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La fotograf́ıa computacional es un campo emergente nacido de la unión de la óptica, el procesa-
miento de la señal, la visión por computador, la informática gráfica o incluso de la electrónica
y el arte. En los últimos años este campo ha producido avances espectaculares en cuanto al
procesamiento de imágenes se refiere.

La fotograf́ıa tradicional se basa en representar espacialmente, en una matriz de dos dimensio-
nes, la escena real que se está observando en el momento de la captura. Uno de los problemas
de este proceso es la aparición de zonas borrosas (blur) en las imágenes por falta de enfoque,
movimiento (de la cámara o de la escena) u otros motivos. Esto es aśı puesto que se pierde la
información necesaria para representar de manera correcta parte de la escena.

Las primeras aproximaciones para resolver este problema se basaban en el estudio de las es-
tad́ısticas de las imágenes, con el objetivo de añadir información consiguiendo recomponer parte
de esa información perdida. En los últimos años, de manera emergente, se han desarrollado nue-
vas técnicas que permiten codificar la información en el proceso de captura de imágenes.

Este trabajo, aprovechando el surgimiento de estas técnicas, presenta el uso de las aperturas co-
dificadas como herramienta para codificar la información en el proceso de captura, consiguiendo
eliminar blur y recuperar esas zonas borrosas. El trabajo se centra en la recuperación de blur por
desenfoque (proceso comúnmente denominado defocus deblurring), por lo que se asumirá que las
escenas capturadas no presentarán blur por movimiento; esto quiere decir que tanto la cámara
como las escenas permanecerán inmóviles durante la captura de las mismas.

La primera parte de este trabajo consiste en obtener aperturas codificadas cuyo diseño sea óptimo
(o casi óptimo) para el problema de defocus deblurring. Esto se realizará planteando el problema
como uno de optimización, que se resolverá mediante un algoritmo genético. Se obtendrán, de
esta manera, aperturas diseñadas para distintos niveles de ruido y con distinta resolución espa-
cial, para su posterior análisis y validación. Estas aperturas se validarán inicialmente mediante
simulaciones, simulando el proceso de captura para obtener imágenes con defocus blur, consi-
guiendo eliminar a posteriori la mayor parte del mismo. Después, una vez validado el proceso
mediante simulación, se trasladará el problema a entornos reales con una cámara fotográfica
y la impresión de las aperturas en material fotolitográfico. Finalmente se mostrará, en forma
de resultados, el correcto funcionamiento del proceso y las limitaciones del mismo. Se ha rea-
lizado también, como parte de este proyecto, un estudio del estado del arte del campo de la
fotograf́ıa computacional; estudio que se ha considerado de interés por tratarse de un campo
de investigación de muy reciente aparición y por lo tanto con muy poca documentación existente.

Además, parte de la investigación realizada en este proyecto ha permitido la creación de un
art́ıculo aceptado en el Congreso Ibero-Americano de Informática Gráfica (SIACG 2011) que
fue considerado como uno de los tres mejores art́ıculos del congreso, siendo propuesto para su
extensión y sumisión al Computer Graphics Forum, revista JCR.
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3.1. Formulación matemática del problema . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Trabajo previo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3. Solución adoptada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Obtención de aperturas codificadas óptimas 17
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1.1. Aparición de zonas borrosas en imágenes . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Diagrama de bloques del trabajo realizado . . . . . . . . . . . . . . . . . . . . . . 3
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1. Introducción

La fotograf́ıa computacional es un campo emergente nacido de la unión de la óptica, el proce-
samiento de la señal, la visión por computador, la informática gráfica o incluso de la electrónica
y el arte. En los últimos años este campo ha producido avances espectaculares en cuanto al pro-
cesamiento de imágenes se refiere. La fotograf́ıa tradicional se basa en representar espacialmente,
en una matriz de dos dimensiones, la escena real que se está observando en el momento de la
captura. La fotograf́ıa computacional surge con el objetivo de obtener y explotar la información
capturada, más allá que la simple representación en dos dimensiones de la escena, obteniendo
una representación más completa del mundo real, traspasando las limitaciones de la fotograf́ıa
tradicional.

Una vez realizado un estudio sobre el estado del arte de la fotograf́ıa computacional, que
se muestra en la siguiente sección, se obtuvo una visión general acerca de nuevos algoritmos
que explotan la información capturada con una cámara fotográfica. Con éstos se puede obtener
información de una imagen (como la profundidad de los objetos de la escena), mejorar la calidad
visual de una escena (creando una imagen en alto rango dinámico a partir de un conjunto de
fotograf́ıas), cambiar la iluminación de una imagen o recuperar la información perdida en forma
de zonas borrosas en una imagen.

Uno de los enfoques en fotograf́ıa computacional es codificar la información de la luz, antes
de que incida en el sensor de la cámara fotográfica, de manera que se pueda decodificar dicha
información a posteriori obteniendo una representación más completa de la escena capturada.
Existen varios métodos de proceder dentro de este enfoque, pudiendo hacer una clasificación ba-
sada en la manera de codificar esa información: iluminación codificada y exposición codificada
(en tiempo y en espacio).

En cuanto a lo que iluminación codificada se refiere, y como ejemplo del tipo de técnicas em-
pleadas en fotograf́ıa coputacional, una aplicación a un problema dif́ıcil de resolver en informática
gráfica es la detección de los bordes de los objetos en una imagen. Al fotografiar un objeto uti-
lizando el flash en la captura, se produce la proyección de dicho objeto en forma de sombra
según la posición espacial del flash; en 2004 se presentó un método que, utilizando una cámara
con varios flashes en distintas posiciones espaciales, consegúıa detectar los bordes de los objetos
de la escena fotografiada [26] (por composición de las capturas tomadas con los distintos flashes).

En cuanto a exposición codificada, una aplicación es recuperar la información perdida por la
aparición de zonas borrosas en la imagen final provocada por movimiento en el momento de la
captura (ya sea de la cámara o de un objeto de la escena) o por otros motivos (i.e. una mala

1



1. Introducción

configuración de los parámetros de la cámara). Dicha codificación, como se ha dicho anterior-
mente, puede ser realizada en el tiempo o en el espacio.

El tiempo de exposición en una captura es el tiempo que permanece abierto el diafragma de la
cámara durante el cual se graba la escena en el sensor de la misma. Cuando existe movimiento en
una captura, los detalles de la escena (i.e. las letras de la matŕıcula de un veh́ıculo) aparecen de
manera borrosa en la imagen final y es imposible recuperar dicha información. En 2006, mediante
aperturas y cierres del diafragma (con una secuencia obtenida computacionalmente) durante el
tiempo de exposición en la captura, se consiguió recuperar la información de detalle perdida
en una escena con objetos en movimiento [24]. Sin embargo, la aparición de zonas borrosas en
una imagen puede ser provocada por otros motivos distintos al movimiento (i.e. desenfoque a
la hora de hacer la captura). En 2007 se presentó un método [36] cuyo objetivo era recuperar
la información perdida en una imagen, mediante la introducción de un patrón en el sistema de
lentes de una cámara fotográfica, codificando la información en el espacio durante el tiempo de
exposición de la captura.

Figura 1.1: Aparición de zonas borrosas en imágenes. Izquierda: zonas borrosas por movimiento del objeto captu-
rado. Centro: zonas borrosas por desenfoque, debido a una mala elección de los parámetros de la cámara. Derecha:
zonas borrosas por exposición, debido a las limitaciones de la profundidad de campo de la cámara.

Lo que se persigue en este trabajo es recuperar imágenes, como la imagen central de la Figu-
ra 1.1, con zonas borrosas por desenfoque, proceso usualmente denominado defocus deblurring.
Aunque existen, como se ha visto, varios métodos para codificar la información de la luz, este
trabajo se centra en la codificación de la exposición en el espacio. Este concepto se denomina
aperturas codificadas y será la herramienta que permita, en este trabajo, recuperar la información
perdida en las zonas borrosas de una imagen. El objetivo principal será obtener una apertura
codificada, óptima, que permita resolver dicho problema.

Las aperturas codificadas son patrones, obtenidos por medio de algoritmos computacionales,
cuyo objetivo es mejorar las caracteŕısticas que poseen las aperturas (aproximadamente circula-
res1) de las cámaras fotográficas. Estos patrones se colocan en el sistema de lentes (objetivo) de
una cámara fotográfica para modificar la respuesta frecuencial de la apertura. Cuando el obje-
tivo es defocus deblurring, mediante el uso de la apertura se pretende mantener la amplitud de
las altas frecuencias de la imagen original. Algunos de los trabajos existentes, simultaneamente,
intentan recuperar mapas de profundidad de una escena interpretando la codificación obtenida
en la captura, aunque existe un compromiso a la hora de elegir el problema a resolver2, ya que

1La apertura viene definida por el tamaño del diafragma (en el momento de capturar una imagen) de una
cámara fotográfica, que está compuesto por unas hojas solapadas y ajustables; esto hace que la forma de la
apertura no sea circular sino poligonal como se puede ver en la Figura 3.4.

2Recuperar información perdida u obtener mapas de profundidad de una imagen.
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1. Introducción

las aperturas diseñadas para resolver un problema no son óptimas para resolver el otro. Existen
algunos enfoques interesantes en esa dirección [11, 15, 16] pero, dada la naturaleza de las zonas
borrosas en la imagen, esas aproximaciones imponen una representación multi-capa de la escena
representada.

En la elaboración de este trabajo se ha seguido un enfoque que define el proceso de desen-
foque como una convolución entre la escena original capturada y la respuesta de la apertura
codificada utilizada, con la adición final de ruido. En principio, esta aproximación conduciŕıa
a un problema de deconvolución ciega, dado que la respuesta de la apertura codificada, por lo
general, es desconocida. Se asume que la cámara queda estática en las capturas para que no se
produzca desenfoque por movimiento, por lo que la respuesta efectiva de la apertura codificada
queda definida por la función de dispersión del punto o PSF (point spread function) del siste-
ma óptico. En este sentido, las aperturas circulares que poseen todas las cámaras fotográficas
tienen una muy mala respuesta en el dominio de la frecuencia puesto que, aparte de diezmar la
amplitud de las altas frecuencias, poseen numerosos pasos por cero para varias frecuencias. Esto
impide recuperar la información (en dichas frecuencias) durante el proceso de recuperación de
las zonas borrosas mediante deconvolución.

El trabajo realizado presenta varias aperturas codificadas que poseen mejor respuesta, en el
dominio de la frecuencia, que una apertura circular; por ello, estas aperturas permiten recuperar
la información perdida en el proceso de captura de la imagen. Siguiendo el enfoque de trabajos
anteriores [36], este trabajo plantea el problema como un problema de optimización resuelto
mediante el uso de un algoritmo genético que obtiene una apertura codificada. Una vez obtenida
una serie de aperturas codificadas de distinta reslución y para diferentes niveles de ruido, se pro-
cede a su análisis y evaluación mediante simulaciones. Una vez validadas mediante simulación,
se procede a imprimirlas en una lámina de material fotolitográfico. Finalmente, se insertan en
el objetivo de una cámara real para concluir la validación con experimentos reales. El proceso
entero se muestra en la Figura 1.2. Además, se analiza el rendimiento de las aperturas en función
de su forma y tamaño, además de en función de la profundidad de la escena capturada.

Figura 1.2: Diagrama de bloques del trabajo realizado.
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2. Estado del arte

En este apartado se va a exponer el estado del arte de la fotograf́ıa computacional, como
tarea de exploración y análisis previo al inicio del proyecto, mostrando el trabajo realizado por
distintos investigadores en este campo. Más que un análisis detallado y exhaustivo, que escapa
al alcance de esta memoria, este estado del arte pretende ofrecer un vistazo general del campo.

2.1. Definición de fotograf́ıa computacional

Como se ha visto en la introducción, la fotograf́ıa computacional es un campo de trabajo de
reciente aparición que surge con el objetivo de obtener y explotar la información capturada de
una escena, más allá que la simple representación en dos dimensiones de la misma. Haciendo
uso de nuevas técnicas se pretende obtener una representación más completa del mundo real,
traspasando las limitaciones de la fotograf́ıa tradicional.

Mediante la creación de nuevos algoritmos y métodos se pretende llevar más allá los ĺımites
de la fotograf́ıa tal y como la conocemos logrando, entre otras cosas, mejorar la calidad visual
de una escena, cambiar la iluminación de una imagen o recuperar información perdida por des-
enfoque. Obteniendo, incluso, imágenes imposibles mediante el uso convencional de una cámara
fotográfica como son las fotograf́ıas panorámicas o efectos de video como es el “tiempo bala”
aparecido en distintas peĺıculas (The Matrix) y videoclips (The Rolling Stones).

2.2. Clasificación en base al elemento modificado

Los cuatro elementos, principales, que componen la fotograf́ıa tradicional son: sistema de
lentes encargado de hacer llegar la información de una escena al sensor; sensor fotosensible que
recibe información de la escena; obturador que permite controlar la luz que llega al sensor; fuente
externa de luz o flash usado para iluminar una escena. Estos elementos han sido explorados para
crear nuevas metodoloǵıas de captura de imágenes y en función de cual de estos elementos es
modificado se puede esbozar una primera clasificación:

Sistema de lentes: modificando la forma de la apertura en campos como la astronomı́a [34],
añadiendo complejidad al sistema de lentes [21] o, incluso, prescindiendo del mismo [38] a
la hora de capturar una imagen.
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Sensor: modificando la forma del sensor dando lugar a la Plenoptic Camera [9], que per-
mite capturar la información de la luz de manera n-dimensional [28], o modificando el
funcionamiento del sensor para aumentar el rango dinámico [13] o el rango espectral de la
imagen capturada.

Obturador: se puede controlar la luz que llega al sensor de tal manera que se puedan
obtener imágenes ńıtidas de un objeto en movimiento controlando la apertura y cierre del
obturador [24] u obtener una imagen en alto rango dinámico combinando varias fotograf́ıas
tomadas de manera casi simultánea.

Iluminación: mejorar y controlar la iluminación de la escena a capturar permite obtener
representación más completa de la misma, como la forma tridimensional de un objeto
mediante la utilización de varios flashes estratégicamente posicionados [26], o haciendo
uso de la técnica llamada “flash/no-flash” [6].

2.3. Clasificación en base a la evolución temporal

Haciendo uso de la definición establecida por Ramesh Raskar [25] se puede hacer una cla-
sificación de la fotograf́ıa computacional, en base a su evolución en el tiempo, apareciendo tres
fases principales: fotograf́ıa épsilon, fotograf́ıa codificada y fotograf́ıa en esencia.

Fotograf́ıa épsilon: construir una cámara mejorada en cuanto a los parámetros tradicio-
nales se refiere (rango dinámico, campo de visión o profundidad de campo). Debido a la
reducida capacidad de una cámara, la escena se re-construye mediante la utilización de
varias fotograf́ıas (cada una capturada con épsilon variaciones de los parámetros de la
cámara).

Fotograf́ıa codificada: construir herramientas que traspasen las capacidades de esta cámara
mejorada. El objetivo es codificar la información capturada de la escena (en una o muy
pocas imágenes) de tal manera que su decodificación permita una descomposición versátil
de la escena en base a sus parámetros f́ısicos.

Fotograf́ıa en esencia: el siguiente paso, en este momento sin explorar, seŕıa olvidar que una
cámara fotográfica debe imitar al ojo humano. Intentando recuperar mayor información
sobre la escena (la esencia de la escena), a parte de los parámetros f́ısicos de la misma, la
idea es poder generar nuevas formas de expresión art́ıstica visual y comunicación.

2.4. Clasificación en base a la aplicación final

La aplicación final para la que se desarrollan métodos o técnicas de captura de la infomación
de las escenas conforma otra clasificación posible. A continuación se exponen, en base a la
aplicación final, las técnicas más destacadas.
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2.4.1. Captura de imágenes de alto rango dinámico (HDR)

Diseño del sensor

Una primera aproximación es el uso de varios elementos sensores con diferentes niveles de
sensibilidad, combinando las distintas medidas obtenidas por cada elemento sensor en el chip
antes de dar lugar a la imagen HDR, dando lugar a varias patentes [10, 29, 32]. Uno de los
problemas de este enfoque es la reducción de la frecuencia de muestreo espacial (pudiendo
aparecer efectos de aliasing) y la pérdida de resolución en la imagen final.

Un enfoque diferente se propuso en [3], donde se mide el tiempo que le cuesta al sistema
llegar a la saturación de cada zona de la imagen capturada. De esta manera, ese tiempo codifica
la información de alto rango dinámico, al ser inversamente proporcional a la luminosidad de
cada zona de la imagen.

Existen enfoques más novedosos y flexibles donde la exposiciones vaŕıan a través del espacio
de la cámara [1, 22]. Usando patrones con diferentes niveles de sensibilidad la flexibilidad del
sistema aumenta aunque, de nuevo, la resolución espacial disminuye y pueden aparecer efectos
de aliasing. Las distintas mediciones capturadas se combinan creando una imagen HDR.

Exposición múltiple

Otra aproximación para obtener imágenes en HDR es capturar varias imágenes usando, para
cada una, diferentes niveles de exposición. La idea principal es resaltar las zonas oscuras con
niveles de exposición altos (saturando las zonas claras de la escena) y al contrario con niveles de
exposición bajos. De esta manera, cuando una misma escena es capturada con distintos niveles
de exposición, se pueden combinar las imágenes seleccionando cada ṕıxel de aquella imagen en
la que no aparece muy oscuro ni saturado. Esta técnica se llama sucesión de exposiciones y ha
sido utilizada por numerosos autores [4, 17]. Estos autores asumen que el brillo medido por el
sistema de captura (cámara) se relaciona linealmente con los valores de la escena real pero, casi
siempre, existe una relación no lineal entre ambos.

Debido a este motivo algunos autores han propuesto métodos para estimar la función de
respuesta radiométrica de una cámara, obteniendo mapas de radiancia (donde los valores de
los ṕıxeles en la imagen final son proporcionales a los valores de la escena real) utilizados, por
ejemplo, en aplicaciones médicas [5, 18, 19].

2.4.2. Extensión o modificación de la profundidad de campo (DOF)

Los dispositivos de captura de imágenes tienen limitaciones relacionadas con la configuración
f́ısica existente en el dispositivo en el momento de realizar una captura. Entre ellas se encuentra
la profundidad de campo definida por el tamaño del diafragma utilizado en el momento de la
captura. Aunque el concepto se explicará en la Sección 3, la profundidad de campo determina,
a grandes rasgos, qué objetos de la escena aparecerán enfocados y cuáles desenfocados en la
imagen final.

En el año 2006 se desarrolló una cámara que permite obtener imágenes enfocadas a distintas
profundidades [28]. Para desarrollar el dispositivo, se insertó una matriz de “micro-lentes” entre
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el sensor y el sistema de lentes de tal manera que cada micro-lente obtiene información de manera
independiente a las demás, reordenando los rayos incidentes se consigue enfocar la imagen a
distintas profundidades. Esta implementación permite enfocar digitalmente una imagen y variar
la profundidad de campo, lo que ofrece posibilidades muy altas de personalización de las imágenes
finales con el uso de una cámara que funciona exactamente igual que una cámara convencional
(desde el punto de vista del usuario).

En el año 2008, se presentó un dispositivo que extiende la profundidad de campo a un nivel
superior pudiendo, además de enfocar objetos a distintas profundidades en una escena, eliminar
ópticamente un objeto a una profundidad (DOF discont́ınuo) o incluso variar la inclinación de
la profundidad de campo (DOF inclinado) [20]. La idea principal para crear este dispositivo es
dar libertad de movimiento al sensor, posibilitando variar la profundidad de campo sin cambiar
el tamaño del diafragma del objetivo.

2.4.3. Re-enfoque (Deblurring)

La aparición de zonas desenfocadas o blur degrada significativamente la calidad de la imagen
final. Por ello, en los últimos años, algunos investigadores han propuesto distintos métodos
intentando disminuir el efecto ocurrido en este tipo de imágenes. Las primeras aproximaciones
se basaban en estimar la función de dispersión del punto (PSF, explicada en la Subsección 3.1),
del sistema de captura para usarla en el proceso de re-enfoque [2, 33].

Si bien es cierto que la mayoŕıa de técnicas desarrolladas se han basado en paliar el desenfoque
por presencia de movimiento, recientemente se ha presentado una solución para las imágenes
con desenfoque por falta de enfoque [36]. Mediante el uso de una apertura codificada se consigue
recuperar parte de la información que, a simple vista, se hab́ıa perdido en el proceso de captura
de la escena.

2.4.4. Detección de profundidad

Varios autores han realizado estudios acerca de la obtención de la profundidad de una es-
cena fotografiada, mediante el uso de una apertura codificada óptima diseñada en base a las
estad́ısticas de las imágenes [15], utilizando parejas de aperturas codificadas de alta resolución
[35] o analizando la variación del desenfoque aparecido en los bordes de la imagen [37].

2.4.5. Detección de bordes

En el año 2003 se presentó un prototipo basado en una cámara con un flash múltiple con
el objetivo de detectar los bordes de los objetos de una escena [26]. El método desarrollado
obtiene cuatro fotograf́ıas de la misma escena iluminadas desde distintas posiciones (arriba,
abajo, derecha e izquierda) con el fin de detectar las sombras proyectadas por los objetos de la
escena. Además demostraron que esta técnica se pod́ıa utilizar para detectar bordes en v́ıdeos
mediante el uso de una secuencia muy rápida de los cuatro flashes.

8



2. Estado del arte

2.4.6. Flash/No-Flash

En 2001 se exploró por primera vez la idea de capturar la misma escena con y sin el uso
del flash de la cámara (técnica “flash/no-flash”) [6]. Con este método consiguen obtener una
imagen de la escena como si sólo estuviese iluminada con el flash (sin luz ambiental), estiman
las funciones de reflectancia de los objetos de la escena y estiman la distribución espectral de la
iluminación ambiente. Bajo este mismo enfoque, otros autores [7, 23] han desarrollado métodos
de combinación de pares de imágenes de escenas con poca iluminación ambiental, ya que las
imágenes sin flash poseen altos niveles de ruido y las imágenes tomadas con flash alteran el color
de los objetos de la escena. Recientemente se ha presentado un prototipo de cámara con un flash
que utiliza luz infrarroja y ultravioleta fuera del rango visible, llamado flash oscuro [14].
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3. Defocus deblurring

En general, cuando se utiliza una cámara fotográfica se pretende obtener una copia de la
escena que se está visualizando, pero en múltiples ocasiones las imágenes capturadas poseen
zonas borrosas. Estas zonas, generalmente indeseadas, se denominan blur y con deblurring se
define el proceso de eliminación de la mayor parte (idealmente del total) de esas zonas borrosas.
Éste es uno de los motivos por los que se comenzaron a estudiar distintas técnicas de re-enfoque
de imágenes o deblurring techniques. Aunque, en la actualidad, una gran cantidad de equipos
fotográficos son muy sofisticados, el blur en las imágenes sigue siendo un problema de gran in-
terés de estudio.

Los motivos de este problema son por un lado humanos, como el movimiento de la cámara
o la ausencia de un enfoque correcto a la hora de hacer una captura. Por otro lado, existen
motivos inherentes a la cámara como son la resolución del sensor o la presencia de filtros en el
mismo. Por ello, en ciertas ocasiones es inevitable obtener imágenes como las mostradas en la
Figura 3.1, que muestra dos ejemplos de imágenes con blur. Los problemas inherentes al equipo
son más complicados de subsanar (siendo la mejora en la imagen casi inapreciable) por lo que,
generalmente, la fotograf́ıa computacional trabaja en la eliminación del blur por movimiento y
del blur por desenfoque.

Figura 3.1: Izquierda: imagen con blur por desenfoque. Derecha: imagen con blur por movimiento.

El motivo de la existencia de blur por desenfoque (defocus blur) deriva del tamaño de la
apertura utilizada para la captura. Su diámetro establece la profundidad de campo en el mo-
mento de la captura, que es el intervalo, en el eje Z (perpendicular al plano imagen y al plano
del sensor), en el que los objetos de la escena aparecerán enfocados en la imagen capturada
(apareciendo desenfocados los objetos que estén localizados fuera de dicho intervalo). Conforme
el diámetro del diafragma disminuye en tamaño la profundidad de campo aumenta, siendo el
caso extremo la pinhole camera en la que el diámetro de diafragma es un punto. En una pinhole
camera la profundidad de campo es infinita.
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El enfoque de las cámaras fotográficas establece, para una profundidad d (distancia, en el
eje Z, desde el sensor a un punto de la escena), un plano P perpendicular al eje Z cuyos puntos
están perfectamente enfocados; los sucesivos planos imagen (perpendiculares al eje Z) irán per-
diendo enfoque a medida que vayan alejándose del plano P . Esto se debe a que todos los rayos
provenientes de un punto del plano P inciden en un mismo punto del sensor de la cámara, no
ocurriendo aśı con los puntos que se encuentran a otras profundidades. La aparición de blur en
la imagen grabada se debe a que la información proveniente de esos puntos se distribuye por un
área circular del sensor, como se puede ver en la Figura 3.2, creando los llamados ćırculos de
confusión.

Figura 3.2: Concepto de profundidad de campo y ćırculos de confusión. Los puntos del plano P están perfec-
tamente enfocados. Los puntos de otros planos (fuera del intervalo definido por la profundidad de campo) están
desenfocados, creando los llamados ćırculos de confusión.

3.1. Formulación matemática del problema

El problema de aparición de blur en una imagen está estrechamente relacionado con la
forma de la apertura utilizada para la obtención de la misma. La siguiente ecuación describe
matemáticamente el proceso de captura de una imagen:

f = f0 ∗ kd + η , (3.1)

donde:

f es la imagen desenfocada capturada,

f0 es dicha imagen perfectamente enfocada (i.e. la escena real),

kd es la respuesta de la apertura utilizada a una profundidad d,

η es el ruido de la imagen.

La respuesta kd, de la apertura utilizada vaŕıa espacialmente en la escena según las coordenadas
2D de dicha escena y la profundidad a la que se encuentra dicha escena respecto a la cámara.
Asimismo, no vaŕıa sólo con la profundidad absoluta sino también con la distancia entre el plano
focal y la escena. Esta respuesta se denomina PSF (point spread function/función de dispersión
del punto) ya que codifica la respuesta del sistema cuando la entrada es un impulso (i.e. un
punto).
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Figura 3.3: Proceso, conceptual, de aparición de blur por desenfoque en imágenes.

Se asume que el ruido η sigue una distribución gaussiana de media 0 y una desviación estándar
dada por σ, N(0, σ2). De manera conceptual, la ecuación 3.1 se puede expresar como muestra
la Figura 3.3.

Figura 3.4: Apertura circular con distintos tamaños de diafragma.

En las cámaras fotográficas (ya sean analógicas o digitales) la apertura tiene forma apro-
ximadamente circular, como se puede ver en la Figura 3.4. En el dominio de la frecuencia, la
respuesta de una apertura circular disminuye la amplitud de las altas frecuencias en la imagen
obtenida, lo que implica la pérdida de los detalles en la escena, causando o incrementando el
blur en la imagen (como se verá a lo largo de este trabajo); por lo que el paso de la ecuación 3.1
al dominio de la frecuencia facilitará el análisis de dicha respuesta.

Figura 3.5: Respuesta en el dominio de la frecuencia de una apertura circular. El eje X muestra frecuencia
normalizada, nótese que la escala del eje Y es logaŕıtmica.

En la Figura 3.5 se puede ver la respuesta, en el dominio de la frecuencia de una apertura
circular, se trata del espectro de potencia (power spectrum). Éste muestra el modo en que la
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apertura va a afectar a la amplitud de la señal (la imagen capturada) en cada una de sus fre-
cuencias. En el caso de una apertura circular, además de existir una disminución de la señal en
las altas frecuencias, se observan numerosos pasos por cero para varias frecuencias (picos ver-
ticales). Esto impide, una vez que existe blur en la imagen capturada, recuperar dicha pérdida
de información como se verá en la Sección 5.3. La disminución de amplitud empeora además el
SNR de la señal, dificultando la recuperación de la información perdida.

3.2. Trabajo previo

En el comienzo de este proyecto se estudiaron las distintas causas del blur, intentado abordar
el problema desde distintos enfoques, con el objetivo principal de recuperar la mayor parte de
la información perdida en una imagen capturada. La mayoŕıa de los trabajos se basan en el
operador de deconvolución para recuperar la información perdida; habiendo cuatro metodoloǵıas
principales no excluyentes entre śı:

métodos de probabilidad Bayesiana,

métodos iterativos basados en alcanzar una solución de máxima probabilidad (maximum
likelihood),

métodos de deconvolución a ciegas (blind deconvolution),

aperturas codificadas.

Entre los métodos Bayesianos destaca el algoritmo Pixon utilizado, sobretodo, en aplica-
ciones astronómicas. Entre los métodos iterativos cabe destacar el algoritmo Richardson-Lucy,
basado en alcanzar una solución de máxima probabilidad. Los métodos de deconvolución a ciegas
parten del desconocimiento de la apertura utilizada, pretendiendo extraer una apertura válida a
partir de la información existente en la imagen. Sin embargo, con el paso de los años aparecieron
nuevos enfoques, basados también en el operador de deconvolución, como es la introducción de
una apertura codificada en el sistema de lentes de una cámara.

Los métodos anteriores trabajan añadiendo información a las imágenes capturadas en las que
parte de la información se ha perdido de manera irreversible. Mediante el estudio de las estad́ısti-
cas de las imágenes o la obtención de una PSF consiguen recomponer parte de esa información
perdida. Siguiendo una ĺınea de acción distinta, se comenzó a investigar de qué manera se pod́ıa
modificar la apertura de la cámara a la hora de capturar una imagen, entendiendo que es una de
las principales causas de desenfoque. La idea era obtener nuevas aperturas que obtuviesen una
respuesta en el dominio de la frecuencia favorable y, de este modo, poder recuperar la mayor
parte posible de información perdida en la imagen. Este fue el nacimiento de lo que se conoce
por aperturas codificadas para defocus deblurring.

Tradicional y principalmente, las aperturas codificadas se han utilizado en astronomı́a, codi-
ficando la dirección de los rayos incidentes, siendo posiblemente los patrones MURA (Modified
Uniformly Redundant Array) [8], cuya respuesta en el dominio de la frecuencia tiene una forma
casi plana, los más conocidos. En los últimos años se han empezado a utilizar, en el campo de la
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fotograf́ıa computacional, las aperturas codificadas como herramienta para distintas aplicaciones
[11, 15, 22, 24, 30, 35], incluyendo el objetivo de este trabajo de recuperar información perdida
en el proceso de captura de las imágenes.

3.3. Solución adoptada

Este trabajo se ha basado en las técnicas que codifican la información con el uso de aperturas
codificadas, utilizando modelos matemáticos que buscan minimizar la pérdida de información al
capturar la imagen. La idea principal de estas técnicas consiste en entender que la información
aparentemente perdida (zonas borrosas que impiden visualizar los objetos de la escena en esas
zonas), en la imagen con blur, se puede recuperar (eliminar esas zonas borrosas permitiendo ver
los objetos de la escena con claridad) si se sabe codificar durante el proceso de captura. A d́ıa
de hoy sólo se ha conseguido llegar a una aproximación (con errores) de la escena real, siendo
imposible reproducir dicha escena de manera exacta. Estos errores son debidos, por un lado,
a las caracteŕısticas inherentes al proceso de captura de la imagen y, por otro lado, al ruido
añadido en dicho proceso.

De entre los trabajos que han abordado el problema de defocus deblurring mediante aperturas
codificadas algunos utilizan varias imágenes [11], otros varias aperturas [35], e incluso trabajan
a la vez en recuperación de profundidad de la escena e imagen enfocada [15]. Recientemente
se presentó un método para diseñar aperturas codificadas casi óptimas para el problema de
defocus deblurring [36]. Este método obtiene una métrica objetiva para evaluar la calidad de
una apertura codificada, teniendo en cuenta las estad́ısticas de las imágenes naturales. Este
trabajo, que permite recuperar una aproximación a la escena enfocada a partir de una sola
imagen, constituye la base del presente proyecto.
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Se ha visto, en la sección anterior, cómo la forma de la apertura circular es la principal causa
del blur. Por ello, los métodos de deblurring basados en aperturas codificadas buscan obtener
una apertura cuya respuesta sea óptima en el dominio de la frecuencia, de cara a eliminar ese blur.

C. Zhou y S. Nayar proponen una métrica que, dada una apertura codificada, indica la calidad
esperada a la hora de recuperar la información perdida en una imagen con blur por desenfoque.
Es decir, se espera que la apertura que obtenga el menor valor para dicha métrica tenga una
mejor respuesta en frecuencias (con respecto a otras aperturas). La derivación matemática de
esta métrica, que se muestra a continuación, puede encontrarse en el Apéndice A:

R(K) =
σ2

|K|2 + σ2/A
, (4.1)

donde:

R(K) da como resultado una medida de la calidad de una apertura (a menor R mayor
calidad),

K es la respuesta de la apertura utilizada en el dominio de la frecuencia,

σ es la desviación estándar que sigue el ruido de la imagen,

A es el promedio del espectro de potencia de un conjunto de imágenes naturales.

Aśı pues, teniendo una métrcia cuyo valor indica (de manera inversamente proporcional) la
calidad de una apertura, el objetivo es hallar la apertura K cuyo R(K) sea el menor posible. Se
plantea entonces el problema como uno de optimización.

4.1. Elección del método de optimización

Dada una función que indica la calidad de una apertura a la hora de recuperar información
perdida en una imagen con blur por desenfoque, las aperturas codificadas se obtienen por medio
de un método de optimización que utiliza la ecuación 4.1 como función objetivo. La mayoŕıa
de los métodos de optimización necesitan una función derivable para avanzar en la búsqueda
de la solución con menor resultado, pero dadas las caractieŕısticas de la ecuación 4.1 (i.e. no es
derivable anaĺıticamente) y el espacio de búsqueda en este caso (número de posibles soluciones)
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hacen que se decidiese utilizar un algoritmo genético como método de búsqueda de la mejor
solución.

Un algoritmo genético es un tipo de algoritmo basado en la evolución biológica y la selección
natural. Este tipo de algoritmia fue desarrollado por John Henry Holland en 1975 [12], interesa-
do en la adpatación natural como una de las principales herramientas para dar lugar a mejores
individuos en una especie con el paso del tiempo. Basado en la teoŕıa de la evolución establecida
por Darwin en 1859, decidió imitar los procesos adaptativos de los sistemas naturales mediante el
diseño de sistemas artificiales. De esta manera, nacen los algoritmos genéticos como herramien-
tas de resolución de problemas de búsqueda y optimización. Los principales problemas de los
algoritmos de búsqueda y optimización, en general, son la complejidad de la función objetivo y la
costosa exploración del espacio de búsqueda puesto que, en algunos casos, no existe una solución
única (i.e. mı́nimo en una función periódica). La aportación que hacen los algoritmos genéticos
a ese problema es su robustez, pues resultan menos afectados a falsas soluciones (i.e. mı́nimos
locales) que los métodos tradicionales, y su uso con funciones de evaluación con derivaciones
complejas.

4.2. Implementación de un algoritmo genético

Como se ha avanzado en la sección anterior, los algoritmos genéticos son métodos basados
en el proceso evolutivo de los organismos vivos. En el mundo real, los individuos de una especie
van evolucionando dando lugar a poblaciones de acuerdo con el principio de la selección natu-
ral y la supervivencia de los más fuertes postulado por Darwin. Por imitación a este proceso,
la implementación de un algoritmo genético exige establecer una descripción de los individuos
a evolucionar, codificando los datos para poder tratar con ellos de una manera más o menos
sencilla.

Para ello, a partir de ahora, se va a denominar al conjunto de individuos de la población, que
serán los posibles soluciones al problema de optimización, fenotipo y a cada uno de los individuos
cromosoma. Generalmente los cromosomas se codifican como cadenas de śımbolos o genes. Para
el caso concreto (como en este trabajo) en el que los genes son d́ıgitos binarios, denominaremos
a la población de cromosomas como genotipo. La evolución de los cromosomas va a realizarse
a través de iteraciones o generaciones utilizando dos operadores genéticos, el operador cruce y
el operador mutación durante la ejecución del algoritmo. Los cromosomas van evolucionando
hasta que se llega a un número de cromosomas máximo, se utiliza una función de evaluación
o función de selección (la función objetivo del problema de minimización) para determinar los
mejores cromosomas en dicha generación; los cromosomas que sobreviven dan lugar a la siguiente
generación, simulando el proceso de selección natural.

Una vez definidos todos los elementos de un algoritmo genético, se puede hacer una primera
división del algoritmo en inicialización y generaciones. De esta manera, se define cada una de
las partes por la consecución de una serie de pasos que se explican a continuación.

Inicialización. Se establece un primer fenotipo aleatorio (población inicial) de N cromos-
mas y, a continuación, se otorga una puntuación para cada cromosoma generado mediante
el uso de la función de evaluación R(K) establecida.
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4. Obtención de aperturas codificadas óptimas

Generaciones. Se realizarán los siguientes pasos mientras no se cumpla la condición de
parada:

• Selección: elección de los M mejores cromosomas en base a la puntuación obtenida
con la función de evaluación R(K).

• Cruce: operador genético que combina los genes de dos cromosomas para la creación
de un cromosoma nuevo.

• Mutación: operador genético que modifica los genes de un cromosoma para la creación
de un cromosoma nuevo.

• Evaluación: de nuevo, se otorga una puntuación para cada cromosoma del fenotipo
actual mediante el uso de la función de evaluación R(K) establecida.

Figura 4.1: Esquema, conceptual, de un algoritmo genético.

4.2.1. Representación

La representación de los cromosomas se ha realizado mediante vectores de L elementos (x1,
x2, x3, ..., xL). Dependiendo de los valores posibles para esos L elementos (genes), se puede
realizar una clasificación general de la siguiente manera:

Representación binaria: genes con valor cero o uno.

Representación entera: genes con valor entero.

Representación real: genes con valor real.
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Figura 4.2: Ejemplo de apertura codificada binaria. Dos tipos de ṕıxeles, negros (opacos) y grises (transparentes).

Para las aperturas codificadas se ha elegido una representación binaria. Teniendo en cuenta
que el tamaño de los cromosomas condicionará el tiempo de convergencia del algoritmo a una
solución válida, cada cromosoma se representa como un vector de n2 elementos (genes), de
manera que al mostrarlo en forma de matriz conforme una matriz n∗n, ya que se busca obtener
una apertura codificada. De esta manera, el gen x en un cromosoma cualquiera será el ṕıxel (x1,
y1) de la apertura donde x1 = (x/n) + 1 y y1 = mod(x/n). Como se puede ver en la Figura 4.2,
el valor posible para un gen tiene el siguiente significado:

Gen cero o gen negro: no deja pasar la luz a su través (como si de un objeto opaco se
tratase).

Gen uno o gen transparente: deja pasar perfectamente la luz a su través (como si de un
objeto perfectamente transparente se tratase).

De esta manera, se puede hacer un pequeño análisis del número de posibles soluciones para
la representación elegida. Teniendo en cuenta el tamaño de los cromosomas (n2 genes) y los
posibles valores para cada uno de ellos (cero o uno), se puede determinar que el número de
soluciones posible es 2n

2
.

4.2.2. Operadores genéticos: cruce y mutación

Los operadores genéticos son funciones empleadas en los algoritmos genéticos para mantener
la diversidad genética en cada generación, siendo necesarios para obtener una evolución correcta
de los individuos de la población. El operador de cruce equivale a la reproducción sexual y el
operador de mutación equivale a la mutación biológica.

El operador de cruce es un operador binario; es el encargado de generar dos nuevos cro-
mosomas a partir de una pareja de cromosomas base. Tal y como se ve en la Figura 4.3, el
procedimiento es recorrer (gen a gen) los cromosomas base intercambiando, con una cierta pro-
babilidad c1, los genes entre la pareja de cromosomas.

Figura 4.3: Operador binario de cruce.
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El operador de mutación, sin embargo, es un operador unario; es el encargado de añadir
variabilidad al genotipo. En este caso, como se ve en la Figura 4.4, el procedimiento es recorrer
(de nuevo, gen a gen) el cromosoma a mutar cambiando, con una cierta probabilidad c2, el valor
de sus genes (de cero a uno, o viceversa).

Figura 4.4: Operador unario de mutación.

4.2.3. Condición de parada

La alternativa que mejor determina la detención del algoritmo es establecer un número
máximo de generaciones. Hay que entender que hay otro tipo de condiciones de parada, como
la convergencia del algoritmo a un valor o la no evolución del cromosoma “mejor” a lo largo de
varias generaciones. Aśı, se podŕıan añadir otras condiciones de parada, pero dada la naturaleza
del problema que ocupa este trabajo es muy complicado determinar una condición de parada
robusta (en términos de error relativo de la solución).

4.3. Convergencia del algoritmo

Una vez implementado el algoritmo genético, encargado de generar aperturas codificadas que
después se iban a utilizar a la hora de recuperar información perdida en imágenes con blur por
desenfoque, se creyó conveniente realizar un estudio acerca de la convergencia del algoritmo en
base a sus parámetros (población, número de supervivientes, número de generaciones, probabi-
lidad de cruzamiento y probabilidad de mutación).

Para ello se estableció un conjunto de ejecuciones entre las cuales la única variación era el
valor de uno, y sólo uno, de los parámetros de llamada con el fin de interpretar la influencia de
los mismos en los resultados finales (siempre con el mismo valor para el parámetro “ruido”, i.e.
σ en la ecuación 4.1). Se propuso realizar cinco ejecuciones para diez valores distintos para cada
parámetro, obteniendo 250 aperturas (250 = (5 ejecuciones * 10 valores) * 5 parámetros).

De esta manera, se obtuvieron los valores alcanzados por la función de evaluación R(K) du-
rante la sucesión de generaciones, aśı como los tiempos empleados para cada ejecución. A la vista
de los resultados, que se muestran en las Figuras 4.5 y 4.6, y en el Apéndice C, se decidieron
utilizar los siguientes valores para los parámetros del algoritmo: 4000 individuos conformando el
genotipo, 400 supervivientes en cada generación, 80 generaciones, probabilidad de cruzamiento
de 0.2 y probabilidad de mutación de 0.05.
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Figura 4.5: Izquierda, eje horizontal: distintos valores para el parámetro generaciones, eje vertical: tendencia de la
función de evaluación R(K) con la variación del parámetro generaciones. Derecha, eje horizontal: distintos valores
para el parámetro generaciones, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del
parámetro generaciones.

Figura 4.6: Supervivientes (porcentaje con respecto al número de individuos de la población). Izquierda, eje ho-
rizontal: distintos valores para el parámetro supervivientes, eje vertical: tendencia de la función de evaluación
R(K) con la variación del parámetro supervivientes. Derecha, eje horizontal: distintos valores para el paráme-
tro supervivientes, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del parámetro
supervivientes.

4.4. Aperturas obtenidas

A la hora de obtener una apertura codificada mediante la utilización del algoritmo genético,
uno de los factores más importantes a tener en cuenta es el valor de sigma (es decir, la desvia-
ción estándar del ruido de la imagen) para el cual se quiere obtener la misma. Dada la ecuación
4.1, que define la función de evaluación utilizada, se puede ver que el valor de sigma determi-
nará el tipo de apertura codificada obtenida. En este trabajo se eligieron distintos valores de
sigma, cubriendo un amplio rango de soluciones, y para cada uno se realizaron varias ejecuciones
del algoritmo genético (siete exactamente) con el objetivo de seleccionar la apertura con mejor
puntuación en cada caso. En la Figura 4.7 se muestran las mejores aperturas obtenidas para
distintos valores de sigma.

Además, como se anunciaba en la introducción de este documento, con el objetivo de explo-
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rar el rendimiento obtenido para aperturas con distintas caracteŕısticas, se obtuvieron aperturas
con distinta resolución. Como se puede ver en la Figura 4.8, se obtuvieron aperturas de tamaño
7*7 y de tamaño 20*20 para dos valores representativos de σ.

Figura 4.7: Aperturas 11*11 obtenidas para distintos valores de σ.

Figura 4.8: Arriba: aperturas 7*7 obtenidas con el correspondiente valor de σ. Abajo: aperturas 20*20 obtenidas
con el correspondiente valor de σ.
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5. Validación I: Simulaciones

Una vez obtenido un conjunto de aperturas para distintos niveles de ruido el siguiente paso
es evaluarlas. El método explicado en este caṕıtulo permite simular la captura de una imagen
desenfocada a partir de una imagen enfocada para, a posteriori, re-enfocarla y poder comparar el
resultado obtenido con la imagen inicial. Esta simulación supone el primer paso en la validación
de las aperturas obtenidas, al confirmar que consiguen mejores resultados que una apertura
circular.

5.1. Simulación del proceso de captura y recuperación de la in-
formación de la imagen

El procedimiento desarrollado se puede ver en la Figura 5.1. Partiendo de una imagen to-
talmente enfocada f0, se obtiene la imagen f simulando el proceso de captura de una fotograf́ıa
desenfocada (con una apertura k). Como segunda parte del proceso se parte de la imagen des-
enfocada f , a partir de la cual se obtiene la imagen re-enfocada f̂0 (con la misma apertura k).
Finalmente, como análisis del resultado obtenido para la apertura k, se mide el error mediante
la utilización de una métrica objetiva de comparación entre f0 y f̂0. Los resultados finales de
esta métrica se calcularon realizando la media entre los resultados obtenidos para un conjunto
de diez imágenes distintas.

Figura 5.1: De izquierda a derecha: proceso de desenfoque y re-enfoque de una imagen utilizando una apertura k,
que permite validar dicha apertura.

5.1.1. Proceso de captura o desenfoque de la imagen

Conviene recordar la ecuación 3.1 que define una imagen desenfocada:

f = f0 ∗ kd + η , (5.1)

25



5. Validación I: Simulaciones

donde f es la imagen desenfocada, f0 es dicha imagen perfectamente enfocada (i.e. la escena
real), kd es la respuesta de la apertura utilizada a una profundidad d y η es el ruido de la imagen.

La ecuación 5.1 define el proceso real ocurrido en la toma de una fotograf́ıa con una cámara
(analógica o digital) en el dominio espacial. Como se puede ver, interviene el operador convo-
lución entre la imagen perfectamente enfocada y la apertura existente en la cámara fotográfica
en el momento de la toma. Si todos los parámetros de la ecuación 5.1 son llevados al dominio
de la frecuencia, haciendo uso de la transformada de Fourier, la convolución pasa a ser una
multiplicación:

F = F0 ·Kd + ζ (5.2)

En la imagen 5.2 se puede ver la simulación del desenfoque (derecha) de una imagen total-
mente enfocada (izquierda), mediante la utilización de la ecuación 5.2 (es decir, la obtención
de f). La apertura utilizada se normaliza con respecto a una apertura circular, simulando la
pérdida de luz en la captura real, lo que produce el oscurecimiento en la imagen desenfocada.

Figura 5.2: Izquierda: imagen enfocada f0. Derecha: imagen f obtenida mediante la ecuación 5.2, simulando una
captura mediante el uso de la apertura mostrada en la esquina inferior derecha, apertura óptima obtenida para
σ = 0,005.

5.1.2. Recuperación de la información de la imagen

En este caso, partiendo de una imagen desenfocada f , se pretende conseguir una imagen f̂0
idéntica a la escena original capturada f0 (en este caso conocida).

Haciendo uso de la formulación establecida para la deconvolución de Wiener [27]:

26



5. Validación I: Simulaciones

F̂0 =
F · K̄

|K|2 + |C|2
(5.3)

donde F̂0 es la imagen recuperada; F es la imagen desenfocada y K es la apertura utilizada (to-
das ellas en el dominio frecuencial). C es la relación de potencia señal-ruido y se puede obtener
como σ2/A siendo A la media del espectro de potencia de un conjunto de imágenes naturales
(ver Apéndice A). Notar que el tamaño (en ṕıxeles) de las variables en la ecuación 5.3 son,
por norma general, distintos ya que las aperturas tienen tamaño 11*11 y, en la mayoŕıa de los
casos, las imágenes a tratar poseen un tamaño mayor. Por ello, es necesario realizar un padding
o relleno a la variable de menor tamaño, en este caso a la apertura K utilizada. Esta operación
de relleno consiste en insertar la apertura en el centro de una matriz de ceros, del tamaño de la
imagen a tratar.

En la imagen 5.3 se puede ver la recuperación de la información (derecha) de una imagen
desenfocada (izquierda), mediante la utilización de la ecuación 5.3 (es decir, la obtención de f̂0).

Figura 5.3: Izquierda: imagen desenfocada f . Derecha: imagen f̂0 obtenida tras la recuperación de la información,
mediante la ecuación 5.3, usando la apertura mostrada en la esquina inferior derecha, apertura óptima obtenida
para σ = 0,005.

Como se ve en la Figura 5.3 la imagen recuperada f̂0 no está perfectamente enfocada pero
los detalles (i.e. d́ıgitos), que en la imagen desenfocada f no son apreciables, son perfectamente
legibles. Además se aprecia la existencia de artefactos en la imagen recuperada f̂0 en forma de
bandas negras, esto es debido a la operación de deconvolución.
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5.2. Análisis del error obtenido: Norma L2 e ı́ndice SSIM

Con el objetivo de establecer una cuantificación para el error cometido al recuperar la infor-
mación perdida en la captura de las imágenes es necesario utilizar una métrica objetiva. Se han
evaluado dos métricas distintas, que se detallan a continuación.

5.2.1. Norma L2

Se decidió utilizar, en primera instancia, la norma (o distancia eucĺıdea) L2 entre la imagen
recuperada f̂0 tras la deconvolución y la escena real (imagen totalmente enfocada) f0, que para
imágenes de tamaño n ·m se define como:

d(f̂0, f0) =
n·m∑

i=1,j=1

‖f̂0(i, j)− f0(i, j)‖2 (5.4)

Cada ṕıxel en una imagen posee un valor entre 0 (totalmente negro) y 1 (totalmente blanco),
de tal manera que la distancia máxima entre dos ṕıxeles es 1. Como se puede ver en la Figura
5.4, la distancia L2 entre dos imágenes opuestas (una imagen cuyos ṕıxeles tienen, todos, valor 0
y otra imagen cuyos ṕıxeles tienen, todos, valor 1), obtiene como resultado la distancia máxima
posible o error máximo posible (tamaño en ṕıxeles de las imágenes). En cambio, calcular la
distancia L2 entre dos imágenes iguales obtiene como resultado la distancia mı́nima posible o
error mı́nimo posible (cero).

Figura 5.4: Izquierda: norma (o distancia) L2 entre dos imágenes totalmente opuestas. Derecha: norma L2 entre
dos imágenes totalmente iguales.

Se calculó, de este modo, el resultado para la norma (o distancia) L2 obtenido para cada
apertura (en función del valor de σ). En la Figura 5.5 se puede ver el porcentaje del error obte-
nido, con respecto al error máximo posible, para cada una de las aperturas.

Figura 5.5: Resultados de la norma L2 para aperturas calculadas para diferentes valores de σ. Se muestran los
porcentajes con respecto al error máximo posible. Las mayoŕıa de las aperturas obtenidas dan lugar a un menor
error con respecto al máximo error posible en comparación con el error obtenido por una apertura circular.
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En la Figura 5.5 se puede ver que la mayoŕıa de las aperturas obtenidas obtienen un porcen-
taje menor de error (norma L2), en el proceso de recuperación de información, que una apertura
circular. Las que tienen un porcentaje de error mayor son las calculadas para valores de σ ele-
vados, muy superiores al nivel de ruido de las imágenes utilizadas en la validación.

5.2.2. Índice SSIM

Con el objetivo de verificar la validez de los resultados obtenidos con la norma L2 se de-
cidió utilizar otra métrica, eligiendo para ello la medida SSIM por su aceptación entre los
investigadores en el campo de la informática gráfica. La medida SSIM [31] se desarrolló como
mejora de métodos tradicionales de comparación de imágenes ya que, en teoŕıa, tiene en cuenta
la percepción humana. Normalmente se calcula entre conjuntos de ṕıxeles de las imágenes a
comparar (ventanas de tamaño n · n). Para dos ventanas (x e y), se define como:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
, (5.5)

donde, µx, µx son la media, σ2x, σ2y es la varianza, σxy es la convarianza de x y y respectivamente
y c1, c2 son constantes obtenidas por el rango dinámico L de las imágenes que se van a comparar
(donde L = 2#bits por ṕıxel−1). En este caso, como se puede ver en la Figura 5.6, el ı́ndice SSIM
entre dos imágenes opuestas, obtiene como resultado el menor valor posible (-1). En cambio, el
ı́ndice SSIM entre dos imágenes iguales obtiene como resultado el mayor valor posible (uno).

Figura 5.6: Izquierda: ı́ndice SSIM entre dos imágenes totalmente opuestas. Derecha: ı́ndice SSIM entre dos
imágenes totalmente iguales.

Se calculó, de este modo, el resultado para la medida SSIM obtenido para cada apertura
(en función del valor de σ). En la Figura 5.7 se pueden ver los ı́ndices obtenidos para cada una
de las aperturas.

Figura 5.7: Resultados de la medida SSIM para aperturas calculadas para diferentes valores de σ. Se muestran
los valores obtenidos para dicha medida (́ındice SSIM). La mayoŕıa de las aperturas obtenidas dan lugar a un
ı́ndice SSIM mayor en comparación con el ı́ndice obtenido por una apertura circular.
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En la Figura 5.7 se puede ver que la mayoŕıa de las aperturas obtenidas obtienen un ı́ndice
mayor (medida SSIM), en el proceso de recuperación de información, que una apertura circular.
Estos resultados, coherentes con los obtenidos al aplicar la norma L2, indican que las aperturas
que mejor van a funcionar son las aperturas para valores de sigma de 0.0001, 0.0005, 0.002 y
0.005 entre las aperturas de tamaño 11*11 y la apertura para valor de sigma 0.005 con tamaño
7x7. Los resultados, con fotograf́ıas reales, se verán en el caṕıtulo siguiente.

5.3. Espectro de potencia

En la Sección 3.1 se explica que la información de detalle de una imagen se corresponde con las
altas frecuencias de la misma. De este modo, la pérdida de enerǵıa en dichas frecuencias es uno de
los motivos por los que una imagen aparece desenfocada. La respuesta de una apertura circular
al capturar una imagen produce gran pérdida de enerǵıa en estas frecuencias (empeorando el
SNR), además de numerosos pasos por cero en distintas frecuencias (dificultando o, incluso,
impidiendo la recuperación de la información mediante la deconvolución en esas frecuencias).
Para analizar esta respuesta en frecuencias se propone otro análisis de las aperturas obtenidas.
Dada una señal f(x, y) en el dominio espacial, se puede trasladar al dominio de la frecuencia
mediante el uso de la transformada de Fourier. En el dominio de la frecuencia, dicha señal se
puede representar en términos de su magnitud y fase:

F (u, v) = |F (u, v)|ejφ(u,v) , (5.6)

donde |F (u, v)| define la amplitud de la señal y φ define la fase; siendo |F (u, v)| calculado de la
siguiente manera:

|F (u, v)| = [R2(u, v) + I2(u, v)]1/2 (5.7)

Una manera de cuantificar la enerǵıa que posee una señal para cada una de sus frecuencias
es calcular su espectro de potencia. El espectro de potencia de una señal se define como:

P (u, v) = |F (u, v)|2 = R2(u, v) + I2(u, v) (5.8)

Aplicando la ecuación 5.8 a una apertura cualquiera se puede conocer su respuesta en el
dominio de la frecuencia, como se muestra en la Figura 5.8 en escala logaŕıtmica (debido a las
grandes diferencias entre los órdenes de magnitud a representar posibilitando la comparación
entre las aperturas a analizar).

Como se puede ver en la Figura 5.8, las aperturas obtenidas tienen una mejor respuesta en
frecuencias que una apertura circular. Se puede observar que la amplitud de la señal es mayor, a lo
largo de todas las frecuencias (eje X), en las aperturas codificadas obtenidas que en una apertura
circular. Además, si se observa la respuesta en las altas frecuencias, la diferencia de amplitud
entre las aperturas codificadas y una apertura circular es lo suficientemente grande como para
permitir recuperar los detalles (i.e. d́ıgitos) en una imagen con las aperturas codificadas, algo
impensable utilizando una apertura circular. Finalmente, las señal del espectro de potencia de las
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Figura 5.8: Espectro de potencia para cuatro aperturas codificadas y una apertura circular. Las aperturas codificadas
obtenidas poseen mejor respuesta, es decir mayor amplitud (enerǵıa) a lo largo de todas las frecuencias, que una
apertura circular. El eje X muestra frecuencia normalizada, nótese que la escala del eje Y es logaŕıtmica.

aperturas obtenidas es más suave y posee un número menor de pasos por cero, lo que posibilita
recuperar mayor parte de la información perdida en una imagen que una apertura circular.
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6. Validación II: Experimentos reales

Una vez realizada la validación de las aperturas mediante simulación, conforme a los ex-
plicado en la sección anterior, se trasladó el problema al mundo real. Para ello las fotograf́ıas
son capturadas con una cámara fotográfica a la que se le introducen, f́ısicamente, las aperturas
codificadas.

6.1. Configuración del sistema

El primer paso del proceso es imprimir las aperturas en un material fotolitográfico, lo que se
denomina un photomask (similar a una transparencia). En este punto se teńıan varias aperturas
codificadas obtenidas mediante el algoritmo genético, pero además se decidió añadir aperturas
propuestas en otros trabajos previos como [15], [30] y [36]; aśı como un patrón MURA, una ima-
gen femenina (la fotograf́ıa de Lena, bien conocida en el campo del procesamiento de imagen),
figuras como ćırculos concéntricos o śımbolos cinematográficos como los śımbolos de Batman y
Mickey Mouse. La impresión de todas las aperturas seleccionadas se muestra en la Figura 6.1.

Figura 6.1: Aperturas impresas en material fotolitográfico.
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Una vez impresas las aperturas, un punto cŕıtico era tener que abrir el objetivo adquirido pa-
ra insertar una apertura en su interior. Por ello, antes de adquirir el objetivo, se estuvo buscando
información acerca de los objetivos existentes para la cámara de que se dispońıa; tras encontrar
documentación sobre el desmontaje de uno de los objetivos en concreto, se decidió adquirirlo
y aśı poder empezar los experimentos. En la Figura 6.2 se puede ver, a la izquierda, el equipo
utilizado para los experimentos reales y, a la derecha, el resultado de insertar una apertura codi-
ficada en el objetivo. La cámara utilizada es una Canon EOS 550D y el objetivo un Canon EF
50mm f/1.8 ). En el Apéndice B se muestra, mediante fotograf́ıas, todo el proceso de apertura
del objetivo e inserción de una apertura codificada, aśı como varias imágenes del objetivo con
distintas aperturas insertadas en el mismo.

Figura 6.2: Izquierda: equipo utilizado para los experimentos reales. Derecha: apertura codificada insertada en el
objetivo.

6.2. Calibración del sistema

Como se explica en la Sección 3.1, la PSF de una apertura codificada es la función de
dispersión del punto o respuesta del sistema óptico completo (cámara y objetivo con una apertura
codificada), cuando la entrada al sistema es un impulso (i.e. un punto). Calibrar el sistema
implica conocer la PSF del sistema óptico completo a distintas profundidades y en distintas
posiciones del plano imagen.

6.2.1. Metodoloǵıa de obtención de la PSF del sistema

La PSF de una apertura codificada determinará los resultados a la hora de realizar la de-
convolución de las imágenes, existiendo distintos métodos para la obtención de la PSF de una
apertura:

Siguiendo la ecuación 5.2 se obtiene que la imagen con blur, F , es igual a F0 ·K más el
ruido de la imagen. De esta manera, si se es capaz de obtener una imagen con blur F y
su pareja enfocada F0, se puede deducir la PSF como K = F/F0. Esto implica no mover
la cámara entre la toma de la imagen con blur y su pareja totalmente enfocada o, si hay
movimiento entre las tomas, alinear a nivel de ṕıxel ambas imágenes.

Encontrar la PSF por medio de un método de optimización tomando una función de
minimización apropiada (i.e. la norma L2 entre la imagen totalmente enfocada f0 y la
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imagen recuperada f̂0 a partir de una imagen desenfocada f). Esto implica partir de una
PSF lo más próxima a la PSF a obtener para que el algoritmo converja lo antes posible.

Dado que la PSF es la respuesta del sistema óptico a un punto, otra opción era crear una
luz puntual lo suficientemente intensa, para lo cual una de las mejores opciones es el uso
de un diodo LED. El uso de un diodo LED, y no un láser, tiene como objetivo el evitar
dañar el sensor de la cámara fotográfica al impactar el rayo de luz en el mismo.

En este trabajo se probaron los tres métodos anteriormente expuestos:

Para el primero de ellos era imposible no mover la cámara entre las dos capturas necesarias
puesto que el funcionamiento f́ısico de la cámara lo imped́ıa. Se procedió a tomar ambas
fotograf́ıas intentando mover el sistema lo menos posible y alineando, a posteriori, ambas
imágenes manualmente pero, finalmente, no se obtuvieron buenos resultados. El principal
problema era la presencia de valores igual a cero, lo que produćıa divisiones por cero a la
hora de obtener la PSF, impidiendo obtener la misma de manera correcta.

En el caso de la utilización de un método iterativo no se consiguieron, tampoco, resultados
satisfactorios; esto, añadido al gran tiempo de convergencia del algoritmo provocó desechar
este método y continuar con el siguiente.

Con el tercero de ellos, sin embargo, se obtuvo la PSF para varias aperturas codificadas, co-
mo se puede ver en la Figura 6.3 para la apertura con σ = 0,005 a diferentes profundidades
1. Estas PSFs permitirán deconvolucionar las imágenes con blur, dando lugar a imágenes
próximas a la escena real capturada, como se va mostrar en la Sección 6.4. Además, hay
que notar que para que las PSFs funcionasen de manera correcta hab́ıa que realizar un
proceso de umbralización, eliminando parte del halo que las envuelve al capturarlas y la
luz residual del ambiente (stray light).

Figura 6.3: Obtención de PSFs para una apertura codificada, en intervalos de 10 cent́ımetros, para un rango (0..1]
metros de profundidad de desenfoque estando el plano focal a un metro de la cámara.

6.2.2. Construcción de un array de diodos LED

Como se ha visto anteriormente, la PSF vaŕıa con la profundidad y la posición en el plano
imagen donde es capturada, siendo posible obtener la PSF de una apertura codificada para una

1distancia entre el plano focal y la escena.

35



6. Validación II: Experimentos reales

distancia cualquiera y para cualesquiera coordenadas de la imagen. Si se está fotografiando un
objeto que ocupa, en el eje X, una gran parte de la imagen capturada, el obtener la PSF de
la apertura codificada en las coordenadas correspondientes a uno de los extremos del objeto
daŕıa una recuperación distinta de la imagen en esa posición que en el extremo contrario. Por
ello, idealmente, se necesitaŕıa un “tablero” en el que se pudiesen colocar emisores puntuales de
luz idénticos en cuanto a luminosidad y a distintas alturas (cubriendo todo el plano imagen a
cada profundidad para poder elegir con cual de las PSFs se quiere desenfocar qué parte de la
imagen desenfocada, como se muestra en la Figura 6.4. Aśı, dada una imagen desenfocada, se
podrá elegir con cual de las PSFs se quiere recuperar qué parte de la imagen desenfocada.

Figura 6.4: Tablero ideal para obtener un conjunto de PSFs de una apertura codificada a una distancia cualquiera.

Esta idea se va a denominar array de diodos LED. Se construyó un array de diodos LED, de
una sola fila con 8 diodos LED separados entre śı 10 cent́ımetros usando materiales “caseros”
(cartón, cable de cobre y un soldador de estaño). Este array 1D fue utilizado para obtener las
PSF que intervinieron en la recuperación de información de las fotograf́ıas con blur, obtenidas
con la cámara. En la Figura 6.5 se muestra el array de diodos LED una vez construido. En
la imagen superior se muestra la respuesta (como se puede ver es el propio punto de luz) de
la apertura cuando el array de diodos LED está totalmente enfocado. En las imágenes central
e inferior se muestra la respuesta de la apertura a medida que se va desenfocando la escena
capturada. La metodoloǵıa utilizada para las capturas se explica en la siguiente sección.

Figura 6.5: Array de diodos LED construido. Arriba: PSFs con el array de diodos LED totalmente enfocado
(puntos). Abajo: PSFs para dos desenfoques distintos del array de diodos LED, a profundidades de desenfoque de
50 cent́ımetros y un metro.
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6.2.3. Captura de las imágenes de calibración

Una vez introducida una apertura en el objetivo de la cámara fotográfica, mediante el uso
del array de diodos LED explicado, se procedió a obtener sus PSFs a distintas profundidades de
desenfoque. En este trabajo, con el objetivo de obtener datos para un intervalo amplio de tra-
bajo, se obtuvieron las PSFs para 10 distancias distintas. Esto se consiguió alejando el array de
diodos LED, desde la distancia D (plano focal, escena enfocada), en intervalos de diez cent́ıme-
tros hasta llegar a una distancia (con respecto a la cámara) de dos metros, como se muestra en
la Figura 6.6. Notar que, para hacer el proceso más preciso, se utilizó un disparador a distancia
para no tener que tocar f́ısicamente la cámara entre las distintas capturas.

Figura 6.6: Procedimiento utilizado para obtener las PSFs de una apertura insertada en el objetivo de la cámara.

Los pasos para la obtención de las PSFs son:

Se fija la cámara en una posición en la que pueda permanecer inmóvil durante todo el
proceso.

Se enfoca el array de diodos LED a una distancia D en el eje Z desde la posición de
la cámara (en este caso D = 1m). Los objetos en otras posiciones en el eje Z, como se
explicó en el Caṕıtulo 3, aparecerán desenfocados a medida que se incremente su distancia
con respecto a D.

Manteniendo el enfoque a la distancia D se mueve el array de diodos LED en el eje Z para
obtener la PSF de la apertura a distintas profundidades de desenfoque.

De esta manera, para cada apertura, se obtiene un conjunto de PSFs como el mostrado en
la Figura 6.3.

6.3. Captura y recuperación de las imágenes con blur

Una vez calibrado el sistema, la metodoloǵıa aplicada a la hora de capturar imágenes con
blur fue la misma que la explicada para la obtención de las PSFs de una apertura, es decir, fijar
el enfoque a una distancia D = 1m y, a continuación, mover la escena (variando la profundi-
dad) sin modificar ningún otro parámetro obteniendo, finalmente, imágenes desenfocadas. La
diferencia en el caso de la obtención de imágenes con blur es que, una vez finalizado el proceso
de captura para las distintas distancias, se procedió a capturar las mismas escenas totalmente
enfocadas. Esto se decidió para que, una vez se procediese con la recuperación de la información
perdida, se pudiera comparar la imagen resultante con la escena real (totalmente enfocada). Se
tomaron imágenes con las aperturas obtenidas y con la apertura circular (inherente al objetivo)
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para comparar los resultados, mostrando los mismos en la siguiente sección.

Finalmente, se procedió a recuperar la información de las imágenes capuradas de forma
análoga a la explicación de la Subsección 5.1.2 para los resultados simulados. Se utiliza la de-
convolución de Wiener, con una estimación de SNR de 0.005.

6.4. Resultados

Después de explicar la metodoloǵıa para los experimentos reales se muestran, en las Figuras
6.7 y 6.8, dos ejemplos de los resultados obtenidos en la recuperación de imágenes con blur.
En el Apéndice D se muestran un conjunto de resultados obtenidos para el resto de aperturas
evaluadas. Las aperturas evaluadas son las generadas para valores de σ pequeños (menores de
0.005), por ser las que daban mejores resultados en las simulaciones (véanse las Figuras 5.5 y
5.7 de la Sección 5.2). Los valores de ruido mayores son inusuales en fotograf́ıas convencionales,
aunque no se ha comprobado para capturas de escenas con poca iluminación (i.e. escenas noc-
turnas) en las que el ruido podŕıa alcanzar valores mayores.

En las Figuras 6.7 y 6.8 se puede ver la recuperación de información totalmente perdida como
las letras de los libros en las escenas fotografiadas. En las figuras se pretende enfocar los objetos
que están posicionados en el centro de la imagen con blur (a una profundidad de desenfoque
de 40 cm y 60 cm, respectivamente). Para ello se utilizó la respuesta más cercana, del array
de diodos LED, al centro de la imagen. Al utilizar la respuesta, cuyas coordenadas se aproxi-
man al centro de la imagen con blur, se consigue recuperar la información de los objetos que,
espacialmente, están alrededor de esas coordenadas (siempre que su profundidad sea la misma
que la de la respuesta utilizada). Sin embargo, en la Figura 6.9 se puede apreciar la existencia
de objetos a distintas profundidades, cuya información no se recupera. En dichas zonas de la
imagen aparecen artefactos puesto que la PSF con la que se deconvoluciona no es la adecuada
para esas profundidades. No obstante, en el centro de la figura, se puede comprobar la calidad
de nuestras aperturas codificadas a la hora de usar su respuesta para recuperar la información
perdida en una captura.

En la Figura 6.10 se puede ver una comparativa de los resultados obtenidos con aperturas
óptimas para tres valores distintos de σ con los resultados obtenidos al utilizar la PSF de una
apertura circular en igualdad de condiciones (misma profundidad de desenfoque). Como se puede
apreciar, la recuperación de información con una apertura circular es mı́nima, en comparación
con la recuperación obtenida con aperturas codificadas, apareciendo gran cantidad de artefactos
(esta vez debido a la mala respuesta de una apertura circular).
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Figura 6.7: Resultado de la apertura óptima para σ = 0.005 para profundidad de desenfoque de 40 cent́ımetros.
Arriba a la izquierda: foto capturada con aparición de blur y PSF de la apertura utilizada, a la derecha: zoom de
detalle de la escena totalmente enfocada. Abajo a la izquierda: zoom de detalle de la foto capturada, a la derecha:
zoom de detalle de la foto obtenida tras recuperar la información perdida en la captura.

Figura 6.8: Resultado de la apertura óptima para σ = 0.0001 para profundidad de desenfoque de 60 cent́ımetros.
Arriba a la izquierda: foto capturada con aparición de blur y PSF de la apertura utilizada, a la derecha: zoom de
detalle de la escena totalmente enfocada. Abajo a la izquierda: zoom de detalle de la foto capturada, a la derecha:
zoom de detalle de la foto obtenida tras recuperar la información perdida en la captura.
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Figura 6.9: Importancia de la profundidad de desenfoque para la que se obtiene la PSF utilizada en el proceso.
La información de los objetos que están a distinta profundidad de desenfoque (como el marcado en la figura) no
podrá ser recuperada. Arriba a la izquierda: foto capturada con aparición de blur y PSF de la apertura utilizada,
a la derecha: zoom de detalle de la escena totalmente enfocada. Abajo a la izquierda: zoom de detalle de la foto
capturada, a la derecha: zoom de detalle de la foto obtenida tras recuperar la información perdida en la captura.
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Figura 6.10: Comparativa entre resultados obtenidos con aperturas codificadas y una apertura circular en igualdad
de condiciones. Arriba: resultados de la apertura óptima para σ = 0.005 y una apertura circular para profundidad
de desenfoque de 40 cent́ımetros. Centro: resultados de la apertura óptima para σ = 0.0001 y una apertura circular
para profundidad de desenfoque de 60 cent́ımetros. Abajo: resultados de la apertura óptima para σ = 0.002 y una
apertura circular para profundidad de desenfoque de 90 cent́ımetros.
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7. Conclusiones y trabajo futuro

Una vez finalizado el proyecto, se van a poner de manifiesto las aportaciones y limitaciones
encontradas en el trabajo realizado, a modo de resumen final sobre el mismo. Además se co-
mentarán los posibles puntos que se podŕıan extender en un trabajo futuro y las conclusiones
personales obtenidas.

7.1. Conclusiones

La primera parte del proyecto generó un amplio trabajo de investigación en un campo emer-
gente, como lo es la fotograf́ıa computacional, recopilando un estudio del arte. Dicho estudio
ofrece una visión sucinta, pero representativa y estructurada, de un campo de muy reciente
aparición y con muy poca literatura establecida.

El proyecto ofrece una solución de blur por desenfoque en imágenes. Para ello, el trabajo
se basó en una reciente aproximación para dicho problema, utilizando aperturas codificadas.
De esta manera, se implementó un algoritmo genético que obtendŕıa un conjunto de aperturas
codificadas. Hay que tener en cuenta que los múltiples parámetros de este tipo de algoritmos
deben ser estudiados, con el objetivo de encontrar una solución válida (en este caso una apertura
codificada con mejores resultados que una apertura circular), para lo cual se realizó un estudio
de la convergencia del algoritmo.

Se analizaron las aperturas codificadas obtenidas por el algoritmo genético, comparando sus
resultados con los resultados obtenidos por una apertura circular, en un entorno controlado de
simulaciones. Una vez validadas estas aperturas, se procedió a realizar pruebas con experimentos
reales concluyendo los resultados obtenidos en la Sección 6.4 y en el Apéndice D.

El trabajo desarrollado permite recuperar información perdida en una imagen, siendo las
únicas entradas una fotograf́ıa con blur y la PSF con la que se desea trabajar. Con el método
desarrollado se ha conseguido recuperar gran parte de la información perdida en la captura de
una escena, demostrándose un rendimiento de las aperturas obtenidas claramente superior al
de una apertura circular. Sin embargo, existen algunas limitaciones que no permiten recuperar
la “totalidad” de la información perdida. La limitación principal es la utilización de la misma
PSF en toda la imagen capturada, en la que puede haber objetos a distintas profundidades. El
método desarrollado permite recuperar la información perdida en la zona de la imagen en la que
los objetos están a una profundidad conocida, apareciendo artefactos en el resto de la imagen.
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7.2. Desarrollo del proyecto

El tiempo dedicado al desarrollo de este trabajo ha sido de 10 meses en dos intervalos tempo-
rales. La primera parte del proyecto, dedicada completamente al estudio del estado del arte de la
fotograf́ıa computacional e investigación de trabajos realizados por otros autores, se realizó du-
rante abril y junio de 2010 durante tres horas diarias (a la vez, realizando asignaturas pendientes
de la titulación).

El proyecto se retomó en septiembre de 2010 con una jornada laboral de seis horas diarias
hasta el mes de noviembre; a partir de entonces y hasta febrero de 2010 la jornada laboral ha
sido de ocho horas diarias. Siendo un proyecto de investigación, han ido surgiendo nuevos proble-
mas a resolver dados los resultados obtenidos en cada momento, teniendo que incluir objetivos
intermedios hasta llegar a resolver el objetivo principal del mismo.

Además, en el 2011 se decidió enviar una publicación del trabajo realizado (extendida por un
pequeño estudio de aperturas no binarias) al Congreso Ibero-Americano de Informática Gráfica
(SIACG 2011), cuya fecha ĺımite de aceptación de publicaciones fue el 7 de febrero de 2011. Esto
supuso dedicar una parte del desarrollo del proyecto a la creación de la publicación, aśı como
de una bateŕıa de resultados finales; por lo que el trabajo deb́ıa estar funcionando con tiempo
suficiente para satisfacer la entrega a tiempo de la publicación.

7.3. Trabajo futuro

Una primera mejora del trabajo realizado es conseguir una ejecución menos costosa del
algoritmo genético, paralelizando la ejecución del mismo para conseguir acelerar la sucesión de
generaciones. Por otro lado, ya que la transmitancia de luz de una apertura codificada es menor
que la de una apertura circular, optimizar la función de evaluación consiguiendo tener en cuenta
esa caracteŕıstica seŕıa otra posible extensión del trabajo realizado. Otra principal mejora, seŕıa
trabajar con varias PSFs en la imagen, aplicando una PSF distinta a cada zona de la imagen,
permitiendo recuperar casi la totalidad de la información perdida para cualquier fotograf́ıa con
blur por desenfoque. Además, encontrar otro método de obtención de las PSFs de una apertura
a distintas profundidades de desenfoque podŕıa mejorar los resultados obtenidos. Finalmente,
realizar un estudio más extenso acerca de la convergencia del algoritmo a aperturas óptimas en
relación a los valores de los parámetros podŕıa determinar unos mejores valores de los mismos a
la hora de buscar aperturas codificadas que funcionen de mejor manera que las obtenidas.

7.4. Conclusiones personales

De manera subjetiva, el desarrollo de mi proyecto fin de carrera en el seno del GIGA, junto
a Belén y Diego, ha generado una satisfacción enorme en varios aspectos.

Para empezar, este proyecto ha sido un proyecto de investigación sobre un campo muy emer-
gente y su desarrollo no se limita a “construir una muro con los ladrillos que mis directores de
proyecto me faciliten”; de esta manera he aprendido a trabajar bajo otro enfoque que el apren-
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dido en la carrera muchas veces limitado a pensar en “como hacer que mi programa funcione”.

Para continuar, el haber realizado experimentos reales sobre todo lo que, en otras ocasiones
queda en el estudio teórico de un problema (o, a lo sumo, en simulaciones), es algo que tampoco
me esperaba llegar a conseguir, siendo una parte muy gratificante.

Por último, ser parte de una publicación en un congreso me parece algo que no se consigue,
en la mayoŕıa de las ocasiones, antes de acabar la carrera universitaria; de esta manera, que los
acontecimientos me hayan permitido formar parte de una publicación es muy satisfactorio.
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Apéndice A. Derivación matemática de la fun-

ción de evaluación

Como se explica en el Caṕıtulo 3, se busca diseñar una apertura codificada cuya respuesta en
frecuencias sea mejor que la respuesta de una apertura circular, con el objetivo de recuperar la
información perdida en la imagen capturada. Se sigue la aproximación de Zhou y Nayar [36] en
la que la calidad de una apertura viene dada por el error entre la imagen enfocada y el resultado
de la deconvolución de la imagen desenfocada con la apertura. Para comenzar, conviene definir
la formulación, en el dominio de la frecuencia, establecida para la deconvolución de Wiener:

F̂0 =
F · K̄

|K|2 + |C|2
, (A.1)

donde:

F̂0 es la imagen re-enfocada, recuperada.

F es dicha imagen desenfocada.

K es la respuesta de la apertura utilizada.

C es la relación de potencia señal-ruido (SNR).

De esta manera, se establece la medición de la calidad de una apertura como el resultado
obtenido al calcular la esperanza de la norma (o distancia) L2 entre la imagen re-enfocada F̂0 y
la misma imagen enfocada F0, en espacio frecuencial:

R(K,F0, C) = E
ζ
[
∥∥∥F̂0 − F0

∥∥∥2], (A.2)

donde ζ es el ruido de la imagen.

Sustituyendo la ecuación A.1 en la ecuación A.2, se obtiene:

R(K,F0, C) = E
ζ
[

∥∥∥∥∥ζ · K̄ − F0 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

] (A.3)
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A. Derivación matemática de la función de evaluación

Asumiendo que el ruido sigue una distribución gaussiana de media 0 y una desviación t́ıpica
dada por σ, ζ ∼ N(0, σ2), la ecuación A.3 queda:

R(K,F0, C) =

∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥2 +

∥∥∥∥∥ F0 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

(A.4)

Para poder eliminar de la ecuación A.4 la incógnita F0, que es desconocida, se utiliza un
modelo natural de imágenes. La esperanza de |F0|2 es calculada como:

A(ξ) =

∫
F0

|F0(ξ)|2dµ(F0), (A.5)

donde ξ representa frecuencia y A se calcula promediando el espectro de potencia de un conjunto
de imágenes naturales. Sustituyendo dicha esperanza A.5 en la ecuación A.4, se obtiene:

R(K,C) =

∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥2 +

∥∥∥∥∥ A1/2 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

(A.6)

El valor de |C|2 que, para un K dado, minimiza el valor de R es |C|2 = σ2/A. Sustituyendo
dicho valor en la ecuación A.6 se elimina otra incógnita. Si se reorganiza la ecuación A.6, se
obtiene la función de evaluación empleada:

R(K) =
σ2

|K|2 + σ2/A
(A.7)
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Apéndice B. Desmontaje del objetivo

En este apéndice se va a mostrar el proceso de desmontaje del objetivo a la hora de introducir
una apertura codificada en el interior del sistema de lentes.

Figura B.1: Objetivo utilizado (EF 50mm f 1.8 II) sin abrir.

Figura B.2: Paso 01: voltear el objetivo y extraer la tapa posterior del mismo. La tapa se extrae cuando se coloca
el objetivo en la cámara fotográfica.
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B. Desmontaje del objetivo

Figura B.3: Paso 02: extracción de dos micro-tornillos para, a posteriori, extraer una tapa interior (dejando
visible la microelectrónica del objetivo).

Figura B.4: Paso 03: extracción de la tapa que permite cambiar el modo de enfoque del objetivo entre modo manual
y modo automático. Esto permitirá extraer la carcasa exterior del objetivo.

Figura B.5: Paso 04: extracción de la carcasa exterior del objetivo.
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B. Desmontaje del objetivo

Figura B.6: Paso 05: una vez se tiene abierto el objetivo se separa el sistema de lentes del aro de enfoque (pieza
circular que permite enfocar la escena en modo de enfoque manual).

Figura B.7: Paso 06: sistema de lentes, en cuyo interior se aloja el diafragma del objetivo.

Figura B.8: Paso 07: colocación de una apertura en el sistema de lentes.
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B. Desmontaje del objetivo
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Apéndice C. Estudio de la convergencia del

algoritmo genético

En este apéndice aparecen los resultados del estudio explicado en la Sección 4.3. Se incluye
la evolución de R(K) y el tiempo de ejecución para diferentes parámetros.

C.1. Supervivientes

El parámetro supervivientes indica el número de cromosomas que son seleccionados al final
de cada generación para crear la siguiente generación, es decir los cromosomas que actúan como
padres de la siguiente generación. En los resultados obtenidos se observa que cuanto menor es
el valor para dicho parámetro (lo que implica un mayor número de cromosomas nuevos en cada
generación) el valor de R(K) es menor, siendo el tiempo de ejecución muy similar para cualquier
valor del parámetro.

Figura C.1: Supervivientes (porcentaje con respecto al número de individuos de la población). Izquierda, eje ho-
rizontal: distintos valores para el parámetro supervivientes, eje vertical: tendencia de la función de evaluación
R(K) con la variación del parámetro supervivientes. Derecha, eje horizontal: distintos valores para el paráme-
tro supervivientes, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del parámetro
supervivientes.
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C. Estudio de la convergencia del algoritmo genético

C.2. Generaciones

El parámetro generaciones indica el número de generaciones del algoritmo, es decir deter-
mina el peŕıodo de evolución del fenotipo. En los resultados obtenidos se observa que cuanto
mayor es el valor para dicho parámetro (lo que implica un mayor número generaciones) el valor de
R(K) es menor, siendo el tiempo de ejecución proporcional al incremento del valor del parámetro.

Figura C.2: Izquierda, eje horizontal: distintos valores para el parámetro generaciones, eje vertical: tendencia de la
función de evaluación R(K) con la variación del parámetro generaciones. Derecha, eje horizontal: distintos valores
para el parámetro generaciones, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del
parámetro generaciones.

C.3. Población

El parámetro población indica el número de cromosomas que conforman cada generación.
En los resultados obtenidos se observa que el valor de R(K) es muy similar para cualquier valor
del parámetro, siendo el tiempo de ejecución proporcional al incremento del valor del parámetro.

Figura C.3: Izquierda, eje horizontal: distintos valores para el parámetro población, eje vertical: tendencia de la
función de evaluación R(K) con la variación del parámetro población. Derecha, eje horizontal: distintos valores
para el parámetro población, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del
parámetro población.

58



C. Estudio de la convergencia del algoritmo genético

C.4. Cruzamiento

El parámetro cruzamiento indica la probabilidad de que un gen sea intercambiado entre
dos cromosomas en la operación de cruzamiento. En los resultados obtenidos se observa que el
valor de R(K) aśı como el tiempo de ejecución es muy similar para cualquier valor del parámetro.

Figura C.4: Izquierda, eje horizontal: distintos valores para el parámetro cruzamiento, eje vertical: tendencia de la
función de evaluación R(K) con la variación del parámetro cruzamiento. Derecha, eje horizontal: distintos valores
para el parámetro cruzamiento, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del
parámetro cruzamiento.

C.5. Mutación

El parámetro mutación indica la probabilidad de que un gen sea mutado (es decir, cambiado
de valor) en un cromosoma en la operación de mutación. En los resultados obtenidos se observa
que el valor de R(K) aśı como el tiempo de ejecución es muy similar para cualquier valor del
parámetro.

Figura C.5: Izquierda, eje horizontal: distintos valores para el parámetro mutación, eje vertical: tendencia de la
función de evaluación R(K) con la variación del parámetro mutación. Derecha, eje horizontal: distintos valores
para el parámetro mutación, eje vertical: tendencia del tiempo de ejecución del algoritmo con la variación del
parámetro mutación.
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C. Estudio de la convergencia del algoritmo genético

60



Apéndice D. Resultados de las pruebas reales

Figura D.1: Resultados de la apertura óptima para σ = 0.0001. Se muestran, de arriba a abajo, resultados para
tres profundidades de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada profundidad,
izquierda: imagen capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la información
perdida en la captura, abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales

Figura D.2: Resultados de la apertura óptima para σ = 0.001. Se muestran, de arriba a abajo, resultados para tres
profundidades de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada profundidad, izquierda:
imagen capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la información perdida en la
captura, abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales

Figura D.3: Resultados de la apertura óptima para σ = 0.002. Se muestran, de arriba a abajo, resultados para tres
profundidades de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada profundidad, izquierda:
imagen capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la información perdida en la
captura, abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales

Figura D.4: Resultados de la apertura óptima para σ = 0.0005. Se muestran, de arriba a abajo, resultados para
tres profundidades de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada profundidad,
izquierda: imagen capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la información
perdida en la captura, abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales

Figura D.5: Resultados de la apertura óptima para σ = 0.005. Se muestran, de arriba a abajo, resultados para tres
profundidades de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada profundidad, izquierda:
imagen capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la información perdida en la
captura, abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales

Figura D.6: Resultados de la apertura óptima para σ = 0.005 y tamaño 7*7. Se muestran, de arriba a abajo,
resultados para tres profundidades de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada
profundidad, izquierda: imagen capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la
información perdida en la captura, abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales

Figura D.7: Resultados de la apertura circular. Se muestran, de arriba a abajo, resultados para tres profundidades
de desenfoque distintas (40, 60 y 90 cent́ımetros respectivamente). Para cada profundidad, izquierda: imagen
capturada con blur por desenfoque, derecha: imagen obtenida tras recuperar la información perdida en la captura,
abajo: PSF de la apertura utilizada.
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D. Resultados de las pruebas reales
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Apéndice E. Art́ıculo: Coded Apertures for De-

focus Deblurring

En febrero del 2011 se envió un art́ıculo basado en el trabajo realizado en este proyecto
(extendido por un pequeño estudio de aperturas no binarias) al Congreso Ibero-Americano de
Informática Gráfica (SIACG 2011). El resultado no sólo fue la aceptación del art́ıculo enviado si
no que, además, fue reconocido como uno de los cinco mejores art́ıculos del congreso. En junio del
mismo año, en la celebración del mismo, el art́ıculo se eligió como uno de los tres mejores del con-
greso, siendo propuesto para aparecer (de manera extendida) en la revista “Computer Graphics
Forum, The International Journal of the Eurographics”, revista ĺıder en art́ıculos técnicos so-
bre gráficos por ordenador con un factor de impacto de 1.681 y posición 22/93 en el ranking JRC.

La versión final del art́ıculo, enviada al congreso, se muestra en este anexo.
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Coded Apertures for Defocus Deblurring

Belen Masia, Adrian Corrales, Lara Presa and Diego Gutierrez

Universidad de Zaragoza

Abstract
The field of computational photography, and in particular the design and implementation of coded apertures, has
yielded impressive results in the last years. Among their applications lies defocus deblurring, in which we focus
in this paper. Following the approach of previous works, we obtain near-optimal coded apertures using a genetic
algorithm and an existing quality metric. We perform both synthetic and real experiments, testing the performance
of the apertures along the dimensions of depth, size and shape. We additionally explore non-binary apertures,
usually overlooked in the literature, and perform a comparative analysis with their binary counterparts.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Sharpening and deblurring

1. Introduction

In the past few years, the field of computational photogra-
phy has yielded spectacular advances in the imaging process.
The main idea is to code the light information in novel ways
before it reaches the sensor, in order to decode it later and
obtain an improved, enhanced or extended representation of
the scene being captured. Several different strategies exist,
from structured lighting, to new optical devices, to modu-
lated apertures or shutters. In this work we focus on coded
apertures. These are masks obtained by means of computa-
tional algorithms which, placed at the camera lens, encode
the defocus blur in order to better preserve high frequencies
in the original image. They can be seen as an array of multi-
ple ideal pinhole apertures (with infinite depth and no chro-
matic aberration), whose location on the 2D mask is deter-
mined computationally. Decoding the overlap of all pinhole
images yields the final image.

Some existing works interpret the resulting coded blur at-
tempting to recover depth from defocus. Given the nature of
the blur as explained by simple geometrical optics, this ap-
proach imposes a multi-layered representation of the scene
being depicted. While there is plenty of interesting on-going
research in that direction, in this paper we limit ourselves to
the problem of defocus deblurring: we aim to obtain good
coded apertures that allow us to recover a sharp image from
its blurred original version. We follow standard approaches
and pose the imaging process as a convolution between the
original scene being captured and the blur kernel (plus a

noise function). In principle, this would lead to a blind de-
convolution problem, given that the such blur kernel is usu-
ally not known. Assuming no motion blur nor camera shake,
this kernel is reduced to the point spread function of the op-
tical system. Traditional circular apertures, however, have a
very poor response in the frequency domain: not only do
they lose energy at high frequencies, but they exhibit mul-
tiple zero-crossings as well; it is thus impossible to recover
information at such frequencies during deconvolution.

In this paper, we present several coded apertures with bet-
ter frequency response, which allow us to recover informa-
tion apparently lost to blur during the capture process. We
follow the approach of previous works, and rely on the aver-
age power spectra of natural images to guide our optimiza-
tion process, which is in turn performed by means of genetic
algorithms. Once the coded apertures have been obtained,
we show the feasibility of our results by printing them out
on a photomask sheet and inserting them in an off-the-shelf
camera. The captured blurred images are then deconvolved
using Wiener deconvolution. We analyze the performance
of our apertures as a function of shape, depth and size. We
additionally modify our genetic algorithm to allow for non-
binary masks, and perform a comparative analysis with their
binary counterparts.

2. Previous Work

Coded apertures have been traditionally used in astronomy,
coding the direction of incoming rays as an alternative to fo-



cusing imaging techniques [ItZ92]. Possibly the most popu-
lar patterns were the MURA patterns (Modified Uniformly
Redundant Array) [GF89]. Veeraraghavan et al. [VRA∗07]
showed how a 4D light field can be reconstructed from 2D
sensor information by means of a coded mask. Placed at the
lens, the authors achieve refocusing of images at full resolu-
tion, provided the scene being captured contains only Lam-
bertian objects. Nayar and Mitsunaga [NM00], extended the
dynamic range capabilities of the imaging system by placing
a mask of spatially varying transmittance next to the sensor,
and then mapping the captured information to high dynamic
range.

Other works have proposed different coded apertures for
defocus deblurring or depth approximation. To restore a
blurred image, the apertures are designed to have a broad-
band frequency response, along with none (or distinguish-
able) zero-crossings in the Fourier domain. Hiura and Mat-
suyama [HM98] proposed a four-pinhole coded aperture to
approximate the depth of the scene, along with a deblurred
version of it, although their system required multiple images.
Liang et al. [LLW∗08] use a similar approach, combining
tens of images captured with Hadamard-based coded pat-
terns. Levin et al. [LFDF07] attempted to achieve all-focus
and depth recovery simultaneously, relying on image statis-
tics to design an optimal aperture. Depth recovery is limited
to a multi-layered representation of the scene. Last, the idea
of spatial coding of the mask was transferred to the tempo-
ral domain by applying a coded exposure aimed at motion
deblurring [RAT06].

In [ZLN09], the authors obtained paired apertures to re-
cover both depth and focus from two images, using both ge-
netic algorithms and gradient descent search. Last, a frame-
work for evaluating coded apertures was recently presented
[ZN09], based on the quality of the resulting deblurring and
taking into account natural image statistics. Near-optimal
apertures are obtained by means of a genetic algorithm. In
this paper we follow the same approach, and analyze the ob-
tained apertures along the size, depth and shape dimensions.
Additionally, we extend our study by analyzing non-binary
masks.

3. Optimal Aperture Design

Image blur due to defocus is caused by the loss of high fre-
quency content when capturing the image. The capture pro-
cess can be modeled as a convolution between the scene be-
ing captured and the point spread function (PSF) of the cam-
era, which is defined as the response of the optical system of
the camera to an impulse input in the spatial domain. Thus:

f = kd ∗ f0 +η (1)

where f0 is the real scene being photographed, f is the cap-
tured image, kd is the PSF and η accounts for the noise in-
troduced in the imaging process. Subscript d accounts for
depth, since the PSF varies with depth or, more specifically,

with the degree of defocus (strictly speaking, it also varies
spatially with the position within the image). We will assume
that the noise follows a Gaussian distribution of zero mean
and standard deviation denoted by σ, N(0,σ2). By means of
deconvolution, an approximation f̂0 to the original sharp im-
age can be obtained. Note that in the frequency domain the
convolution becomes a multiplication, and Equation 1 can
be written as:

F = Kd ·F0 +ζ (2)

As Figure 1 shows, the PSF, and thus the response of the
camera, is characterized by the pattern of the aperture. The
response to a coded aperture can also be seen in Figure 2,
which depicts the calibration array used in our physical ex-
periments. Since, as mentioned, blur is caused by the loss of
information at certain frequencies, the response of an aper-
ture is better analyzed in the frequency domain. Figure 3
depicts a 1D slice of the power spectrum of different aper-
ture patterns, computed by Fourier transforming the aperture
(note that the y-axis is log-scale). This shows the magnitude
of the response for different frequencies. Circular apertures
exhibit zero crossings at several frequencies, and thus in-
formation at those frequencies is lost during the imaging
process. Optimal apertures for deblurring therefore seek a
smooth power spectrum, while keeping the transmitted en-
ergy as high as possible.

Figure 1: Left: Images of the response to a point light of
different apertures (from top to bottom: focused aperture,
defocused circular aperture -defocus depth = 90 cm- and
one of our coded apertures -defocus depth = 90 cm-, shown
in the right). A LED and black cardboard were used to create
the point light. Right: Canon EF 50mm f/1.8 lens with one of
our coded apertures.

3.1. Aperture Quality Metric

Devising an aperture pattern whose frequency response is
optimal can be done in different manners. In this paper we
follow the approach of Zhou and Nayar [ZN09], which states
the quality of an aperture pattern based on the quality of the
deconvolution and on a prior model of natural images. In the
following we briefly describe the metric and its foundation,
and we refer the reader to the original paper for additional
details.



Figure 2: Our poor man’s LED array used to calibrate the
PSFs of the apertures. Top: Focused image. Bottom: Image
taken with one of our coded apertures at a defocus depth of
70 cm.

Figure 3: Power spectra comparison of different apertures
with respect to a circular aperture (blue). Left: Our aper-
tures for resolution 11×11 and noise levels σ = 0.001 (red)
and σ = 0.005 (green). Right: Our apertures for resolution
7×7, binary (red) and non-binary (green).

The quality metric chosen is the expectation of the L2
distance between the deconvolved image F̂0 and the ground
truth image F0 with respect to ζ, which we want to be mini-
mal (note that we have removed the subscript d for the sake
of simplicity):

R(K,F0,C) = E
ζ

[
∥∥F̂0−F0

∥∥2
] (3)

The recovered image F̂0 can be obtained using Wiener de-
convolution as follows:

F̂0 =
F · K̄

|K|2 + |C|2
(4)

where K̄ is the complex conjugate of K, and |K|2 = K · K̄.
|C|2 = C · C̄ is the matrix of noise-to-signal power ratios
(NSR) of the additive noise. Substituting this formulation in

Equation 3 we have:

R(K,F0,C) = E
ζ

[

∥∥∥∥∥ζ · K̄−F0 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

] (5)

and assuming that ζ follows a Gaussian distribution with
zero mean, ζ∼ N(0,σ2):

R(K,F0,C) =

∥∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥∥
2

+

∥∥∥∥∥ F0 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

(6)

Using a model of natural images as a prior, the expectation
of |F0|2 is

A(ξ) =
∫

F0

|F0(ξ)|2dµ(F0), (7)

where ξ represents frequency and A can be approximated by
averaging the power spectra of a number of natural images.
This way the dependance on F0, which is unknown, is cir-
cumpassed, obtaining:

R(K,C) =

∥∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥∥
2

+

∥∥∥∥∥ A1/2 · |C|2

|K|2 + |C|2

∥∥∥∥∥
2

(8)

The value of |C|2 which, for a given K, minimizes the value
of R is |C|2 = σ

2/A. Substituting this value in Equation 8
yields the sought quality metric, which depends only on the
Fourier transform of the aperture pattern K, the estimated
image noise σ and the average power spectra of natural im-
ages A:

R(K) =
σ

2

|K|2 +σ2/A
(9)

3.2. Aperture Pattern Optimization

Once we have a way of evaluating a certain aperture with
Equation 9, an optimization method can be used to obtain
the minimum value of R(K) over the range of possible aper-
tures. The space of possible apertures is infinite, since the
aperture can be of different resolutions, and each pixel can
in principle take infinite values. A priori the solution is lim-
ited only by physical restrictions, i.e. apertures with negative
values are not realizable in practice and resolution is limited
by the printing process. Resolution is additionally limited by
diffraction effects, which appear as the size of the pixels in
the aperture gets smaller, and hinder the performance of the
aperture. Transmissivity is an additional issue to be taken
into account when designing an aperture. Coded apertures
typically have lower transmission rates than their circular
counterparts, and the use of a longer exposure time to obtain
an equivalent brightness to that of the circular aperture can
cause other problems such as motion blur. This metric does
not consider transmissivity when evaluating an aperture, but
still it yields satisfactory results for the majority of cases.



4. Experimental Setup and Results

In order to search for the best aperture pattern we have im-
plemented a genetic algorithm which uses the quality met-
ric described in Section 3 as evaluation function, resembling
Zhou and Nayar’s work. The algorithm has the following
scheme:

• Initialization. The initial population of N possible aper-
tures is randomly generated. An aperture is defined by
a vector of L elements, each element corresponding to a
pixel.
• Selection. The quality metric of Equation 9 is used to eval-

uate the N possible apertures. They are then sorted accord-
ing to this value and the best M apertures are selected.
• Reproduction. The selected M apertures, by means of

crossover and mutation, populate the next generation.
Crossover implies randomly selecting two apertures, du-
plicating them, and exchanging corresponding bits be-
tween them with probability c1, obtaining two new aper-
tures. Mutation ensures diversity by modifying each bit of
the aperture with probability c2.
• Termination. The two previous steps of reproduction and

selection are repeated sequentially until the termination
condition is met. We use a maximum number of genera-
tions G as stopping condition.

We have tested apertures of two different resolutions,
11× 11 and 7× 7 pixels (that is, L = 121 and L = 49, re-
spectively), while the rest of the parameters we used for the
algorithm are N = 4000, M = 400, G = 80, c1 = 0.2 and
c2 = 0.05. Since the optimal aperture depends on the noise
of the image we have run the algorithm for different noise
levels and tested the resulting apertures. Apertures designed
for σ values of 0.001 and 0.005 proved to work best for a
wide variety of images. Regarding the possible values the
pixels in the aperture can take, we have experimented both
with binary and non-binary apertures, but at this first stage
we show results just for binary apertures. Results for non-
binary apertures are discussed in Section 5.

From all the obtained apertures we have chosen three, and
a conventional circular aperture, to perform our experiments.
We chose the ones which we saw performed best over a wide
variety of images. Two of them are 11× 11 apertures de-
signed for noise levels of σ = 0.001 and σ = 0.005, and the
third one is a 7× 7 aperture designed for σ = 0.005. The
three of them are depicted in Figure 4. For these apertures,
we have performed both a synthetic validation and a valida-
tion with physical printed-out apertures.

The synthetic validation is done by simulating the cap-
ture process convolving a sharp image f0 with the aperture
(plus noise) as in Equation 1, and subsequently using Wiener
deconvolution to recover a deblurred image f̂0. The quality
of the recovered image is measured using the L2 norm. We
did this for 10 images and computed the average L2 value.
Results are shown in Table 1 for the tested apertures. The
minimum error is obtained by the 7× 7 aperture and the

two 11× 11 apertures perform very similarly, there is no
significant difference, while, as expected, the circular aper-
ture yields worse results. Another measure of the quality of

σ = 0.001 σ = 0.005 σ=0.005(7x7) Circular

Figure 4: Apertures used in our experiments.

0.001 0.005 0.005 (7x7) circular
L2 norm 1.28 1.27 0.88 1.62

Table 1: Results of the L2 norm for different apertures. The
table shows percentages with respect to the maximum error.

the apertures is given by their power spectrum, depicted in
Figure 3. The 11× 11 apertures eliminate less frequencies
than the circular aperture, and the 7×7 aperture has an even
smoother spectrum, which correlates with the L2 values pre-
viously obtained.

Experiments in real scenarios have been performed using
a Canon EOS 550D with a Canon EF 50mm f/1.8 II lens
shown (unmounted) in Figure 5. Our apertures were printed
in a high resolution photomask sheet (see Figure 6 left) and
inserted into the lens. The first step is the calibration of the

Figure 5: Camera and lens used in our experiments.

response of the camera (PSF) at different depths. We also
calibrated the PSF for different image positions, since the re-
sponse is spatially varying across the image plane. To do this
we used an array of LEDs which we made as close as pos-
sible to point light sources with the aid of black cardboard.
Figure 2 shows a close-up of the LED array. We locked the
focus at 1 m and took an initial focused image, followed by
images of the LEDs every 10 cm and until a distance of 2
m, thus having PSFs for defocus depths from 10 to 100 cm.
For each position within the image and each depth, the ac-
tual cropped image of the LED served us as PSF, after ap-
propriate thresholding of surrounding values which contain
residual light. The resulting PSFs for three depths and the
four tested apertures are shown in Figure 6 (right).



Figure 6: Left: Photomask sheet showing some of the apertures used. Right: PSFs at three different defocus depths (40, 70 and
90 cm) for the four apertures depicted in Figure 4.

Figure 7: Focused ground truth scenes.

Once calibration had been performed, images of three
scenes at different depths were taken with each of the se-
lected apertures. These images are then deblurred using the
corresponding calibrated PSF by means of Wiener deconvo-
lution. We used a NSR of 0.001 when deconvolving, since it
gave the best results. The same exposure time and aperture
was used for all the apertures, which results in some images
being darker than others. Figure 7 shows the ground truth fo-
cused images of the three scenes, whereas Figure 8 depicts
the defocused image captured with each aperture and the re-
covered image for the three different depths. Insets show
the corresponding PSF. For all cases our apertures clearly
outperform the circular one. The results of the other three
apertures are fairly similar, with the 7×7 aperture revealing
more detail than the others in some regions. However, we
believe this may be due to the fact that because of its smaller
size, it offers a wider depth of field, thus causing less defocus
blur for the same settings as the others. The ringing artifacts
which can be observed are probably partially caused by inac-
curacies of the calibrated PSFs. Additionally, and although
very minor, some of the apertures exhibit slight diffraction
effects which can also be the cause of artifacts due to mis-
alignments of the color channels [VRA∗07].

5. Study of Non-Binary Apertures

Binary codes have the initial advantage of reducing the
search space, and are usually preferred in the existing liter-
ature. However, there is no principled motivation to restrict
the aperture pixel values to either black or white, other than
apparent simplicity. A notable exception in this regard is the
work by Veeraraghavan and colleagues [VRA∗07], where
the authors report the advantages of continuous-valued aper-

tures, found by gradient descent optimization, over their bi-
nary counterparts. In this section we perform an analysis of
non-binary apertures focused on our specific context and op-
timization method; in order to limit the search space of the
genetic algorithm, we restrict the set of possible values to
{0,0.5,1}.

We have studied the quality of the resulting aperture and
the computation time for different executions of the genetic
algorithm for the cases of binary and non-binary apertures.
We have varied both the initial population N and the number
of generations G, yielding seven different combinations of
these two parameters. For each combination of parameters
we have performed three executions of the algorithm, plot-
ting the average values. For all the figures in this section,
the x-axis shows the initial population N and the number of
generations G of each set of executions. The number of se-
lected apertures, M, is always a 10% of the initial population,
the crossover probability c1 is set to 0.2 and the probabil-
ity of mutation c2 is 0.05. All the calculated apertures have
a resolution of 7× 7. The reason of this is two-fold; first,
computational cost of the algorithm is significantly reduced,
and second, our previous experiments have shown that 7×7
apertures yield results on par with (or better than) 11× 11
apertures. The value of σ (noise level) is set to 0.005 for all
executions.

Figure 9 shows the average value of the quality metric to
which the algorithm converged. Non-binary apertures tend
to converge to slightly lower values of R(K), potentially in-
dicating a better performance. However, as expected, it also
takes longer for non-binary apertures to converge to a stable
value of R(K). The execution times consumed until conver-



σ = 0.001 σ = 0.005

Circular σ = 0.005 (7×7)

σ = 0.001 σ = 0.005

Circular σ = 0.005 (7×7)

σ = 0.001 σ = 0.005

Circular σ = 0.005 (7×7)

Figure 8: From top to bottom, each of the three scenes have been captured at a defocus depth of 40, 70 and 90 cm, respectively.
For each pair of images, the left image shows the captured defocused image and the right image the recovered one. Insets depict
the PSF of the aperture used in each case.

gence when running the algorithm on an Intel Core i7 930
@ 2.80GHz are shown in Figure 10.

For all the optimal apertures obtained in the different ex-

ecutions we have performed a synthetic evaluation similar
to the one described in Section 4. We applied Equation 1 to
an image f0 of the ISO 12233 resolution chart, to simulate



Figure 9: Average value of the quality metric R(K) for bi-
nary and non-binary apertures and for different initial pa-
rameters of the genetic algorithm.

Figure 10: Average value of the time until convergence (in
seconds) for binary and non-binary apertures and for differ-
ent initial parameters of the genetic algorithm.

the capture process with the different apertures; we then per-
formed Wiener deconvolution to recover the estimated sharp
image f̂0. We have computed the L2 norm between f̂0 and
f0 and plotted the results in Figure 11. The non-binary aper-
tures tend to behave better, the global tendency thus correlat-
ing with that of the quality metric R(K). Nevertheless, this
graphs shows how lower values of R(K) not necessarily yield
lower values of the L2 norm. This can be explained by the
fact that R(K) is devised to give optimal performance over
the entire space of natural images and thus may not be op-
timal for an image in particular [ZN09]. Figure 12 shows
the image of the chart after convolution, and the recovered
image for the best binary and non-binary apertures we ob-
tained. For these two apertures we also plotted the power
spectrum, shown in Figure 3 (right). Although both spectra
are similar, overall the non-binary aperture has a more favor-
able response.

To further test the performance of binary vs. non-binary
apertures, we printed out these two best apertures (shown
in the insets of Figure 12) and captured real images with
them. We have calibrated their PSF at different depths as
explained in Section 4, and captured a set of images which
we then have recovered using Wiener deconvolution. Figure

Figure 11: Average value of the L2 norm for binary and
non-binary apertures and for different initial parameters of
the genetic algorithm. Values show percentage with respect
to the maximum error.

13 shows the results for a defocus depth of 70 cm and 90 cm.
The corresponding ground truth focused scenes are shown in
Figure 7. We can see how even though both recover detail to
a great extent, the non-binary aperture performs better.

Figure 12: Top left: Defocused image of the ISO 12233 chart
obtained using Equation 1 with the aperture shown in the
inset in the right as convolution kernel. The aperture is the
optimal binary aperture we obtained. Top right: Image re-
covered using Wiener deconvolution. Bottom row: Same for
the optimal non-binary aperture, shown in the inset.

6. Conclusions and Future Work

In this paper we have introduced a comprehensive study of
coded apertures for defocus deblurring, and implemented the
full pipeline: from the genetic algorithms to obtain the codes,
to their physical realization, and finally to the actual deblur-
ring of out-of-focus images. We have analyzed the perfor-



Binary Non-binary

Figure 13: For each pair of images, the left image shows the captured defocused image and the right image the deblurred
image. Insets depict the PSF used in each case. Defocus depths are 70 cm (top scene) and 90 cm (bottom scene). The color of
the images differs from those in Figure 8; please note that this is due to the fact that illumination conditions during the capture
process were different, and not to the coded apertures itselves.

mance of the different patterns along several dimensions,
namely shape, depth and size. For instance, we found that
7×7 apertures are on par with, or outperform, higher resolu-
tion ones, which tend to be more computationally expensive
to obtain. Additionally, we have extended previous works in
the literature by lifting the binary restriction in our patterns,
and allowing the genetic algorithms to add mid-gray to the
binary (black or white) set of possible values. Although our
results are not conclusive and more research needs to be car-
ried out, initial findings suggest that there may be value in
exploring continuous apertures, where several gray levels are
allowed.

The inherent reduced light transmission when placing a
modulating mask at the lens is also a factor that we would
like to investigate further. By adding a term that maximizes
transmission, we may come up with more efficient apertures.
Similarly, finding coded apertures that optimize both defo-
cus deblurring and depth is still an open problem where the
community has barely scratched the surface. Last, we be-
lieve that the results shown in this paper show the viabil-
ity and potential of this line of research, and we hope to
raise awareness of this exciting field, fostering the creation
of more research groups and potential collaborations.
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