 
                if (cargaVen1OnYMicrOnYSandOnFiltr{1,i}(j)>MAY_MEN_0)&&(cargaVen1OnYMicrOnYSandOnFiltr{1,i}(j+1)<=0) 743 
                    if j-pasosCeroIVen1OnYMicrOnYSandOn{1,i}(k)>=SEP_PASOS_0; %si los pasos por cero 744 
                        if abs(cargaVen1OnYMicrOnYSandOnFiltr{1,i}(j))<abs(cargaVen1OnYMicrOnYSandOnFiltr{1,i}(j+1)) 745 
                            pasosCeroIVen1OnYMicrOnYSandOn{1,i}(k+1)=j;%estan separados, se añade 746 
                        else 747 
                            pasosCeroIVen1OnYMicrOnYSandOn{1,i}(k+1)=j+1;%el que está mas cerca de cero 748 
                        end 749 
                        k=k+1; 750 
                    end 751 
                end    752 
            end 753 
            pasosCeroIVen1OnYMicrOnYSandOn{1,i}=pasosCeroIVen1OnYMicrOnYSandOn{1,i}(2:end);%eliminamos el primer valor 754 
        end                                                  %que es cero   755 
  756 
  757 
  758 
  759 
        %diferencias 760 
        medFacPotBat1=0; 761 
        medFacPotBat2=0; 762 
        medFacPotBat3=0; 763 
        medFacPotExpr=0; 764 
        medFacPotMicr=0; 765 
        medFacPotSand=0; 766 
        medFacPotVen1=0; 767 
        medFacPotMicrOnYSandOn=0; 768 
        medFacPotSandOnYBat3On=0; 769 
        medFacPotVen1OnYBat3On=0; 770 
        medFacPotVen1OnYMicrOnYSandOn=0; 771 



ANEXO II 
 

Pag 67 de 128 

  772 
        for i=1:TRIALS 773 
            sizeFacPotBat1(i)=min(size(pasosCeroIBat1{1,i},2),size(pasosCeroVBat1{1,i},2)); 774 
            FacPotBat1{1,i}=pasosCeroIBat1{1,i}(1:sizeFacPotBat1(i))-pasosCeroVBat1{1,i}(1:sizeFacPotBat1(i)); 775 
            FacPotBat1{1,i}(find(FacPotBat1{1,i}<0))=FacPotBat1{1,i}(find(FacPotBat1{1,i}<0))+MUESTRAS_CICLO/2; 776 
            FacPotBat1{1,i}(find(FacPotBat1{1,i}>(MUESTRAS_CICLO/4)))=FacPotBat1{1,i}(find(FacPotBat1{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 777 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotBat1(i)),int32(VENTANA_EST))*VENTANA_EST  778 
                medFacPotBat1=[medFacPotBat1 median(FacPotBat1{1,i}(j:j+VENTANA_EST-1))]; 779 
            end 780 
  781 
            sizeFacPotBat2(i)=min(size(pasosCeroIBat2{1,i},2),size(pasosCeroVBat2{1,i},2)); 782 
            FacPotBat2{1,i}=pasosCeroIBat2{1,i}(1:sizeFacPotBat2(i))-pasosCeroVBat2{1,i}(1:sizeFacPotBat2(i)); 783 
            FacPotBat2{1,i}(find(FacPotBat2{1,i}<0))=FacPotBat2{1,i}(find(FacPotBat2{1,i}<0))+MUESTRAS_CICLO/2; 784 
            FacPotBat2{1,i}(find(FacPotBat2{1,i}>(MUESTRAS_CICLO/4)))=FacPotBat2{1,i}(find(FacPotBat2{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 785 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotBat2(i)),int32(VENTANA_EST))*VENTANA_EST  786 
                medFacPotBat2=[medFacPotBat2 median(FacPotBat2{1,i}(j:j+VENTANA_EST-1))]; 787 
            end 788 
  789 
            sizeFacPotBat3(i)=min(size(pasosCeroIBat3{1,i},2),size(pasosCeroVBat3{1,i},2)); 790 
            FacPotBat3{1,i}=pasosCeroIBat3{1,i}(1:sizeFacPotBat3(i))-pasosCeroVBat3{1,i}(1:sizeFacPotBat3(i)); 791 
            FacPotBat3{1,i}(find(FacPotBat3{1,i}<0))=FacPotBat3{1,i}(find(FacPotBat3{1,i}<0))+MUESTRAS_CICLO/2; 792 
            FacPotBat3{1,i}(find(FacPotBat3{1,i}>(MUESTRAS_CICLO/4)))=FacPotBat3{1,i}(find(FacPotBat3{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 793 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotBat3(i)),int32(VENTANA_EST))*VENTANA_EST  794 
                medFacPotBat3=[medFacPotBat3 median(FacPotBat3{1,i}(j:j+VENTANA_EST-1))]; 795 
            end 796 
  797 
            sizeFacPotExpr(i)=min(size(pasosCeroIExpr{1,i},2),size(pasosCeroVExpr{1,i},2)); 798 
            FacPotExpr{1,i}=pasosCeroIExpr{1,i}(1:sizeFacPotExpr(i))-pasosCeroVExpr{1,i}(1:sizeFacPotExpr(i)); 799 
            FacPotExpr{1,i}(find(FacPotExpr{1,i}<0))=FacPotExpr{1,i}(find(FacPotExpr{1,i}<0))+MUESTRAS_CICLO/2; 800 
            FacPotExpr{1,i}(find(FacPotExpr{1,i}>(MUESTRAS_CICLO/4)))=FacPotExpr{1,i}(find(FacPotExpr{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 801 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotExpr(i)),int32(VENTANA_EST))*VENTANA_EST  802 
                medFacPotExpr=[medFacPotExpr median(FacPotExpr{1,i}(j:j+VENTANA_EST-1))]; 803 
            end 804 
  805 
            sizeFacPotMicr(i)=min(size(pasosCeroIMicr{1,i},2),size(pasosCeroVMicr{1,i},2)); 806 
            FacPotMicr{1,i}=pasosCeroIMicr{1,i}(1:sizeFacPotMicr(i))-pasosCeroVMicr{1,i}(1:sizeFacPotMicr(i)); 807 
            FacPotMicr{1,i}(find(FacPotMicr{1,i}<0))=FacPotMicr{1,i}(find(FacPotMicr{1,i}<0))+MUESTRAS_CICLO/2; 808 
            FacPotMicr{1,i}(find(FacPotMicr{1,i}>(MUESTRAS_CICLO/4)))=FacPotMicr{1,i}(find(FacPotMicr{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 809 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotMicr(i)),int32(VENTANA_EST))*VENTANA_EST  810 
                medFacPotMicr=[medFacPotMicr median(FacPotMicr{1,i}(j:j+VENTANA_EST-1))]; 811 
            end 812 
  813 
            sizeFacPotSand(i)=min(size(pasosCeroISand{1,i},2),size(pasosCeroVSand{1,i},2)); 814 
            FacPotSand{1,i}=pasosCeroISand{1,i}(1:sizeFacPotSand(i))-pasosCeroVSand{1,i}(1:sizeFacPotSand(i)); 815 
            FacPotSand{1,i}(find(FacPotSand{1,i}<0))=FacPotSand{1,i}(find(FacPotSand{1,i}<0))+MUESTRAS_CICLO/2; 816 
            FacPotSand{1,i}(find(FacPotSand{1,i}>(MUESTRAS_CICLO/4)))=FacPotSand{1,i}(find(FacPotSand{1,i}>(MUESTRAS_CICLO/4)))-817 

MUESTRAS_CICLO/2; 818 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotSand(i)),int32(VENTANA_EST))*VENTANA_EST  819 
                medFacPotSand=[medFacPotSand median(FacPotSand{1,i}(j:j+VENTANA_EST-1))]; 820 
            end 821 
  822 
            sizeFacPotVen1(i)=min(size(pasosCeroIVen1{1,i},2),size(pasosCeroVVen1{1,i},2)); 823 
            FacPotVen1{1,i}=pasosCeroIVen1{1,i}(1:sizeFacPotVen1(i))-pasosCeroVVen1{1,i}(1:sizeFacPotVen1(i)); 824 
            FacPotVen1{1,i}(find(FacPotVen1{1,i}<0))=FacPotVen1{1,i}(find(FacPotVen1{1,i}<0))+MUESTRAS_CICLO/2; 825 
            FacPotVen1{1,i}(find(FacPotVen1{1,i}>(MUESTRAS_CICLO/4)))=FacPotVen1{1,i}(find(FacPotVen1{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 826 
            for j=1:VENTANA_EST:idivide(int32(sizeFacPotVen1(i)),int32(VENTANA_EST))*VENTANA_EST  827 
                medFacPotVen1=[medFacPotVen1 median(FacPotVen1{1,i}(j:j+VENTANA_EST-1))]; 828 
            end 829 
  830 
            sizeFacPotMicrOnYSandOn(i)=min(size(pasosCeroIMicrOnYSandOn{1,i},2),size(pasosCeroVMicrOnYSandOn{1,i},2)); 831 
            FacPotMicrOnYSandOn{1,i}=pasosCeroIMicrOnYSandOn{1,i}(1:sizeFacPotMicrOnYSandOn(i))-832 

pasosCeroVMicrOnYSandOn{1,i}(1:sizeFacPotMicrOnYSandOn(i)); 833 
            834 

FacPotMicrOnYSandOn{1,i}(find(FacPotMicrOnYSandOn{1,i}<0))=FacPotMicrOnYSandOn{1,i}(find(FacPotMicrOnYSandOn{1,i}<0))+MUESTRAS_CICLO/2; 835 



ANEXO II 
 

Pag 68 de 128 

            836 
FacPotMicrOnYSandOn{1,i}(find(FacPotMicrOnYSandOn{1,i}>(MUESTRAS_CICLO/4)))=FacPotMicrOnYSandOn{1,i}(find(FacPotMicrOnYSandOn{1,i}>(MUESTRAS837 
_CICLO/4)))-MUESTRAS_CICLO/2; 838 

            for j=1:VENTANA_EST:idivide(int32(sizeFacPotMicrOnYSandOn(i)),int32(VENTANA_EST))*VENTANA_EST  839 
                medFacPotMicrOnYSandOn=[medFacPotMicrOnYSandOn median(FacPotMicrOnYSandOn{1,i}(j:j+VENTANA_EST-1))]; 840 
            end 841 
  842 
            sizeFacPotSandOnYBat3On(i)=min(size(pasosCeroISandOnYBat3On{1,i},2),size(pasosCeroVSandOnYBat3On{1,i},2)); 843 
            FacPotSandOnYBat3On{1,i}=pasosCeroISandOnYBat3On{1,i}(1:sizeFacPotSandOnYBat3On(i))-844 

pasosCeroVSandOnYBat3On{1,i}(1:sizeFacPotSandOnYBat3On(i)); 845 
            846 

FacPotSandOnYBat3On{1,i}(find(FacPotSandOnYBat3On{1,i}<0))=FacPotSandOnYBat3On{1,i}(find(FacPotSandOnYBat3On{1,i}<0))+MUESTRAS_CICLO/2; 847 
            848 

FacPotSandOnYBat3On{1,i}(find(FacPotSandOnYBat3On{1,i}>(MUESTRAS_CICLO/4)))=FacPotSandOnYBat3On{1,i}(find(FacPotSandOnYBat3On{1,i}>(MUESTRA849 
S_CICLO/4)))-MUESTRAS_CICLO/2; 850 

            for j=1:VENTANA_EST:idivide(int32(sizeFacPotSandOnYBat3On(i)),int32(VENTANA_EST))*VENTANA_EST  851 
                medFacPotSandOnYBat3On=[medFacPotSandOnYBat3On median(FacPotSandOnYBat3On{1,i}(j:j+VENTANA_EST-1))]; 852 
            end 853 
  854 
            sizeFacPotVen1OnYBat3On(i)=min(size(pasosCeroIVen1OnYBat3On{1,i},2),size(pasosCeroVVen1OnYBat3On{1,i},2)); 855 
            FacPotVen1OnYBat3On{1,i}=pasosCeroIVen1OnYBat3On{1,i}(1:sizeFacPotVen1OnYBat3On(i))-856 

pasosCeroVVen1OnYBat3On{1,i}(1:sizeFacPotVen1OnYBat3On(i)); 857 
            858 

FacPotVen1OnYBat3On{1,i}(find(FacPotVen1OnYBat3On{1,i}<0))=FacPotVen1OnYBat3On{1,i}(find(FacPotVen1OnYBat3On{1,i}<0))+MUESTRAS_CICLO/2; 859 
            860 

FacPotVen1OnYBat3On{1,i}(find(FacPotVen1OnYBat3On{1,i}>(MUESTRAS_CICLO/4)))=FacPotVen1OnYBat3On{1,i}(find(FacPotVen1OnYBat3On{1,i}>(MUESTRAS_861 
CICLO/4)))-MUESTRAS_CICLO/2; 862 

            for j=1:VENTANA_EST:idivide(int32(sizeFacPotVen1OnYBat3On(i)),int32(VENTANA_EST))*VENTANA_EST  863 
                medFacPotVen1OnYBat3On=[medFacPotVen1OnYBat3On median(FacPotVen1OnYBat3On{1,i}(j:j+VENTANA_EST-1))]; 864 
            end 865 
  866 
            sizeFacPotVen1OnYMicrOnYSandOn(i)=min(size(pasosCeroIVen1OnYMicrOnYSandOn{1,i},2),size(pasosCeroVVen1OnYMicrOnYSandOn{1,i},2)); 867 
            FacPotVen1OnYMicrOnYSandOn{1,i}=pasosCeroIVen1OnYMicrOnYSandOn{1,i}(1:sizeFacPotVen1OnYMicrOnYSandOn(i))-868 

pasosCeroVVen1OnYMicrOnYSandOn{1,i}(1:sizeFacPotVen1OnYMicrOnYSandOn(i)); 869 
            870 

FacPotVen1OnYMicrOnYSandOn{1,i}(find(FacPotVen1OnYMicrOnYSandOn{1,i}<0))=FacPotVen1OnYMicrOnYSandOn{1,i}(find(FacPotVen1OnYMicrOnYSandOn{1,i}871 
<0))+MUESTRAS_CICLO/2; 872 

            873 
FacPotVen1OnYMicrOnYSandOn{1,i}(find(FacPotVen1OnYMicrOnYSandOn{1,i}>(MUESTRAS_CICLO/4)))=FacPotVen1OnYMicrOnYSandOn{1,i}(find(FacPotVen1On874 
YMicrOnYSandOn{1,i}>(MUESTRAS_CICLO/4)))-MUESTRAS_CICLO/2; 875 

            for j=1:VENTANA_EST:idivide(int32(sizeFacPotVen1OnYMicrOnYSandOn(i)),int32(VENTANA_EST))*VENTANA_EST  876 
                medFacPotVen1OnYMicrOnYSandOn=[medFacPotVen1OnYMicrOnYSandOn median(FacPotVen1OnYMicrOnYSandOn{1,i}(j:j+VENTANA_EST-1))]; 877 
            end 878 
        end 879 
  880 
        medFacPotBat1=medFacPotBat1(2:end); 881 
        medFacPotBat2=medFacPotBat2(2:end); 882 
        medFacPotBat3=medFacPotBat3(2:end); 883 
        medFacPotExpr=medFacPotExpr(2:end); 884 
        medFacPotMicr=medFacPotMicr(2:end); 885 
        medFacPotSand=medFacPotSand(2:end); 886 
        medFacPotVen1=medFacPotVen1(2:end); 887 
        medFacPotMicrOnYSandOn=medFacPotMicrOnYSandOn(2:end); 888 
        medFacPotSandOnYBat3On=medFacPotSandOnYBat3On(2:end); 889 
        medFacPotVen1OnYBat3On=medFacPotVen1OnYBat3On(2:end); 890 
        medFacPotVen1OnYMicrOnYSandOn=medFacPotVen1OnYMicrOnYSandOn(2:end); 891 
  892 
        %% RMS-FFT-CCDA-CUARTO 893 
  894 
        %valor RMS 895 
        %recortamos la señal en longitud para otener un multiplo  896 
        %de un periodo asi el valor rms está promediado y tomamos 897 
        %ventanas de VENTANA_EST numero de ciclos. 898 
  899 
  900 



ANEXO II 
 

Pag 69 de 128 

        rmsBat1=[]; 901 
        rmsBat2=[]; 902 
        rmsBat3=[]; 903 
        rmsExpr=[]; 904 
        rmsMicr=[]; 905 
        rmsSand=[]; 906 
        rmsVen1=[]; 907 
        rmsMicrOnYSandOn=[]; 908 
        rmsSandOnYBat3On=[]; 909 
        rmsVen1OnYBat3On=[]; 910 
        rmsVen1OnYMicrOnYSandOn=[]; 911 
  912 
        CalfBat1=[]; 913 
        CbetBat1=[]; 914 
        CalfBat2=[]; 915 
        CbetBat2=[]; 916 
        CalfBat3=[]; 917 
        CbetBat3=[]; 918 
        CalfExpr=[]; 919 
        CbetExpr=[]; 920 
        CalfMicr=[]; 921 
        CbetMicr=[]; 922 
        CalfSand=[]; 923 
        CbetSand=[]; 924 
        CalfVen1=[]; 925 
        CbetVen1=[]; 926 
        CalfMicrOnYSandOn=[]; 927 
        CbetMicrOnYSandOn=[]; 928 
        CalfSandOnYBat3On=[]; 929 
        CbetSandOnYBat3On=[]; 930 
        CalfVen1OnYBat3On=[]; 931 
        CbetVen1OnYBat3On=[]; 932 
        CalfVen1OnYMicrOnYSandOn=[]; 933 
        CbetVen1OnYMicrOnYSandOn=[]; 934 
  935 
        fft1Bat1=[]; 936 
        fft2Bat1=[]; 937 
        fft3Bat1=[]; 938 
        fft1Bat2=[]; 939 
        fft2Bat2=[]; 940 
        fft3Bat2=[]; 941 
        fft1Bat3=[]; 942 
        fft2Bat3=[]; 943 
        fft3Bat3=[]; 944 
        fft1Expr=[]; 945 
        fft2Expr=[]; 946 
        fft3Expr=[]; 947 
        fft1Micr=[]; 948 
        fft2Micr=[]; 949 
        fft3Micr=[]; 950 
        fft1Sand=[]; 951 
        fft2Sand=[]; 952 
        fft3Sand=[]; 953 
        fft1Ven1=[]; 954 
        fft2Ven1=[]; 955 
        fft3Ven1=[]; 956 
        fft1MicrOnYSandOn=[]; 957 
        fft2MicrOnYSandOn=[]; 958 
        fft3MicrOnYSandOn=[]; 959 
        fft1SandOnYBat3On=[]; 960 
        fft2SandOnYBat3On=[]; 961 
        fft3SandOnYBat3On=[]; 962 
        fft1Ven1OnYBat3On=[]; 963 
        fft2Ven1OnYBat3On=[]; 964 
        fft3Ven1OnYBat3On=[]; 965 



ANEXO II 
 

Pag 70 de 128 

        fft1Ven1OnYMicrOnYSandOn=[]; 966 
        fft2Ven1OnYMicrOnYSandOn=[]; 967 
        fft3Ven1OnYMicrOnYSandOn=[]; 968 
  969 
        picoCargaBat1=[]; 970 
        picoCargaBat2=[]; 971 
        picoCargaBat3=[]; 972 
        picoCargaExpr=[]; 973 
        picoCargaMicr=[]; 974 
        picoCargaSand=[]; 975 
        picoCargaVen1=[]; 976 
        picoCargaMicrOnYSandOn=[]; 977 
        picoCargaSandOnYBat3On=[]; 978 
        picoCargaVen1OnYBat3On=[]; 979 
        picoCargaVen1OnYMicrOnYSandOn=[]; 980 
  981 
        medPicoBat1=[]; 982 
        medPicoBat2=[]; 983 
        medPicoBat3=[]; 984 
        medPicoExpr=[]; 985 
        medPicoMicr=[]; 986 
        medPicoSand=[]; 987 
        medPicoVen1=[]; 988 
        medPicoMicrOnYSandOn=[]; 989 
        medPicoSandOnYBat3On=[]; 990 
        medPicoVen1OnYBat3On=[]; 991 
        medPicoVen1OnYMicrOnYSandOn=[]; 992 
  993 
        cuartoCargaBat1=[]; 994 
        cuartoCargaBat2=[]; 995 
        cuartoCargaBat3=[]; 996 
        cuartoCargaExpr=[]; 997 
        cuartoCargaMicr=[]; 998 
        cuartoCargaSand=[]; 999 
        cuartoCargaVen1=[]; 1000 
        cuartoCargaMicrOnYSandOn=[]; 1001 
        cuartoCargaSandOnYBat3On=[]; 1002 
        cuartoCargaVen1OnYBat3On=[]; 1003 
        cuartoCargaVen1OnYMicrOnYSandOn=[]; 1004 
  1005 
        medCuartoBat1=[]; 1006 
        medCuartoBat2=[]; 1007 
        medCuartoBat3=[]; 1008 
        medCuartoExpr=[]; 1009 
        medCuartoMicr=[]; 1010 
        medCuartoSand=[]; 1011 
        medCuartoVen1=[]; 1012 
        medCuartoMicrOnYSandOn=[]; 1013 
        medCuartoSandOnYBat3On=[]; 1014 
        medCuartoVen1OnYBat3On=[]; 1015 
        medCuartoVen1OnYMicrOnYSandOn=[]; 1016 
  1017 
        fftIndicesFrec=[]; 1018 
        for i=1:2:size(FRC_BUSQ_FFT,2) 1019 
            Indices=find((FRC_BUSQ_FFT(i)<VECTOR_FRECUENCIA)&(VECTOR_FRECUENCIA<FRC_BUSQ_FFT(i+1))); 1020 
            fftIndicesFrec=[fftIndicesFrec [Indices(1);Indices(end)]]; 1021 
        end 1022 
  1023 
  1024 
        for i=1:TRIALS 1025 
  1026 
            sizecargaBat1(i)=size(cargaBat1{1,i},2); 1027 
            for j=1:VENTANA_EST:size(pasosCeroIBat1{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1028 
                cargaBat1Ventana=cargaBat1{1,i}(pasosCeroIBat1{1,i}(j):pasosCeroIBat1{1,i}(j+VENTANA_EST)); 1029 
                %rmsBat1=[rmsBat1 ((trapz(cargaBat1Ventana.^2)/size (cargaBat1Ventana,2))^0.5)]; 1030 



ANEXO II 
 

Pag 71 de 128 

                rmsBat1=[rmsBat1 ((sum(cargaBat1Ventana.^2)/size (cargaBat1Ventana,2))^0.5)]; 1031 
                %concordia 1032 
                ia=cargaBat1Ventana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1033 
                ib=cargaBat1Ventana(1,1:end-34); 1034 
                ic=cargaBat1Ventana(1,35:end); 1035 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1036 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1037 
                CalfBat1=[CalfBat1 sum(ialf)/size(ialf,2)]; 1038 
                CbetBat1=[CbetBat1 sum(ibet)/size(ibet,2)]; 1039 
                %FFT 1040 
                y = fft(cargaBat1Ventana,NFFT)/INC_VENT; 1041 
                fft1Bat1=[fft1Bat1 max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1042 
                fft2Bat1=[fft2Bat1 max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1043 
                fft3Bat1=[fft3Bat1 max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1044 
                %PICO Y CUARTO 1045 
                for k=1:VENTANA_EST 1046 
                    pico=max(cargaBat1{1,i}((pasosCeroIBat1{1,i}(j):(pasosCeroIBat1{1,i}(j+k))))); 1047 
                    cuartoCargaBat1=[cuartoCargaBat1 cargaBat1{1,i}(pasosCeroIBat1{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1048 
                    picoCargaBat1=[picoCargaBat1 pico]; 1049 
                end 1050 
                medPicoBat1=[medPicoBat1 median(picoCargaBat1)]; 1051 
                medCuartoBat1=[medCuartoBat1 median(cuartoCargaBat1)]; 1052 
                cuartoCargaBat1=[]; 1053 
                picoCargaBat1=[]; 1054 
            end 1055 
  1056 
            sizecargaBat2(i)=size(cargaBat2{1,i},2); 1057 
            for j=1:VENTANA_EST:size(pasosCeroIBat2{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1058 
                cargaBat2Ventana=cargaBat2{1,i}(pasosCeroIBat2{1,i}(j):pasosCeroIBat2{1,i}(j+VENTANA_EST)); 1059 
        %        rmsBat2=[rmsBat2 ((trapz(cargaBat2Ventana.^2)/size (cargaBat2Ventana,2))^0.5)]; 1060 
                rmsBat2=[rmsBat2 ((sum(cargaBat2Ventana.^2)/size (cargaBat2Ventana,2))^0.5)]; 1061 
                %concordia 1062 
                ia=cargaBat2Ventana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1063 
                ib=cargaBat2Ventana(1,1:end-34); 1064 
                ic=cargaBat2Ventana(1,35:end); 1065 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1066 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1067 
                CalfBat2=[CalfBat2 sum(ialf)/size(ialf,2)]; 1068 
                CbetBat2=[CbetBat2 sum(ibet)/size(ibet,2)]; 1069 
                %FFT 1070 
                y = fft(cargaBat2Ventana,NFFT)/INC_VENT; 1071 
                fft1Bat2=[fft1Bat2 max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1072 
                fft2Bat2=[fft2Bat2 max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1073 
                fft3Bat2=[fft3Bat2 max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1074 
                %PICO Y CUARTO 1075 
                for k=1:VENTANA_EST 1076 
                    pico=max(cargaBat2{1,i}((pasosCeroIBat2{1,i}(j):(pasosCeroIBat2{1,i}(j+k))))); 1077 
                    cuartoCargaBat2=[cuartoCargaBat2 cargaBat2{1,i}(pasosCeroIBat2{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1078 
                    picoCargaBat2=[picoCargaBat2 pico]; 1079 
                end 1080 
                medPicoBat2=[medPicoBat2 median(picoCargaBat2)]; 1081 
                medCuartoBat2=[medCuartoBat2 median(cuartoCargaBat2)]; 1082 
                cuartoCargaBat2=[]; 1083 
                picoCargaBat2=[]; 1084 
            end 1085 
  1086 
            sizecargaBat3(i)=size(cargaBat3{1,i},2); 1087 
            for j=1:VENTANA_EST:size(pasosCeroIBat3{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1088 
                cargaBat3Ventana=cargaBat3{1,i}(pasosCeroIBat3{1,i}(j):pasosCeroIBat3{1,i}(j+VENTANA_EST)); 1089 
        %        rmsBat3=[rmsBat3 ((trapz(cargaBat3Ventana.^2)/size (cargaBat3Ventana,2))^0.5)]; 1090 
                rmsBat3=[rmsBat3 ((sum(cargaBat3Ventana.^2)/size (cargaBat3Ventana,2))^0.5)]; 1091 
                %concordia 1092 
                ia=cargaBat3Ventana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1093 
                ib=cargaBat3Ventana(1,1:end-34); 1094 
                ic=cargaBat3Ventana(1,35:end); 1095 



ANEXO II 
 

Pag 72 de 128 

                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1096 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1097 
                CalfBat3=[CalfBat3 sum(ialf)/size(ialf,2)]; 1098 
                CbetBat3=[CbetBat3 sum(ibet)/size(ibet,2)]; 1099 
                %FFT 1100 
                y = fft(cargaBat3Ventana,NFFT)/INC_VENT; 1101 
                fft1Bat3=[fft1Bat3 max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1102 
                fft2Bat3=[fft2Bat3 max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1103 
                fft3Bat3=[fft3Bat3 max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1104 
                %PICO Y CUARTO 1105 
                for k=1:VENTANA_EST 1106 
                    pico=max(cargaBat3{1,i}((pasosCeroIBat3{1,i}(j):(pasosCeroIBat3{1,i}(j+k))))); 1107 
                    cuartoCargaBat3=[cuartoCargaBat3 cargaBat3{1,i}(pasosCeroIBat3{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1108 
                    picoCargaBat3=[picoCargaBat3 pico]; 1109 
                end 1110 
                medPicoBat3=[medPicoBat3 median(picoCargaBat3)]; 1111 
                medCuartoBat3=[medCuartoBat3 median(cuartoCargaBat3)]; 1112 
                cuartoCargaBat3=[]; 1113 
                picoCargaBat3=[]; 1114 
            end 1115 
  1116 
            sizecargaExpr(i)=size(cargaExpr{1,i},2); 1117 
            for j=1:VENTANA_EST:size(pasosCeroIExpr{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1118 
                cargaExprVentana=cargaExpr{1,i}(pasosCeroIExpr{1,i}(j):pasosCeroIExpr{1,i}(j+VENTANA_EST)); 1119 
        %        rmsExpr=[rmsExpr ((trapz(cargaExprVentana.^2)/size (cargaExprVentana,2))^0.5)]; 1120 
                rmsExpr=[rmsExpr ((sum(cargaExprVentana.^2)/size (cargaExprVentana,2))^0.5)]; 1121 
                %concordia 1122 
                ia=cargaExprVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1123 
                ib=cargaExprVentana(1,1:end-34); 1124 
                ic=cargaExprVentana(1,35:end); 1125 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1126 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1127 
                CalfExpr=[CalfExpr sum(ialf)/size(ialf,2)]; 1128 
                CbetExpr=[CbetExpr sum(ibet)/size(ibet,2)]; 1129 
                %FFT 1130 
                y = fft(cargaExprVentana,NFFT)/INC_VENT; 1131 
                fft1Expr=[fft1Expr max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1132 
                fft2Expr=[fft2Expr max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1133 
                fft3Expr=[fft3Expr max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1134 
                %PICO Y CUARTO 1135 
                for k=1:VENTANA_EST 1136 
                    pico=max(cargaExpr{1,i}((pasosCeroIExpr{1,i}(j):(pasosCeroIExpr{1,i}(j+k))))); 1137 
                    cuartoCargaExpr=[cuartoCargaExpr cargaExpr{1,i}(pasosCeroIExpr{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1138 
                    picoCargaExpr=[picoCargaExpr pico]; 1139 
                end 1140 
                medPicoExpr=[medPicoExpr median(picoCargaExpr)]; 1141 
                medCuartoExpr=[medCuartoExpr median(cuartoCargaExpr)]; 1142 
                cuartoCargaExpr=[]; 1143 
                picoCargaExpr=[]; 1144 
            end 1145 
  1146 
            sizecargaMicr(i)=size(cargaMicr{1,i},2); 1147 
            for j=1:VENTANA_EST:size(pasosCeroIMicr{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1148 
                cargaMicrVentana=cargaMicr{1,i}(pasosCeroIMicr{1,i}(j):pasosCeroIMicr{1,i}(j+VENTANA_EST)); 1149 
        %        rmsMicr=[rmsMicr ((trapz(cargaMicrVentana.^2)/size (cargaMicrVentana,2))^0.5)]; 1150 
                rmsMicr=[rmsMicr ((sum(cargaMicrVentana.^2)/size (cargaMicrVentana,2))^0.5)]; 1151 
                %concordia 1152 
                ia=cargaMicrVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1153 
                ib=cargaMicrVentana(1,1:end-34); 1154 
                ic=cargaMicrVentana(1,35:end); 1155 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1156 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1157 
                CalfMicr=[CalfMicr sum(ialf)/size(ialf,2)]; 1158 
                CbetMicr=[CbetMicr sum(ibet)/size(ibet,2)]; 1159 
                %FFT 1160 



ANEXO II 
 

Pag 73 de 128 

                y = fft(cargaMicrVentana,NFFT)/INC_VENT; 1161 
                fft1Micr=[fft1Micr max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1162 
                fft2Micr=[fft2Micr max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1163 
                fft3Micr=[fft3Micr max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1164 
                %PICO Y CUARTO 1165 
                for k=1:VENTANA_EST 1166 
                    pico=max(cargaMicr{1,i}((pasosCeroIMicr{1,i}(j):(pasosCeroIMicr{1,i}(j+k))))); 1167 
                    cuartoCargaMicr=[cuartoCargaMicr cargaMicr{1,i}(pasosCeroIMicr{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1168 
                    picoCargaMicr=[picoCargaMicr pico]; 1169 
                end 1170 
                medPicoMicr=[medPicoMicr median(picoCargaMicr)]; 1171 
                medCuartoMicr=[medCuartoMicr median(cuartoCargaMicr)]; 1172 
                cuartoCargaMicr=[]; 1173 
                picoCargaMicr=[]; 1174 
            end 1175 
  1176 
            sizecargaSand(i)=size(cargaSand{1,i},2); 1177 
            for j=1:VENTANA_EST:size(pasosCeroISand{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1178 
                cargaSandVentana=cargaSand{1,i}(pasosCeroISand{1,i}(j):pasosCeroISand{1,i}(j+VENTANA_EST)); 1179 
        %        rmsSand=[rmsSand ((trapz(cargaSandVentana.^2)/size (cargaSandVentana,2))^0.5)]; 1180 
                rmsSand=[rmsSand ((sum(cargaSandVentana.^2)/size (cargaSandVentana,2))^0.5)]; 1181 
                %concordia 1182 
                ia=cargaSandVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1183 
                ib=cargaSandVentana(1,1:end-34); 1184 
                ic=cargaSandVentana(1,35:end); 1185 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1186 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1187 
                CalfSand=[CalfSand sum(ialf)/size(ialf,2)]; 1188 
                CbetSand=[CbetSand sum(ibet)/size(ibet,2)]; 1189 
                %FFT 1190 
                y = fft(cargaSandVentana,NFFT)/INC_VENT; 1191 
                fft1Sand=[fft1Sand max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1192 
                fft2Sand=[fft2Sand max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1193 
                fft3Sand=[fft3Sand max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1194 
                %PICO Y CUARTO 1195 
                for k=1:VENTANA_EST 1196 
                    pico=max(cargaSand{1,i}((pasosCeroISand{1,i}(j):(pasosCeroISand{1,i}(j+k))))); 1197 
                    cuartoCargaSand=[cuartoCargaSand cargaSand{1,i}(pasosCeroISand{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1198 
                    picoCargaSand=[picoCargaSand pico]; 1199 
                end 1200 
                medPicoSand=[medPicoSand median(picoCargaSand)]; 1201 
                medCuartoSand=[medCuartoSand median(cuartoCargaSand)]; 1202 
                cuartoCargaSand=[]; 1203 
                picoCargaSand=[]; 1204 
            end 1205 
  1206 
            sizecargaVen1(i)=size(cargaVen1{1,i},2); 1207 
            for j=1:VENTANA_EST:size(pasosCeroIVen1{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1208 
                cargaVen1Ventana=cargaVen1{1,i}(pasosCeroIVen1{1,i}(j):pasosCeroIVen1{1,i}(j+VENTANA_EST));% 1209 
        %        rmsVen1=[rmsVen1 ((trapz(cargaVen1Ventana.^2)/size (cargaVen1Ventana,2))^0.5)]; 1210 
                rmsVen1=[rmsVen1 ((sum(cargaVen1Ventana.^2)/size (cargaVen1Ventana,2))^0.5)]; 1211 
                %concordia 1212 
                ia=cargaVen1Ventana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1213 
                ib=cargaVen1Ventana(1,1:end-34); 1214 
                ic=cargaVen1Ventana(1,35:end); 1215 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1216 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1217 
                CalfVen1=[CalfVen1 sum(ialf)/size(ialf,2)]; 1218 
                CbetVen1=[CbetVen1 sum(ibet)/size(ibet,2)]; 1219 
                %FFT 1220 
                y = fft(cargaVen1Ventana,NFFT)/INC_VENT; 1221 
                fft1Ven1=[fft1Ven1 max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1222 
                fft2Ven1=[fft2Ven1 max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1223 
                fft3Ven1=[fft3Ven1 max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1224 
                %PICO Y CUARTO 1225 



ANEXO II 
 

Pag 74 de 128 

                for k=1:VENTANA_EST 1226 
                    pico=max(cargaVen1{1,i}((pasosCeroIVen1{1,i}(j):(pasosCeroIVen1{1,i}(j+k))))); 1227 
                    cuartoCargaVen1=[cuartoCargaVen1 cargaVen1{1,i}(pasosCeroIVen1{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1228 
                    picoCargaVen1=[picoCargaVen1 pico]; 1229 
                end 1230 
                medPicoVen1=[medPicoVen1 median(picoCargaVen1)]; 1231 
                medCuartoVen1=[medCuartoVen1 median(cuartoCargaVen1)]; 1232 
                cuartoCargaVen1=[]; 1233 
                picoCargaVen1=[]; 1234 
            end 1235 
  1236 
            sizecargaMicrOnYSandOn(i)=size(cargaMicrOnYSandOn{1,i},2); 1237 
            for j=1:VENTANA_EST:size(pasosCeroIMicrOnYSandOn{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1238 
                cargaMicrOnYSandOnVentana=cargaMicrOnYSandOn{1,i}(pasosCeroIMicrOnYSandOn{1,i}(j):pasosCeroIMicrOnYSandOn{1,i}(j+VENTANA_EST)); 1239 
        %        rmsMicrOnYSandOn=[rmsMicrOnYSandOn ((trapz(cargaMicrOnYSandOnVentana.^2)/size (cargaMicrOnYSandOnVentana,2))^0.5)]; 1240 
                rmsMicrOnYSandOn=[rmsMicrOnYSandOn ((sum(cargaMicrOnYSandOnVentana.^2)/size (cargaMicrOnYSandOnVentana,2))^0.5)]; 1241 
                %concordia 1242 
                ia=cargaMicrOnYSandOnVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif.  1243 
                ib=cargaMicrOnYSandOnVentana(1,1:end-34); 1244 
                ic=cargaMicrOnYSandOnVentana(1,35:end); 1245 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1246 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1247 
                CalfMicrOnYSandOn=[CalfMicrOnYSandOn sum(ialf)/size(ialf,2)]; 1248 
                CbetMicrOnYSandOn=[CbetMicrOnYSandOn sum(ibet)/size(ibet,2)]; 1249 
                %FFT 1250 
                y = fft(cargaMicrOnYSandOnVentana,NFFT)/INC_VENT; 1251 
                fft1MicrOnYSandOn=[fft1MicrOnYSandOn max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1252 
                fft2MicrOnYSandOn=[fft2MicrOnYSandOn max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1253 
                fft3MicrOnYSandOn=[fft3MicrOnYSandOn max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1254 
                %PICO Y CUARTO 1255 
                for k=1:VENTANA_EST 1256 
                    pico=max(cargaMicrOnYSandOn{1,i}((pasosCeroIMicrOnYSandOn{1,i}(j):(pasosCeroIMicrOnYSandOn{1,i}(j+k))))); 1257 
                    cuartoCargaMicrOnYSandOn=[cuartoCargaMicrOnYSandOn cargaMicrOnYSandOn{1,i}(pasosCeroIMicrOnYSandOn{1,i}(j+k-1258 

1)+CUARTO_SEMIPERIODO)/pico]; 1259 
                    picoCargaMicrOnYSandOn=[picoCargaMicrOnYSandOn pico]; 1260 
                end 1261 
                medPicoMicrOnYSandOn=[medPicoMicrOnYSandOn median(picoCargaMicrOnYSandOn)]; 1262 
                medCuartoMicrOnYSandOn=[medCuartoMicrOnYSandOn median(cuartoCargaMicrOnYSandOn)]; 1263 
                cuartoCargaMicrOnYSandOn=[]; 1264 
                picoCargaMicrOnYSandOn=[]; 1265 
            end 1266 
  1267 
            sizecargaSandOnYBat3On(i)=size(cargaSandOnYBat3On{1,i},2); 1268 
            for j=1:VENTANA_EST:size(pasosCeroISandOnYBat3On{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1269 
                cargaSandOnYBat3OnVentana=cargaSandOnYBat3On{1,i}(pasosCeroISandOnYBat3On{1,i}(j):pasosCeroISandOnYBat3On{1,i}(j+VENTANA_EST)); 1270 
        %        rmsSandOnYBat3On=[rmsSandOnYBat3On ((trapz(cargaSandOnYBat3OnVentana.^2)/size (cargaSandOnYBat3OnVentana,2))^0.5)]; 1271 
                rmsSandOnYBat3On=[rmsSandOnYBat3On ((sum(cargaSandOnYBat3OnVentana.^2)/size (cargaSandOnYBat3OnVentana,2))^0.5)]; 1272 
                %concordia 1273 
                ia=cargaSandOnYBat3OnVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif.  1274 
                ib=cargaSandOnYBat3OnVentana(1,1:end-34); 1275 
                ic=cargaSandOnYBat3OnVentana(1,35:end); 1276 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1277 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1278 
                CalfSandOnYBat3On=[CalfSandOnYBat3On sum(ialf)/size(ialf,2)]; 1279 
                CbetSandOnYBat3On=[CbetSandOnYBat3On sum(ibet)/size(ibet,2)]; 1280 
                %FFT 1281 
                y = fft(cargaSandOnYBat3OnVentana,NFFT)/INC_VENT; 1282 
                fft1SandOnYBat3On=[fft1SandOnYBat3On max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1283 
                fft2SandOnYBat3On=[fft2SandOnYBat3On max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1284 
                fft3SandOnYBat3On=[fft3SandOnYBat3On max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1285 
                %PICO Y CUARTO 1286 
                for k=1:VENTANA_EST 1287 
                    pico=max(cargaSandOnYBat3On{1,i}((pasosCeroISandOnYBat3On{1,i}(j):(pasosCeroISandOnYBat3On{1,i}(j+k)))));  1288 
                    cuartoCargaSandOnYBat3On=[cuartoCargaSandOnYBat3On cargaSandOnYBat3On{1,i}(pasosCeroISandOnYBat3On{1,i}(j+k-1289 

1)+CUARTO_SEMIPERIODO)/pico]; 1290 



ANEXO II 
 

Pag 75 de 128 

                    picoCargaSandOnYBat3On=[picoCargaSandOnYBat3On pico]; 1291 
                end 1292 
                medPicoSandOnYBat3On=[medPicoSandOnYBat3On median(picoCargaSandOnYBat3On)]; 1293 
                medCuartoSandOnYBat3On=[medCuartoSandOnYBat3On median(cuartoCargaSandOnYBat3On)];  1294 
                cuartoCargaSandOnYBat3On=[]; 1295 
                picoCargaSandOnYBat3On=[]; 1296 
            end 1297 
  1298 
            sizecargaVen1OnYBat3On(i)=size(cargaVen1OnYBat3On{1,i},2); 1299 
            for j=1:VENTANA_EST:size(pasosCeroIVen1OnYBat3On{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana.  1300 
                cargaVen1OnYBat3OnVentana=cargaVen1OnYBat3On{1,i}(pasosCeroIVen1OnYBat3On{1,i}(j):pasosCeroIVen1OnYBat3On{1,i}(j+VENTANA_EST)); 1301 
        %        rmsVen1OnYBat3On=[rmsVen1OnYBat3On ((trapz(cargaVen1OnYBat3OnVentana.^2)/size (cargaVen1OnYBat3OnVentana,2))^0.5)]; 1302 
                rmsVen1OnYBat3On=[rmsVen1OnYBat3On ((sum(cargaVen1OnYBat3OnVentana.^2)/size (cargaVen1OnYBat3OnVentana,2))^0.5)]; 1303 
                %concordia 1304 
                ia=cargaVen1OnYBat3OnVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif.  1305 
                ib=cargaVen1OnYBat3OnVentana(1,1:end-34); 1306 
                ic=cargaVen1OnYBat3OnVentana(1,35:end); 1307 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1308 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1309 
                CalfVen1OnYBat3On=[CalfVen1OnYBat3On sum(ialf)/size(ialf,2)]; 1310 
                CbetVen1OnYBat3On=[CbetVen1OnYBat3On sum(ibet)/size(ibet,2)]; 1311 
                %FFT 1312 
                y = fft(cargaVen1OnYBat3OnVentana,NFFT)/INC_VENT; 1313 
                fft1Ven1OnYBat3On=[fft1Ven1OnYBat3On max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1314 
                fft2Ven1OnYBat3On=[fft2Ven1OnYBat3On max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1315 
                fft3Ven1OnYBat3On=[fft3Ven1OnYBat3On max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1316 
                %PICO Y CUARTO 1317 
                for k=1:VENTANA_EST 1318 
                    pico=max(cargaVen1OnYBat3On{1,i}((pasosCeroIVen1OnYBat3On{1,i}(j):(pasosCeroIVen1OnYBat3On{1,i}(j+k))))); 1319 
                    cuartoCargaVen1OnYBat3On=[cuartoCargaVen1OnYBat3On cargaVen1OnYBat3On{1,i}(pasosCeroIVen1OnYBat3On{1,i}(j+k-1320 

1)+CUARTO_SEMIPERIODO)/pico]; 1321 
                    picoCargaVen1OnYBat3On=[picoCargaVen1OnYBat3On pico]; 1322 
                end 1323 
                medPicoVen1OnYBat3On=[medPicoVen1OnYBat3On median(picoCargaVen1OnYBat3On)]; 1324 
                medCuartoVen1OnYBat3On=[medCuartoVen1OnYBat3On median(cuartoCargaVen1OnYBat3On)]; 1325 
                cuartoCargaVen1OnYBat3On=[]; 1326 
                picoCargaVen1OnYBat3On=[]; 1327 
            end 1328 
  1329 
            sizecargaVen1OnYMicrOnYSandOn(i)=size(cargaVen1OnYMicrOnYSandOn{1,i},2); 1330 
            for j=1:VENTANA_EST:size(pasosCeroIVen1OnYMicrOnYSandOn{1,i},2)-VENTANA_EST-1;%ventana desde paso por cero, hasta ancho ventana. 1331 
                1332 

cargaVen1OnYMicrOnYSandOnVentana=cargaVen1OnYMicrOnYSandOn{1,i}(pasosCeroIVen1OnYMicrOnYSandOn{1,i}(j):pasosCeroIVen1OnYMicrOnYSandOn{1,i}1333 
(j+VENTANA_EST)); 1334 

        %        rmsVen1OnYMicrOnYSandOn=[rmsVen1OnYMicrOnYSandOn ((trapz(cargaVen1OnYMicrOnYSandOnVentana.^2)/size 1335 
(cargaVen1OnYMicrOnYSandOnVentana,2))^0.5)]; 1336 

                rmsVen1OnYMicrOnYSandOn=[rmsVen1OnYMicrOnYSandOn ((sum(cargaVen1OnYMicrOnYSandOnVentana.^2)/size 1337 
(cargaVen1OnYMicrOnYSandOnVentana,2))^0.5)]; 1338 

                %concordia 1339 
                ia=cargaVen1OnYMicrOnYSandOnVentana(1,18:end-17);%desfasamos la corriente para crear stma. trif. 1340 
                ib=cargaVen1OnYMicrOnYSandOnVentana(1,1:end-34); 1341 
                ic=cargaVen1OnYMicrOnYSandOnVentana(1,35:end); 1342 
                ialf=abs(ia*(2/3)^0.5-ib*(1/6)^0.5-ic*(1/6)^0.5); 1343 
                ibet=abs(ib*(1/2)^0.5-ic*(1/2)^0.5); 1344 
                CalfVen1OnYMicrOnYSandOn=[CalfVen1OnYMicrOnYSandOn sum(ialf)/size(ialf,2)]; 1345 
                CbetVen1OnYMicrOnYSandOn=[CbetVen1OnYMicrOnYSandOn sum(ibet)/size(ibet,2)]; 1346 
                %FFT 1347 
                y = fft(cargaVen1OnYMicrOnYSandOnVentana,NFFT)/INC_VENT; 1348 
                fft1Ven1OnYMicrOnYSandOn=[fft1Ven1OnYMicrOnYSandOn max(2*abs(y(fftIndicesFrec(1,1):fftIndicesFrec(2,1))))]; 1349 
                fft2Ven1OnYMicrOnYSandOn=[fft2Ven1OnYMicrOnYSandOn max(2*abs(y(fftIndicesFrec(1,2):fftIndicesFrec(2,2))))]; 1350 
                fft3Ven1OnYMicrOnYSandOn=[fft3Ven1OnYMicrOnYSandOn max(2*abs(y(fftIndicesFrec(1,3):fftIndicesFrec(2,3))))]; 1351 
                %PICO Y CUARTO 1352 
                for k=1:VENTANA_EST 1353 
                    pico=max(cargaVen1OnYMicrOnYSandOn{1,i}((pasosCeroIVen1OnYMicrOnYSandOn{1,i}(j):(pasosCeroIVen1OnYMicrOnYSandOn{1,i}(j+k)))));  1354 



ANEXO II 
 

Pag 76 de 128 

                    cuartoCargaVen1OnYMicrOnYSandOn=[cuartoCargaVen1OnYMicrOnYSandOn 1355 
cargaVen1OnYMicrOnYSandOn{1,i}(pasosCeroIVen1OnYMicrOnYSandOn{1,i}(j+k-1)+CUARTO_SEMIPERIODO)/pico]; 1356 

                    picoCargaVen1OnYMicrOnYSandOn=[picoCargaVen1OnYMicrOnYSandOn pico]; 1357 
                end 1358 
                medPicoVen1OnYMicrOnYSandOn=[medPicoVen1OnYMicrOnYSandOn median(picoCargaVen1OnYMicrOnYSandOn)]; 1359 
                medCuartoVen1OnYMicrOnYSandOn=[medCuartoVen1OnYMicrOnYSandOn median(cuartoCargaVen1OnYMicrOnYSandOn)];  1360 
                cuartoCargaVen1OnYMicrOnYSandOn=[]; 1361 
                picoCargaVen1OnYMicrOnYSandOn=[]; 1362 
            end 1363 
        end 1364 
  1365 
  1366 
  1367 
  1368 
        %% MATRICES ENTRADAS-TARGETS 1369 
  1370 
        %ordenacion de los datos en matrices entradas y targets 1371 
        sizeMatEntradasBat1=min([size(rmsBat1,2) size(CalfBat1,2) size(CbetBat1,2) size(fft1Bat1,2) size(fft2Bat1,2) size(fft3Bat1,2) size(medFacPotBat1,2) 1372 

size(medPicoBat1,2) size(medCuartoBat1,2)]); 1373 
        sizeMatEntradasBat2=min([size(rmsBat2,2) size(CalfBat2,2) size(CbetBat2,2) size(fft1Bat2,2) size(fft2Bat2,2) size(fft3Bat2,2) 1374 

size(medFacPotBat2,2) size(medPicoBat2,2) size(medCuartoBat2,2)]); 1375 
        sizeMatEntradasBat3=min([size(rmsBat3,2) size(CalfBat3,2) size(CbetBat3,2) size(fft1Bat3,2) size(fft2Bat3,2) size(fft3Bat3,2) 1376 

size(medFacPotBat3,2) size(medPicoBat3,2) size(medCuartoBat3,2)]); 1377 
        sizeMatEntradasExpr=min([size(rmsExpr,2) size(CalfExpr,2) size(CbetExpr,2) size(fft1Expr,2) size(fft2Expr,2) size(fft3Expr,2) size(medFacPotExpr,2) 1378 

size(medPicoExpr,2) size(medCuartoExpr,2)]); 1379 
        sizeMatEntradasMicr=min([size(rmsMicr,2) size(CalfMicr,2) size(CbetMicr,2) size(fft1Micr,2) size(fft2Micr,2) size(fft3Micr,2) size(medFacPotMicr,2) 1380 

size(medPicoMicr,2) size(medCuartoMicr,2)]); 1381 
        sizeMatEntradasSand=min([size(rmsSand,2) size(CalfSand,2) size(CbetSand,2) size(fft1Sand,2) size(fft2Sand,2) size(fft3Sand,2) 1382 

size(medFacPotSand,2) size(medPicoSand,2) size(medCuartoSand,2)]); 1383 
        sizeMatEntradasVen1=min([size(rmsVen1,2) size(CalfVen1,2) size(CbetVen1,2) size(fft1Ven1,2) size(fft2Ven1,2) size(fft3Ven1,2) size(medFacPotVen1,2) 1384 

size(medPicoVen1,2) size(medCuartoVen1,2)]); 1385 
        sizeMatEntradasMicrOnYSandOn=min([size(rmsMicrOnYSandOn,2) size(CalfMicrOnYSandOn,2) size(CbetMicrOnYSandOn,2) 1386 

size(fft1MicrOnYSandOn,2) size(fft2MicrOnYSandOn,2) size(fft3MicrOnYSandOn,2) size(medFacPotMicrOnYSandOn,2) size(medPicoMicrOnYSandOn,2) 1387 
size(medCuartoMicrOnYSandOn,2)]); 1388 

        sizeMatEntradasSandOnYBat3On=min([size(rmsSandOnYBat3On,2) size(CalfSandOnYBat3On,2) size(CbetSandOnYBat3On,2) 1389 
size(fft1SandOnYBat3On,2) size(fft2SandOnYBat3On,2) size(fft3SandOnYBat3On,2) size(medFacPotSandOnYBat3On,2) size(medPicoSandOnYBat3On,2) 1390 
size(medCuartoSandOnYBat3On,2)]); 1391 

        sizeMatEntradasVen1OnYBat3On=min([size(rmsVen1OnYBat3On,2) size(CalfVen1OnYBat3On,2) size(CbetVen1OnYBat3On,2) size(fft1Ven1O nYBat3On,2) 1392 
size(fft2Ven1OnYBat3On,2) size(fft3Ven1OnYBat3On,2) size(medFacPotVen1OnYBat3On,2) size(medPicoVen1OnYBat3On,2) 1393 
size(medCuartoVen1OnYBat3On,2)]); 1394 

        sizeMatEntradasVen1OnYMicrOnYSandOn=min([size(rmsVen1OnYMicrOnYSandOn,2) size(CalfVen1OnYMicrOnYSandOn,2) 1395 
size(CbetVen1OnYMicrOnYSandOn,2) size(fft1Ven1OnYMicrOnYSandOn,2) size(fft2Ven1OnYMicrOnYSandOn,2) size(fft3Ven1OnYMicrOnYSandOn,2) 1396 
size(medFacPotVen1OnYMicrOnYSandOn,2) size(medPicoVen1OnYMicrOnYSandOn,2) size(medCuartoVen1OnYMicrOnYSandOn,2)]); 1397 

  1398 
        %ecualizacion de entradas==todas con el mismo numero de muestras 1399 
  1400 
        % maxMuestras=max([sizeMatEntradasBat1 sizeMatEntradasBat2 sizeMatEntradasBat3 sizeMatEntradasExpr... 1401 
        %     sizeMatEntradasMicr sizeMatEntradasSand sizeMatEntradasVen1 sizeMatEntradasMicrOnYSandOn... 1402 
        %     sizeMatEntradasSandOnYBat3On sizeMatEntradasVen1OnYBat3On sizeMatEntradasVen1OnYMicrOnYSandOn]);  1403 
        %  1404 
        %  1405 
        % unosBat1=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasBat1))); 1406 
        % unosBat2=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasBat2))); 1407 
        % unosBat3=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasBat3))); 1408 
        % unosExpr=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasExpr))); 1409 
        % unosMicr=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasMicr))); 1410 
        % unosSand=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasSand))); 1411 
        % unosVen1=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasVen1)));  1412 
        % unosMicrOnYSandOn=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasMicrOnYSandOn))); 1413 
        % unosSandOnYBat3On=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasSandOnYBat3On)));  1414 
        % unosVen1OnYBat3On=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasVen1OnYBat3On)));  1415 
        % unosVen1OnYMicrOnYSandOn=ones(1,idivide(int32(maxMuestras),int32(sizeMatEntradasVen1OnYMicrOnYSandOn)));  1416 
  1417 
         1418 
        % matriz entradas sin ecualizar 1419 



ANEXO II 
 

Pag 77 de 128 

            matEntradasOr=[rmsBat1(1:sizeMatEntradasBat1)         rmsBat2(1:sizeMatEntradasBat2)           rmsBat3(1:sizeMatEntradasBat3)            1420 
rmsExpr(1:sizeMatEntradasExpr)           rmsMicr(1:sizeMatEntradasMicr)            rmsSand(1:sizeMatEntradasSand)             rmsVen1(1:sizeMatEntradasVen1)          1421 
rmsMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)            rmsSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)             1422 
rmsVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)             rmsVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);. .. 1423 

                    CalfBat1(1:sizeMatEntradasBat1)         CalfBat2(1:sizeMatEntradasBat2)          CalfBat3(1:sizeMatEntradasBat3)           1424 
CalfExpr(1:sizeMatEntradasExpr)          CalfMicr(1:sizeMatEntradasMicr)           CalfSand(1:sizeMatEntradasSand)            CalfVen1(1:sizeMatEntradasVen1)         1425 
CalfMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)           CalfSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)            1426 
CalfVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)            CalfVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn); ...                                                     1427 

                    CbetBat1(1:sizeMatEntradasBat1)         CbetBat2(1:sizeMatEntradasBat2)          CbetBat3(1:sizeMatEntradasBat3)           1428 
CbetExpr(1:sizeMatEntradasExpr)          CbetMicr(1:sizeMatEntradasMicr)           CbetSand(1:sizeMatEntradasSand)            CbetVen1(1:sizeMatEntradasVen1)         1429 
CbetMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)           CbetSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)            1430 
CbetVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)            CbetVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);...                                                     1431 

                    fft1Bat1(1:sizeMatEntradasBat1)         fft1Bat2(1:sizeMatEntradasBat2)          fft1Bat3(1:sizeMatEntradasBat3)           fft1Expr(1:sizeMatEntradasExpr)          1432 
fft1Micr(1:sizeMatEntradasMicr)           fft1Sand(1:sizeMatEntradasSand)            fft1Ven1(1:sizeMatEntradasVen1)         1433 
fft1MicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)           fft1SandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)            1434 
fft1Ven1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)            fft1Ven1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn); ...                                                     1435 

                    fft2Bat1(1:sizeMatEntradasBat1)         fft2Bat2(1:sizeMatEntradasBat2)          fft2Bat3(1:sizeMatEntradasBat3)           1436 
fft2Expr(1:sizeMatEntradasExpr)          fft2Micr(1:sizeMatEntradasMicr)           fft2Sand(1:sizeMatEntradasSand)            fft2Ven1(1:sizeMatEntradasVen1)         1437 
fft2MicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)           fft2SandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)            1438 
fft2Ven1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)            fft2Ven1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);...                                                     1439 

                    fft3Bat1(1:sizeMatEntradasBat1)         fft3Bat2(1:sizeMatEntradasBat2)          fft3Bat3(1:sizeMatEntradasBat3)           1440 
fft3Expr(1:sizeMatEntradasExpr)          fft3Micr(1:sizeMatEntradasMicr)           fft3Sand(1:sizeMatEntradasSand)            fft3Ven1(1:sizeMatEntradasVen1)         1441 
fft3MicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)           fft3SandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)            1442 
fft3Ven1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)            fft3Ven1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);...                                                     1443 

                    medFacPotBat1(1:sizeMatEntradasBat1)    medFacPotBat2(1:sizeMatEntradasBat2)     medFacPotBat3(1:sizeMatEntradasBat3)      1444 
medFacPotExpr(1:sizeMatEntradasExpr)     medFacPotMicr(1:sizeMatEntradasMicr)      medFacPotSand(1:sizeMatEntradasSand)       1445 
medFacPotVen1(1:sizeMatEntradasVen1)    medFacPotMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)      1446 
medFacPotSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)       medFacPotVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)       1447 
medFacPotVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);... 1448 

                    medPicoBat1(1:sizeMatEntradasBat1)      medPicoBat2(1:sizeMatEntradasBat2)       medPicoBat3(1:sizeMatEntradasBat3)        1449 
medPicoExpr(1:sizeMatEntradasExpr)       medPicoMicr(1:sizeMatEntradasMicr)        medPicoSand(1:sizeMatEntradasSand)         1450 
medPicoVen1(1:sizeMatEntradasVen1)      medPicoMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)        1451 
medPicoSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)         medPicoVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)         1452 
medPicoVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);... 1453 

                    medCuartoBat1(1:sizeMatEntradasBat1)    medCuartoBat2(1:sizeMatEntradasBat2)     medCuartoBat3(1:sizeMatEntradasBat3)      1454 
medCuartoExpr(1:sizeMatEntradasExpr)     medCuartoMicr(1:sizeMatEntradasMicr)      medCuartoSand(1:sizeMatEntradasSand)       1455 
medCuartoVen1(1:sizeMatEntradasVen1)    medCuartoMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)      1456 
medCuartoSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)       medCuartoVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)       1457 
medCuartoVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn);... 1458 

                    ]; 1459 
  1460 
  1461 
        % % matriz entradas ecualizada 1462 
        % matEntradas=[rmsBat1(1:sizeMatEntradasBat1)*unosBat1         rmsBat2(1:sizeMatEntradasBat2)*unosBat2          1463 

rmsBat3(1:sizeMatEntradasBat3)*unosBat3            rmsExpr(1:sizeMatEntradasExpr)*unosExpr           rmsMicr(1:sizeMatEntradasM icr)*unosMicr            1464 
rmsSand(1:sizeMatEntradasSand)*unosSand             rmsVen1(1:sizeMatEntradasVen1)*unosVen1          1465 
rmsMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn            1466 
rmsSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On             1467 
rmsVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On             1468 
rmsVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;... 1469 

        %             CalfBat1(1:sizeMatEntradasBat1)*unosBat1         CalfBat2(1:sizeMatEntradasBat2)*unosBat2          CalfBat3(1:sizeMatEntradasBat3)*unosBat3           1470 
CalfExpr(1:sizeMatEntradasExpr)*unosExpr          CalfMicr(1:sizeMatEntradasMicr)*unosMicr           CalfSand(1:sizeMatEntradasSand)*unosSand            1471 
CalfVen1(1:sizeMatEntradasVen1)*unosVen1         CalfMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn           1472 
CalfSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On            1473 
CalfVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On            1474 
CalfVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;...                                                     1475 

        %             CbetBat1(1:sizeMatEntradasBat1)*unosBat1         CbetBat2(1:sizeMatEntradasBat2)*unosBat2          CbetBat3(1:sizeMatEntradasBat3)*unosBat3           1476 
CbetExpr(1:sizeMatEntradasExpr)*unosExpr          CbetMicr(1:sizeMatEntradasMicr)*unosMicr           CbetSand(1:sizeMatEntradasSand)*unosSand            1477 
CbetVen1(1:sizeMatEntradasVen1)*unosVen1         CbetMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn           1478 
CbetSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On            1479 
CbetVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On            1480 
CbetVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;...                                                     1481 

        %             fft1Bat1(1:sizeMatEntradasBat1)*unosBat1         fft1Bat2(1:sizeMatEntradasBat2)*unosBat2          fft1Bat3(1:sizeMatEntradasBat3)*unosBat3           1482 
fft1Expr(1:sizeMatEntradasExpr)*unosExpr          fft1Micr(1:sizeMatEntradasMicr)*unosMicr           fft1Sand(1:sizeMatEntradasSand)*unosSand            1483 
fft1Ven1(1:sizeMatEntradasVen1)*unosVen1         fft1MicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn           1484 



ANEXO II 
 

Pag 78 de 128 

fft1SandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On            1485 
fft1Ven1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On            1486 
fft1Ven1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;...                                                     1487 

        %             fft2Bat1(1:sizeMatEntradasBat1)*unosBat1         fft2Bat2(1:sizeMatEntradasBat2)*unosBat2          fft2Bat3(1:sizeMatEntradasBat3)*unosBat3           1488 
fft2Expr(1:sizeMatEntradasExpr)*unosExpr          fft2Micr(1:sizeMatEntradasMicr)*unosMicr           fft2Sand(1:sizeMatEntradasSand)*unosSand            1489 
fft2Ven1(1:sizeMatEntradasVen1)*unosVen1         fft2MicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn           1490 
fft2SandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On            1491 
fft2Ven1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On            1492 
fft2Ven1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;...                                                     1493 

        %             fft3Bat1(1:sizeMatEntradasBat1)*unosBat1         fft3Bat2(1:sizeMatEntradasBat2)*unosBat2          fft3Bat3(1:sizeMatEntradasBat3)*unosBat3           1494 
fft3Expr(1:sizeMatEntradasExpr)*unosExpr          fft3Micr(1:sizeMatEntradasMicr)*unosMicr           fft3Sand(1:sizeMatEntradasSand)*unosSand            1495 
fft3Ven1(1:sizeMatEntradasVen1)*unosVen1         fft3MicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn           1496 
fft3SandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On            1497 
fft3Ven1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On            1498 
fft3Ven1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;...                                                     1499 

        %             medFacPotBat1(1:sizeMatEntradasBat1)*unosBat1    medFacPotBat2(1:sizeMatEntradasBat2)*unosBat2     1500 
medFacPotBat3(1:sizeMatEntradasBat3)*unosBat3      medFacPotExpr(1:sizeMatEntradasExpr)*unosExpr     medFacPotMicr(1:sizeMatE ntradasMicr)*unosMicr      1501 
medFacPotSand(1:sizeMatEntradasSand)*unosSand       medFacPotVen1(1:sizeMatEntradasVen1)*unosVen1    1502 
medFacPotMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn      1503 
medFacPotSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On       1504 
medFacPotVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On       1505 
medFacPotVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;... 1506 

        %             medPicoBat1(1:sizeMatEntradasBat1)*unosBat1      medPicoBat2(1:sizeMatEntradasBat2)*unosBat2       1507 
medPicoBat3(1:sizeMatEntradasBat3)*unosBat3        medPicoExpr(1:sizeMatEntradasExpr)*unosExpr       medPicoMicr(1:sizeMatEntradasMicr)*unosMicr        1508 
medPicoSand(1:sizeMatEntradasSand)*unosSand         medPicoVen1(1:sizeMatEntradasVen1)*unosVen1      1509 
medPicoMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn        1510 
medPicoSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On         1511 
medPicoVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On         1512 
medPicoVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;... 1513 

        %             medCuartoBat1(1:sizeMatEntradasBat1)*unosBat1    medCuartoBat2(1:sizeMatEntradasBat2)*unosBat2     1514 
medCuartoBat3(1:sizeMatEntradasBat3)*unosBat3      medCuartoExpr(1:sizeMatEntradasExpr)*unosExpr     medCuartoMicr(1:sizeMatE ntradasMicr)*unosMicr      1515 
medCuartoSand(1:sizeMatEntradasSand)*unosSand       medCuartoVen1(1:sizeMatEntradasVen1)*unosVen1    1516 
medCuartoMicrOnYSandOn(1:sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn      1517 
medCuartoSandOnYBat3On(1:sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On       1518 
medCuartoVen1OnYBat3On(1:sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On       1519 
medCuartoVen1OnYMicrOnYSandOn(1:sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn;... 1520 

        %             ]; 1521 
  1522 
        %Target no ecualizado 1523 
        % 1524 
        matTargetOr=[ones(1,sizeMatEntradasBat1)  zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1525 

zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1526 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ... 1527 

                   zeros(1,sizeMatEntradasBat1) ones(1,sizeMatEntradasBat2)  zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1528 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1529 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ...  1530 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) ones(1,sizeMatEntradasBat3)  zeros(1,sizeMatEntradasExpr) 1531 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1532 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ... 1533 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) ones(1,sizeMatEntradasExpr)  1534 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,siz eMatEntradasMicrOnYSandOn) 1535 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ...  1536 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1537 
ones(1,sizeMatEntradasMicr)  zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1538 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ... 1539 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1540 
zeros(1,sizeMatEntradasMicr) ones(1,sizeMatEntradasSand)  zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1541 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ...  1542 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1543 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) ones(1,sizeMatEntradasVen1)  zeros(1,sizeMatEntradasMicrOnYSandOn) 1544 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ... 1545 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1546 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) ones(1,sizeMatEntradasMicrOnYSandOn)  1547 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ...  1548 



ANEXO II 
 

Pag 79 de 128 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1549 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1550 
ones(1,sizeMatEntradasSandOnYBat3On)  zeros(1,sizeMatEntradasVen1OnYBat3On) zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ... 1551 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1552 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1)  zeros(1,sizeMatEntradasMicrOnYSandOn) 1553 
zeros(1,sizeMatEntradasSandOnYBat3On) ones(1,sizeMatEntradasVen1OnYBat3On)  zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn); ...  1554 

                   zeros(1,sizeMatEntradasBat1) zeros(1,sizeMatEntradasBat2) zeros(1,sizeMatEntradasBat3) zeros(1,sizeMatEntradasExpr) 1555 
zeros(1,sizeMatEntradasMicr) zeros(1,sizeMatEntradasSand) zeros(1,sizeMatEntradasVen1) zeros(1,sizeMatEntradasMicrOnYSandOn) 1556 
zeros(1,sizeMatEntradasSandOnYBat3On) zeros(1,sizeMatEntradasVen1OnYBat3On) ones(1,sizeMatEntradasVen1OnYMicrOnYSandOn) ; ... 1557 

                  ]; 1558 
  1559 
  1560 
        matTarget=(matTargetOr'*diag(MASCARA_ELECTR))';%aplica la mascara de electrodomesticos a Target 1561 
  1562 
        matEntradas=matEntradasOr*diag(sum(matTarget,1)); %aplica la mascara a entradas 1563 
        vecTemp=(sum(matEntradas,1));           %suma por columnas, se obtiene vector  1564 
        matEntradas=matEntradas(:,find(vecTemp));%los valores =0 del vecTemp no se escogen 1565 
  1566 
        vecTemp=(sum(matTarget,1));           %suma por columnas, se obtiene vector  1567 
        matTarget=matTarget(:,find(vecTemp));%los valores =0 del vecTemp no se escogen 1568 
        vecTemp=(sum(matTarget,2)); 1569 
        matTarget=matTarget(find(vecTemp),:); 1570 
  1571 
        % %Target  ecualizado 1572 
        % matTarget=[ones(1,sizeMatEntradasBat1)*unosBat1  zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1573 

zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1574 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1575 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1576 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1577 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 ones(1,sizeMatEntradasBat2)*unosBat2  zeros(1,sizeMatEntradasBat3)*unosBat3 1578 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1579 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1580 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1581 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1582 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 ones(1,sizeMatEntradasBat3)*unosBat3   1583 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1584 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1585 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1586 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1587 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1588 
ones(1,sizeMatEntradasExpr)*unosExpr  zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1589 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1590 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1591 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1592 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1593 
zeros(1,sizeMatEntradasExpr)*unosExpr ones(1,sizeMatEntradasMicr)*unosMicr  zeros(1,sizeMatEntradasSand)*unosSand 1594 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1595 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1596 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1597 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1598 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr ones(1,sizeMatEntradasSand)*unosSand  1599 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1600 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1601 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1602 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1603 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1604 
ones(1,sizeMatEntradasVen1)*unosVen1  zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1605 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1606 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1607 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1608 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1609 
zeros(1,sizeMatEntradasVen1)*unosVen1 ones(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn  1610 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1611 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1612 



ANEXO II 
 

Pag 80 de 128 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1613 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1614 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1615 
ones(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On  zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1616 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1617 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1618 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1619 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1620 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On ones(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On  1621 
zeros(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn; ... 1622 

        %            zeros(1,sizeMatEntradasBat1)*unosBat1 zeros(1,sizeMatEntradasBat2)*unosBat2 zeros(1,sizeMatEntradasBat3)*unosBat3 1623 
zeros(1,sizeMatEntradasExpr)*unosExpr zeros(1,sizeMatEntradasMicr)*unosMicr zeros(1,sizeMatEntradasSand)*unosSand 1624 
zeros(1,sizeMatEntradasVen1)*unosVen1 zeros(1,sizeMatEntradasMicrOnYSandOn)*unosMicrOnYSandOn 1625 
zeros(1,sizeMatEntradasSandOnYBat3On)*unosSandOnYBat3On zeros(1,sizeMatEntradasVen1OnYBat3On)*unosVen1OnYBat3On 1626 
ones(1,sizeMatEntradasVen1OnYMicrOnYSandOn)*unosVen1OnYMicrOnYSandOn ; ... 1627 

        %           ]; 1628 
        %        1629 
  1630 
        numeroMuestras=sum(matTarget'); 1631 
  1632 
  1633 
        %% SOM REDUCCION ENTRADAS 1634 
         1635 
         1636 
        %variando que entradas se tienen en cuenta, se usa un SOM para 1637 
        %detectar aquellas que producen kappas más altos 1638 
         1639 
  1640 
        1641 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1642 
%%%%%%%%%%%%%%%%%%%% 1643 

        % Esta máscara decide qué CARACTERISTICAS de entrada se van a utilizar en el problema 1644 
        1645 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1646 
%%%%%%%%%%%%%%%%%%%% 1647 

        %         'RMS',  'CCDA' 'CCDB' 'FFT1'  'FFT2'   'FFT3'  'FP'   'PICO' 'CUARTO' 1648 
        %mascara = [ 1       1       1      1      1        1       1       1      1   ]; 1649 
  1650 
  1651 
        tamanoMatEntradas=size(matEntradas,2); 1652 
  1653 
        %Separacion test-entrenamiento 1654 
        incrementoColumna=0; 1655 
        columnaAleatoria=zeros(1,tamanoMatEntradas); %Mascara para separar individuos test de entrenamieno 1656 
        limiteRand=0; 1657 
        for i=1:size(matTarget,1) 1658 
            tamanoColumnaAleatoria(i)=round(numeroMuestras(i)*PORC_ENTRENAMIENTO); 1659 
            incrementoColumna=[incrementoColumna incrementoColumna(i)+numeroMuestras(i)]; 1660 
            limiteRand=[limiteRand incrementoColumna(i)+numeroMuestras(i)]; 1661 
            while sum(columnaAleatoria(:,incrementoColumna(i)+1:incrementoColumna(i)+numeroMuestras(i)))<tamanoColumnaAleatoria(i) 1662 
                aleatorio=round((limiteRand(i)+1)+(limiteRand(i+1)-(limiteRand(i)+1))*rand); 1663 
                if columnaAleatoria(aleatorio);%si el numero aleatorio ya esta en la lista 1664 
                else                                            %no hacer nada 1665 
                    columnaAleatoria(aleatorio)=1;% si no está añadir 1666 
                end 1667 
            end 1668 
        end 1669 
  1670 
        matEntradasEntrenaSom=matEntradas(: ,find(columnaAleatoria));%Se extraen las columnas en "1" 1671 
        matEntradasTestSom=matEntradas(: ,find(not(columnaAleatoria)));%el resto son de test 1672 
  1673 
        matTargetEntrenaSom=matTarget(: ,find(columnaAleatoria)); 1674 
        matTargetTestSom=matTarget(: ,find(not(columnaAleatoria))); 1675 
  1676 
  1677 



ANEXO II 
 

Pag 81 de 128 

        clase = matTargetEntrenaSom'; 1678 
        clase_t=matTargetTestSom'; 1679 
  1680 
        numclases = size(matTargetEntrenaSom,1); % numero de clases 1681 
  1682 
        nombre_clases = char('Bat1', 'Bat2', 'Bat3', 'Expr', 'Micr', 'Sand', 'Ven1', 'MicrOnYSandOn', 'SandOnYBat3On', 'Ven1OnYBat3On', 1683 

'Ven1OnYMicrOnYSandOn'); 1684 
        nombre_clases=nombre_clases(find(MASCARA_ELECTR),:); 1685 
        comp_names = CARACTERISTICAS; % Nombres de las CARACTERISTICAS de entrada 1686 
  1687 
  1688 
        names=CARACTERISTICAS; 1689 
  1690 
  1691 
        %Primer SOM con todas las caracteristicas para obtener funcion 1692 
        %de eficacia vs subsample 1693 
        'Primer SOM con todas las caracteristicas y todas las muestras' 1694 
        nombre_mapa = 'SOM NILM'; 1695 
        data = matEntradasEntrenaSom; % guardamos la data original y separamos entrenamiento de test 1696 
        clase = matTargetEntrenaSom; 1697 
        clase=vec2ind(clase)'; 1698 
        data_t=matEntradasTestSom; 1699 
        clase_t=matTargetTestSom; 1700 
        clase_t=vec2ind(clase_t)'; 1701 
  1702 
        lattice = 'hexa'; 1703 
        [ ndata npat ] = size(data); % npat = numero de patrones (pacientes), ndata = numero de variables 1704 
  1705 
        %             'RMS',  'CCDA' 'CCDB' 'FFT1'  'FFT2'   'FFT3'  'FP'   'PICO' 'CUARTO' 1706 
        %mascara_ini = [ 1       1       1      0       0       0       1       1      1   ]; 1707 
  1708 
        %mascara_ini = ones( 1, ndata);     % Mascara incluyendo todas las variables ( 1 = incluir / 0 = suprimir)  1709 
        %%%%%%%%%%%%%%% GENERA LA STRUCT DE DATOS ENTRENAMIENTO DEL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 1710 
        sD = som_data_struct( data' , 'name' , nombre_mapa , 'comp_names' , comp_names , 'labels' , num2str( clase ) ); 1711 
        % Normalizamos cada variable de entrada independientemente en el rango [0 1] 1712 
        sD = som_normalize( sD , 'range' );  1713 
  1714 
        %%%%%%%%%%%%%%% GENERA LA STRUCT DE DATOS TEST DEL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 1715 
        sD2 = som_data_struct( data_t' , 'name' , nombre_mapa , 'comp_names' , comp_names , 'labels' , num2str( clase_t ) );  1716 
        % Normalizamos cada variable de entrada independientemente en el rango [0 1] 1717 
        sD2 = som_normalize( sD2 , 'range' );  1718 
  1719 
  1720 
        %%%%%%%%%%%%%%% ENTRENAR EL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 1721 
        %sM = som_make(sD, 'lattice', lattice); % SOM entrenado con el tamaño del mapa introducido 1722 
        sM = som_make(sD,'randinit','msize',[26 13], 'lattice', lattice); % SOM entrenado con el tamaño del mapa introducido 1723 
  1724 
        %%%%%%%%%%%%%%% ETIQUETAMOS LAS NEURONAS DEL MAPA A PARTIR DE LOS DATOS %%%%%%%%%%%% 1725 
        [ unit_class_index , unit_class_label] = som_unit_classification( sM , sD , clase); 1726 
        sM.labels = unit_class_label; 1727 
        %%%%%%%%%%%%%%% ETIQUETAMOS LOS DATOS A PARTIR DE LA ACTIVACION DEL MAPA %%%%%%%%%%%%%% 1728 
        [ data_class_index , data_class_label ] = som_data_classification( sM , sD2 , unit_class_index );  1729 
        %%%%%%%%%%%%%% CALCULANDO EL KAPPA INDEX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1730 
        [ conf_mat , Kappa ] = confussion_matrix( data_class_index , clase_t ) 1731 
         disp('espera un poco...') 1732 
  1733 
         %plotconfusion(data_class_index',clase_t') 1734 
  1735 
        Kappatemp=[Kappatemp Kappa]; 1736 
  1737 
    end 1738 
    Kappatemp=mean(Kappatemp); 1739 
    subsampleVsKappa=[subsampleVsKappa Kappatemp]; 1740 
    Kappatemp=[]; 1741 
end 1742 



ANEXO II 
 

Pag 82 de 128 

subsampleVsKappa 1743 
figure; 1744 
plot(subsampleVsKappa) 1745 
disp('pulsa una tecla') 1746 
%pause; 1747 
  1748 
  1749 
%obtenido el subsample optimo, se reducen las entradas 1750 
% Testea comp SOM automat 1751 
clase = matTargetEntrenaSom; 1752 
clase_t=matTargetTestSom; 1753 
nombre_mapa = 'SOM NILM'; 1754 
% Determinando el tamaño del mapa 1755 
mapsize = [26 13]; 1756 
lattice = 'hexa'; 1757 
data_ini = matEntradasEntrenaSom; % guardamos la data original 1758 
data_test=matEntradasTestSom; 1759 
[ ndata npat ] = size(data_ini); % npat = numero de patrones (pacientes), ndata = numero de variables 1760 
  1761 
mascara_ini = ones( 1, ndata);     % Mascara incluyendo todas las variables ( 1 = incluir / 0 = suprimir) 1762 
  1763 
maximokappa = 0;           % ultimo kappa maximo 1764 
mascara_maximo_matrix =[]; % cada fila sera una mascara que dio kappa maximo 1765 
kappa_values_maximos = []; % vector conteniendo los sucesivos kappa maximos 1766 
clase=vec2ind(clase)'; 1767 
clase_t=vec2ind(clase_t)'; 1768 
while (1) 1769 
    kappa_values = zeros( 1 , ndata ); 1770 
    for k = 1:ndata                % bucle de enmascaramiento para cada componente por separado 1771 
        mascara = mascara_ini;     % recargamos en mascara la anterior  1772 
        Kappa = 0; 1773 
        if mascara(k)              % solo ejecutamos el mapa si la componente de mascara es 1 1774 
            mascara(k) = 0;                       % enmascaramos solo la componente k 1775 
            indices = find( (mascara == 1) );     % indices de variables NO enmascaradas 1776 
            data = data_ini( indices , : );       % Extraemos solamente las variables NO enmascaradas 1777 
            data_t=data_test( indices , : ); 1778 
            comp_names = { names{[indices]} };    % nombres de variables NO enmascaradas 1779 
            %%%%%%%%%%%%%%% GENERA LA STRUCT DE DATOS DEL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 1780 
            sD = som_data_struct( data' , 'name' , nombre_mapa , 'comp_names' , comp_names , 'labels' , num2str( clase ) );  1781 
            % Normalizamos cada variable de entrada independientemente en el rango [0 1] 1782 
            sD = som_normalize( sD , 'range' );  1783 
            %%%%%%%%%%%%%%% ENTRENAR EL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 1784 
            sM = som_make(sD, 'msize', mapsize, 'lattice', lattice); % SOM entrenado con el tamaño del mapa introducido 1785 
             1786 
      %validar el som 1787 
            %%%%%%%%%%%%%%% GENERA LA STRUCT DE DATOS DEL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 1788 
            sD2 = som_data_struct( data_t' , 'name' , nombre_mapa , 'comp_names' , comp_names , 'labels' , num2str( clase_t ) ); 1789 
            % Normalizamos cada variable de entrada independientemente en el rango [0 1] 1790 
            sD2 = som_normalize( sD2 , 'range' );  1791 
           1792 
            %%%%%%%%%%%%%%% ETIQUETAMOS LAS NEURONAS DEL MAPA A PARTIR DE LOS DATOS %%%%%%%%%%%% 1793 
            [ unit_class_index , unit_class_label] = som_unit_classification( sM , sD , clase); 1794 
            sM.labels = unit_class_label; 1795 
            %%%%%%%%%%%%%%% ETIQUETAMOS LOS DATOS A PARTIR DE LA ACTIVACION DEL MAPA %%%%%%%%%%%%%% 1796 
            [ data_class_index , data_class_label ] = som_data_classification( sM , sD2 , unit_class_index );  1797 
            %%%%%%%%%%%%%% CALCULANDO EL KAPPA INDEX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1798 
            [ conf_mat , Kappa ] = confussion_matrix( data_class_index , clase_t ) 1799 
        end 1800 
        kappa_values(k) = Kappa; 1801 
        if ( Kappa >= maximokappa )  % si el nuevo kappa es maximo, guardamos kappa y la mascara 1802 
            mascara_maximo_matrix = [ mascara_maximo_matrix ; mascara ]; 1803 
            kappa_values_maximos = [ kappa_values_maximos Kappa ]; 1804 
            maximokappa = Kappa; 1805 
        end 1806 
    end 1807 



ANEXO II 
 

Pag 83 de 128 

    indices_maximos = [ 1:1:ndata ];       1808 
    % indices de CARACTERISTICAS cuya eliminacion generaba un kappa maximo 1809 
    maximokappa 1810 
    indices_maximos = indices_maximos( ( maximokappa == kappa_values ) )   1811 
    if ( isempty( indices_maximos ) ) 1812 
        break; 1813 
    else 1814 
        mascara_ini( indices_maximos ) = 0; % anulamos todas las CARACTERISTICAS con kappa maximo 1815 
    end 1816 
    fprintf('\nPulsa cualquier tecla para continuar ...'); 1817 
    %pause; 1818 
end 1819 
  1820 
resultados=[kappa_values_maximos', mascara_maximo_matrix]; 1821 
disp('    KAPPA       RMS      CCDA      CCDB      FFT1      FFT2      FFT3       FP       PICO     CUARTO') 1822 
disp(resultados) 1823 
k; 1824 
%pause; 1825 
  1826 
%          'RMS',  'CCDA' 'CCDB' 'FFT1'  'FFT2'   'FFT3'  'FP'   'PICO' 'CUARTO' 1827 
mascara = [ 1       1       1      0       0       0       1       1      0   ]; 1828 
  1829 
  1830 
%% SOM FINAL 1831 
  1832 
%prueba definitiva de un SOM con los parametros antes obtenidos 1833 
SOM_Helsinki2.m 1834 
  1835 
[ conf_mat , Kappa ] = confussion_matrix( data_class_index , clase_t ) 1836 
  1837 
  1838 
 %% PERCEPTRONES FINAL 1839 
  1840 
 %prueba definitiva de perceptron lineal y perceptron multicapa 1841 
 %con los parametros antes obtenidos 1842 
  1843 
indices = find( mascara == 1 ); % indices de entradas no enmascaradas 1844 
  1845 
matEntradasMLP = matEntradas( indices,: );  % se incluyen sólo las componentes con mascara a 1  1846 
matTargetMLP = matTarget;%( : , indices ); % extraemos las columnas de componentes seleccionadas en la mascara 1847 
  1848 
  1849 
  1850 
 %MLP 1851 
 entrenos={'trainlm' 'trainbr' 'traingdm' 'trainrp' 'traingda' 'traingdx'... 1852 
     'traincgf' 'traincgp' 'traincgb' 'trainscg' 'trainbfg' 'trainoss' } 1853 
 1854 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1855 
%%%%%%%%%%%%%%%%%%%% 1856 

% Esta máscara decide qué CARACTERISTICAS de entrada se van a utilizar en el problema 1857 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1858 

%%%%%%%%%%%%%%%%%%%%% 1859 
  1860 
mascaraMlp=mascara; 1861 
  1862 
  1863 
  1864 
% MLP LINEAL 1865 
  1866 
for i=1:1 1867 
    net = newpr(matEntradasMLP,matTargetMLP); 1868 
    net.trainFcn='trainlm'; 1869 
    net.layers{1}.transferFcn = 'tansig'; 1870 
    %net.layers{2}.transferFcn = 'purelin'; 1871 
    %net = newff( minmax( data ) , [ numclases ] , { 'logsig' } , funtrain );    1872 



ANEXO II 
 

Pag 84 de 128 

    net.divideParam.trainRatio = 60/100;  % Adjust as desired 1873 
    net.divideParam.valRatio = 20/100;  % Adjust as desired 1874 
    net.divideParam.testRatio = 20/100;  % Adjust as desired 1875 
    net.trainParam.max_fail=5; 1876 
    % Train and Apply Network 1877 
    [net,tr] = train(net,matEntradasMLP,matTargetMLP); 1878 
    outputs = sim(net,matEntradasMLP); 1879 
  1880 
    % Plot 1881 
    plotperf(tr) 1882 
    plotconfusion(matTargetMLP,outputs)  1883 
  1884 
    vecTarget=vec2ind(matTargetMLP)'; 1885 
    [Dummy vecOut]=max(outputs); 1886 
    %vecOut=vec2ind(I)'; 1887 
    vecOut=vecOut'; 1888 
  1889 
    [ conf_mat , Kappa ] = confussion_matrix( vecTarget' , vecOut ); 1890 
  1891 
    string=strcat(num2str(sum(mascara)),'_',num2str(nhunit2),'_',num2str(numclases),'_',num2str(funtrain),'_',num2str(i));  1892 
    tablaMlp{1,end+1}= string; 1893 
    tablaMlp{2,end}=Kappa; 1894 
  1895 
end 1896 
  1897 
tablaMlp 1898 
  1899 
  1900 
%MLP MULTILAYER 1901 
% Create Network 1902 
  1903 
  1904 
minNeurOcultas=10; 1905 
maxNeuronasOcultas=10; 1906 
tablaMlp={}; 1907 
for nhunit2=minNeurOcultas:maxNeuronasOcultas 1908 
    for i=1:1 1909 
        net = newpr(matEntradasMLP,matTargetMLP,nhunit2); 1910 
        net.trainFcn='trainlm'; 1911 
        net.layers{1}.transferFcn = 'tansig'; 1912 
        net.layers{2}.transferFcn = 'purelin'; 1913 
        %net = newff( minmax( data ) , [ numclases ] , { 'logsig' } , funtrain );    1914 
        net.divideParam.trainRatio = 60/100;  % Adjust as desired 1915 
        net.divideParam.valRatio = 20/100;  % Adjust as desired 1916 
        net.divideParam.testRatio = 20/100;  % Adjust as desired 1917 
        net.trainParam.max_fail=5; 1918 
        % Train and Apply Network 1919 
        [net,tr] = train(net,matEntradasMLP,matTargetMLP); 1920 
        outputs = sim(net,matEntradasMLP); 1921 
  1922 
        % Plot 1923 
        plotperf(tr) 1924 
        plotconfusion(matTargetMLP,outputs)  1925 
  1926 
        vecTarget=vec2ind(matTargetMLP)'; 1927 
        [Dummy vecOut]=max(outputs); 1928 
        %vecOut=vec2ind(I)'; 1929 
        vecOut=vecOut'; 1930 
  1931 
        [ conf_mat , Kappa ] = confussion_matrix( vecTarget' , vecOut ); 1932 
         1933 
        string=strcat(num2str(sum(mascara)),'_',num2str(nhunit2),'_',num2str(numclases),'_',num2str(funtrain),'_',num2str(i));  1934 
        tablaMlp{1,end+1}= string; 1935 
        tablaMlp{2,end}=Kappa; 1936 
   1937 



ANEXO II 
 

Pag 85 de 128 

    end 1938 
end 1939 
tablaMlp' 1940 
  1941 
%% LVQ FINAL  1942 
  1943 
 %prueba definitiva de perceptron lineal y perceptron multicapa 1944 
 %con los parametros antes obtenidos 1945 
  1946 
  1947 
tablaLVQ=[]; 1948 
numEpoch=300; 1949 
fa=0.2; 1950 
minNeurOcultas=21; 1951 
maxNeuronasOcultas=21; 1952 
for nhidden=minNeurOcultas:1:maxNeuronasOcultas 1953 
    for i=1:1 1954 
        levequ 1955 
        save(sprintf('LVQ Concordia Ocultas %d.mat ',Unidades)) 1956 
        tablaLVQ=[tablaLVQ Kappa]; 1957 
    end 1958 
end 1959 
  1960 
tablaLVQ 1961 
  1962 
  1963 
 1964 
 

TDC  

 
 



ANEXO III 

Pag 86 de 128 

ANEXO III 

 

SCRIPT FUNCION SOM_HELSINKI2 

%clear 1 
%clc 2 
%echo on; 3 
% Este archivo entrena un mapa autoorganizado con la clasificación del Zoo2 (ver Zoo2.m) 4 
% cuya selección de datos de entrada (componentes) es más acertada que en Zoo 5 
% Permite visualizar los mapas generados mediante U-matrix y componentes 6 
% con hits de color diferente para cada clase de animales. 7 
% Se puede incluir un análisis de PCA para averiguar el mínimo número de componentes principales 8 
% que mantiene una adecuada discriminación entre clases. 9 
%echo off; 10 
 11 
%% LECTURA DATOS SOM HELSINKI 12 
 13 
tamanoMatEntradas=size(matEntradas,2); 14 
 15 
%normalizacion 16 
% maxEntradas=max(matEntradas'); 17 
% minEntradas=min(matEntradas'); 18 
% semiRangoEntradas=((maxEntradas-minEntradas)/2)'; 19 
% mitadEntradas=((maxEntradas+minEntradas)/2)'; 20 
% a=(matEntradas-(mitadEntradas*(ones(1,tamanoMatEntradas)))); 21 
% b=semiRangoEntradas*(ones(1,tamanoMatEntradas)); 22 
% matEntradasNorm=a./b; 23 
% matEntradas=matEntradasNorm; 24 
 25 
 26 
%division dataset 27 
 28 
%rellenaremos un vector aleatorio con la columna de la matEntradas que 29 
%formaran parte del entrenamiento y de Test.  30 
 31 
%  32 
% incrementoColumna=0; 33 
% columnaAleatoria=zeros(1,tamanoMatEntradas); %Mascara para separar individuos test de entrenamieno 34 
% limiteRand=0; 35 
% for i=1:size(matTarget,1) 36 
%     tamanoColumnaAleatoria(i)=round(numeroMuestras(i)*PORC_ENTRENAMIENTO); 37 
%     incrementoColumna=[incrementoColumna incrementoColumna(i)+numeroMuestras(i)]; 38 
%     limiteRand=[limiteRand incrementoColumna(i)+numeroMuestras(i)]; 39 
%     while sum(columnaAleatoria(:,incrementoColumna(i)+1:incrementoColumna(i)+numeroMuestras(i)))<tamanoColumnaAleatoria(i)  40 
%         aleatorio=round((limiteRand(i)+1)+(limiteRand(i+1)-(limiteRand(i)+1))*rand); 41 
%         if columnaAleatoria(aleatorio);%si el numero aleatorio ya esta en la lista 42 
%         else                                            %no hacer nada 43 
%             columnaAleatoria(aleatorio)=1;% si no está añadir 44 
%         end 45 
%     end 46 
% end 47 
%  48 
% matEntradasEntrenaSom=matEntradas(: ,find(columnaAleatoria));%Se extraen las columnas en "1" 49 
% matEntradasTestSom=matEntradas(: ,find(not(columnaAleatoria)));%el resto son de test 50 
%  51 
% matTargetEntrenaSom=matTarget(: ,find(columnaAleatoria)); 52 
% matTargetTestSom=matTarget(: ,find(not(columnaAleatoria))); 53 
%  54 
% %permuta entrenadores 55 
% indicesAleatorios=randperm(size(matEntradasEntrenaSom,2));%se mezclan por igual  56 



ANEXO III 
 

Pag 87 de 128 

% matEntradasEntrenaSom=matEntradasEntrenaSom(indicesAleatorios); %los entrenadores y target 57 
% matTargetEntrenaSom=matTargetEntrenaSom(indicesAleatorios); 58 
%  59 
% clear indicesAleatorios 60 
% %permuta test 61 
% indicesAleatorios=randperm(size(matEntradasTestSom,2));  62 
% matEntradasTestSom=matEntradasTestSom(indicesAleatorios); 63 
% matTargetTestSom=matTargetTestSom(indicesAleatorios); 64 
%  65 
%  66 
% clear tamanoColumnaAleatoria columnaAleatoria aleatorio tamanoMatEntradas incrementoColumna... 67 
%     indicesAleatorios; 68 
%  69 
 70 
 71 
 72 
 73 
 74 
incrementoColumna=0; 75 
columnaAleatoria=zeros(1,tamanoMatEntradas); %Mascara para separar individuos test de entrenamieno 76 
limiteRand=0; 77 
for i=1:size(matTarget,1) 78 
    tamanoColumnaAleatoria(i)=round(numeroMuestras(i)*PORC_ENTRENAMIENTO); 79 
    incrementoColumna=[incrementoColumna incrementoColumna(i)+numeroMuestras(i)]; 80 
    limiteRand=[limiteRand incrementoColumna(i)+numeroMuestras(i)]; 81 
    while sum(columnaAleatoria(:,incrementoColumna(i)+1:incrementoColumna(i)+numeroMuestras(i)))<tamanoColumnaAleatoria(i)  82 
        aleatorio=round((limiteRand(i)+1)+(limiteRand(i+1)-(limiteRand(i)+1))*rand); 83 
        if columnaAleatoria(aleatorio);%si el numero aleatorio ya esta en la lista 84 
        else                                            %no hacer nada 85 
            columnaAleatoria(aleatorio)=1;% si no está añadir 86 
        end 87 
    end 88 
end 89 
 90 
matEntradasEntrenaSom=matEntradas(: ,find(columnaAleatoria));%Se extraen las columnas en "1" 91 
matEntradasTestSom=matEntradas(: ,find(not(columnaAleatoria)));%el resto son de test 92 
 93 
matTargetEntrenaSom=matTarget(: ,find(columnaAleatoria)); 94 
matTargetTestSom=matTarget(: ,find(not(columnaAleatoria))); 95 
 96 
 97 
 98 
 99 
 100 
 101 
rasgos = matEntradasEntrenaSom'; 102 
rasgos_t=matEntradasTestSom'; 103 
 104 
clase = matTargetEntrenaSom'; 105 
clase_t=matTargetTestSom'; 106 
 107 
%[ rasgos , minp , maxp ] = premnmx( rasgos ); 108 
%[ rasgos_t , minp , maxp ] = premnmx( rasgos_t ); 109 
 110 
numclases = size(matTarget,1); % numero de clases 111 
numpatclases = [ sizeMatEntradasBat1 sizeMatEntradasBat2 sizeMatEntradasBat3 sizeMatEntradasExpr sizeMatEntradasMicr sizeMatE ntradasSand 112 

sizeMatEntradasVen1 sizeMatEntradasMicrOnYSandOn sizeMatEntradasSandOnYBat3On sizeMatEntradasVen1OnYBat3On 113 
sizeMatEntradasVen1OnYMicrOnYSandOn ]; % numero de muestras en cada clase 114 

 115 
%clasem = [ min( clase ) ; max( clase ) ]';  116 
 117 
 118 
nombre_clases = char('Bat1', 'Bat2', 'Bat3', 'Expr', 'Micr', 'Sand', 'Ven1', 'MicrOnYSandOn', 'SandOnYBat3On', 'Ven1OnYBat3On', 'Ven1OnYMicrOnYSandOn');  119 
 120 
etiquetas = nombre_clases( clase * ( [ 1:numclases ]' ) , : ); % etiquetas de clases 121 



ANEXO III 
 

Pag 88 de 128 

etiquetas2 = nombre_clases( clase_t * ( [ 1:numclases ]' ) , : ); % etiquetas de clases 122 
 123 
componentes = {'RMS','CCDA','CCDB','FFT1','FFT2','FFT3','FP','PICO','CUARTO'}; 124 
x_label = '1-RMS/2-CCDA/3-CCDB/4-FFT1/5-FFT2/6-FFT3/7-FP/8-PICO/9-CUARTO'; 125 
 126 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%127 

%%%%%%%%%%%%%%%%%%%%% 128 
% Esta máscara decide qué componentes de entrada se van a utilizar en el problema 129 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%130 

%%%%%%%%%%%%%%%%%%%%% 131 
%         'RMS',  'CCDA' 'CCDB' 'FFT1'  'FFT2'   'FFT3'  'FP'   'PICO' 'CUARTO' 132 
%mascara = [ 1       1       1      0      0        0       1       1      0   ]; 133 
 134 
indices = find( mascara == 1 ); % indices de entradas no enmascaradas 135 
 136 
componentes = componentes( indices );  % se incluyen sólo las componentes con mascara a 1  137 
rasgos = rasgos( : , indices ); % extraemos las columnas de componentes seleccionadas en la mascara 138 
rasgos_t=rasgos_t( : , indices ); 139 
%rasgosm = [ min( rasgos ) ; max( rasgos ) ]'; % valores minimos y maximos en las entradas  140 
%[ npat ndat ] = size( rasgos ); % npat = numero de patrones; ndat = numero de entradas o componentes; 141 
 142 
 143 
%% ENTRENAMIENTO Y VISUALIZACION 144 
 145 
 146 
%%%%%%%%%%%%%%% GENERA LA STRUCT DE DATOS DEL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 147 
sD = som_data_struct( rasgos , 'name' , nombre_mapa,  'comp_names' , componentes , 'labels' , etiquetas ); 148 
sD2= som_data_struct( rasgos_t , 'name' , nombre_mapa,'comp_names' , componentes , 'labels' , etiquetas2 ); 149 
 150 
%mapsize = []; 151 
%mapsize = input('\nIntroduce el tamaño del mapa entre corchetes (por ejemplo, [6 5]): '); 152 
%lattice = input('\nIntroduce el tipo de mapa (0 = rectangular, 1 = hexagonal): '); 153 
mapsize=[26 20]; 154 
lattice = 'hexa'; 155 
 156 
%%%%%%%%%%%%%%% ENTRENAR EL SOM  %%%%%%%%%%%%%%%%%%%%%%%%%% 157 
sM = som_make( sD , 'randinit','msize' , mapsize , 'lattice' , lattice ); % SOM entrenado con el tamaño del mapa introducido 158 
 159 
%%%%%%%%%%%%%%% ETIQUETAMOS LAS NEURONAS DEL MAPA A PARTIR DE LOS DATOS %%%%%%%%%%%% 160 
[ unit_class_index , unit_class_label] = som_unit_classification( sM , sD , vec2ind(clase'));  161 
sM.labels = unit_class_label; 162 
 163 
%%%%%%%%%%%%%%% ETIQUETAMOS LOS DATOS A PARTIR DE LA ACTIVACION DEL MAPA %%%%%%%%%%%%%% 164 
[ data_class_index , data_class_label ] = som_data_classification( sM , sD2 , unit_class_index );  165 
 166 
[ conf_mat , Kappa ] = confussion_matrix( data_class_index , vec2ind(clase_t') ) 167 
 168 
     169 
colores =  flipdim(repmat(linspace(0.5,1,64)',1,3).*repmat([0.8 0.9 1],64,1),1); % 'blueish' 170 
 171 
warning off; 172 
 173 
%%%%%%%%%%%%%%%%%%% Representamos el mapa en cuatro formas diferentes  %%%%%%%%%%%%%% 174 
 175 
Hfigure = figure; % Handle de la figura 176 
set( Hfigure , 'NumberTitle' , 'off' );  177 
set( Hfigure , 'Name' , 'VISUALIZACIONES DE LA U-MATRIX Y D-MATRIX' ); % Ponemos nomnbre a la figura 178 
U = som_umat( sM ); % calcula U-matrix 179 
colormap( colores ); 180 
 181 
subplot( 2 , 2 , 1 ); % pinta la U-Matrix 182 
h = som_cplane( [ sM.topol.lattice , 'U' ] , sM.topol.msize , U(:) );   183 
set( h , 'Edgecolor' , 'none' ); 184 
title('U-matrix'); 185 
 186 



ANEXO III 
 

Pag 89 de 128 

subplot( 2 , 2 , 2 ); % pinta la D-matrix 187 
Um = U( 1:2:size( U , 1 ) , 1:2:size( U , 2 ) ); % extrae las componentes impares de la U-Matrix 188 
h = som_cplane( sM , Um(:) ); 189 
set( h , 'Edgecolor' , 'none' );  190 
title('D-matrix');  191 
 192 
subplot( 2 , 2 , 3 ); % pinta la D-matrix con hexágonos de tamaño variable 193 
som_cplane( sM , 'none' , 1 - Um(:) / max( Um(:) ) ); 194 
title('D-matrix (marcadores de tamaño)');   195 
 196 
[ Pd , V , me ] = pcaproj( sD.data , 2 );   % obtiene matriz de proyeccion PCA de los datos en dos dimensiones 197 
Pm = pcaproj( sM.codebook , V , me );       % proyecta con esa matriz los pesos para la paleta de color 198 
subplot( 2 , 2 , 4 );  % pinta la D-matrix con la paleta de colores las distancias 199 
C = som_colorcode( Pm );  % Paleta de colores 200 
som_cplane( sM , C ); 201 
title('Similitud por coloración'); 202 
 203 
% Pinta la U-matrix con las activaciones de las muestras de las clases en colores 204 
% Se representan conjuntamente los mapas de la distribución de valores de cada componente de entrada 205 
Hfigure = figure; % Handle de la figura 206 
temp=0; 207 
for i=1:CLASES 208 
    Dsample{i}=sD.data(temp+1:temp+numpatclases(i) , :); 209 
    temp=numpatclases(i); 210 
end 211 
% Dsample1 = sD.data( 1:numpatclases(1) , : );   % muestras de mamíferos  212 
% Dsample2 = sD.data( numpatclases(1)+1:numpatclases(1)+numpatclases(2) , : );  % muestras de aves 213 
% Dsample3 = sD.data( numpatclases(2)+1:numpatclases(3) , : );  % muestras de aves 214 
% Dsample4 = sD.data( numpatclases(3)+1:numpatclases(4) , : );  % muestras de aves 215 
% Dsample5 = sD.data( numpatclases(4)+1:numpatclases(5) , : );  % muestras de aves 216 
% temp=numpatclases(1)+numpatclases(2); 217 
% Dsample6 = sD.data( numpatclases(5)+1:numpatclases(6) , : );  % muestras de aves 218 
% temp=numpatclases(1)+numpatclases(2); 219 
% Dsample7 = sD.data( numpatclases(6)+1:numpatclases(7) , : );  % muestras de aves 220 
% Dsample8 = sD.data( numpatclases(7)+1:numpatclases(8) , : );  % muestras de aves 221 
% Dsample9 = sD.data( numpatclases(8)+1:numpatclases(9) , : );  % muestras de aves 222 
% Dsample10 = sD.data( numpatclases(9)+1:numpatclases(10) , : );  % muestras de aves 223 
% Dsample11= sD.data( numpatclases(10)+1:numpatclases(11) , : );  % muestras de aves 224 
%  225 
    226 
h1 = som_hits( sM , Dsample{1} ); % obtenemos los histogramas de activación para las muestras de mamíferos 227 
h2 = som_hits( sM , Dsample{2} ); % para las muestras de aves 228 
h3 = som_hits( sM , Dsample{3} ); % para las muestras de reptiles 229 
h4 = som_hits( sM , Dsample{4} ); % para las muestras de peces 230 
h5 = som_hits( sM , Dsample{5} ); % para las muestras de artrópodos 231 
h6 = som_hits( sM , Dsample{6} ); % para las muestras de artrópodos 232 
h7 = som_hits( sM , Dsample{7} ); % para las muestras de artrópodos 233 
h8 = som_hits( sM , Dsample{8} ); % para las muestras de artrópodos 234 
h9 = som_hits( sM , Dsample{9} ); % para las muestras de artrópodos 235 
h10 = som_hits( sM , Dsample{10} ); % para las muestras de artrópodos 236 
h11 = som_hits( sM , Dsample{11} ); % para las muestras de artrópodos 237 
 238 
% Respuesta difusa calculada sumando 1./(1+(q/a)^2) 239 
% para cada muestra, donde 'q' es un vector que contiene 240 
% la distancia de cada muestra hasta cada prototipo de las unidades del mapa 241 
% y 'a' es el promedio del error de cuantización 242 
hf = som_hits( sM , sD.data , 'fuzzy' );  243 
 244 
% Representamos los histogramas en U-matrices separadas 245 
colormap(colores); 246 
som_show( sM , 'umat' , {'all','Bat1'} , 'umat' , {'all','Bat2'}... 247 
    , 'umat' , {'all','Bat3'} , 'umat' , {'all','Expr'}... 248 
    , 'umat' , {'all','Micr'}, 'umat' , {'all','Sand'}... 249 
    , 'umat' , {'all','Ven1'}, 'umat' , {'all','MicrOnYSandOn'}... 250 
    , 'umat' , {'all','SandOnYBat3On'}, 'umat' , {'all','Ven1OnYBat3On'}... 251 



ANEXO III 
 

Pag 90 de 128 

    , 'umat' , {'all','Ven1OnYMicrOnYSandOn'}, 'color' , {hf,'Fuzzy response'} ); 252 
som_show_add( 'hit' , h1 , 'Subplot' , 1 , 'Markercolor' , 'r');  % mamíferos en rojo 253 
som_show_add( 'hit' , h2 , 'Subplot' , 2 , 'Markercolor' , 'b');  % aves en azul 254 
som_show_add( 'hit' , h3 , 'Subplot' , 3 , 'Markercolor' , 'g');  % reptiles en verde 255 
som_show_add( 'hit' , h4 , 'Subplot' , 4 , 'Markercolor' , 'm');  % peces en magenta 256 
som_show_add( 'hit' , h5 , 'Subplot' , 5 , 'Markercolor' , 'y');  % artrópodos en amarillo 257 
som_show_add( 'hit' , h6 , 'Subplot' , 6 , 'Markercolor' , 'r');  % artrópodos en amarillo 258 
som_show_add( 'hit' , h7 , 'Subplot' , 7 , 'Markercolor' , 'b');  % artrópodos en amarillo 259 
som_show_add( 'hit' , h8 , 'Subplot' , 8 , 'Markercolor' , 'g');  % artrópodos en amarillo 260 
som_show_add( 'hit' , h9 , 'Subplot' , 9 , 'Markercolor' , 'm');  % artrópodos en amarillo 261 
som_show_add( 'hit' , h10 , 'Subplot' , 10 , 'Markercolor' , 'y');  % artrópodos en amarillo 262 
som_show_add( 'hit' , h11 , 'Subplot' , 11 , 'Markercolor' , 'r');  % artrópodos en amarillo 263 
 264 
 265 
 266 
 267 
set( Hfigure , 'NumberTitle' , 'off' );  268 
set( Hfigure , 'Name' , 'VISUALIZACION DE LA ACTIVACION DETALLADA' ); % Ponemos nomnbre a la figura 269 
 270 
% Representamos la U-matrix y las matrices de distancias para cada componente de entrada 271 
Hfigure = figure; % Handle de la figura 272 
colormap(colores); 273 
som_show( sM ); 274 
% Añadimos los histogramas de activación sobre la U-matrix 275 
som_show_add( 'hit' , h1 , 'Subplot' , 1 , 'Markercolor' , 'r' );  % mamíferos en rojo 276 
som_show_add( 'hit' , h2 , 'Subplot' , 1 , 'Markercolor' , 'b' );  % aves en azul 277 
som_show_add( 'hit' , h3 , 'Subplot' , 1 , 'Markercolor' , 'g' );  % reptiles en verde 278 
som_show_add( 'hit' , h4 , 'Subplot' , 1 , 'Markercolor' , 'm' );  % peces en magenta 279 
som_show_add( 'hit' , h5 , 'Subplot' , 1 , 'Markercolor' , 'y' );  % artrópodos en amarillo 280 
som_show_add( 'hit' , h6 , 'Subplot' , 1 , 'Markercolor' , 'r' );  % artrópodos en amarillo 281 
som_show_add( 'hit' , h7 , 'Subplot' , 1 , 'Markercolor' , 'b' );  % artrópodos en amarillo 282 
som_show_add( 'hit' , h8 , 'Subplot' , 1 , 'Markercolor' , 'g' );  % artrópodos en amarillo 283 
som_show_add( 'hit' , h9 , 'Subplot' , 1 , 'Markercolor' , 'm' );  % artrópodos en amarillo 284 
som_show_add( 'hit' , h10 , 'Subplot' , 1 , 'Markercolor' , 'y' );  % artrópodos en amarillo 285 
som_show_add( 'hit' , h11 , 'Subplot' , 1 , 'Markercolor' , 'r' );  % artrópodos en amarillo 286 
set( Hfigure , 'NumberTitle' , 'off' );  287 
set( Hfigure , 'Name' , 'VISUALIZACION DE LAS COMPONENTES' ); % Ponemos nomnbre a la figura 288 
 289 
 290 

 

TDC  

 
 



ANEXO IV 

Pag 91 de 128 

ANEXO IV 

 

SCRIPT FUNCIÓN LEVEQU 

 1 
% Este fichero entrena una red LVQ 2 
% y ejecuta la rutina newlvq para crear la red 3 
clc 4 
 5 
 6 
%% LECTURA DATOS LVQ 7 
 8 
 9 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%10 

%%%%%%%%%%%%%%%%%%%%% 11 
% Esta máscara decide qué componentes de entrada se van a utilizar en el problema 12 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%13 

%%%%%%%%%%%%%%%%%%%%% 14 
 15 
%         'RMS',  'CCDA' 'CCDB' 'FFT1'  'FFT2'   'FFT3'  'FP'   'PICO' 'CUARTO' 16 
%mascara = [ 1       1       1      0      0        0       1       1      1   ]; 17 
 18 
 19 
 20 
tamanoMatEntradas=size(matEntradas,2); 21 
 22 
incrementoColumna=0; 23 
columnaAleatoria=zeros(1,tamanoMatEntradas); %Mascara para separar individuos test de entrenamieno 24 
limiteRand=0; 25 
for i=1:size(matTarget,1) 26 
    tamanoColumnaAleatoria(i)=round(numeroMuestras(i)*PORC_ENTRENAMIENTO); 27 
    incrementoColumna=[incrementoColumna incrementoColumna(i)+numeroMuestras(i)]; 28 
    limiteRand=[limiteRand incrementoColumna(i)+numeroMuestras(i)]; 29 
    while sum(columnaAleatoria(:,incrementoColumna(i)+1:incrementoColumna(i)+numeroMuestras(i)))<tamanoColumnaAleatoria(i) 30 
        aleatorio=round((limiteRand(i)+1)+(limiteRand(i+1)-(limiteRand(i)+1))*rand); 31 
        if columnaAleatoria(aleatorio);%si el numero aleatorio ya esta en la lista 32 
        else                                            %no hacer nada 33 
            columnaAleatoria(aleatorio)=1;% si no está añadir 34 
        end 35 
    end 36 
end 37 
 38 
matEntradasEntrenaLvq=matEntradas(: ,find(columnaAleatoria));%Se extraen las columnas en "1" 39 
matEntradasTestLvq=matEntradas(: ,find(not(columnaAleatoria)));%el resto son de test 40 
 41 
matTargetEntrenaLvq=matTarget(: ,find(columnaAleatoria)); 42 
matTargetTestLvq=matTarget(: ,find(not(columnaAleatoria))); 43 
 44 
% %permuta entrenadores 45 
% indicesAleatorios=randperm(size(matEntradasEntrenaLvq,2));%se mezclan por igual  46 
% matEntradasEntrenaLvq=matEntradasEntrenaLvq(:,indicesAleatorios); %los entrenadores y target 47 
% matTargetEntrenaLvq=matTargetEntrenaLvq(:,indicesAleatorios); 48 
%  49 
% clear indicesAleatorios 50 
% %permuta test 51 
% indicesAleatorios=randperm(size(matEntradasTestLvq,2));  52 
% matEntradasTestLvq=matEntradasTestLvq(:,indicesAleatorios); 53 
% matTargetTestLvq=matTargetTestLvq(:,indicesAleatorios); 54 
 55 
 56 



ANEXO IV 
 

Pag 92 de 128 

clear tamanoColumnaAleatoria columnaAleatoria aleatorio tamanoMatEntradas incrementoColumna...  57 
    indicesAleatorios; 58 
 59 
indices = find((mascara == 1));           % indices de variables NO enmascaradas 60 
vino = matEntradasEntrenaLvq( indices , : );               % Extraemos solamente las variables NO enmascaradas  61 
%clases=matTargetEntrenaLvq; 62 
clases=vec2ind(matTargetEntrenaLvq); 63 
clases=clases'; 64 
clases=ind2vec(clases); 65 
%clases=clases; 66 
matEntradasTestReducidoLvq=matEntradasTestLvq( indices , : ); 67 
 68 
 69 
numpatclases = full( sum( clases , 1 ) ); % numero de patrones de cada clase 70 
numclases = length( numpatclases ); % numero de clases 71 
[ numinp , npat ] = size( vino ); % numero de entradas y de patrones 72 
prob_priori = numpatclases / npat; % probabilidad a priori de las clases 73 
names_variables = {'Bat1', 'Bat2', 'Bat3', 'Expr', 'Micr', 'Sand', 'Ven1', 'MicrOnYSandOn', 'SandOnYBat3On', 'Ven1OnYBat3On',  'Ven1OnYMicrOnYSandOn'}; 74 
%numpatclases = [ sizeMatEntradasBat1 sizeMatEntradasBat2 sizeMatEntradasBat3 sizeMatEntradasExpr sizeMatEntradasMicr sizeMatEntradasSand 75 

sizeMatEntradasVen1 sizeMatEntradasMicrOnYSandOn sizeMatEntradasSandOnYBat3On sizeMatEntradasVen1OnYBat3On 76 
sizeMatEntradasVen1OnYMicrOnYSandOn ]; % numero de muestras en cada clase 77 

 78 
 79 
%% LVQ 80 
% flagesc = input('\nEscalado (0=no/1=si, por defecto 1): '); 81 
% % Escalamos todas las entradas para que tengan variación entre -1 y 1 82 
% if isempty( flagesc );flagesc = 1;end 83 
% if (flagesc == 0) 84 
%    data = vino; 85 
% else 86 
%    [data , minp , maxp ] = premnmx( vino ); 87 
% end 88 
 89 
[data , minp , maxp ] = premnmx( vino ); 90 
 91 
% odim = input('\nDimensión del espacio de proyección de PCA (1-4, por defecto NO PCA): '); 92 
% if isempty( odim ) 93 
%     datapca = data;  94 
% else 95 
% [ P , V , me , L ] = pcaproj( data' , odim ); 96 
% datapca = P'; 97 
% end 98 
datapca = data;  99 
 100 
[ dim , npat ] = size( datapca ); 101 
 102 
% Generando una red LVQ 103 
% nhidden = input('\nNúmero de unidades ocultas (por defecto 24): '); 104 
% if isempty( nhidden ); nhidden = 24; end 105 
% fa = input('\nFactor de aprendizaje (por defecto 0.2): '); 106 
% if isempty( fa ); fa = 0.2; end 107 
%out = full( clases )'; 108 
out = full( clases ); 109 
claspat = sum( out' , 1 ); % sumamos los indices de clases 110 
nclass = length( claspat ); 111 
PerC = claspat / npat; % porcentajes de clases en los patrones 112 
 113 
net = newlvq( minmax( datapca ) , nhidden , PerC , fa ); 114 
% Escribe el tamaño de la capa de unidades con kernel 115 
fprintf('\nLa red generada utiliza:'); 116 
[ Unidades , Datos ] = size( net.IW{ 1 , 1 } ) 117 
 118 
% Usamos como método de inicialización de pesos la selección aleatoria de muestras 119 
w2 = net.LW{ 2 , 1 }; % pesos desde unidades de salida a capa competitiva UsalidaxUhidden 120 
[ nclases , nhidden ] = size( w2 ); 121 



ANEXO IV 
 

Pag 93 de 128 

rep = 0;  % los centroides se adjudican sin repetir muestras 122 
if ( nhidden > npat ); rep = 1; end; 123 
[ w , ind ] = initwpat( datapca' , nhidden , out' , rep );% obtiene una matriz w con patrones 124 
net.IW{ 1 , 1 } = w; 125 
 126 
% Dibujamos los datos en el subespacio proyectado 127 
% if ( odim >= 3) 128 
%    ind = input('Tres índices de componentes para visualizar (por defecto [1 2 3]): '); 129 
%    if isempty( ind ); ind = [ 1 2 3 ]; end; 130 
%    H = drawkernel( ind , datapca , out , net ); 131 
% else if (odim == 2) 132 
%       H = drawkernel( [ 1 2 ] , datapca , out , net ); 133 
%    end 134 
% end 135 
% title('VALORES INICIALES DE LOS CENTROIDES DE LA RED LVQ'); 136 
% fprintf('\nPulsar cualquier tecla para iniciar el entrenamiento.'); 137 
% pause; 138 
 139 
 140 
% Entreno 141 
net.trainfcn='trainr'; % el entrenamiento se hace por iteraciones; esta sentencia pone epochs a 100 por defecto 142 
net.trainParam.show = 100; 143 
%net.trainParam.epochs = 3000;%3000 144 
net.trainParam.epochs = numEpoch; 145 
net.adaptParam.passes = 10000; 146 
net.inputWeights{ 1 , 1 }.learnFcn = 'learnlv1'; 147 
% net.inputWeights{1,1}.learnFcn = 'learnlv2'; 148 
net = train( net , datapca , out ); 149 
% net = adapt( net , datapca , out); 150 
 151 
 152 
% Test 153 
 154 
vino = matEntradasTestLvq( indices , : );               % Extraemos solamente las variables NO enmascaradas  155 
[data , minp , maxp ] = premnmx( vino ); 156 
%datapca=matEntradasTestReducidoLvq; 157 
datapca=data; 158 
Y = sim( net , datapca ); 159 
numpatclases=sum(matTargetTestLvq'); 160 
% funcion que pinta graficos de barras para cada unidad con el conjunto de respuestas 161 
base = 'Bat1 / Bat2 / Bat3 / Expr / Micr / Sand / Ven1 / MicrOnYSandOn / SandOnYBat3On / Ven1OnYBat3On / Ven1OnYMicrOnYSandOn'; 162 
xticks = [ 1 ]; 163 
    for n = 1:size(matTargetTestLvq,1) 164 
        xticks = [ xticks ; sum( numpatclases( 1:n ) ) ]; % Puntos de eje X de las graficas 165 
    end 166 
H = barcompout( Y , 'U' , base , xticks ); 167 
 168 
% Dibujamos los datos en el subespacio proyectado 169 
% if (odim >= 3) 170 
%    H = drawkernel( ind , datapca , out , net ); 171 
% else if (odim == 2) 172 
%       H = drawkernel( [ 1 2 ] , datapca , out , net ); 173 
%    end 174 
% end 175 
%title('VALORES FINALES DE LOS CENTROIDES DE LA RED LVQ'); 176 
[ conf_mat , Kappa ] = confussion_matrix( vec2ind(matTargetTestLvq) , vec2ind(Y) ); 177 
plotconfusion(matTargetTestLvq,Y) 178 
 179 
 180 

 

TDC  

 
 



ANEXO V 

Pag 94 de 128 

ANEXO V 

 

SCRIPT DETECCIÓN DE EVENTOS 

 1 
clc; 2 
clear all; 3 
%close all; 4 
 5 
% for i=1:TRIALS 6 
%     figure; 7 
%     plot(FacPotBat1{1,i}(1,1:end),'DisplayName','cargaBat3{1,1}(1,1:15360)','YDataSource','cargaBat3{1,1}(1,1:15360)');figure(gcf)  8 
%  9 
% end 10 
 11 
 12 
%% CONSTANTES 13 
Kappatemp=[]; 14 
subsampleVsKappa=[]; 15 
%for subsamples=4:4 16 
subsamples=4; 17 
%    for veces=1:1 18 
TRIALS=10; 19 
CLASES=11; 20 
names = {'RMS','CCDA','CCDB','FFT1','FFT2','FFT3','FP','PICO','CUARTO'}; 21 
VENTANA_EST=10;%50 ciclos de tamano de muestra 22 
COMP_CONTINUA=600; 23 
% FS=2542; %Frecuencia de sampleo original 24 
SUBSAMPLE=subsamples; %se guarda una de cada SUBSAMPLE muestras 25 
FS=round(2542/SUBSAMPLE); %Frecuencia de sampleo 26 
MUESTRAS_CICLO=round(FS*0.02); %número de muestras en cada ciclo por  27 
 28 
AMP_POR_UNIDAD=0; %0.15amperios por unidad de matlab 29 
%50 muestras por periodo 30 
 31 
INC_VENT=VENTANA_EST*MUESTRAS_CICLO; 32 
%  33 
% %FFT 34 
% T=1/FS; %periodo 35 
% NFFT = 2^nextpow2(INC_VENT); % Next power of 2 from length of y 36 
% FRC_BUSQ_FFT=[40 60 120 180 200 300]; %rango frecuencias para buscar las componentes FFT 37 
% VECTOR_FRECUENCIA = FS/2*linspace(0,1,NFFT/2+1); 38 
%  39 
%  40 
%filtro 41 
N=100; 42 
FC1=40; 43 
FC2=60; 44 
INICIO_FILTR=1;%50 45 
DESF_FILTRO=50; %muestras de desfase entre señal original y filtrada.  46 
%  47 
% DESFASE_TRAFO_TENSION=0;%desfase que introduce el trafo de medida de tension 48 
% SEP_PASOS_0=round(MUESTRAS_CICLO/3.33);%15;%46 49 
% MAY_MEN_0=0; 50 
 51 
WAKE_UP=FS*1; %muestras (tiempo) entre despertar y despertar (1 segundo) 52 
VENTANA_EVENTO=10*MUESTRAS_CICLO;%ancho ventana de evento a on 53 
THRESHOLD=270;% umbral para considerar un evento a ON 54 
GRADIENTE=70;% diferencia < entre ventanas para considerar fin transitorio 55 
%MAX_TRANS=4;% 56 



ANEXO V 
 

Pag 95 de 128 

 57 
% %CUARTO_SEMIPERIODO= round (MUESTRAS_CICLO/8); 58 
% CUARTO_SEMIPERIODO= round (MUESTRAS_CICLO/14); %donde más se nota el 3º armonico, con 5º y 7º 10% del 3º  59 
% VALOR_CUARTO_SEMIPERIODO_NORMALIZADO=0.4226;%Tanto por uno del valor de pico  60 
% %VALOR_CUARTO_SEMIPERIODO_NORMALIZADO=-0.648228395307788;%Tanto por uno del valor de pico  61 
%       %que se obtendría en un seno puro en el cuarto del segundo semiperiodo 62 
% PORC_ENTRENAMIENTO=80/100;%porcentaje del data set destinado al entrenamiento     63 
 64 
 65 
%% CARGA FICHEROS Y ACONDICIONAMIENTO 66 
 67 
 68 
%Carga ficheros 69 
for i=1:TRIALS 70 
    cargaBat1{i}=load(strcat('PICUS_BAT1_TRIAL',num2str(i),'.txt'));  71 
    cargaBat2{i}=load(strcat('PICUS_BAT2_TRIAL',num2str(i),'.txt'));  72 
    cargaBat3{i}=load(strcat('PICUS_BAT3_TRIAL',num2str(i),'.txt'));  73 
    cargaExpr{i}=load(strcat('PICUS_EXPR_TRIAL',num2str(i),'.txt')); 74 
    cargaMicr{i}=load(strcat('PICUS_MICR_TRIAL',num2str(i),'.txt')); 75 
    cargaSand{i}=load(strcat('PICUS_SAND_TRIAL',num2str(i),'.txt')); 76 
    cargaVen1{i}=load(strcat('PICUS_VEN1_TRIAL',num2str(i),'.txt')); 77 
%    cargaVen2{i}=load(strcat('PICUS_VEN2_TRIAL',num2str(i),'.txt')); 78 
    cargaMicrOnYSandOn{i}=load(strcat('PICUS_MICR_SAND_SAND_MICRO_TRIAL',num2str(i),'.txt')); 79 
    cargaSandOnYBat3On{i}=load(strcat('PICUS_SAND_BAT3_BAT3_SAND_TRIAL',num2str(i),'.txt')); 80 
    cargaVen1OnYBat3On{i}=load(strcat('PICUS_VEN1_BAT3_BAT3_VENT1_TRIAL',num2str(i),'.txt'));  81 
    cargaVen1OnYMicrOnYSandOn{i}=load(strcat('PICUS_VEN1_MICR_SAND_SAND_MICR_VEN1_TRIAL',num2str(i),'.txt'));  82 
end 83 
 84 
 85 
 86 
     87 
  88 
%Subsampleo 89 
%recorremos el vector de uno en uno y si encontramos un cero se guarda 90 
%como el cero no es parte de la onda, incremento el indice de subsampleo a  91 
%la siguiente muestra. Si coincide muestra leida con el indice subsampleo 92 
%guardo esa muestra y e incremento el indiceSub en SUBSAMPLE 93 
 94 
 95 
 96 
for i=1:TRIALS 97 
    cargaBat1Temp{i}=[]; 98 
    cargaBat2Temp{i}=[]; 99 
    cargaBat3Temp{i}=[]; 100 
    cargaExprTemp{i}=[]; 101 
    cargaMicrTemp{i}=[]; 102 
    cargaSandTemp{i}=[]; 103 
    cargaVen1Temp{i}=[]; 104 
    % cargaVen2Temp{1}=[]; 105 
    cargaMicrOnYSandOnTemp{i}=[]; 106 
    cargaSandOnYBat3OnTemp{i}=[]; 107 
    cargaVen1OnYBat3OnTemp{i}=[]; 108 
    cargaVen1OnYMicrOnYSandOnTemp{i}=[]; 109 
 110 
     111 
    indiceSub=1; 112 
    j=1; 113 
    while (j<size(cargaBat1{1,i},2)) 114 
        if(cargaBat1{1,i}(j)==0) 115 
           cargaBat1Temp{1,i}(end+1)=0; 116 
            indiceSub=indiceSub+1; 117 
        end 118 
        if (j==indiceSub) 119 
            cargaBat1Temp{1,i}(end+1)=cargaBat1{1,i}(j); 120 
            indiceSub=indiceSub+SUBSAMPLE; 121 



ANEXO V 
 

Pag 96 de 128 

        end 122 
        j=j+1; 123 
    end 124 
 125 
    indiceSub=1; 126 
    j=1; 127 
    while (j<size(cargaBat2{1,i},2)) 128 
        if(cargaBat2{1,i}(j)==0) 129 
           cargaBat2Temp{1,i}(end+1)=0; 130 
            indiceSub=indiceSub+1; 131 
        end 132 
        if (j==indiceSub) 133 
            cargaBat2Temp{1,i}(end+1)=cargaBat2{1,i}(j); 134 
            indiceSub=indiceSub+SUBSAMPLE; 135 
        end 136 
        j=j+1; 137 
    end 138 
 139 
    indiceSub=1; 140 
    j=1; 141 
    while (j<size(cargaBat3{1,i},2)) 142 
        if(cargaBat3{1,i}(j)==0) 143 
           cargaBat3Temp{1,i}(end+1)=0; 144 
            indiceSub=indiceSub+1; 145 
        end 146 
        if (j==indiceSub) 147 
            cargaBat3Temp{1,i}(end+1)=cargaBat3{1,i}(j); 148 
            indiceSub=indiceSub+SUBSAMPLE; 149 
        end 150 
        j=j+1; 151 
    end 152 
 153 
    indiceSub=1; 154 
    j=1; 155 
    while (j<size(cargaExpr{1,i},2)) 156 
        if(cargaExpr{1,i}(j)==0) 157 
           cargaExprTemp{1,i}(end+1)=0; 158 
            indiceSub=indiceSub+1; 159 
        end 160 
        if (j==indiceSub) 161 
            cargaExprTemp{1,i}(end+1)=cargaExpr{1,i}(j); 162 
            indiceSub=indiceSub+SUBSAMPLE; 163 
        end 164 
        j=j+1; 165 
    end 166 
 167 
    indiceSub=1; 168 
    j=1; 169 
    while (j<size(cargaMicr{1,i},2)) 170 
        if(cargaMicr{1,i}(j)==0) 171 
           cargaMicrTemp{1,i}(end+1)=0; 172 
            indiceSub=indiceSub+1; 173 
        end 174 
        if (j==indiceSub) 175 
            cargaMicrTemp{1,i}(end+1)=cargaMicr{1,i}(j); 176 
            indiceSub=indiceSub+SUBSAMPLE; 177 
        end 178 
        j=j+1; 179 
    end 180 
 181 
    indiceSub=1; 182 
    j=1; 183 
    while (j<size(cargaSand{1,i},2)) 184 
        if(cargaSand{1,i}(j)==0) 185 
           cargaSandTemp{1,i}(end+1)=0; 186 



ANEXO V 
 

Pag 97 de 128 

            indiceSub=indiceSub+1; 187 
        end 188 
        if (j==indiceSub) 189 
            cargaSandTemp{1,i}(end+1)=cargaSand{1,i}(j); 190 
            indiceSub=indiceSub+SUBSAMPLE; 191 
        end 192 
        j=j+1; 193 
    end 194 
 195 
    indiceSub=1; 196 
    j=1; 197 
    while (j<size(cargaVen1{1,i},2)) 198 
        if(cargaVen1{1,i}(j)==0) 199 
           cargaVen1Temp{1,i}(end+1)=0; 200 
            indiceSub=indiceSub+1; 201 
        end 202 
        if (j==indiceSub) 203 
            cargaVen1Temp{1,i}(end+1)=cargaVen1{1,i}(j); 204 
            indiceSub=indiceSub+SUBSAMPLE; 205 
        end 206 
        j=j+1; 207 
    end 208 
 209 
    indiceSub=1; 210 
    j=1; 211 
    while (j<size(cargaMicrOnYSandOn{1,i},2)) 212 
        if(cargaMicrOnYSandOn{1,i}(j)==0) 213 
           cargaMicrOnYSandOnTemp{1,i}(end+1)=0; 214 
            indiceSub=indiceSub+1; 215 
        end 216 
        if (j==indiceSub) 217 
            cargaMicrOnYSandOnTemp{1,i}(end+1)=cargaMicrOnYSandOn{1,i}(j); 218 
            indiceSub=indiceSub+SUBSAMPLE; 219 
        end 220 
        j=j+1; 221 
    end 222 
 223 
    indiceSub=1; 224 
    j=1; 225 
    while (j<size(cargaSandOnYBat3On{1,i},2)) 226 
        if(cargaSandOnYBat3On{1,i}(j)==0) 227 
           cargaSandOnYBat3OnTemp{1,i}(end+1)=0; 228 
            indiceSub=indiceSub+1; 229 
        end 230 
        if (j==indiceSub) 231 
            cargaSandOnYBat3OnTemp{1,i}(end+1)=cargaSandOnYBat3On{1,i}(j); 232 
            indiceSub=indiceSub+SUBSAMPLE; 233 
        end 234 
        j=j+1; 235 
    end 236 
 237 
    indiceSub=1; 238 
    j=1; 239 
    while (j<size(cargaVen1OnYBat3On{1,i},2)) 240 
        if(cargaVen1OnYBat3On{1,i}(j)==0) 241 
           cargaVen1OnYBat3OnTemp{1,i}(end+1)=0; 242 
            indiceSub=indiceSub+1; 243 
        end 244 
        if (j==indiceSub) 245 
            cargaVen1OnYBat3OnTemp{1,i}(end+1)=cargaVen1OnYBat3On{1,i}(j); 246 
            indiceSub=indiceSub+SUBSAMPLE; 247 
        end 248 
        j=j+1; 249 
    end 250 
 251 



ANEXO V 
 

Pag 98 de 128 

    indiceSub=1; 252 
    j=1; 253 
    while (j<size(cargaVen1OnYMicrOnYSandOn{1,i},2)) 254 
        if(cargaVen1OnYMicrOnYSandOn{1,i}(j)==0) 255 
           cargaVen1OnYMicrOnYSandOnTemp{1,i}(end+1)=0; 256 
            indiceSub=indiceSub+1; 257 
        end 258 
        if (j==indiceSub) 259 
            cargaVen1OnYMicrOnYSandOnTemp{1,i}(end+1)=cargaVen1OnYMicrOnYSandOn{1,i}(j); 260 
            indiceSub=indiceSub+SUBSAMPLE; 261 
        end 262 
        j=j+1; 263 
    end 264 
     265 
    cargaBat1{1,i}=cargaBat1Temp{1,i}; 266 
    cargaBat2{1,i}=cargaBat2Temp{1,i}; 267 
    cargaBat3{1,i}=cargaBat3Temp{1,i}; 268 
    cargaExpr{1,i}=cargaExprTemp{1,i}; 269 
    cargaMicr{1,i}=cargaMicrTemp{1,i}; 270 
    cargaSand{1,i}=cargaSandTemp{1,i}; 271 
    cargaVen1{1,i}=cargaVen1Temp{1,i}; 272 
%    cargaVen2{1,i}=cargaVen1Temp{1,i}; 273 
    cargaMicrOnYSandOn{1,i}=cargaMicrOnYSandOnTemp{1,i}; 274 
    cargaSandOnYBat3On{1,i}=cargaSandOnYBat3OnTemp{1,i}; 275 
    cargaVen1OnYBat3On{1,i}=cargaVen1OnYBat3OnTemp{1,i}; 276 
    cargaVen1OnYMicrOnYSandOn{1,i}=cargaVen1OnYMicrOnYSandOnTemp{1,i}; 277 
          278 
end 279 
 280 
    clear cargaBat1Temp{1,i}; 281 
    clear cargaBat2Temp{1,i}; 282 
    clear cargaBat3Temp{1,i}; 283 
    clear cargaExprTemp{1,i}; 284 
    clear cargaMicrTemp{1,i}; 285 
    clear cargaSandTemp{1,i}; 286 
    clear cargaVen1Temp{1,i}; 287 
%   clear  cargaVen2Temp{1,i}; 288 
    clear cargaMicrOnYSandOnTemp{1,i}; 289 
    clear cargaSandOnYBat3OnTemp{1,i}; 290 
    clear cargaVen1OnYBat3OnTemp{1,i}; 291 
    clear cargaVen1OnYMicrOnYSandOnTemp{1,i}; 292 
    clear indiceSub; 293 
     294 
    295 
%filtrado de señal 296 
% f=fdesign.lowpass('N,Fc',10,70,FS); 297 
% filtroLP = design(f,'butter'); 298 
 299 
f2=fdesign.bandpass('n,fc1,fc2',N,FC1,FC2,FS); 300 
filtroPB=design(f2); 301 
 302 
for i=1:TRIALS 303 
 304 
    cargaBat1{1,i}=nonzeros(cargaBat1{1,i}); 305 
    cargaBat1Filtr{1,i}=filter(filtroPB,cargaBat1{1,i}); 306 
    cargaBat1Filtr{1,i}=cargaBat1Filtr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 307 
 308 
    cargaBat2{1,i}=nonzeros(cargaBat2{1,i}); 309 
    cargaBat2Filtr{1,i}=filter(filtroPB,cargaBat2{1,i}); 310 
    cargaBat2Filtr{1,i}=cargaBat2Filtr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 311 
 312 
    cargaBat3{1,i}=nonzeros(cargaBat3{1,i}); 313 
    cargaBat3Filtr{1,i}=filter(filtroPB,cargaBat3{1,i}); 314 
    cargaBat3Filtr{1,i}=cargaBat3Filtr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 315 
 316 



ANEXO V 
 

Pag 99 de 128 

    cargaExpr{1,i}=nonzeros(cargaExpr{1,i}); 317 
    cargaExprFiltr{1,i}=filter(filtroPB,cargaExpr{1,i}); 318 
    cargaExprFiltr{1,i}=cargaExprFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas  319 
 320 
    cargaMicr{1,i}=nonzeros(cargaMicr{1,i}); 321 
    cargaMicrFiltr{1,i}=filter(filtroPB,cargaMicr{1,i}); 322 
    cargaMicrFiltr{1,i}=cargaMicrFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas  323 
 324 
    cargaSand{1,i}=nonzeros(cargaSand{1,i}); 325 
    cargaSandFiltr{1,i}=filter(filtroPB,cargaSand{1,i}); 326 
    cargaSandFiltr{1,i}=cargaSandFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 327 
 328 
    cargaVen1{1,i}=nonzeros(cargaVen1{1,i}); 329 
    cargaVen1Filtr{1,i}=filter(filtroPB,cargaVen1{1,i}); 330 
    cargaVen1Filtr{1,i}=cargaVen1Filtr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 331 
 332 
    cargaMicrOnYSandOn{1,i}=nonzeros(cargaMicrOnYSandOn{1,i}); 333 
    cargaMicrOnYSandOnFiltr{1,i}=filter(filtroPB,cargaMicrOnYSandOn{1,i}); 334 
    cargaMicrOnYSandOnFiltr{1,i}=cargaMicrOnYSandOnFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 335 
 336 
    cargaSandOnYBat3On{1,i}=nonzeros(cargaSandOnYBat3On{1,i}); 337 
    cargaSandOnYBat3OnFiltr{1,i}=filter(filtroPB,cargaSandOnYBat3On{1,i}); 338 
    cargaSandOnYBat3OnFiltr{1,i}=cargaSandOnYBat3OnFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 339 
 340 
    cargaVen1OnYBat3On{1,i}=nonzeros(cargaVen1OnYBat3On{1,i}); 341 
    cargaVen1OnYBat3OnFiltr{1,i}=filter(filtroPB,cargaVen1OnYBat3On{1,i}); 342 
    cargaVen1OnYBat3OnFiltr{1,i}=cargaVen1OnYBat3OnFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas 343 
 344 
    cargaVen1OnYMicrOnYSandOn{1,i}=nonzeros(cargaVen1OnYMicrOnYSandOn{1,i}); 345 
    cargaVen1OnYMicrOnYSandOnFiltr{1,i}=filter(filtroPB,cargaVen1OnYMicrOnYSandOn{1,i}); 346 
    cargaVen1OnYMicrOnYSandOnFiltr{1,i}=cargaVen1OnYMicrOnYSandOnFiltr{1,i}(INICIO_FILTR:end); %quitamos las INICIO_FILTR muestas  347 
end 348 
 349 
 350 
%% EVENTO ON 351 
%deteccion evento a on 352 
%elegimos una ventana de un ciclo, le restamos la mediana de esa ventana(DC OFF) 353 
%sumamos los valores absolutos y si son mayores que un threshold, 354 
% => Evento ON 355 
% en ventanaEvento se guarda el valor de la ventana corriespondiente al 356 
% wakeup,si hay evento, tras el gradiente(ventana roja o verde) 357 
 358 
 359 
 360 
 361 
 362 
onBat1=zeros(TRIALS,1); 363 
onBat1=zeros(TRIALS,1); 364 
vBat1={}; 365 
onBat2=zeros(TRIALS,1); 366 
offBat2=zeros(TRIALS,1); 367 
vBat2={}; 368 
onBat3=zeros(TRIALS,1); 369 
offBat3=zeros(TRIALS,1); 370 
vBat3={}; 371 
onExpr=zeros(TRIALS,1); 372 
offExpr=zeros(TRIALS,1); 373 
vExpr={}; 374 
onMicr=zeros(TRIALS,1); 375 
offMicr=zeros(TRIALS,1); 376 
vMicr={}; 377 
onSand=zeros(TRIALS,1); 378 
offSand=zeros(TRIALS,1); 379 
vSand={}; 380 
onVen1=zeros(TRIALS,1); 381 



ANEXO V 
 

Pag 100 de 128 

offVen1=zeros(TRIALS,1); 382 
vVen1={}; 383 
onMicrOnYSandOn=zeros(TRIALS,1); 384 
offMicrOnYSandOn=zeros(TRIALS,1); 385 
vMicrOnYSandOn={}; 386 
onSandOnYBat3On=zeros(TRIALS,1); 387 
offSandOnYBat3On=zeros(TRIALS,1); 388 
vSandOnYBat3On={}; 389 
onVen1OnYBat3On=zeros(TRIALS,1); 390 
offVen1OnYBat3On=zeros(TRIALS,1); 391 
vVen1OnYBat3On={}; 392 
onVen1OnYMicrOnYSandOn=zeros(TRIALS,1); 393 
offVen1OnYMicrOnYSandOn=zeros(TRIALS,1); 394 
vVen1OnYMicrOnYSandOn={}; 395 
 396 
for i=1:TRIALS 397 
     398 
    cargaBat1{1,i}=nonzeros(cargaBat1{1,i})'; 399 
    cargaBat1{1,i}=(cargaBat1{1,i})-median(cargaBat1{1,i}); 400 
    j=1; 401 
    k=1; 402 
    m=1; 403 
    vTemp=[]; 404 
    for indice=1:WAKE_UP:size(cargaBat1{1,i},2)-VENTANA_EVENTO; 405 
        ventanaEvenBat1(i,j)=sum(abs(cargaBat1{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaBat1{1,i}(indice:indice+VENTANA_EVENTO-1)))); 406 
        vTemp=[vTemp indice ];  407 
        if j>1 408 
            if ventanaEvenBat1(i,j)>ventanaEvenBat1(i,j-1)+THRESHOLD %hay evento 409 
                ventanaTempAnt=ventanaEvenBat1(i,j); 410 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 411 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaBat1{1,i},2)-1 412 
                        onBat1(i,k)=indice+(n-1)*VENTANA_EVENTO; 413 
                        ventanaEvenBat1(i,j)=ventanaTempAct;                          414 
                        break; 415 
                    end 416 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 417 
                        onBat1(i,k)=indice+(n-1)*VENTANA_EVENTO; 418 
                        ventanaEvenBat1(i,j)=ventanaTempAct;                          419 
                        break; 420 
                    end 421 
                    ventanaTempAct=sum(abs(cargaBat1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-422 

median(cargaBat1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 423 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 424 
                        onBat1(i,k)=indice+(n-1)*VENTANA_EVENTO; 425 
                        ventanaEvenBat1(i,j)=ventanaTempAct; 426 
                        break; 427 
                    else 428 
                        ventanaTempAnt=ventanaTempAct; 429 
                    end 430 
                end 431 
                k=k+1; 432 
            end 433 
            if ventanaEvenBat1(i,j)<ventanaEvenBat1(i,j-1)-THRESHOLD 434 
                ventanaTempAnt=ventanaEvenBat1(i,j); 435 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 436 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaBat1{1,i},2)-1 437 
                        offBat1(i,m)=indice+(n-1)*VENTANA_EVENTO; 438 
                        ventanaEvenBat1(i,j)=ventanaTempAct;                          439 
                        break; 440 
                    end 441 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 442 
                        offBat1(i,k)=indice+(n-1)*VENTANA_EVENTO; 443 
                        ventanaEvenBat1(i,j)=ventanaTempAct;                          444 
                        break; 445 
                    end 446 



ANEXO V 
 

Pag 101 de 128 

                   ventanaTempAct=sum(abs(cargaBat1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-447 
median(cargaBat1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 448 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 449 
                        offBat1(i,m)=indice+(n-1)*VENTANA_EVENTO; 450 
                        ventanaEvenBat1(i,j)=ventanaTempAct; 451 
                        break; 452 
                    else 453 
                        ventanaTempAnt=ventanaTempAct; 454 
                    end 455 
                end 456 
                m=m+1; 457 
            end 458 
        end 459 
        j=j+1; 460 
    end; 461 
    vBat1{i}=vTemp; 462 
     463 
    cargaBat2{1,i}=nonzeros(cargaBat2{1,i})'; 464 
    cargaBat2{1,i}=(cargaBat2{1,i})-median(cargaBat2{1,i}); 465 
    j=1; 466 
    k=1; 467 
    m=1; 468 
    vTemp=[]; 469 
    for indice=1:WAKE_UP:size(cargaBat2{1,i},2)-VENTANA_EVENTO; 470 
        ventanaEvenBat2(i,j)=sum(abs(cargaBat2{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaBat2{1,i}(indice:indice+VENTANA_EVENTO-1)))); 471 
        vTemp=[vTemp indice ];  472 
        if j>1 473 
            if ventanaEvenBat2(i,j)>ventanaEvenBat2(i,j-1)+THRESHOLD %hay evento 474 
                ventanaTempAnt=ventanaEvenBat2(i,j); 475 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 476 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaBat2{1,i},2)-1 477 
                        onBat2(i,k)=indice+(n-1)*VENTANA_EVENTO; 478 
                        ventanaEvenBat2(i,j)=ventanaTempAct;                          479 
                        break; 480 
                    end 481 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 482 
                        onBat2(i,k)=indice+(n-1)*VENTANA_EVENTO; 483 
                        ventanaEvenBat2(i,j)=ventanaTempAct;                          484 
                        break; 485 
                    end 486 
                    ventanaTempAct=sum(abs(cargaBat2{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-487 

median(cargaBat2{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 488 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 489 
                        onBat2(i,k)=indice+(n-1)*VENTANA_EVENTO; 490 
                        ventanaEvenBat2(i,j)=ventanaTempAct; 491 
                        break; 492 
                    else 493 
                        ventanaTempAnt=ventanaTempAct; 494 
                    end 495 
                end 496 
                k=k+1; 497 
            end 498 
            if ventanaEvenBat2(i,j)<ventanaEvenBat2(i,j-1)-THRESHOLD 499 
                ventanaTempAnt=ventanaEvenBat2(i,j); 500 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 501 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaBat2{1,i},2)-1 502 
                        offBat2(i,m)=indice+(n-1)*VENTANA_EVENTO; 503 
                        ventanaEvenBat2(i,j)=ventanaTempAct;                          504 
                        break; 505 
                    end 506 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 507 
                        offBat2(i,k)=indice+(n-1)*VENTANA_EVENTO; 508 
                        ventanaEvenBat2(i,j)=ventanaTempAct;                          509 
                        break; 510 
                    end 511 



ANEXO V 
 

Pag 102 de 128 

                   ventanaTempAct=sum(abs(cargaBat2{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-512 
median(cargaBat2{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 513 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 514 
                        offBat2(i,m)=indice+(n-1)*VENTANA_EVENTO; 515 
                        ventanaEvenBat2(i,j)=ventanaTempAct; 516 
                        break; 517 
                    else 518 
                        ventanaTempAnt=ventanaTempAct; 519 
                    end 520 
                end 521 
                m=m+1; 522 
            end 523 
        end 524 
        j=j+1; 525 
    end; 526 
    vBat2{i}=vTemp; 527 
     528 
    cargaBat3{1,i}=nonzeros(cargaBat3{1,i})'; 529 
    cargaBat3{1,i}=(cargaBat3{1,i})-median(cargaBat3{1,i}); 530 
    j=1; 531 
    k=1; 532 
    m=1; 533 
    vTemp=[]; 534 
    for indice=1:WAKE_UP:size(cargaBat3{1,i},2)-VENTANA_EVENTO; 535 
        ventanaEvenBat3(i,j)=sum(abs(cargaBat3{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaBat3{1,i}(indice:indice+VENTANA_EVENTO-1)))); 536 
        vTemp=[vTemp indice ];  537 
        if j>1 538 
            if ventanaEvenBat3(i,j)>ventanaEvenBat3(i,j-1)+THRESHOLD %hay evento 539 
                ventanaTempAnt=ventanaEvenBat3(i,j); 540 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 541 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaBat3{1,i},2)-1 542 
                        onBat3(i,k)=indice+(n-1)*VENTANA_EVENTO; 543 
                        ventanaEvenBat3(i,j)=ventanaTempAct;                          544 
                        break; 545 
                    end 546 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 547 
                        onBat3(i,k)=indice+(n-1)*VENTANA_EVENTO; 548 
                        ventanaEvenBat3(i,j)=ventanaTempAct;                          549 
                        break; 550 
                    end 551 
                    ventanaTempAct=sum(abs(cargaBat3{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-552 

median(cargaBat3{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 553 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 554 
                        onBat3(i,k)=indice+(n-1)*VENTANA_EVENTO; 555 
                        ventanaEvenBat3(i,j)=ventanaTempAct; 556 
                        break; 557 
                    else 558 
                        ventanaTempAnt=ventanaTempAct; 559 
                    end 560 
                end 561 
                k=k+1; 562 
            end 563 
            if ventanaEvenBat3(i,j)<ventanaEvenBat3(i,j-1)-THRESHOLD 564 
                ventanaTempAnt=ventanaEvenBat3(i,j); 565 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 566 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaBat3{1,i},2)-1 567 
                        offBat3(i,m)=indice+(n-1)*VENTANA_EVENTO; 568 
                        ventanaEvenBat3(i,j)=ventanaTempAct;                          569 
                        break; 570 
                    end 571 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 572 
                        offBat3(i,k)=indice+(n-1)*VENTANA_EVENTO; 573 
                        ventanaEvenBat3(i,j)=ventanaTempAct;                          574 
                        break; 575 
                    end 576 



ANEXO V 
 

Pag 103 de 128 

                   ventanaTempAct=sum(abs(cargaBat3{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-577 
median(cargaBat3{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 578 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 579 
                        offBat3(i,m)=indice+(n-1)*VENTANA_EVENTO; 580 
                        ventanaEvenBat3(i,j)=ventanaTempAct; 581 
                        break; 582 
                    else 583 
                        ventanaTempAnt=ventanaTempAct; 584 
                    end 585 
                end 586 
                m=m+1; 587 
            end 588 
        end 589 
        j=j+1; 590 
    end; 591 
    vBat3{i}=vTemp; 592 
     593 
    cargaExpr{1,i}=nonzeros(cargaExpr{1,i})'; 594 
    cargaExpr{1,i}=(cargaExpr{1,i})-median(cargaExpr{1,i}); 595 
    j=1; 596 
    k=1; 597 
    m=1; 598 
    vTemp=[]; 599 
    for indice=1:WAKE_UP:size(cargaExpr{1,i},2)-VENTANA_EVENTO; 600 
        ventanaEvenExpr(i,j)=sum(abs(cargaExpr{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaExpr{1,i}(indice:indice+VENTANA_EVENTO-1)))); 601 
        vTemp=[vTemp indice ];  602 
        if j>1 603 
            if ventanaEvenExpr(i,j)>ventanaEvenExpr(i,j-1)+THRESHOLD %hay evento 604 
                ventanaTempAnt=ventanaEvenExpr(i,j); 605 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 606 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaExpr{1,i},2)-1 607 
                        onExpr(i,k)=indice+(n-1)*VENTANA_EVENTO; 608 
                        ventanaEvenExpr(i,j)=ventanaTempAct;                          609 
                        break; 610 
                    end 611 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 612 
                        onExpr(i,k)=indice+(n-1)*VENTANA_EVENTO; 613 
                        ventanaEvenExpr(i,j)=ventanaTempAct;                          614 
                        break; 615 
                    end 616 
                    ventanaTempAct=sum(abs(cargaExpr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-617 

median(cargaExpr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 618 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 619 
                        onExpr(i,k)=indice+(n-1)*VENTANA_EVENTO; 620 
                        ventanaEvenExpr(i,j)=ventanaTempAct; 621 
                        break; 622 
                    else 623 
                        ventanaTempAnt=ventanaTempAct; 624 
                    end 625 
                end 626 
                k=k+1; 627 
            end 628 
            if ventanaEvenExpr(i,j)<ventanaEvenExpr(i,j-1)-THRESHOLD 629 
                ventanaTempAnt=ventanaEvenExpr(i,j); 630 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 631 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaExpr{1,i},2)-1 632 
                        offExpr(i,m)=indice+(n-1)*VENTANA_EVENTO; 633 
                        ventanaEvenExpr(i,j)=ventanaTempAct;                          634 
                        break; 635 
                    end 636 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 637 
                        offExpr(i,k)=indice+(n-1)*VENTANA_EVENTO; 638 
                        ventanaEvenExpr(i,j)=ventanaTempAct; 639 
                        break; 640 
                    end 641 



ANEXO V 
 

Pag 104 de 128 

                   ventanaTempAct=sum(abs(cargaExpr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-642 
median(cargaExpr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 643 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 644 
                        offExpr(i,m)=indice+(n-1)*VENTANA_EVENTO; 645 
                        ventanaEvenExpr(i,j)=ventanaTempAct; 646 
                        break; 647 
                    else 648 
                        ventanaTempAnt=ventanaTempAct; 649 
                    end 650 
                end 651 
                m=m+1; 652 
            end 653 
        end 654 
        j=j+1; 655 
    end; 656 
    vExpr{i}=vTemp; 657 
     658 
    cargaMicr{1,i}=nonzeros(cargaMicr{1,i})'; 659 
    cargaMicr{1,i}=(cargaMicr{1,i})-median(cargaMicr{1,i}); 660 
    j=1; 661 
    k=1; 662 
    m=1; 663 
    vTemp=[]; 664 
    for indice=1:WAKE_UP:size(cargaMicr{1,i},2)-VENTANA_EVENTO; 665 
        ventanaEvenMicr(i,j)=sum(abs(cargaMicr{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaMicr{1,i}(indice:indice+VENTANA_EVENTO-1)))); 666 
        vTemp=[vTemp indice ];  667 
        if j>1 668 
            if ventanaEvenMicr(i,j)>ventanaEvenMicr(i,j-1)+THRESHOLD %hay evento 669 
                ventanaTempAnt=ventanaEvenMicr(i,j); 670 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 671 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaMicr{1,i},2)-1 672 
                        onMicr(i,k)=indice+(n-1)*VENTANA_EVENTO; 673 
                        ventanaEvenMicr(i,j)=ventanaTempAct; 674 
                        break; 675 
                    end 676 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 677 
                        onMicr(i,k)=indice+(n-1)*VENTANA_EVENTO; 678 
                        ventanaEvenMicr(i,j)=ventanaTempAct; 679 
                        break; 680 
                    end 681 
                    ventanaTempAct=sum(abs(cargaMicr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-682 

median(cargaMicr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 683 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 684 
                        onMicr(i,k)=indice+(n-1)*VENTANA_EVENTO; 685 
                        ventanaEvenMicr(i,j)=ventanaTempAct; 686 
                        break; 687 
                    else 688 
                        ventanaTempAnt=ventanaTempAct; 689 
                    end 690 
                end 691 
                k=k+1; 692 
            end 693 
            if ventanaEvenMicr(i,j)<ventanaEvenMicr(i,j-1)-THRESHOLD 694 
                ventanaTempAnt=ventanaEvenMicr(i,j); 695 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 696 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaMicr{1,i},2)-1 697 
                        offMicr(i,m)=indice+(n-1)*VENTANA_EVENTO; 698 
                        ventanaEvenMicr(i,j)=ventanaTempAct; 699 
                        break; 700 
                    end 701 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 702 
                        offMicr(i,k)=indice+(n-1)*VENTANA_EVENTO; 703 
                        ventanaEvenMicr(i,j)=ventanaTempAct; 704 
                        break; 705 
                    end 706 



ANEXO V 
 

Pag 105 de 128 

                   ventanaTempAct=sum(abs(cargaMicr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-707 
median(cargaMicr{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 708 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 709 
                        offMicr(i,m)=indice+(n-1)*VENTANA_EVENTO; 710 
                        ventanaEvenMicr(i,j)=ventanaTempAct; 711 
                        break; 712 
                    else 713 
                        ventanaTempAnt=ventanaTempAct; 714 
                    end 715 
                end 716 
                m=m+1; 717 
            end 718 
        end 719 
        j=j+1; 720 
    end; 721 
    vMicr{i}=vTemp; 722 
     723 
    cargaSand{1,i}=nonzeros(cargaSand{1,i})'; 724 
    cargaSand{1,i}=(cargaSand{1,i})-median(cargaSand{1,i}); 725 
    j=1; 726 
    k=1; 727 
    m=1; 728 
    vTemp=[]; 729 
    for indice=1:WAKE_UP:size(cargaSand{1,i},2)-VENTANA_EVENTO; 730 
        ventanaEvenSand(i,j)=sum(abs(cargaSand{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaSand{1,i}(indice:indice+VENTANA_EVENTO-1)))); 731 
        vTemp=[vTemp indice ];  732 
        if j>1 733 
            if ventanaEvenSand(i,j)>ventanaEvenSand(i,j-1)+THRESHOLD %hay evento 734 
                ventanaTempAnt=ventanaEvenSand(i,j); 735 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 736 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaSand{1,i},2)-1 737 
                        onSand(i,k)=indice+(n-1)*VENTANA_EVENTO; 738 
                        ventanaEvenSand(i,j)=ventanaTempAct;                          739 
                        break; 740 
                    end 741 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 742 
                        onSand(i,k)=indice+(n-1)*VENTANA_EVENTO; 743 
                        ventanaEvenSand(i,j)=ventanaTempAct;                          744 
                        break; 745 
                    end 746 
                    ventanaTempAct=sum(abs(cargaSand{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-747 

median(cargaSand{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 748 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 749 
                        onSand(i,k)=indice+(n-1)*VENTANA_EVENTO; 750 
                        ventanaEvenSand(i,j)=ventanaTempAct; 751 
                        break; 752 
                    else 753 
                        ventanaTempAnt=ventanaTempAct; 754 
                    end 755 
                end 756 
                k=k+1; 757 
            end 758 
            if ventanaEvenSand(i,j)<ventanaEvenSand(i,j-1)-THRESHOLD 759 
                ventanaTempAnt=ventanaEvenSand(i,j); 760 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 761 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaSand{1,i},2)-1 762 
                        offSand(i,m)=indice+(n-1)*VENTANA_EVENTO; 763 
                        ventanaEvenSand(i,j)=ventanaTempAct;                          764 
                        break; 765 
                    end 766 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 767 
                        offSand(i,k)=indice+(n-1)*VENTANA_EVENTO; 768 
                        ventanaEvenSand(i,j)=ventanaTempAct;                          769 
                        break; 770 
                    end 771 



ANEXO V 
 

Pag 106 de 128 

                   ventanaTempAct=sum(abs(cargaSand{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-772 
median(cargaSand{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 773 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 774 
                        offSand(i,m)=indice+(n-1)*VENTANA_EVENTO; 775 
                        ventanaEvenSand(i,j)=ventanaTempAct; 776 
                        break; 777 
                    else 778 
                        ventanaTempAnt=ventanaTempAct; 779 
                    end 780 
                end 781 
                m=m+1; 782 
            end 783 
        end 784 
        j=j+1; 785 
    end; 786 
    vSand{i}=vTemp; 787 
     788 
    cargaVen1{1,i}=nonzeros(cargaVen1{1,i})'; 789 
    cargaVen1{1,i}=(cargaVen1{1,i})-median(cargaVen1{1,i}); 790 
    j=1; 791 
    k=1; 792 
    m=1; 793 
    vTemp=[]; 794 
    for indice=1:WAKE_UP:size(cargaVen1{1,i},2)-VENTANA_EVENTO; 795 
        ventanaEvenVen1(i,j)=sum(abs(cargaVen1{1,i}(indice:indice+VENTANA_EVENTO-1)-median(cargaVen1{1,i}(indice:indice+VENTANA_EVENTO-1)))); 796 
        vTemp=[vTemp indice ];  797 
        if j>1 798 
            if ventanaEvenVen1(i,j)>ventanaEvenVen1(i,j-1)+THRESHOLD %hay evento 799 
                ventanaTempAnt=ventanaEvenVen1(i,j); 800 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 801 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaVen1{1,i},2)-1 802 
                        onVen1(i,k)=indice+(n-1)*VENTANA_EVENTO; 803 
                        ventanaEvenVen1(i,j)=ventanaTempAct;                          804 
                        break; 805 
                    end 806 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 807 
                        onVen1(i,k)=indice+(n-1)*VENTANA_EVENTO; 808 
                        ventanaEvenVen1(i,j)=ventanaTempAct;                          809 
                        break; 810 
                    end 811 
                    ventanaTempAct=sum(abs(cargaVen1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-812 

median(cargaVen1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 813 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 814 
                        onVen1(i,k)=indice+(n-1)*VENTANA_EVENTO; 815 
                        ventanaEvenVen1(i,j)=ventanaTempAct; 816 
                        break; 817 
                    else 818 
                        ventanaTempAnt=ventanaTempAct; 819 
                    end 820 
                end 821 
                k=k+1; 822 
            end 823 
            if ventanaEvenVen1(i,j)<ventanaEvenVen1(i,j-1)-THRESHOLD 824 
                ventanaTempAnt=ventanaEvenVen1(i,j); 825 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 826 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaVen1{1,i},2)-1 827 
                        offVen1(i,m)=indice+(n-1)*VENTANA_EVENTO; 828 
                        ventanaEvenVen1(i,j)=ventanaTempAct;                          829 
                        break; 830 
                    end 831 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 832 
                        offVen1(i,k)=indice+(n-1)*VENTANA_EVENTO; 833 
                        ventanaEvenVen1(i,j)=ventanaTempAct;                          834 
                        break; 835 
                    end 836 



ANEXO V 
 

Pag 107 de 128 

                   ventanaTempAct=sum(abs(cargaVen1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-837 
median(cargaVen1{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 838 

                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 839 
                        offVen1(i,m)=indice+(n-1)*VENTANA_EVENTO; 840 
                        ventanaEvenVen1(i,j)=ventanaTempAct; 841 
                        break; 842 
                    else 843 
                        ventanaTempAnt=ventanaTempAct; 844 
                    end 845 
                end 846 
                m=m+1; 847 
            end 848 
        end 849 
        j=j+1; 850 
    end; 851 
    vVen1{i}=vTemp; 852 
     853 
    cargaMicrOnYSandOn{1,i}=nonzeros(cargaMicrOnYSandOn{1,i})'; 854 
    cargaMicrOnYSandOn{1,i}=(cargaMicrOnYSandOn{1,i})-median(cargaMicrOnYSandOn{1,i}); 855 
    j=1; 856 
    k=1; 857 
    m=1; 858 
    vTemp=[]; 859 
    for indice=1:WAKE_UP:size(cargaMicrOnYSandOn{1,i},2)-VENTANA_EVENTO; 860 
        ventanaEvenMicrOnYSandOn(i,j)=sum(abs(cargaMicrOnYSandOn{1,i}(indice:indice+VENTANA_EVENTO-1)-861 

median(cargaMicrOnYSandOn{1,i}(indice:indice+VENTANA_EVENTO-1)))); 862 
        vTemp=[vTemp indice ];  863 
        if j>1 864 
            if ventanaEvenMicrOnYSandOn(i,j)>ventanaEvenMicrOnYSandOn(i,j-1)+THRESHOLD %hay evento 865 
                ventanaTempAnt=ventanaEvenMicrOnYSandOn(i,j); 866 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 867 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaMicrOnYSandOn{1,i},2)-1 868 
                        onMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 869 
                        ventanaEvenMicrOnYSandOn(i,j)=ventanaTempAct;                          870 
                        break; 871 
                    end 872 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 873 
                        onMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 874 
                        ventanaEvenMicrOnYSandOn(i,j)=ventanaTempAct;                          875 
                        break; 876 
                    end 877 
                    ventanaTempAct=sum(abs(cargaMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-878 

median(cargaMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 879 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 880 
                        onMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 881 
                        ventanaEvenMicrOnYSandOn(i,j)=ventanaTempAct; 882 
                        break; 883 
                    else 884 
                        ventanaTempAnt=ventanaTempAct; 885 
                    end 886 
                end 887 
                k=k+1; 888 
            end 889 
            if ventanaEvenMicrOnYSandOn(i,j)<ventanaEvenMicrOnYSandOn(i,j-1)-THRESHOLD 890 
                ventanaTempAnt=ventanaEvenMicrOnYSandOn(i,j); 891 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 892 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaMicrOnYSandOn{1,i},2)-1 893 
                        offMicrOnYSandOn(i,m)=indice+(n-1)*VENTANA_EVENTO; 894 
                        ventanaEvenMicrOnYSandOn(i,j)=ventanaTempAct;                          895 
                        break; 896 
                    end 897 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 898 
                        offMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 899 
                        ventanaEvenMicrOnYSandOn(i,j)=ventanaTempAct;                          900 
                        break; 901 



ANEXO V 
 

Pag 108 de 128 

                    end 902 
                   ventanaTempAct=sum(abs(cargaMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-903 

median(cargaMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 904 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 905 
                        offMicrOnYSandOn(i,m)=indice+(n-1)*VENTANA_EVENTO; 906 
                        ventanaEvenMicrOnYSandOn(i,j)=ventanaTempAct; 907 
                        break; 908 
                    else 909 
                        ventanaTempAnt=ventanaTempAct; 910 
                    end 911 
                end 912 
                m=m+1; 913 
            end 914 
        end 915 
        j=j+1; 916 
    end; 917 
    vMicrOnYSandOn{i}=vTemp; 918 
     919 
    cargaSandOnYBat3On{1,i}=nonzeros(cargaSandOnYBat3On{1,i})'; 920 
    cargaSandOnYBat3On{1,i}=(cargaSandOnYBat3On{1,i})-median(cargaSandOnYBat3On{1,i}); 921 
    j=1; 922 
    k=1; 923 
    m=1; 924 
    vTemp=[]; 925 
    for indice=1:WAKE_UP:size(cargaSandOnYBat3On{1,i},2)-VENTANA_EVENTO; 926 
        ventanaEvenSandOnYBat3On(i,j)=sum(abs(cargaSandOnYBat3On{1,i}(indice:indice+VENTANA_EVENTO-1)-927 

median(cargaSandOnYBat3On{1,i}(indice:indice+VENTANA_EVENTO-1)))); 928 
        vTemp=[vTemp indice ];  929 
        if j>1 930 
            if ventanaEvenSandOnYBat3On(i,j)>ventanaEvenSandOnYBat3On(i,j-1)+THRESHOLD %hay evento 931 
                ventanaTempAnt=ventanaEvenSandOnYBat3On(i,j); 932 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 933 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaSandOnYBat3On{1,i},2)-1 934 
                        onSandOnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 935 
                        ventanaEvenSandOnYBat3On(i,j)=ventanaTempAct;                          936 
                        break; 937 
                    end 938 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 939 
                        onSandOnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 940 
                        ventanaEvenSandOnYBat3On(i,j)=ventanaTempAct;                          941 
                        break; 942 
                    end 943 
                    ventanaTempAct=sum(abs(cargaSandOnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-944 

median(cargaSandOnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 945 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 946 
                        onSandOnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 947 
                        ventanaEvenSandOnYBat3On(i,j)=ventanaTempAct;  948 
                        break; 949 
                    else 950 
                        ventanaTempAnt=ventanaTempAct; 951 
                    end 952 
                end 953 
                k=k+1; 954 
            end 955 
            if ventanaEvenSandOnYBat3On(i,j)<ventanaEvenSandOnYBat3On(i,j-1)-THRESHOLD 956 
                ventanaTempAnt=ventanaEvenSandOnYBat3On(i,j); 957 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 958 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaSandOnYBat3On{1,i},2)-1 959 
                        offSandOnYBat3On(i,m)=indice+(n-1)*VENTANA_EVENTO; 960 
                        ventanaEvenSandOnYBat3On(i,j)=ventanaTempAct;                          961 
                        break; 962 
                    end 963 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 964 
                        offSandOnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 965 
                        ventanaEvenSandOnYBat3On(i,j)=ventanaTempAct;                          966 



ANEXO V 
 

Pag 109 de 128 

                        break; 967 
                    end 968 
                   ventanaTempAct=sum(abs(cargaSandOnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-969 

median(cargaSandOnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 970 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 971 
                        offSandOnYBat3On(i,m)=indice+(n-1)*VENTANA_EVENTO; 972 
                        ventanaEvenSandOnYBat3On(i,j)=ventanaTempAct;  973 
                        break; 974 
                    else 975 
                        ventanaTempAnt=ventanaTempAct; 976 
                    end 977 
                end 978 
                m=m+1; 979 
            end 980 
        end 981 
        j=j+1; 982 
    end; 983 
    vSandOnYBat3On{i}=vTemp; 984 
     985 
    cargaVen1OnYBat3On{1,i}=nonzeros(cargaVen1OnYBat3On{1,i})'; 986 
    cargaVen1OnYBat3On{1,i}=(cargaVen1OnYBat3On{1,i})-median(cargaVen1OnYBat3On{1,i}); 987 
    j=1; 988 
    k=1; 989 
    m=1; 990 
    vTemp=[]; 991 
    for indice=1:WAKE_UP:size(cargaVen1OnYBat3On{1,i},2)-VENTANA_EVENTO; 992 
        ventanaEvenVen1OnYBat3On(i,j)=sum(abs(cargaVen1OnYBat3On{1,i}(indice:indice+VENTANA_EVENTO-1)-993 

median(cargaVen1OnYBat3On{1,i}(indice:indice+VENTANA_EVENTO-1)))); 994 
        vTemp=[vTemp indice ];  995 
        if j>1 996 
            if ventanaEvenVen1OnYBat3On(i,j)>ventanaEvenVen1OnYBat3On(i,j-1)+THRESHOLD %hay evento 997 
                ventanaTempAnt=ventanaEvenVen1OnYBat3On(i,j); 998 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 999 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaVen1OnYBat3On{1,i},2)-1 1000 
                        onVen1OnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 1001 
                        ventanaEvenVen1OnYBat3On(i,j)=ventanaTempAct;                          1002 
                        break; 1003 
                    end 1004 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 1005 
                        onVen1OnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 1006 
                        ventanaEvenVen1OnYBat3On(i,j)=ventanaTempAct;                          1007 
                        break; 1008 
                    end 1009 
                    ventanaTempAct=sum(abs(cargaVen1OnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-1010 

median(cargaVen1OnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 1011 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 1012 
                        onVen1OnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 1013 
                        ventanaEvenVen1OnYBat3On(i,j)=ventanaTempAct; 1014 
                        break; 1015 
                    else 1016 
                        ventanaTempAnt=ventanaTempAct; 1017 
                    end 1018 
                end 1019 
                k=k+1; 1020 
            end 1021 
            if ventanaEvenVen1OnYBat3On(i,j)<ventanaEvenVen1OnYBat3On(i,j-1)-THRESHOLD 1022 
                ventanaTempAnt=ventanaEvenVen1OnYBat3On(i,j); 1023 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 1024 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaVen1OnYBat3On{1,i},2)-1 1025 
                        offVen1OnYBat3On(i,m)=indice+(n-1)*VENTANA_EVENTO; 1026 
                        ventanaEvenVen1OnYBat3On(i,j)=ventanaTempAct;                          1027 
                        break; 1028 
                    end 1029 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 1030 
                        offVen1OnYBat3On(i,k)=indice+(n-1)*VENTANA_EVENTO; 1031 



ANEXO V 
 

Pag 110 de 128 

                        ventanaEvenVen1OnYBat3On(i,j)=ventanaTempAct;                          1032 
                        break; 1033 
                    end 1034 
                   ventanaTempAct=sum(abs(cargaVen1OnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-1035 

median(cargaVen1OnYBat3On{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 1036 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 1037 
                        offVen1OnYBat3On(i,m)=indice+(n-1)*VENTANA_EVENTO; 1038 
                        ventanaEvenVen1OnYBat3On(i,j)=ventanaTempAct; 1039 
                        break; 1040 
                    else 1041 
                        ventanaTempAnt=ventanaTempAct; 1042 
                    end 1043 
                end 1044 
                m=m+1; 1045 
            end 1046 
        end 1047 
        j=j+1; 1048 
    end; 1049 
    vVen1OnYBat3On{i}=vTemp; 1050 
     1051 
    cargaVen1OnYMicrOnYSandOn{1,i}=nonzeros(cargaVen1OnYMicrOnYSandOn{1,i})'; 1052 
    cargaVen1OnYMicrOnYSandOn{1,i}=(cargaVen1OnYMicrOnYSandOn{1,i})-median(cargaVen1OnYMicrOnYSandOn{1,i}); 1053 
    j=1; 1054 
    k=1; 1055 
    m=1; 1056 
    vTemp=[]; 1057 
    for indice=1:WAKE_UP:size(cargaVen1OnYMicrOnYSandOn{1,i},2)-VENTANA_EVENTO; 1058 
        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=sum(abs(cargaVen1OnYMicrOnYSandOn{1,i}(indice:indice+VENTANA_EVENTO-1)-1059 

median(cargaVen1OnYMicrOnYSandOn{1,i}(indice:indice+VENTANA_EVENTO-1)))); 1060 
        vTemp=[vTemp indice ];  1061 
        if j>1 1062 
            if ventanaEvenVen1OnYMicrOnYSandOn(i,j)>ventanaEvenVen1OnYMicrOnYSandOn(i,j-1)+THRESHOLD %hay evento 1063 
                ventanaTempAnt=ventanaEvenVen1OnYMicrOnYSandOn(i,j); 1064 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 1065 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaVen1OnYMicrOnYSandOn{1,i},2)-1 1066 
                        onVen1OnYMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 1067 
                        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=ventanaTempAct;                          1068 
                        break; 1069 
                    end 1070 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 1071 
                        onVen1OnYMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 1072 
                        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=ventanaTempAct;                          1073 
                        break; 1074 
                    end 1075 
                    ventanaTempAct=sum(abs(cargaVen1OnYMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-1076 

median(cargaVen1OnYMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 1077 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 1078 
                        onVen1OnYMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 1079 
                        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=ventanaTempAct; 1080 
                        break; 1081 
                    else 1082 
                        ventanaTempAnt=ventanaTempAct; 1083 
                    end 1084 
                end 1085 
                k=k+1; 1086 
            end 1087 
            if ventanaEvenVen1OnYMicrOnYSandOn(i,j)<ventanaEvenVen1OnYMicrOnYSandOn(i,j-1)-THRESHOLD 1088 
                ventanaTempAnt=ventanaEvenVen1OnYMicrOnYSandOn(i,j); 1089 
                for n=1:round(WAKE_UP/VENTANA_EVENTO) %miramos las siguientes ventanas hasta una diferencia menor que GRADIENTE 1090 
                    if indice+(n+1)*VENTANA_EVENTO>size(cargaVen1OnYMicrOnYSandOn{1,i},2)-1 1091 
                        offVen1OnYMicrOnYSandOn(i,m)=indice+(n-1)*VENTANA_EVENTO; 1092 
                        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=ventanaTempAct;                          1093 
                        break; 1094 
                    end 1095 
                    if n==round(WAKE_UP/VENTANA_EVENTO) 1096 



ANEXO V 
 

Pag 111 de 128 

                        offVen1OnYMicrOnYSandOn(i,k)=indice+(n-1)*VENTANA_EVENTO; 1097 
                        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=ventanaTempAct;                          1098 
                        break; 1099 
                    end 1100 
                   ventanaTempAct=sum(abs(cargaVen1OnYMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)-1101 

median(cargaVen1OnYMicrOnYSandOn{1,i}(indice+n*VENTANA_EVENTO:indice+(n+1)*VENTANA_EVENTO-1)))); 1102 
                    if abs(ventanaTempAnt-ventanaTempAct)<=GRADIENTE 1103 
                        offVen1OnYMicrOnYSandOn(i,m)=indice+(n-1)*VENTANA_EVENTO; 1104 
                        ventanaEvenVen1OnYMicrOnYSandOn(i,j)=ventanaTempAct; 1105 
                        break; 1106 
                    else 1107 
                        ventanaTempAnt=ventanaTempAct; 1108 
                    end 1109 
                end 1110 
                m=m+1; 1111 
            end 1112 
        end 1113 
        j=j+1; 1114 
    end; 1115 
    vVen1OnYMicrOnYSandOn{i}=vTemp; 1116 
     1117 
end; 1118 
clear ventana  ventanaTempAnt ventanaTempAct j k m n ; 1119 
 1120 
 1121 
%% VER EVENTOS 1122 
for z=1:TRIALS 1123 
    figure; 1124 
    hold; 1125 
    %Marca Ventana 1126 
    X=ones(1,2)*max(cargaBat1{1,z}); 1127 
    Y=ones(1,2)*max(cargaBat1{1,z}); 1128 
    for x=1:size(vBat1{z},2) 1129 
        h=area([vBat1{z}(x) vBat1{z}(x)+VENTANA_EVENTO],[max(cargaBat1{1,z}) max(cargaBat1{1,z})],... 1130 
                'FaceColor','y'); 1131 
        set(h,'BaseValue',min(cargaBat1{1,z})) 1132 
    end 1133 
    %Marca On 1134 
    for x=1:size(onBat1,2) 1135 
        %h=area([onBat1(z,x) onBat1(z,x)+VENTANA_EVENTO],[max(cargaBat1{1,z}) max(cargaBat1{1,z})],... 1136 
        if onBat1(z,x) %si es distinto de cero se pinta 1137 
            h=area([onBat1(z,x) onBat1(z,x)+VENTANA_EVENTO],X,... 1138 
                'FaceColor','g'); 1139 
            set(h,'BaseValue',min(cargaBat1{1,z})) 1140 
        end 1141 
    end 1142 
    %Marca Off 1143 
    for x=1:size(offBat1,2) 1144 
        %h=area([offBat1(z,x) offBat1(z,x)+VENTANA_EVENTO],[max(cargaBat1{1,z}) max(cargaBat1{1,z})],... 1145 
        if  offBat1(z,x) 1146 
            h=area([offBat1(z,x) offBat1(z,x)+VENTANA_EVENTO],Y,... 1147 
                    'FaceColor','r'); 1148 
            set(h,'BaseValue',min(cargaBat1{1,z})) 1149 
        end 1150 
    end 1151 
    plot(cargaBat1{1,z},'k') 1152 
    title('cargaBat1') 1153 
 1154 
end 1155 
pause;  1156 
close all; 1157 
 1158 
for z=1:TRIALS 1159 
    figure; 1160 
    hold; 1161 



ANEXO V 
 

Pag 112 de 128 

    %Marca Ventana 1162 
    X=ones(1,2)*max(cargaBat2{1,z}); 1163 
    Y=ones(1,2)*max(cargaBat2{1,z}); 1164 
    for x=1:size(vBat2{z},2) 1165 
        h=area([vBat2{z}(x) vBat2{z}(x)+VENTANA_EVENTO],[max(cargaBat2{1,z}) max(cargaBat2{1,z})],... 1166 
                'FaceColor','y'); 1167 
        set(h,'BaseValue',min(cargaBat2{1,z})) 1168 
    end 1169 
    %Marca On 1170 
    for x=1:size(onBat2,2) 1171 
        %h=area([onBat2(z,x) onBat2(z,x)+VENTANA_EVENTO],[max(cargaBat2{1,z}) max(cargaBat2{1,z})],... 1172 
        if onBat2(z,x) %si es distinto de cero se pinta 1173 
            h=area([onBat2(z,x) onBat2(z,x)+VENTANA_EVENTO],X,... 1174 
                'FaceColor','g'); 1175 
            set(h,'BaseValue',min(cargaBat2{1,z})) 1176 
        end 1177 
    end 1178 
    %Marca Off 1179 
    for x=1:size(offBat2,2) 1180 
        %h=area([offBat2(z,x) offBat2(z,x)+VENTANA_EVENTO],[max(cargaBat2{1,z}) max(cargaBat2{1,z})],... 1181 
        if  offBat2(z,x) 1182 
            h=area([offBat2(z,x) offBat2(z,x)+VENTANA_EVENTO],Y,... 1183 
                    'FaceColor','r'); 1184 
            set(h,'BaseValue',min(cargaBat2{1,z})) 1185 
        end 1186 
    end 1187 
    plot(cargaBat2{1,z},'k') 1188 
    title('cargaBat2') 1189 
 1190 
end 1191 
pause;  1192 
close all; 1193 
 1194 
for z=1:TRIALS 1195 
    figure; 1196 
    hold; 1197 
    %Marca Ventana 1198 
    X=ones(1,2)*max(cargaBat3{1,z}); 1199 
    Y=ones(1,2)*max(cargaBat3{1,z}); 1200 
    for x=1:size(vBat3{z},2) 1201 
        h=area([vBat3{z}(x) vBat3{z}(x)+VENTANA_EVENTO],[max(cargaBat3{1,z}) max(cargaBat3{1,z})],... 1202 
                'FaceColor','y'); 1203 
        set(h,'BaseValue',min(cargaBat3{1,z})) 1204 
    end 1205 
    %Marca On 1206 
    for x=1:size(onBat3,2) 1207 
        %h=area([onBat3(z,x) onBat3(z,x)+VENTANA_EVENTO],[max(cargaBat3{1,z}) max(cargaBat3{1,z})],... 1208 
        if onBat3(z,x) %si es distinto de cero se pinta 1209 
            h=area([onBat3(z,x) onBat3(z,x)+VENTANA_EVENTO],X,... 1210 
                'FaceColor','g'); 1211 
            set(h,'BaseValue',min(cargaBat3{1,z})) 1212 
        end 1213 
    end 1214 
    %Marca Off 1215 
    for x=1:size(offBat3,2) 1216 
        %h=area([offBat3(z,x) offBat3(z,x)+VENTANA_EVENTO],[max(cargaBat3{1,z}) max(cargaBat3{1,z})],... 1217 
        if  offBat3(z,x) 1218 
            h=area([offBat3(z,x) offBat3(z,x)+VENTANA_EVENTO],Y,... 1219 
                    'FaceColor','r'); 1220 
            set(h,'BaseValue',min(cargaBat3{1,z})) 1221 
        end 1222 
    end 1223 
    plot(cargaBat3{1,z},'k') 1224 
    title('cargaBat3') 1225 
 1226 



ANEXO V 
 

Pag 113 de 128 

end 1227 
pause;  1228 
close all; 1229 
 1230 
for z=1:TRIALS 1231 
    figure; 1232 
    hold; 1233 
    %Marca Ventana 1234 
    X=ones(1,2)*max(cargaExpr{1,z}); 1235 
    Y=ones(1,2)*max(cargaExpr{1,z}); 1236 
    for x=1:size(vExpr{z},2) 1237 
        h=area([vExpr{z}(x) vExpr{z}(x)+VENTANA_EVENTO],[max(cargaExpr{1,z}) max(cargaExpr{1,z})],... 1238 
                'FaceColor','y'); 1239 
        set(h,'BaseValue',min(cargaExpr{1,z})) 1240 
    end 1241 
    %Marca On 1242 
    for x=1:size(onExpr,2) 1243 
        %h=area([onExpr(z,x) onExpr(z,x)+VENTANA_EVENTO],[max(cargaExpr{1,z}) max(cargaExpr{1,z})],... 1244 
        if onExpr(z,x) %si es distinto de cero se pinta 1245 
            h=area([onExpr(z,x) onExpr(z,x)+VENTANA_EVENTO],X,... 1246 
                'FaceColor','g'); 1247 
            set(h,'BaseValue',min(cargaExpr{1,z})) 1248 
        end 1249 
    end 1250 
    %Marca Off 1251 
    for x=1:size(offExpr,2) 1252 
        %h=area([offExpr(z,x) offExpr(z,x)+VENTANA_EVENTO],[max(cargaExpr{1,z}) max(cargaExpr{1,z})],... 1253 
        if  offExpr(z,x) 1254 
            h=area([offExpr(z,x) offExpr(z,x)+VENTANA_EVENTO],Y,... 1255 
                    'FaceColor','r'); 1256 
            set(h,'BaseValue',min(cargaExpr{1,z})) 1257 
        end 1258 
    end 1259 
    plot(cargaExpr{1,z},'k') 1260 
    title('cargaExpr') 1261 
 1262 
end 1263 
pause;  1264 
close all; 1265 
 1266 
for z=1:TRIALS 1267 
    figure; 1268 
    hold; 1269 
    %Marca Ventana 1270 
    X=ones(1,2)*max(cargaMicr{1,z}); 1271 
    Y=ones(1,2)*max(cargaMicr{1,z}); 1272 
    for x=1:size(vMicr{z},2) 1273 
        h=area([vMicr{z}(x) vMicr{z}(x)+VENTANA_EVENTO],[max(cargaMicr{1,z}) max(cargaMicr{1,z})],... 1274 
                'FaceColor','y'); 1275 
        set(h,'BaseValue',min(cargaMicr{1,z})) 1276 
    end 1277 
    %Marca On 1278 
    for x=1:size(onMicr,2) 1279 
        %h=area([onMicr(z,x) onMicr(z,x)+VENTANA_EVENTO],[max(cargaMicr{1,z}) max(cargaMicr{1,z})],... 1280 
        if onMicr(z,x) %si es distinto de cero se pinta 1281 
            h=area([onMicr(z,x) onMicr(z,x)+VENTANA_EVENTO],X,... 1282 
                'FaceColor','g'); 1283 
            set(h,'BaseValue',min(cargaMicr{1,z})) 1284 
        end 1285 
    end 1286 
    %Marca Off 1287 
    for x=1:size(offMicr,2) 1288 
        %h=area([offMicr(z,x) offMicr(z,x)+VENTANA_EVENTO],[max(cargaMicr{1,z}) max(cargaMicr{1,z})],... 1289 
        if  offMicr(z,x) 1290 
            h=area([offMicr(z,x) offMicr(z,x)+VENTANA_EVENTO],Y,... 1291 



ANEXO V 
 

Pag 114 de 128 

                    'FaceColor','r'); 1292 
            set(h,'BaseValue',min(cargaMicr{1,z})) 1293 
        end 1294 
    end 1295 
    plot(cargaMicr{1,z},'k') 1296 
    title('cargaMicr') 1297 
 1298 
end 1299 
pause;  1300 
close all; 1301 
 1302 
for z=1:TRIALS 1303 
    figure; 1304 
    hold; 1305 
    %Marca Ventana 1306 
    X=ones(1,2)*max(cargaSand{1,z}); 1307 
    Y=ones(1,2)*max(cargaSand{1,z}); 1308 
    for x=1:size(vSand{z},2) 1309 
        h=area([vSand{z}(x) vSand{z}(x)+VENTANA_EVENTO],[max(cargaSand{1,z}) max(cargaSand{1,z})],... 1310 
                'FaceColor','y'); 1311 
        set(h,'BaseValue',min(cargaSand{1,z})) 1312 
    end 1313 
    %Marca On 1314 
    for x=1:size(onSand,2) 1315 
        %h=area([onSand(z,x) onSand(z,x)+VENTANA_EVENTO],[max(cargaSand{1,z}) max(cargaSand{1,z})],... 1316 
        if onSand(z,x) %si es distinto de cero se pinta 1317 
            h=area([onSand(z,x) onSand(z,x)+VENTANA_EVENTO],X,... 1318 
                'FaceColor','g'); 1319 
            set(h,'BaseValue',min(cargaSand{1,z})) 1320 
        end 1321 
    end 1322 
    %Marca Off 1323 
    for x=1:size(offSand,2) 1324 
        %h=area([offSand(z,x) offSand(z,x)+VENTANA_EVENTO],[max(cargaSand{1,z}) max(cargaSand{1,z})],... 1325 
        if  offSand(z,x) 1326 
            h=area([offSand(z,x) offSand(z,x)+VENTANA_EVENTO],Y,... 1327 
                    'FaceColor','r'); 1328 
            set(h,'BaseValue',min(cargaSand{1,z})) 1329 
        end 1330 
    end 1331 
    plot(cargaSand{1,z},'k') 1332 
    title('cargaSand') 1333 
 1334 
end 1335 
pause;  1336 
close all; 1337 
 1338 
for z=1:TRIALS 1339 
    figure; 1340 
    hold; 1341 
    %Marca Ventana 1342 
    X=ones(1,2)*max(cargaVen1{1,z}); 1343 
    Y=ones(1,2)*max(cargaVen1{1,z}); 1344 
    for x=1:size(vVen1{z},2) 1345 
        h=area([vVen1{z}(x) vVen1{z}(x)+VENTANA_EVENTO],[max(cargaVen1{1,z}) max(cargaVen1{1,z})],... 1346 
                'FaceColor','y'); 1347 
        set(h,'BaseValue',min(cargaVen1{1,z})) 1348 
    end 1349 
    %Marca On 1350 
    for x=1:size(onVen1,2) 1351 
        %h=area([onVen1(z,x) onVen1(z,x)+VENTANA_EVENTO],[max(cargaVen1{1,z}) max(cargaVen1{1,z})],... 1352 
        if onVen1(z,x) %si es distinto de cero se pinta 1353 
            h=area([onVen1(z,x) onVen1(z,x)+VENTANA_EVENTO],X,... 1354 
                'FaceColor','g'); 1355 
            set(h,'BaseValue',min(cargaVen1{1,z})) 1356 



ANEXO V 
 

Pag 115 de 128 

        end 1357 
    end 1358 
    %Marca Off 1359 
    for x=1:size(offVen1,2) 1360 
        %h=area([offVen1(z,x) offVen1(z,x)+VENTANA_EVENTO],[max(cargaVen1{1,z}) max(cargaVen1{1,z})],... 1361 
        if  offVen1(z,x) 1362 
            h=area([offVen1(z,x) offVen1(z,x)+VENTANA_EVENTO],Y,... 1363 
                    'FaceColor','r'); 1364 
            set(h,'BaseValue',min(cargaVen1{1,z})) 1365 
        end 1366 
    end 1367 
    plot(cargaVen1{1,z},'k') 1368 
    title('cargaVen1') 1369 
 1370 
end 1371 
pause;  1372 
close all; 1373 
 1374 
for z=1:TRIALS 1375 
    figure; 1376 
    hold; 1377 
    %Marca Ventana 1378 
    X=ones(1,2)*max(cargaMicrOnYSandOn{1,z}); 1379 
    Y=ones(1,2)*max(cargaMicrOnYSandOn{1,z}); 1380 
    for x=1:size(vMicrOnYSandOn{z},2) 1381 
        h=area([vMicrOnYSandOn{z}(x) vMicrOnYSandOn{z}(x)+VENTANA_EVENTO],[max(cargaMicrOnYSandOn{1,z}) max(cargaMicrOnYSandOn{1,z})],... 1382 
                'FaceColor','y'); 1383 
        set(h,'BaseValue',min(cargaMicrOnYSandOn{1,z})) 1384 
    end 1385 
    %Marca On 1386 
    for x=1:size(onMicrOnYSandOn,2) 1387 
        %h=area([onMicrOnYSandOn(z,x) onMicrOnYSandOn(z,x)+VENTANA_EVENTO],[max(cargaMicrOnYSandOn{1,z}) max(cargaMicrOnYSandOn{1,z})],... 1388 
        if onMicrOnYSandOn(z,x) %si es distinto de cero se pinta 1389 
            h=area([onMicrOnYSandOn(z,x) onMicrOnYSandOn(z,x)+VENTANA_EVENTO],X,... 1390 
                'FaceColor','g'); 1391 
            set(h,'BaseValue',min(cargaMicrOnYSandOn{1,z})) 1392 
        end 1393 
    end 1394 
    %Marca Off 1395 
    for x=1:size(offMicrOnYSandOn,2) 1396 
        %h=area([offMicrOnYSandOn(z,x) offMicrOnYSandOn(z,x)+VENTANA_EVENTO],[max(cargaMicrOnYSandOn{1,z}) max(cargaMicrOnYSandOn{1,z })],... 1397 
        if  offMicrOnYSandOn(z,x) 1398 
            h=area([offMicrOnYSandOn(z,x) offMicrOnYSandOn(z,x)+VENTANA_EVENTO],Y,... 1399 
                    'FaceColor','r'); 1400 
            set(h,'BaseValue',min(cargaMicrOnYSandOn{1,z})) 1401 
        end 1402 
    end 1403 
    plot(cargaMicrOnYSandOn{1,z},'k') 1404 
    title('cargaMicrOnYSandOn') 1405 
 1406 
end 1407 
pause;  1408 
close all; 1409 
 1410 
for z=1:TRIALS 1411 
    figure; 1412 
    hold; 1413 
    %Marca Ventana 1414 
    X=ones(1,2)*max(cargaSandOnYBat3On{1,z}); 1415 
    Y=ones(1,2)*max(cargaSandOnYBat3On{1,z}); 1416 
    for x=1:size(vSandOnYBat3On{z},2) 1417 
        h=area([vSandOnYBat3On{z}(x) vSandOnYBat3On{z}(x)+VENTANA_EVENTO],[max(cargaSandOnYBat3On{1,z}) max(cargaSandOnYBat3On{1,z})],... 1418 
                'FaceColor','y'); 1419 
        set(h,'BaseValue',min(cargaSandOnYBat3On{1,z})) 1420 
    end 1421 



ANEXO V 
 

Pag 116 de 128 

    %Marca On 1422 
    for x=1:size(onSandOnYBat3On,2) 1423 
        %h=area([onSandOnYBat3On(z,x) onSandOnYBat3On(z,x)+VENTANA_EVENTO],[max(cargaSandOnYBat3On{1,z}) max(cargaSandOnYBat3On{1,z})],... 1424 
        if onSandOnYBat3On(z,x) %si es distinto de cero se pinta 1425 
            h=area([onSandOnYBat3On(z,x) onSandOnYBat3On(z,x)+VENTANA_EVENTO],X,... 1426 
                'FaceColor','g'); 1427 
            set(h,'BaseValue',min(cargaSandOnYBat3On{1,z})) 1428 
        end 1429 
    end 1430 
    %Marca Off 1431 
    for x=1:size(offSandOnYBat3On,2) 1432 
        %h=area([offSandOnYBat3On(z,x) offSandOnYBat3On(z,x)+VENTANA_EVENTO],[max(cargaSandOnYBat3On{1,z}) max(cargaSandOnYBat3On{1,z})],... 1433 
        if  offSandOnYBat3On(z,x) 1434 
            h=area([offSandOnYBat3On(z,x) offSandOnYBat3On(z,x)+VENTANA_EVENTO],Y,... 1435 
                    'FaceColor','r'); 1436 
            set(h,'BaseValue',min(cargaSandOnYBat3On{1,z})) 1437 
        end 1438 
    end 1439 
    plot(cargaSandOnYBat3On{1,z},'k') 1440 
    title('cargaSandOnYBat3On') 1441 
 1442 
end 1443 
pause;  1444 
close all; 1445 
 1446 
for z=1:TRIALS 1447 
    figure; 1448 
    hold; 1449 
    %Marca Ventana 1450 
    X=ones(1,2)*max(cargaVen1OnYBat3On{1,z}); 1451 
    Y=ones(1,2)*max(cargaVen1OnYBat3On{1,z}); 1452 
    for x=1:size(vVen1OnYBat3On{z},2) 1453 
        h=area([vVen1OnYBat3On{z}(x) vVen1OnYBat3On{z}(x)+VENTANA_EVENTO],[max(cargaVen1OnYBat3On{1,z}) max(cargaVen1OnYBat3On{1,z})] ,... 1454 
                'FaceColor','y'); 1455 
        set(h,'BaseValue',min(cargaVen1OnYBat3On{1,z})) 1456 
    end 1457 
    %Marca On 1458 
    for x=1:size(onVen1OnYBat3On,2) 1459 
        %h=area([onVen1OnYBat3On(z,x) onVen1OnYBat3On(z,x)+VENTANA_EVENTO],[max(cargaVen1OnYBat3On{1,z}) max(cargaVen1OnYBat3On{1,z})],... 1460 
        if onVen1OnYBat3On(z,x) %si es distinto de cero se pinta 1461 
            h=area([onVen1OnYBat3On(z,x) onVen1OnYBat3On(z,x)+VENTANA_EVENTO],X,... 1462 
                'FaceColor','g'); 1463 
            set(h,'BaseValue',min(cargaVen1OnYBat3On{1,z})) 1464 
        end 1465 
    end 1466 
    %Marca Off 1467 
    for x=1:size(offVen1OnYBat3On,2) 1468 
        %h=area([offVen1OnYBat3On(z,x) offVen1OnYBat3On(z,x)+VENTANA_EVENTO],[max(cargaVen1OnYBat3On{1,z}) max(cargaVen1OnYBat3On{1,z })],... 1469 
        if  offVen1OnYBat3On(z,x) 1470 
            h=area([offVen1OnYBat3On(z,x) offVen1OnYBat3On(z,x)+VENTANA_EVENTO],Y,... 1471 
                    'FaceColor','r'); 1472 
            set(h,'BaseValue',min(cargaVen1OnYBat3On{1,z})) 1473 
        end 1474 
    end 1475 
    plot(cargaVen1OnYBat3On{1,z},'k') 1476 
    title('cargaVen1OnYBat3On') 1477 
 1478 
end 1479 
pause;  1480 
close all; 1481 
 1482 
for z=1:TRIALS 1483 
    figure; 1484 
    hold; 1485 
    %Marca Ventana 1486 



ANEXO V 
 

Pag 117 de 128 

    X=ones(1,2)*max(cargaVen1OnYMicrOnYSandOn{1,z}); 1487 
    Y=ones(1,2)*max(cargaVen1OnYMicrOnYSandOn{1,z}); 1488 
    for x=1:size(vVen1OnYMicrOnYSandOn{z},2) 1489 
        h=area([vVen1OnYMicrOnYSandOn{z}(x) vVen1OnYMicrOnYSandOn{z}(x)+VENTANA_EVENTO],[max(cargaVen1OnYMicrOnYSandOn{1,z}) 1490 

max(cargaVen1OnYMicrOnYSandOn{1,z})],... 1491 
                'FaceColor','y');; 1492 
        set(h,'BaseValue',min(cargaVen1OnYMicrOnYSandOn{1,z})) 1493 
    end 1494 
    %Marca On 1495 
    for x=1:size(onVen1OnYMicrOnYSandOn,2) 1496 
        %h=area([onVen1OnYMicrOnYSandOn(z,x) onVen1OnYMicrOnYSandOn(z,x)+VENTANA_EVENTO],[max(cargaVen1OnYMicrOnYSandOn{1,z}) 1497 

max(cargaVen1OnYMicrOnYSandOn{1,z})],... 1498 
        if onVen1OnYMicrOnYSandOn(z,x) %si es distinto de cero se pinta 1499 
            h=area([onVen1OnYMicrOnYSandOn(z,x) onVen1OnYMicrOnYSandOn(z,x)+VENTANA_EVENTO],X,... 1500 
                'FaceColor','g'); 1501 
            set(h,'BaseValue',min(cargaVen1OnYMicrOnYSandOn{1,z})) 1502 
        end 1503 
    end 1504 
    %Marca Off 1505 
    for x=1:size(offVen1OnYMicrOnYSandOn,2) 1506 
        %h=area([offVen1OnYMicrOnYSandOn(z,x) offVen1OnYMicrOnYSandOn(z,x)+VENTANA_EVENTO],[max(cargaVen1OnYMicrOnYSandOn{1,z}) 1507 

max(cargaVen1OnYMicrOnYSandOn{1,z})],... 1508 
        if  offVen1OnYMicrOnYSandOn(z,x) 1509 
            h=area([offVen1OnYMicrOnYSandOn(z,x) offVen1OnYMicrOnYSandOn(z,x)+VENTANA_EVENTO],Y,... 1510 
                    'FaceColor','r');; 1511 
            set(h,'BaseValue',min(cargaVen1OnYMicrOnYSandOn{1,z})) 1512 
        end 1513 
    end 1514 
    plot(cargaVen1OnYMicrOnYSandOn{1,z},'k') 1515 
    title('cargaVen1OnYMicrOnYSandOn') 1516 
 1517 
end 1518 
 1519 
close all; 1520 
 1521 
 1522 
 1523 
 1524 
 1525 

 

TDC  

 
 



ANEXO VI 

Pag 118 de 128 

ANEXO VI 

 

SCRIPT PARA GRAFICADO

%% CARGAS  1 
 2 
for z=1:TRIALS 3 
    figure 4 
   hold; 5 
   plot(cargaBat1{1,z},'b') 6 
   title('cargaBat1') 7 
    plot(cargaBat1Filtr{1,z},'r') 8 
    9 
end 10 
pause;  11 
close all; 12 
 13 
for z=1:TRIALS 14 
   figure 15 
 hold; 16 
  plot(cargaBat2{1,z}) 17 
   title('cargaBat2') 18 
 19 
%    figure 20 
   plot(cargaBat2Filtr{1,z},'r') 21 
   title('cargaBat2Filtrada') 22 
 23 
end 24 
pause; 25 
close all; 26 
 27 
for z=1:TRIALS 28 
   figure 29 
   plot(cargaBat3{1,z}) 30 
   title('cargaBat3') 31 
end 32 
pause; 33 
close all; 34 
 35 
for z=1:TRIALS 36 
   figure 37 
   plot(cargaExpr{1,z}) 38 
   title('cargaExpr') 39 
end 40 
pause; 41 
close all; 42 
 43 
for z=1:TRIALS 44 
   figure 45 
   hold; 46 
   plot(cargaMicr{1,z}) 47 
   title('cargaMicr') 48 
   plot(cargaMicrFiltr{1,z},'r') 49 
end 50 
pause; 51 
close all; 52 
 53 
for z=1:TRIALS 54 
   figure 55 
   hold; 56 



ANEXO VI 
 

Pag 119 de 128 

   plot(cargaSand{1,z}) 57 
   title('cargaSand') 58 
   plot(cargaSandFiltr{1,z},'r') 59 
   %title('cargaBat2Filtrada') 60 
 61 
    62 
end 63 
pause; 64 
close all; 65 
 66 
for z=1:TRIALS 67 
   figure 68 
   plot(cargaVen1{1,z}) 69 
   title('cargaVen1') 70 
end 71 
pause; 72 
close all; 73 
 74 
for z=1:TRIALS 75 
   figure 76 
   plot(cargaMicrOnYSandOn{1,z}) 77 
   title('cargaMicrOnYSandOn') 78 
end 79 
pause; 80 
close all; 81 
 82 
for z=1:TRIALS 83 
   figure 84 
   plot(cargaSandOnYBat3On{1,z}) 85 
   title('cargaSandOnYBat3On') 86 
end 87 
pause; 88 
close all; 89 
 90 
for z=1:TRIALS 91 
   figure 92 
   plot(cargaVen1OnYBat3On{1,z}) 93 
   title('cargaVen1OnYBat3On') 94 
end 95 
pause; 96 
close all; 97 
 98 
for z=1:TRIALS 99 
   figure 100 
   plot(cargaVen1OnYMicrOnYSandOn{1,z}) 101 
   title('cargaVen1OnYMicrOnYSandOn') 102 
end 103 
pause; 104 
close all; 105 
 106 
clear z; 107 
 108 
 109 
 110 
 111 
%% RMS 112 
 113 
 114 
figure 115 
plot(rmsBat1) 116 
title('rmsBat1') 117 
pause; 118 
close all; 119 
 120 
 121 



ANEXO VI 
 

Pag 120 de 128 

figure 122 
plot(rmsBat2) 123 
title('rmsBat2') 124 
pause; 125 
close all; 126 
 127 
figure 128 
plot(rmsBat3) 129 
title('rmsBat3') 130 
pause; 131 
close all; 132 
 133 
figure 134 
plot(rmsExpr) 135 
title('rmsExpr') 136 
pause; 137 
close all; 138 
 139 
figure 140 
plot(rmsMicr) 141 
title('rmsMicr') 142 
pause; 143 
close all; 144 
 145 
figure 146 
plot(rmsSand) 147 
title('rmsSand') 148 
pause; 149 
close all; 150 
 151 
figure 152 
plot(rmsVen1) 153 
title('rmsVen1') 154 
pause; 155 
close all; 156 
 157 
figure 158 
plot(rmsMicrOnYSandOn) 159 
title('rmsMicrOnYSandOn') 160 
pause; 161 
close all; 162 
 163 
figure 164 
plot(rmsSandOnYBat3On) 165 
title('rmsSandOnYBat3On') 166 
pause; 167 
close all; 168 
 169 
figure 170 
plot(rmsVen1OnYBat3On) 171 
title('rmsVen1OnYBat3On') 172 
pause; 173 
close all; 174 
 175 
figure 176 
plot(rmsVen1OnYMicrOnYSandOn) 177 
title('rmsVen1OnYMicrOnYSandOn') 178 
pause; 179 
close all; 180 
 181 
TODOS=[rmsBat1  rmsBat2  rmsBat3  rmsExpr  rmsMicr  ... 182 
    rmsSand rmsVen1 rmsMicrOnYSandOn rmsSandOnYBat3On ... 183 
    rmsVen1OnYBat3On rmsVen1OnYMicrOnYSandOn]; 184 
GROUP=[ones(1,length(rmsBat1)), 2*ones(1,length(rmsBat2)), 3*ones(1,length(rmsBat3))... 185 
, 4*ones(1,length(rmsExpr)), 5*ones(1,length(rmsMicr)),6*ones(1,length(rmsSand))... 186 



ANEXO VI 
 

Pag 121 de 128 

, 7*ones(1,length(rmsVen1)), 8*ones(1,length(rmsMicrOnYSandOn)),9*ones(1,length(rmsSandOnYBat3On))... 187 
, 10*ones(1,length(rmsVen1OnYBat3On)), 11*ones(1,length(rmsVen1OnYMicrOnYSandOn))]; 188 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 189 
figure; 190 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 191 
 192 
 193 
 194 
 195 
 196 
%% CONCORDIA 197 
 198 
figure 199 
plot(CalfBat1,CbetBat1,'+') 200 
title('CCDBat1') 201 
pause 202 
 203 
figure 204 
plot(CalfBat2,CbetBat2,'+') 205 
title('CCDBat2') 206 
pause 207 
 208 
figure 209 
plot(CalfBat3,CbetBat3,'+') 210 
title('CCDBat3') 211 
pause 212 
 213 
figure 214 
plot(CalfExpr,CbetExpr,'+') 215 
title('CCDExpr') 216 
pause 217 
 218 
figure 219 
plot(CalfMicr,CbetMicr,'+') 220 
title('CCDMicr') 221 
pause 222 
 223 
figure 224 
plot(CalfSand,CbetSand,'+') 225 
title('CCDSand') 226 
pause 227 
 228 
figure 229 
plot(CalfVen1,CbetVen1,'+') 230 
title('CCDVen1') 231 
pause 232 
 233 
figure 234 
plot(CalfMicrOnYSandOn,CbetMicrOnYSandOn,'+') 235 
title('CCDMicrOnYSandOn') 236 
pause 237 
 238 
figure 239 
plot(CalfSandOnYBat3On,CbetSandOnYBat3On,'+') 240 
title('CCDSandOnYBat3On') 241 
pause 242 
 243 
figure 244 
plot(CalfVen1OnYBat3On,CbetVen1OnYBat3On,'+') 245 
title('CCDVen1OnYBat3On') 246 
pause 247 
 248 
figure 249 
plot(CalfVen1OnYMicrOnYSandOn,CbetVen1OnYMicrOnYSandOn,'+') 250 
title('CCDVen1OnYMicrOnYSandOn') 251 



ANEXO VI 
 

Pag 122 de 128 

pause 252 
 253 
close all 254 
 255 
%% FFT 256 
 257 
figure 258 
hold; 259 
plot(fft1Bat1,'color','r') 260 
plot(fft2Bat1,'color','g') 261 
plot(fft3Bat1,'color','b') 262 
title('FFTBat1 r=1, g=2, b=3') 263 
pause; 264 
close all; 265 
 266 
figure 267 
hold; 268 
plot(fft1Bat2,'color','r') 269 
plot(fft2Bat2,'color','g') 270 
plot(fft3Bat2,'color','b') 271 
title('FFTBat2 r=1, g=2, b=3') 272 
pause; 273 
close all; 274 
 275 
figure 276 
hold; 277 
plot(fft1Bat3,'color','r') 278 
plot(fft2Bat3,'color','g') 279 
plot(fft3Bat3,'color','b') 280 
title('FFTBat3 r=1, g=2, b=3') 281 
pause; 282 
close all; 283 
 284 
figure 285 
hold; 286 
plot(fft1Expr,'color','r') 287 
plot(fft2Expr,'color','g') 288 
plot(fft3Expr,'color','b') 289 
title('FFTExpr r=1, g=2, b=3') 290 
pause; 291 
close all; 292 
 293 
figure 294 
hold; 295 
plot(fft1Micr,'color','r') 296 
plot(fft2Micr,'color','g') 297 
plot(fft3Micr,'color','b') 298 
title('FFTMicr r=1, g=2, b=3') 299 
pause; 300 
close all; 301 
 302 
figure 303 
hold; 304 
plot(fft1Sand,'color','r') 305 
plot(fft2Sand,'color','g') 306 
plot(fft3Sand,'color','b') 307 
title('FFTSand r=1, g=2, b=3') 308 
pause; 309 
close all; 310 
 311 
figure 312 
hold; 313 
plot(fft1Ven1,'color','r') 314 
plot(fft2Ven1,'color','g') 315 
plot(fft3Ven1,'color','b') 316 



ANEXO VI 
 

Pag 123 de 128 

title('FFTVen1 r=1, g=2, b=3') 317 
pause; 318 
close all; 319 
 320 
figure 321 
hold; 322 
plot(fft1MicrOnYSandOn,'color','r') 323 
plot(fft2MicrOnYSandOn,'color','g') 324 
plot(fft3MicrOnYSandOn,'color','b') 325 
title('FFTMicrOnYSandOn r=1, g=2, b=3') 326 
pause; 327 
close all; 328 
 329 
figure 330 
hold; 331 
plot(fft1SandOnYBat3On,'color','r') 332 
plot(fft2SandOnYBat3On,'color','g') 333 
plot(fft3SandOnYBat3On,'color','b') 334 
title('FFTSandOnYBat3On r=1, g=2, b=3') 335 
pause; 336 
close all; 337 
 338 
figure 339 
hold; 340 
plot(fft1Ven1OnYBat3On,'color','r') 341 
plot(fft2Ven1OnYBat3On,'color','g') 342 
plot(fft3Ven1OnYBat3On,'color','b') 343 
title('FFTVen1OnYBat3On r=1, g=2, b=3') 344 
pause; 345 
close all; 346 
 347 
figure 348 
hold; 349 
plot(fft1Ven1OnYMicrOnYSandOn,'color','r') 350 
plot(fft2Ven1OnYMicrOnYSandOn,'color','g') 351 
plot(fft3Ven1OnYMicrOnYSandOn,'color','b') 352 
title('FFTVen1OnYMicrOnYSandOn r=1, g=2, b=3') 353 
pause; 354 
close all; 355 
 356 
TODOS=[fft1Bat1  fft1Bat2  fft1Bat3  fft1Expr  fft1Micr  ... 357 
    fft1Sand fft1Ven1 fft1MicrOnYSandOn fft1SandOnYBat3On ... 358 
    fft1Ven1OnYBat3On fft1Ven1OnYMicrOnYSandOn]; 359 
GROUP=[ones(1,length(fft1Bat1)), 2*ones(1,length(fft1Bat2)), 3*ones(1,length(fft1Bat3))... 360 
, 4*ones(1,length(fft1Expr)), 5*ones(1,length(fft1Micr)),6*ones(1,length(fft1Sand))... 361 
, 7*ones(1,length(fft1Ven1)), 8*ones(1,length(fft1MicrOnYSandOn)),9*ones(1,length(fft1SandOnYBat3On))... 362 
, 10*ones(1,length(fft1Ven1OnYBat3On)), 11*ones(1,length(fft1Ven1OnYMicrOnYSandOn))]; 363 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 364 
figure; 365 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 366 
 367 
 368 
TODOS=[fft2Bat1  fft2Bat2  fft2Bat3  fft2Expr  fft2Micr  ... 369 
    fft2Sand fft2Ven1 fft2MicrOnYSandOn fft2SandOnYBat3On ... 370 
    fft2Ven1OnYBat3On fft2Ven1OnYMicrOnYSandOn]; 371 
GROUP=[ones(1,length(fft2Bat1)), 2*ones(1,length(fft2Bat2)), 3*ones(1,length(fft2Bat3))... 372 
, 4*ones(1,length(fft2Expr)), 5*ones(1,length(fft2Micr)),6*ones(1,length(fft2Sand))... 373 
, 7*ones(1,length(fft2Ven1)), 8*ones(1,length(fft2MicrOnYSandOn)),9*ones(1,length(fft2SandOnYBat3On))... 374 
, 10*ones(1,length(fft2Ven1OnYBat3On)), 11*ones(1,length(fft2Ven1OnYMicrOnYSandOn))]; 375 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 376 
figure; 377 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 378 
 379 
 380 
TODOS=[fft3Bat1  fft3Bat2  fft3Bat3  fft3Expr  fft3Micr  ... 381 



ANEXO VI 
 

Pag 124 de 128 

    fft3Sand fft3Ven1 fft3MicrOnYSandOn fft3SandOnYBat3On ... 382 
    fft3Ven1OnYBat3On fft3Ven1OnYMicrOnYSandOn]; 383 
GROUP=[ones(1,length(fft3Bat1)), 2*ones(1,length(fft3Bat2)), 3*ones(1,length(fft3Bat3))... 384 
, 4*ones(1,length(fft3Expr)), 5*ones(1,length(fft3Micr)),6*ones(1,length(fft3Sand))... 385 
, 7*ones(1,length(fft3Ven1)), 8*ones(1,length(fft3MicrOnYSandOn)),9*ones(1,length(fft3SandOnYBat3On)). .. 386 
, 10*ones(1,length(fft3Ven1OnYBat3On)), 11*ones(1,length(fft3Ven1OnYMicrOnYSandOn))]; 387 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 388 
figure; 389 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 390 
 391 
 392 
%% FACTOR POTENCIA 393 
 394 
figure 395 
plot(medFacPotBat1) 396 
title('medFacPotBat1') 397 
pause; 398 
close all; 399 
 400 
 401 
figure 402 
plot(medFacPotBat2) 403 
title('medFacPotBat2') 404 
pause; 405 
close all; 406 
 407 
figure 408 
plot(medFacPotBat3) 409 
title('medFacPotBat3') 410 
pause; 411 
close all; 412 
 413 
figure 414 
plot(medFacPotExpr) 415 
title('medFacPotExpr') 416 
pause; 417 
close all; 418 
 419 
figure 420 
plot(medFacPotMicr) 421 
title('medFacPotMicr') 422 
pause; 423 
close all; 424 
 425 
figure 426 
plot(medFacPotSand) 427 
title('medFacPotSand') 428 
pause; 429 
close all; 430 
 431 
figure 432 
plot(medFacPotVen1) 433 
title('medFacPotVen1') 434 
pause; 435 
close all; 436 
 437 
figure 438 
plot(medFacPotMicrOnYSandOn) 439 
title('medFacPotMicrOnYSandOn') 440 
pause; 441 
close all; 442 
 443 
figure 444 
plot(medFacPotSandOnYBat3On) 445 
title('medFacPotSandOnYBat3On') 446 



ANEXO VI 
 

Pag 125 de 128 

pause; 447 
close all; 448 
 449 
figure 450 
plot(medFacPotVen1OnYBat3On) 451 
title('medFacPotVen1OnYBat3On') 452 
pause; 453 
close all; 454 
 455 
figure 456 
plot(medFacPotVen1OnYMicrOnYSandOn) 457 
title('medFacPotVen1OnYMicrOnYSandOn') 458 
pause; 459 
close all; 460 
 461 
TODOS=[medFacPotBat1  medFacPotBat2  medFacPotBat3  medFacPotExpr  medFacPotMicr  ... 462 
    medFacPotSand medFacPotVen1 medFacPotMicrOnYSandOn medFacPotSandOnYBat3On ... 463 
    medFacPotVen1OnYBat3On medFacPotVen1OnYMicrOnYSandOn]; 464 
GROUP=[ones(1,length(medFacPotBat1)), 2*ones(1,length(medFacPotBat2)), 3*ones(1,length(medFacPotBat3))... 465 
, 4*ones(1,length(medFacPotExpr)), 5*ones(1,length(medFacPotMicr)),6*ones(1,length(medFacPotSand))... 466 
, 7*ones(1,length(medFacPotVen1)), 8*ones(1,length(medFacPotMicrOnYSandOn)),9*ones(1,length(medFacPotSandOnYBat3On))...  467 
, 10*ones(1,length(medFacPotVen1OnYBat3On)), 11*ones(1,length(medFacPotVen1OnYMicrOnYSandOn))]; 468 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 469 
figure; 470 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 471 
 472 
 473 
 474 
%% PICO 475 
 476 
figure 477 
plot(medPicoBat1) 478 
title('medPicoBat1') 479 
pause; 480 
close all; 481 
 482 
 483 
figure 484 
plot(medPicoBat2) 485 
title('medPicoBat2') 486 
pause; 487 
close all; 488 
 489 
figure 490 
plot(medPicoBat3) 491 
title('medPicoBat3') 492 
pause; 493 
close all; 494 
 495 
figure 496 
plot(medPicoExpr) 497 
title('medPicoExpr') 498 
pause; 499 
close all; 500 
 501 
figure 502 
plot(medPicoMicr) 503 
title('medPicoMicr') 504 
pause; 505 
close all; 506 
 507 
figure 508 
plot(medPicoSand) 509 
title('medPicoSand') 510 
pause; 511 



ANEXO VI 
 

Pag 126 de 128 

close all; 512 
 513 
figure 514 
plot(medPicoVen1) 515 
title('medPicoVen1') 516 
pause; 517 
close all; 518 
 519 
figure 520 
plot(medPicoMicrOnYSandOn) 521 
title('medPicoMicrOnYSandOn') 522 
pause; 523 
close all; 524 
 525 
figure 526 
plot(medPicoSandOnYBat3On) 527 
title('medPicoSandOnYBat3On') 528 
pause; 529 
close all; 530 
 531 
figure 532 
plot(medPicoVen1OnYBat3On) 533 
title('medPicoVen1OnYBat3On') 534 
pause; 535 
close all; 536 
 537 
figure 538 
plot(medPicoVen1OnYMicrOnYSandOn) 539 
title('medPicoVen1OnYMicrOnYSandOn') 540 
pause; 541 
close all; 542 
 543 
%BOXPLOTS 544 
 545 
TODOS=[medPicoBat1  medPicoBat2  medPicoBat3  medPicoExpr  medPicoMicr  ... 546 
    medPicoSand medPicoVen1 medPicoMicrOnYSandOn medPicoSandOnYBat3On ... 547 
    medPicoVen1OnYBat3On medPicoVen1OnYMicrOnYSandOn]; 548 
GROUP=[ones(1,length(medPicoBat1)), 2*ones(1,length(medPicoBat2)), 3*ones(1,length(medPicoBat3))... 549 
, 4*ones(1,length(medPicoExpr)), 5*ones(1,length(medPicoMicr)),6*ones(1,length(medPicoSand))... 550 
, 7*ones(1,length(medPicoVen1)), 8*ones(1,length(medPicoMicrOnYSandOn)),9*ones(1,length(medPicoSandOnYBat3On))... 551 
, 10*ones(1,length(medPicoVen1OnYBat3On)), 11*ones(1,length(medPicoVen1OnYMicrOnYSandOn))];  552 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 553 
figure; 554 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 555 
 556 
%% CUARTO SEMIPERIODO 557 
 558 
figure 559 
plot(medCuartoBat1) 560 
title('medCuartoBat1') 561 
pause; 562 
close all; 563 
 564 
 565 
figure 566 
plot(medCuartoBat2) 567 
title('medCuartoBat2') 568 
pause; 569 
close all; 570 
 571 
 572 
figure 573 
plot(medCuartoBat3) 574 
title('medCuartoBat3') 575 
pause; 576 



ANEXO VI 
 

Pag 127 de 128 

close all; 577 
 578 
 579 
figure 580 
plot(medCuartoExpr) 581 
title('medCuartoExpr') 582 
pause; 583 
close all; 584 
 585 
 586 
figure 587 
plot(medCuartoMicr) 588 
title('medCuartoMicr') 589 
pause; 590 
close all; 591 
 592 
 593 
figure 594 
plot(medCuartoSand) 595 
title('medCuartoSand') 596 
pause; 597 
close all; 598 
 599 
 600 
figure 601 
plot(medCuartoVen1) 602 
title('medCuartoVen1') 603 
pause; 604 
close all; 605 
 606 
%  607 
% figure 608 
% plot(medCuartoVen2) 609 
% title('medCuartoVen2') 610 
% pause; 611 
% close all; 612 
 613 
 614 
figure 615 
plot(medCuartoMicrOnYSandOn) 616 
title('medCuartoMicrOnYSandOn') 617 
pause; 618 
close all; 619 
 620 
 621 
figure 622 
plot(medCuartoSandOnYBat3On) 623 
title('medCuartoSandOnYBat3On') 624 
pause; 625 
close all; 626 
 627 
 628 
figure 629 
plot(medCuartoVen1OnYBat3On) 630 
title('medCuartoVen1OnYBat3On') 631 
pause; 632 
close all; 633 
 634 
 635 
figure 636 
plot(medCuartoVen1OnYMicrOnYSandOn) 637 
title('medCuartoVen1OnYMicrOnYSandOn') 638 
pause; 639 
close all; 640 
 641 



ANEXO VI 
 

Pag 128 de 128 

TODOS=[medCuartoBat1  medCuartoBat2  medCuartoBat3  medCuartoExpr  medCuartoMicr  ... 642 
    medCuartoSand medCuartoVen1 medCuartoMicrOnYSandOn medCuartoSandOnYBat3On ... 643 
    medCuartoVen1OnYBat3On medCuartoVen1OnYMicrOnYSandOn]; 644 
GROUP=[ones(1,length(medCuartoBat1)), 2*ones(1,length(medCuartoBat2)), 3*ones(1,length(medCuartoBat3))... 645 
, 4*ones(1,length(medCuartoExpr)), 5*ones(1,length(medCuartoMicr)),6*ones(1,length(medCuartoSand))... 646 
, 7*ones(1,length(medCuartoVen1)), 8*ones(1,length(medCuartoMicrOnYSandOn)),9*ones(1,length(medCuartoSandOnYBat3On))... 647 
, 10*ones(1,length(medCuartoVen1OnYBat3On)), 11*ones(1,length(medCuartoVen1OnYMicrOnYSandOn))];  648 
nombresfigura={'BAT1'  'BAT2'  'BAT3'  'EXPR'  'MICR'  'SAND'  'VENT'   'M_S'   'S_B3'  'V_B3'  'V_M_S'} 649 
figure; 650 
boxplot(TODOS',GROUP','labels',nombresfigura,'labelorientation','inline'); 651 
 652 
 653 
%% NUMERO MUESTRAS 654 
 655 
% disp(['','Bat1', 'Bat2', 'Bat3', 'Expr', 'Micr', 'Sand', 'Ven1', 'MicrOnYSandOn', 'SandOnYBat3On', 'Ven1OnYBat3On', 'Ven1OnYMicrOnYSandOn']) 656 
% disp(['Train' 'Test'];  657 
disp('total   Train   Test') 658 
disp([sum(matTarget');sum(matTargetEntrenaSom');sum(matTargetTestSom')]') 659 
% disp(sum(matTargetEntrenaSom)); 660 
% disp(sum(matTargetTestSom)); 661 
% tabla2{1,1}=cab; 662 
% tabla2{2,1}=sum(matTargetEntrenaSom'); 663 
% tabla2{3,1}=sum(matTargetTestSom'); 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 

 

TDC  

 

 
 


