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RESUMEN 

La nanotecnología es un campo en continua expansión que se ha ido diversificando para 

poder dar soluciones a problemas de la vida diaria. Dentro de estas nuevas ramas de 

conocimiento se encuentra la nanobiomedicina y este trabajo se ha centrado más 

específicamente en las aplicaciones de las nanopartículas magnéticas en medicina. 

Concretamente se ha planteado el uso de la reacción “click” bioortogonal entre azidas y 

alquinos tensionados para inmovilizar nanopartículas magnéticas en superficies.  

Este Trabajo Fin de Máster ha consistido en la síntesis y caracterización de nanopartículas 

magnéticas de Fe3O4 monodispersas con características apropiadas para su posterior 

inmovilización covalente en membranas y superficies. La síntesis se ha llevado a cabo por 

descomposición térmica de Fe(acac)3 obteniendo nanopartículas de 12 nm de diámetro medio 

que posteriormente se han transferido a medio acuoso mediante recubrimiento con un 

polímero anfifílico (poli(anhídrido maleico-alt-1-octadeceno, PMAO). Posteriormente se ha 

llevado a cabo la estabilización estérica de las nanopartículas con dos moléculas voluminosas 

distintas (polietilenglicol y glucosa) y su funcionalización con dos alquinos cíclicos de diferente 

longitud de cadena espaciadora. 

Para comprobar la viabilidad de la reacción click se han inmovilizado las nanopartículas 

funcionalizadas con alquinos sobre superficies modificadas con grupos azida, pudiéndose 

comprobar por microscopia electrónica de barrido (SEM) la unión covalente de las 

nanopartículas a la superficie. 

Estos prometedores resultados van a permitir la continuación de la investigación con este 

tipo de nanopartículas sobre superficies más complejas (por ejemplo membranas celulares) 

con el objetivo de realizar futuros estudios de hipertermia magnética en células tumorales. 

 



 



 

LISTADO DE ABREVIATURAS Y ACRÓNIMOS 

NPs: nanopartículas 

MNPs: nanopartículas magnéticas 

PMAO: poli(anhídrido maleico-alt-1-octadeceno) 

TAMRA: tetrametilrodamina-cadaverina 

PEG: polietilenglicol (NH2-(-O-CH2-CH2-)16-OCH3) 

GLU: 4-Aminofenil β-D-glucopiranósido 

A1: 2-(2-(ciclooct-2-in-1-iloxi)etoxi)etanamina (ciclooctino de cadena corta) 

A2: 2-(2-(2-(2-(ciclooct-2-in-1-iloxi)etoxi)etoxi)etoxi)etanamina (ciclooctino de cadena larga) 

EDC: 1-étil-3-(3-dimetilaminopropil)carbodiimida 

SSB: tetraborato de sodio 

DBCO: dibenzociclooctinil-PEG4-5/6-sulforodamina 

TEM: Microscopía Electrónica de Transmisión 

SEM: Microscopía Electrónica de Barrido 

TGA: Análisis termogravimétrico 

XPS: Espectroscopia de fotoelectrones de rayos-X  

DLS: Dispersión dinámica de la luz 
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1. INTRODUCCIÓN 

1.1 Nanotecnología 
 

La definición convencional de la nanotecnología según la NNI (Iniciativa Nacional en 

Nanotecnología de los Estados Unidos) la describe como “la ciencia, ingeniería y tecnología 

llevadas a cabo en la nano escala, que a su vez se define entre 1 y 100 nm”. [1] 

El término nano equivale en la escala métrica a 10-9 m y en los materiales que se 

encuentran en este rango de tamaños unas de las características más importantes son la gran 

área superficial en relación a su volumen y su capacidad de interactuar con fenómenos físicos 

luminosos con longitudes de onda que se encuentran en la misma escala de tamaño. Son estas 

y otras características, debidas a operar en ese rango dimensional, las que hacen que 

aparezcan  fenómenos nuevos, capaces de sustentar nuevas propiedades. [2] Estas nuevas 

propiedades (ópticas, químicas, magnéticas o electrónicas) son únicas y diferentes a las del 

mismo material a escala macroscópica. Todo ello ha generado un nuevo campo de estudio en 

la ciencia de materiales dedicado al diseño, fabricación y aplicación de nanoestructuras, así 

como al estudio de las relaciones existentes entre las propiedades y las dimensiones de 

nanométricas. [3, 4] 

 
Figura 1. Escala nanométrica. 

https://ocg.cancer.gov/news-publications/e-newsletter-issue/issue- 11 

 

Hoy en día, la nanotecnología es una de las áreas de investigación más prometedoras del 

siglo XXI, y es la gran variedad de propiedades de los nanomateriales lo que está favoreciendo 

su utilización en diversos campos entre los que se encuentra la medicina, hasta el punto de 

originar una nueva disciplina: la Nanobiomedicina. 

1.2 Nanobiomedicina 

La nanobiomedicina es la rama de la medicina que utiliza materiales de tamaño 

nanométrico para el diagnóstico, prevención y tratamiento de enfermedades con la finalidad 

de mejorar la calidad de vida. [5] 

La principal ventaja que presenta este tipo de materiales para su uso en medicina es que 

debido a su pequeño tamaño, similar al de la mayoría de biomoléculas, son capaces de 

interactuar de forma más eficiente con las células del organismo. Esto permite aumentar 

drásticamente la selectivididad y la actividad de los materiales utilizados actualmente en el 
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campo de la terapia. Además, posibilita interacciones más específicas entre las biomoléculas y 

el material permitiendo usarlos en el campo del diagnóstico clínico.  

Los nanomateriales pueden introducir mejoras en estas áreas y se están utilizando en 

técnicas analíticas o de imagen, en la vectorización y liberación de fármacos, en aplicaciones 

conjuntas de tratamiento e imagen (agentes teragnósticos) o en aplicaciones de regeneración 

tisular. [6] 

1.3 Nanopartículas magnéticas: propiedades y aplicaciones 

Las nanopartículas (NPs) magnéticas poseen algunas propiedades únicas con respecto al 

resto de nanomateriales, siendo la más importante su capacidad de interactuar con un campo 

magnético externo. Se ha extendido especialmente el uso de NPs de óxido de hierro debido a 

su biocompatibilidad. Las NPs de óxido de hierro están formadas por un núcleo de magnetita 

(Fe3O4) o maghemita (-Fe2O3), y dependiendo de las condiciones de síntesis, se puede obtener 

un amplio espectro de tamaños y formas. Además, debido a que los medios fisiológicos son 

sumamente complejos ya que tienen una gran cantidad de componentes que pueden 

desestabilizar las nanopartículas y causar su agregación, se pueden incorporar diferentes 

recubrimientos que permitan dotar de estabilidad a las NPs en medio fisiológico. 

Una propiedad específica de este tipo de nanomateriales es el superparamagnetismo. 

Esta propiedad consiste en que en presencia de un campo magnético externo las NPs sufren 

una elevada imanación pero no muestran remanencia cuando éste se retira. Esta propiedad no 

es exclusiva de las NPs magnéticas ya que hay materiales que pueden presentar 

superparamagnetismo a muy bajas temperaturas pero sí que es exclusivo de las NPs el 

superparamagnetismo a temperatura ambiente. [7, 8, 9] 

 

Figura 2. Comparación de ciclos de histéresis de materiales magnéticos. 

Por lo tanto, esta propiedad es de gran utilidad para la aplicación de NPs magnéticas in 

vivo, ya que de esta forma se consigue evitar la agregación de las NPs al retirar el campo, 

hecho que podría dar lugar a trombos en los vasos sanguíneos. [10] 

Algunas de las principales aplicaciones de las NPs magnéticas son el uso como agentes de 

contraste en resonancia magnética de imagen (RMI), [7, 11] tratamientos tumorales mediante 

hipertermia magnética, [12] su uso como biosensores [13] o la liberación controlada de 

fármacos. [6]  
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2. ANTECEDENTES Y PLANTEAMIENTO 

2.1. Hipertermia magnética 

La hipertermia es el aumento de la temperatura de un tejido a 40-46 oC. Las células 

tumorales son más sensibles al calor que las células sanas, por ello, la hipertermia puede ser 

utilizada para el tratamiento del cáncer o como terapia complementaria a la quimioterapia, la 

radioterapia y la terapia génica, ya que al aumentar la temperatura se puede conseguir la 

muerte de las células tumorales sin afectar a las sanas. [12] Tradicionalmente, la hipertermia 

se ha aplicado por medio de radiofrecuencias, ultrasonidos, microondas o radiación IR, pero 

estas técnicas presentan varios inconvenientes, como falta de especificidad y penetración 

limitada a través del tejido. Sin embargo, las NPs magnéticas pueden ser funcionalizadas con 

moléculas de reconocimiento, como ligandos específicos de las células tumorales, u otras que 

las doten de estabilidad sin perder su capacidad superparamagnética.  

La hipertermia magnética utiliza la capacidad de las NPs magnéticas de generar calor 

cuando están expuestas a campos magnéticos alternos. Esta capacidad de calentamiento se 

debe principalmente a dos fenómenos físicos: relajación de Neel y relajación de Brown. La 

relajación de Neel se produce en NPs pequeñas y se trata de una rotación del vector de 

momento magnético de la red cristalina sin que haya una rotación física de la NP. La relajación 

de Brown se produce en NPs grandes y se trata de una rotación de la NP manteniendo su 

momento magnético en la misma dirección de tal forma que la rotación física dentro del 

líquido transportador permite que se dé la alineación generando calor por fricción en el 

proceso. [9] 

Actualmente se buscan NPs con alta eficacia para inducir hipertermia. Esta se mide a 

través del “índice específico de absorción” o SAR (Specific Absorption Rate), que representa la 

cantidad de energía transformada en calor por unidad de tiempo y masa. [9, 14] 

Si las NPs se encuentran en la membrana de las células o internalizadas por las mismas, 

los valores de SAR no son los mismos que los de las NPs en disolución. Esto se debe a una 

minimización (o incluso a una completa inhibición) de la relajación de Brown debido a los 

mecanismos celulares de homeostasis que tratan de restringir la movilidad interna de las NPs. 

Por ello, además de medir los valores de SAR de las NPs en disolución, es necesario llevar a 

cabo un estudio de hipertermia más detallado que comprenda la interacción de las NPs con el 

entorno celular. [8] 

En este trabajo se han sintetizado nanopartículas magnéticas con unas características 

morfológicas, composicionales y de tamaño óptimas para poder realizar ensayos de 

hipertermia en células en el futuro. Por ello se ha tenido en cuenta en todo momento el tipo 

de medio en el que se iba a realizar dicho estudio así como las características físico-químicas 

que debería tener el recubrimiento superficial de las NPs. 

2.2. Química click bioortogonal para la inmovilización de las 

nanopartículas en superficies  

Las reacciones de química bioortogonal consisten en la unión entre un marcador químico 

incorporado a la célula la y una molécula suministrada de forma exógena. En primer lugar es 

necesaria la incorporación de un marcador o grupo funcional concreto en la biomolécula a 
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estudiar usando la propia maquinaria biosintética de la célula. En segundo lugar, hay que 

suministrar externamente otra molécula, marcador químico específico, que reaccione con ésta 

formando un enlace covalente. Este marcador externo normalmente tiene un tamaño 

pequeño respecto a la molécula original, por lo que no se modifica sensiblemente su 

estructura ni su funcionalidad, pero la hace detectable por el marcador celular. [15] 

El marcaje covalente selectivo de biomoléculas, especialmente en células y tejidos vivos, 

no es una tarea fácil. Esto es debido a que el medio biológico está repleto de grupos 

funcionales que pueden interferir con la reacción deseada (NH2 y SH) y a que los reactivos 

utilizados en reacciones bioortogonales deben ser estables, no tóxicos, compatibles con 

reacciones redox y reaccionar entre sí en este tipo de medios. [15, 16, 17] 

Una de las muchas reacciones dentro del campo de la química orgánica son las 

denominadas reacciones click. El término “click” es un concepto utilizado para describir una 

reacción química fiable y rápida mediante la unión de pequeñas moléculas entre sí. 

La cicloadición [3+2] entre azidas y alquinos catalizada por Cu(I) (CuAAC), es uno de los 

ejemplos más representativos de reacción “click” y proporciona de forma selectiva 1,4-

triazoles químicamente muy estables. [18] Tanto los alquinos como las azidas son grupos 

reactivos muy pequeños que no perturban a la mayoría de sistemas biológicos. Añadido a esto, 

la velocidad y la relativa simplicidad de esta reacción hacen que la CuAAC sea de gran utilidad 

para la monitorización de biomoléculas. Sin embargo, el efecto citotóxico del cobre hace difícil 

utilizar este tipo de química en presencia de células vivas. Como alternativa a la reacción 

clásica, se desarrolló una cicloadición [3+2] entre azidas y alquinos tensionados, en la que la 

tensión del anillo actúa como activador del alquino y promueve la reacción, sin necesidad de 

usar cobre como catalizador. [19, 20] 

 
 

Figura 3. Esquema de reacción click bioortogonal de azido-azúcares de la membrana plasmática con 
ciclooctino como marcador. Los azido-azúcares son metabolizados por la célula e incorporados a las 

glicoproteínas de la superficie celular. Los grupos azida de las glicoproteínas de superficie reaccionan con 
un ciclooctino conjugado con un marcador externo concreto. [17] 

 

A pesar de su potencialidad en campos como la biología y la bioquímica, el uso de la 

química “click” bioortogonal para unir de manera covalente nanomateriales a membranas 

celulares apenas se ha explorado hasta la fecha. Actualmente, en el grupo de investigación 

donde se ha realizado este Trabajo Fin de Máster se ha planteado el uso de química click 

bioortogonal como herramienta para la inmovilización de NPs en la superficie de células vivas. 

(Figura 4) 
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Figura 4.  Unión covalente de NPs magnéticas a la superficie de membranas celulares mediante 

química “click” bioortogonal. 

El objetivo a largo plazo en el que está enfocado este trabajo es un estudio comparativo 

de la hipertermia magnética en el interior celular frente a la hipertermia producida por NPs 

unidas externamente a la membrana. Se estima que, debido a la unión covalente, las NPs 

permanecerían en la membrana celular el tiempo necesario para poder llevar a cabo los 

estudios de hipertermia mencionados en el apartado 2.1. 

Debido a la complejidad y duración del proyecto este Trabajo Fin de Máster se ha 

centrado únicamente en la incorporación de las moléculas de ciclooctino a las NPs y la 

posterior inmovilización de éstas sobre superficies funcionalizadas con grupos azida.  

 

3. OBJETIVOS 

El objetivo del proyecto es la funcionalización de nanopartículas magnéticas (MNPs) con 

alquinos tensionados para aplicaciones en química click bioortogonal. De esta manera, las 

MNPs se podrían inmovilizar de manera covalente en superficies y membranas celulares 

funcionalizadas con grupos azida utilizando una reacción click bioortogonal (cicloadición 

alquino-azida libre de cobre). Para ello, se han propuesto los siguientes objetivos: 

1. Síntesis de las MNPs mediante el método de descomposición térmica de 

Fe(acac)3. 

2. Recubrimiento con un polímero anfifílico, el poli(anhídrido maleico-alt-1-

octadeceno) (PMAO), para asegurar su estabilidad coloidal en agua e introducir 

grupos funcionales.  

3. Funcionalización de las MNPs con polietilenglicol (PEG), glucosa (GLU) y dos tipos 

de alquinos tensionados (A1 y A2).  

4. Caracterización físico-química de las MNPs y evaluación de su estabilidad coloidal 

utilizando las técnicas habituales (TEM, DLS, TGA, etc.).  

5. Ensayo de reacción click en superficies marcadas con grupos azida. 
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4. RESULTADOS Y DISCUSIÓN 

4.1. Síntesis y caracterización de nanopartículas 

4.1.1 Síntesis de nanopartículas hidrofóbicas 

Actualmente existen dos métodos principales de síntesis de nanopartículas magnéticas 

para aplicaciones biomédicas: coprecipitación y descomposición térmica.  

El primero de ellos aporta como principales ventajas su simplicidad, versatilidad y la 

capacidad de obtención de nanopartículas a gran escala que posean carácter hidrofílico lo que 

aporta estabilidad en medios acuosos. A pesar de esto, presenta algunos factores limitantes 

como son: la amplia distribución de tamaños, el difícil control de la forma y la baja 

cristalinidad. [19] Por otro lado, el método de descomposición térmica requiere montajes más 

complejos y genera NPs hidrofóbicas por lo que es necesaria una etapa adicional de 

transferencia de las NPs a agua. Sin embargo, permite ejercer un gran control sobre el tamaño 

y la monodispersidad de las nanopartículas, así como obtener una buena cristalinidad. [21, 22] 

Teniendo en cuenta que el objetivo final de estas nanopartículas es su utilización en 

estudios de hipertermia magnética resulta fundamental tener una elevada cristalinidad ya que 

esto repercute en las propiedades magnéticas de las mismas (especialmente en la capacidad 

de generar calor por hipertermia). Es por esto que hemos elegido el método de síntesis por 

descomposición térmica. 

La síntesis por descomposición térmica consiste en la descomposición de complejos de 

hierro a altas temperaturas en presencia de un surfactante, ambos disueltos en un medio 

orgánico de elevado punto de ebullición. El hecho de que las NPs obtenidas sean uniformes en 

tamaño se debe a las etapas de nucleación y crecimiento y se ajusta al mecanismo propuesto 

por LaMer. [23] Las NPs limitan el tamaño obtenido en función de los surfactantes y su 

capacidad de coordinación con los núcleos por lo que en una primera etapa se obtienen unas 

NPs de 6 nm de diámetro medio. 

Como las NPs más grandes mejoran sus propiedades magnéticas, fundamental en 

aplicaciones de hipertermia, [24] se realizó un recrecimiento de la misma manera que en la 

síntesis de las NPs de 6 nm de diámetro pero utilizando éstas como “semillas” con el objetivo 

de obtener NPs de 12 nm de diámetro. Esto es posible ya que el surfactante no se une 

covalentemente a las NPs permitiendo su desprendimiento de las mismas a elevadas 

temperaturas y posterior readsorción tras el crecimiento. [22] 

 

4.1.2 Caracterización de nanopartículas hidrofóbicas 

La caracterización que resulta especialmente relevante teniendo en cuenta la finalidad del 

material es la de la forma, el tamaño y la homogeneidad de las nanopartículas. La Microscopia 

de Transmisión de Electrones (TEM, por sus siglas en inglés) permite obtener imágenes de la 

muestra útiles para observar su morfología y para obtener su distribución de tamaños. 

En la Figura 5 se observa que tanto las semillas (izquierda) como las NPs obtenidas tras la 

etapa de recrecimiento (derecha) poseen geometría esférica (imagen de TEM) y un diámetro 

medio de 6.41 ± 1.11 nm y 11.31 ± 1.41 nm, respectivamente (histograma de tamaños). La 

distribución de tamaños y los rangos de desviación estándar entran dentro de lo esperado en 

este tipo de síntesis por lo que se puede confirmar que las NPs sintetizadas son de un solo tipo 

y presentan homogeneidad de tamaño. 
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Figura 5. Micrografías de TEM de las NPs de 6 nm (izquierda, escala = 50 nm) y de 12 nm (derecha, 
escala = 100 nm) en hexano junto con sus histograma de tamaños (expresado en nm).  

El análisis termogravimétrico (TGA) proporciona información sobre la pérdida de masa de 

la muestra frente a la temperatura, lo que permite evaluar la cantidad de recubrimiento 

orgánico de las NPs. Como se puede observar en la Figura 6 las primeras pérdidas de masa no 

comienzan hasta los 200 oC de temperatura lo que indica que el enlace entre el ácido oleico y 

la superficie de la NP es fuerte. A partir de los 200 oC y hasta los 400 oC, tiene lugar la mayor 

pérdida de la masa orgánica (7.34 %) que corresponde a la capa orgánica de ácido oleico. 

 

 

Figura 6. Termograma de las NPs de 12 nm en hexano. Representa la pérdida de peso (%) en 
función de la temperatura (oC). 

 

4.1.3 Transferencia de las nanopartículas hidrofóbicas a medio acuoso 

La principal desventaja del método de síntesis por descomposición térmica es que las NPs 

que se obtienen son insolubles en agua, con lo cual para poder emplearlos en aplicaciones 

biológicas es necesario realizar una transferencia a medio acuoso. Para poder realizar esta 

transferencia de las NPs a agua se ha incorporado un polímero anfifílico, capaz de dotar de 

estabilidad a las NPs en medio acuoso y presentar además grupos reactivos en la superficie. 

Este polímero es el poli(anhídrido maleico-alt-1-octadeceno) conocido como PMAO.   
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Debido a que uno de los objetivos del proyecto es la unión covalente de estas 

nanopartículas a diferentes membranas se hace necesario introducir un marcador fluorescente 

que nos permita visualizar las NPs en el medio. Por lo tanto, previamente al recubrimiento con 

el polímero fue necesaria la incorporación de una molécula fluorescente derivada de la 

tetrametilrodamina que presenta una coloración fluorescente roja denominada TAMRA-

cadaverina. 

 

  

 

 

Figura 7. Estructura química del PMAO (Izquierda) y de la TAMRA-cadaverina (Derecha). 

La TAMRA-cadaverina se une covalentemente al PMAO mediante apertura nucleófila de 

una pequeña cantidad de los grupos de anhídrido maleico presentes, consiguiendo obtener 

finalmente entorno al 1% de recubrimiento de los grupos carboxílicos del PMAO (suficiente 

para observar fluorescencia). 

Una vez producido el marcaje del polímero se procedió al recubrimiento de las NPs con el 

mismo. Su parte hidrófoba tiene cadenas alifáticas de 18 átomos de carbono que se intercalan 

mediante interacciones hidrofóbicas con las cadenas de ácido oleico de las NPs. A pesar de que 

la interacción hidrofóbica entre las cadenas alifáticas es débil, el elevado número de 

interacciones entre las cadenas del polímero y el surfactante dan lugar a recubrimientos muy 

estables. La parte hidrófila del polímero, las fracciones de anhídrido maleico, quedan 

expuestas hacia el exterior de la NP, proporcionando estabilidad y generando grupos 

carboxílicos (–COOH) tras su hidrólisis con NaOH [2, 22, 25]. 

 

Figura 8: De izquierda a derecha podemos observar las dos etapas del recubrimiento: 1) Funcionalización 
de las NPs con PMAO-TAMRA; 2) Hidrólisis de los anhídridos con NaOH 0.1 M. [25] 

Este paso de hidrólisis es crítico para asegurar la estabilidad de las NPs en agua, y genera 

dos grupos –COOH por cada unidad monomérica de anhídrido maleico. 

PMAO-TAMRA (1%) 
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4.1.4 Caracterización de nanopartículas hidrofílicas 

De igual forma que en el apartado anterior una primera forma de caracterización es la 

Microscopia de Transmisión de Electrones (TEM) que nos permite comprobar que se mantiene 

la morfología y la distribución de tamaños. 

La Figura 9 muestra una micrografía de TEM de las NPs recubiertas con PMAO-TAMRA. Se 

puede apreciar que se mantienen tanto la geometría esférica como el tamaño de las NPs, con 

un diámetro medio de 12.09 ± 1.67 nm (histograma de tamaños). Además, también se observa 

el recubrimiento de polímero individual (gris difuminado) como una sola capa entre los 

núcleos inorgánicos (color gris-negro oscuro). La distribución de tamaños y los rangos de 

desviación estándar son casi idénticos a los del recrecimiento (apartado 4.1.2) confirmando la 

homogeneidad de tamaños. 

 

 

 

 

Figura 9. Micrografía de TEM de las NPs de en 

agua (escala = 50 nm) y su correspondiente histograma 

de tamaños (expresado en nm). 

 

 

 

 

 

El análisis termogravimétrico (TGA) de la muestra permite distinguir entre los dos tipos de 

recubrimiento orgánico de las NPs. Como se puede observar en la Figura 10 las pérdidas de 

masa que comienzan a los 200 oC de NPs@PMAO-TAMRA corresponden a la pérdida total de 

materia orgánica, sin distinciones. Sin embargo, se puede calcular la masa de PMAO-TAMRA 

perdida teniendo en cuenta el análisis TGA anterior que mostraba que un 7.34 % de la masa 

corresponde al ácido oleico y por lo tanto el resto de la masa corresponderá a la capa orgánica 

de PMAO-TAMRA (18.18 %). 

 

 

Figura 10. Termograma de las NPs de 12 nm en agua. Representa la pérdida de peso (%) en función de la 
temperatura (oC). 
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4.2 Estabilización de NPS@PMAO-TAMRA mediante repulsión estérica 

4.2.1 Justificación metodológica 

El objetivo final de las NPs sintetizadas es realizar estudios de hipertermia magnética en 

células. Para ello es necesario: 

1) Incorporar un grupo alquino que posibilite la reacción click en superficie. 

2) Mantener la estabilidad de las NPs para que no agreguen a pH fisiológico.  

Tal como se muestra en el apartado 4.1.3 (Figura 8) la estabilidad de las NPs tras el 

recubrimiento con el polímero PMAO se debe a la repulsión electroestática entre las cargas 

negativas de los grupos carboxílicos (-COO-) de la superficie, que están desprotonados al pH 

del medio celular (pH ≈ 7). 

El problema de la estabilización por repulsiones electroestáticas es que los únicos grupos 

reactivos presentes en la superficie de las nanopartículas, los grupos carboxílicos (-COO-), son 

también los que proporcionan la estabilidad a la NP por lo que si se quieren incorporar otras 

moléculas a la superficie se puede llegar a comprometer la estabilidad del conjunto. 

Inicialmente se trató de funcionalizar con alquino sólo un pequeño porcentaje de los 

grupos carboxílicos (5 % y 10 %). El resultado fue, en ambos casos, la agregación de las NPs 

debido a que la funcionalización de los grupos carboxílicos (-COO-) de la superficie con una 

molécula de alquino reduce el número de grupos COO- libres y la carga eléctrica neta se ve 

reducida comprometiendo la estabilidad de las NPs. 

Por este motivo se planteó la posibilidad de incrementar la estabilidad estérica (introducir 

grupos químicos voluminosos que actúan como separadores impidiendo la agregación) [2] de 

manera previa a la funcionalización con la molécula de alquino. La reacción necesaria para 

introducir estos grupos voluminosos también compromete parte de los grupos carboxílicos por 

lo que veremos reducida la carga neta de la NP y el número de carboxilos libres susceptibles de 

reaccionar en la etapa posterior con el alquino.  

Teniendo en cuenta los objetivos y las futuras aplicaciones in vitro de las NPs se optó por 

funcionalizar las NPs con dos moléculas voluminosas diferentes: polietilenglicol y glucosa. 

 

 

 

 

Figura 11. De izquierda a derecha se muestran las estructuras químicas de las moléculas de 

polietilenglicol (PEG) y 4-Aminofenil -D-glucopiranósido (glucosa). 

 

4.2.2 Funcionalización de MNPs@PMAO-TAMRA con polietilenglicol (PEG) 

El polietilenglicol es un polímero biocompatible y muy versátil. Existen una inmensa 

variedad de tipos de PEG en función de los grupos químicos presentes en sus extremos 

terminales y de la longitud de su cadena hidrocarbonada (OCH2CH2)n. Además, se trata de una 

molécula no reconocida por los receptores de la membrana celular lo que favorece la no 

internalización de las NPs@PEG facilitando la reacción click en la membrana. Esto permitiría 
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realizar estudios de hipertermia con NPs unidas covalentemente a la membrana pero 

dispuestas en el exterior celular. 

La molécula de PEG elegida para este trabajo es NH2(OCH2CH2)16OCH3 (MW: 750 g/mol,  

Figura 11) que cuenta con un grupo amino terminal (NH2) que es el que se une directamente al 

grupo carboxílico (-COOH) de la NP mediante la formación de un enlace peptídico (-CO-NH-). 

Además, posee una cadena hidrocarbonada con 16 unidades repetitivas de -OCH2CH2- que 

actúa como espaciador y es suficiente para impedir la agregación de las NPs.  

 
4.2.3 Funcionalización de MNPs@PMAO-TAMRA con glucosa (GLU) 

La glucosa es un carbohidrato natural, presente en gran cantidad de organismos, que es 

utilizado por la célula como fuente de energía fundamental. Debido a estas características se   

ha planteado como alternativa al PEG ya que además de incrementar la estabilidad es capaz de 

favorecer la internalización celular al existir un gran número de proteínas de reconocimiento 

celular de esta molécula en la membrana. [26] Esto permitiría realizar estudios de hipertermia 

con NPs ya internalizadas en la célula y comprobar de esta manera si existen diferencias entre 

ambos procesos de hipertermia magnética. 

Para este trabajo se ha elegido un derivado de glucosa (4-aminofenil β-D-glucopiranósido, 

(Figura 11) que, al igual que el PEG, cuenta con un grupo amino terminal (NH2) que se 

empleará para su unión al grupo carboxílico (-COOH) de la NP mediante la formación de un 

enlace peptídico (-CO-NH-). Esta molécula no es tan voluminosa como el PEG pero es lo 

suficientemente grande como para impedir la agregación de las NPs. 

 

4.3 Funcionalización de NPs estabilizadas con alquinos tensionados 

4.3.1 Justificación metodológica 

Una vez conseguida la estabilidad coloidal de las NPs mediante repulsiones estéricas es 

necesario incorporar la molécula que nos permita llevar a cabo la reacción click sobre las 

diferentes superficies. La reacción conocida como click bioortogonal consiste en una 

cicloadición [3+2] entre un alquino cíclico tensionado y una azida. [15, 16, 27]  En este 

proyecto se ha tratado de incorporar la molécula de alquino en la nanopartícula y el grupo 

azida sobre las superficies. Esto es debido a que los estudios a realizar están basados en la 

incorporación de grupos azida en la membrana plasmática celular para la unión covalente de 

las NPs funcionalizadas con alquinos. 

Teniendo en cuenta que para la unión entre la NP y la superficie basta con que se 

produzca un solo enlace click no es necesario contar con una gran cantidad de moléculas de 

alquino recubriendo las NPs sino conseguir funcionalizar un pequeño porcentaje de los 

carboxilos que aún queden libres tras la estabilización. De nuevo, la reacción química que se 

produce es la unión peptídica entre el grupo amino (-NH2) del ciclooctino y los grupos carboxilo 

(-COOH) libres presentes en la superficie de las NPs.  

Por otro lado, teniendo en cuenta que los recubrimientos para la estabilización estérica se 

han hecho con moléculas muy voluminosas, se va a realizar un estudio comparativo de cómo 

afecta la longitud de la cadena unida al alquino en esta reacción. Para ello se han utilizado dos 

moléculas de alquino cíclico (ciclooctino) con diferente longitud de la cadena separadora 

obteniéndose dos tipos distintos de NPs fluorescentes con un alquino cíclico en el extremo 
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accesible que es, por tanto, susceptible de reaccionar con azidas a través de una reacción click 

bioortogonal. En esta etapa plantea funcionalizar un 10 % del total de los grupos carboxilo 

presentes con la molécula de ciclooctino.  

 

 

 

Figura 12. A la izquierda se muestra la estructura química del  2-(2-(ciclooct-2-in-1-

iloxi)etoxi)etanamina (ciclooctino de cadena corta, A1) y a la derecha la estructura química del 2-(2-(2-

(2-(ciclooct-2-in-1-iloxi)etoxi)etoxi)etoxi)etanamina (ciclooctino de cadena larga, A2). 

4.3.2 Funcionalización de NPs-estabilizadas con ciclooctino 

El ciclooctino de cadena corta (A1), 2-(2-(ciclooct-2-in-1-iloxi)etoxi)etanamina, tiene un 

carácter más hidrofóbico debido a la presencia de grupos alquílicos (-CH2-) y a la corta cadena 

con grupos éter (-O-) más susceptibles de formar puentes de hidrógeno con el agua y por tanto 

más hidrosolubles (Figura 12). Sin embargo, el ciclooctino de cadena larga (A2), 2-(2-(2-(2-

(ciclooct-2-in-1-iloxi)etoxi)etoxi)etoxi)etanamina, tiene un carácter más hidrofílico debido a la 

presencia de menos grupos alquílicos hidrofóbicos (-CH2-) en comparación a la cantidad de 

grupos éter (-O-) de la cadena. El objetivo de introducir dos cadenas de diferente longitud es 

comprobar si ésta afecta de forma relevante a la solubilidad de las NPs y a la accesibilidad del 

grupo alquino en la posterior reacción click. 

 

4.4 Caracterización comparativa de las nanopartículas (NPs / 

NPs@PEG / NPs@PEG@A1,2 / NPs@GLU / NPs@GLU@A1,2) 

Mediante TEM se pudo comprobar que ni la distribución de tamaños ni la morfología de 

las NPs se vieron afectadas por la funcionalización debido a que el núcleo inorgánico 

permanece intacto y el tamaño de las moléculas utilizadas en la funcionalización (PEG, GLU, A1 

y A2) es muy inferior a 1 nm. 

      

Figura 13. Micrografías de TEM de las NPs@PEG (izquierda, escala = 100 nm) y NPs@GLU (derecha, 
escala = 100 nm) en agua junto con los histogramas de tamaños de las NPs (expresado en nm). 
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En la Figura 13 se puede ver que tanto las NPs recubiertas con PMAO-TAMRA@PEG como 

las recubiertas con PMAO-TAMRA@GLU mantienen la geometría esférica y el tamaño medio 

(11.30 ± 1.51 nm y 12.34 ± 1.88 nm, respectivamente). Las distribuciones de tamaños y los 

rangos de desviación estándar son casi idénticos a los del recrecimiento (apartado 4.1.2) y 

transferencia a agua (apartado 4.1.4). 

De igual manera, la morfología y la distribución de tamaños no cambian al incorporar la 

molécula de ciclooctino (Figura 14). Los cambios en el valor del diámetro medio entran dentro 

del error aceptable y se deben exclusivamente a la captura (ajustes y alineamiento del 

microscopio) y al tratamiento posterior de las imágenes con el software ImageJ. 

  

Figura 14. Micrografías de TEM de las NPs funcionalizadas con ciclooctinos (escala = 100 nm) en agua: A) 
NPs@PMAO-TAMRA@PEG@A1; B) NPs@PMAO-TAMRA@PEG@A2; C) NPs@PMAO-TAMRA@GLU@A1; 

D) NPs@PMAO-TAMRA@GLU@A2. 
 

Sin embargo, la caracterización por TEM no es muy útil para demostrar la correcta 

funcionalización de las NPs con las moléculas de ciclooctino por lo que será necesario el uso de 

técnicas que permitan determinar la composición y características del recubrimiento orgánico. 

La electroforesis en gel de agarosa es una técnica sencilla que permite determinar 

cualitativamente la carga neta de las nanopartículas en función de su movilidad 

electroforética, siendo de gran utilidad para comprobar la correcta funcionalización de las NPs. 

 

Figura 15. Electroforesis en gel de agarosa (1 %) de NPs provenientes de dos lotes distintos. Evolución de 
las etapas de funcionalización: 1) NP@PMAO-TAMRA; 2) NP@PMAO-TAMRA@GLU; 3) NP@PMAO-
TAMRA@GLU@A1; 4) NP@PMAO-TAMRA@GLU@A2; 5) NP@PMAO-TAMRA@PEG; 6) NP@PMAO-

TAMRA@PEG@A1; 7) NP@PMAO-TAMRA@PEG@A2. 
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En los pocillos numerados con el 1 se encuentran los lotes correspondientes a dos pasajes 

a agua distintos de las nanopartículas (NP@PMAO-TAMRA). Se puede observar claramente su 

idéntica migración hacia el polo positivo de la celda electroforética, debido a la gran cantidad 

de grupos carboxilato (-COO-) cargados negativamente presentes en la superficie de las NPs. 

Los pocillos numerados con el 2 se corresponden al recubrimiento de las nanopartículas 

con glucosa (NP@PMAO-TAMRA@GLU). Se puede comprobar cómo ambos lotes migran de 

manera similar y se observa una pequeña disminución en la migración con respecto a las 

NPs@PMAO-TAMRA (1) de partida debido a la disminución de los grupos carboxilato presentes 

en la superficie de la NP tras la funcionalización. Los pocillos numerados con el 5 se 

corresponden al recubrimiento con PEG (NP@PMAO-TAMRA@PEG). De igual forma se 

comprueba cómo ambos lotes migran de manera similar y se observa una migración mucho 

menor con respecto a las NPs@PMAO-TAMRA (1) de partida que podría deberse al efecto 

estérico o a que la disminución de los grupos carboxilato presentes en la superficie de la NP 

tras la funcionalización con PEG es superior a la que se produce con glucosa. Esto implicaría 

tener que disponer de un menor número de grupos carboxílicos susceptibles de reaccionar con 

los ciclooctinos, A1 y A2, en el caso de las NPs estabilizadas con PEG que en las estabilizadas 

con GLU. 

En los pocillos 3 y 4 que fueron rellenados con NP@PMAO-TAMRA@GLU@A1 y 

NP@PMAO-TAMRA@GLU@A2 respectivamente, se puede apreciar de nuevo un marcado 

descenso de la capacidad migratoria en comparación a su predecesor, 2, debido a la reducción 

de la carga negativa que se atribuye a la disminución de los grupos carboxilato libres por la 

funcionalización con el ciclooctino. Esta disminución es más significativa que en sus homólogos 

estabilizados con PEG, los pocillos 6 y 7, que fueron rellenados con NP@PMAO-

TAMRA@PEG@A1 y NP@PMAO-TAMRA@PEG@A2 respectivamente. En este caso se puede 

apreciar un leve descenso de la capacidad migratoria en comparación a su predecesor, 5, 

debido a que se habrán incorporado un menor número de moléculas de ciclooctino tanto por 

la disminución de los carboxilatos libres en la anterior etapa como por el impedimento estérico 

del PEG que dificulta el contacto molecular y como consecuencia la reacción. 

Además de una aproximación cualitativa de la carga neta de las NPs se puede determinar 

cuantitativamente la carga en superficie mediante la técnica del potencial Z. Esta medida 

permite comparar las diferentes etapas de funcionalización y corroborar los datos obtenidos 

con los observados empíricamente en el gel de electroforesis.  

Con el mismo objetivo de caracterizar la capa orgánica se han llevado a cabo medidas del 

radio hidrodinámico de las NPs mediante la técnica de dispersión dinámica de luz (DLS). Esta 

técnica permite obtener un valor del radio hidrodinámico total de la nanopartícula (núcleo 

inorgánico + recubrimiento orgánico) lo que, junto con los histogramas de tamaño de las 

imágenes de TEM, permite obtener una aproximación del tamaño del recubrimiento orgánico. 

A la vista de los resultados de la Tabla 1 se puede confirmar que el valor del diámetro 

hidrodinámico de las NPs tras las diferentes etapas de funcionalización permanece inalterado. 

En todos los casos el tamaño es próximo a 24-27 nm por lo que no se puede relacionar 

directamente con la funcionalización. 
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 Ref. Tamaño (dnm) Potencial Zeta (mV) 

NP@PMAO-TAMRA 1 21.02 ± 1.21 -35.2 ± 0.67 
NP@PMAO-TAMRA@GLU 2 23.75 ± 2.82 -28.8 ± 1.05 
NP@PMAO-TAMRA@GLU@A1 3 25.06 ± 1.34 -24.2 ± 0.87 
NP@PMAO-TAMRA@GLU@A2 4 25.02 ± 2.29 -24.6 ± 0.24 
NP@PMAO-TAMRA@PEG 5 25.93 ± 0.82 -25.2 ± 0.51 
NP@PMAO-TAMRA@PEG@A1 6 23.24 ± 2.47 -19.5 ± 0.86 
NP@PMAO-TAMRA@PEG@A2 7 24.94 ± 1.13 -20.4 ± 0.71 

Tabla 1. Medidas de DLS y potencial Z de las muestras correspondientes a la estabilización con GLU 

(Ref.=2, 3 y 4) y con PEG (Ref.=5, 6 y 7). 

Sin embargo en las medidas de potencial Z se aprecian claras diferencias entre las 

muestras, relacionadas con el comportamiento observado en el gel de electroforesis. 

Conforme disminuye el número de grupos carboxilato libres se puede apreciar una bajada de 

la carga negativa en el valor de potencial Z lo que podría indicar la presencia de los grupos 

funcionales que se han añadido en cada etapa de la funcionalización. Este descenso de la carga 

negativa es mucho más acusado en el caso de las NPs estabilizadas con PEG lo que se 

corresponde con las observaciones de la Figura 16. De igual forma se puede observar un 

descenso más progresivo del potencial Z en el caso de las NPs estabilizadas con GLU que se 

corresponde con las observaciones del gel. 

Al igual que en la etapa de transferencia a agua, el análisis termogravimétrico (TGA) de la 

muestra permite distinguir y cuantificar el porcentaje de materia orgánica que hay de cada 

tipo (Figura 17). Se puede calcular la masa de PEG perdida teniendo en cuenta los análisis de 

TGA anteriores que mostraban que un 7.34 % de la masa corresponde al ácido oleico y un 

18,18 % al PMAO-TAMRA por lo que habrá un 15.77 % de PEG y el resto correspondería al 

núcleo inorgánico de Fe3O4 (58.71 %).1 

 

 

 

 

 

                                                             
1 La caracterización por TGA de la muestra de NPs funcionalizadas con glucosa no se ha realizado 

debido a la cantidad relativamente alta de muestra que se requiere (>1 mg de NPs liofilizadas) y al 

elevado coste de este reactivo, teniendo en cuenta que se trata de una técnica destructiva. Además, la 

caracterización realizada mediante el resto de técnicas permite comprobar que se ha llevado a cabo 

correctamente la funcionalización. 
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Figura 16. Termograma de las NPs de 12 nm. Representa la pérdida de peso (%) en función de la 

temperatura (oC). 

 

4.5 Caracterización por ensayo indirecto: inmovilización de 

NP@Alquino sobre sustratos funcionalizados con azida 

4.5.1 Justificación metodológica 

Teniendo en cuenta que los objetivos de este proyecto a largo plazo consisten en la 

inmovilización de NPs magnéticas en la membrana celular mediante la reacción click entre un 

alquino tensionado y una azida se realizaron pruebas de caracterización indirecta que puedan 

demostrar que hay un alquino anclado a la NP y que es susceptible de reaccionar con 

superficies funcionalizadas con azida. El ensayo propuesto consiste en la funcionalización de 

superficies de silicio con grupos azida y la posterior reacción de cicloadición [3+2] entre las 

NPs@alquino y la superficie@azida (Figura 17). 

En caso de que la reacción se produjera los enlaces covalentes formados unirían 

fuertemente las NPs a la superficie impidiendo su eliminación en las etapas de lavado. El 

objetivo de esta prueba es la visualización de fluorescencia en microscopio óptico como 

prueba inicial y observar mediante Microscopía Electrónica de Barrido (SEM) la presencia o 

ausencia de NPs sobre la superficie (prueba real) pudiendo demostrar que la reacción click ha 

funcionado y confirmar la presencia del ciclooctino en la nanopartícula. 
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Figura 17. Esquema del ensayo de inmovilización de NPs en superficies activadas con azida. 1ª 
Etapa: funcionalización de superficies de silicio con grupos azida (N3); 2ª Etapa: Ensayo de reacción click 

de la NP@alquino sobre la superficie@azida. 

4.5.2 Activación y funcionalización de superficies de sílica  

La funcionalización de las superficies de óxido de silicio se llevó a cabo en tres etapas: 

 

1. Activación de la superficie con disolución piraña. 

2. Incorporación de un bromoderivado. 

3. Sustitución nucleófila del bromo por el grupo azida. 

Para comprobar la correcta funcionalización se realizó un análisis por espectroscopía 

fotoelectrónica de rayos-X (XPS) de la superficie tras cada una de las etapas de reacción. La 

espectroscopía XPS es una técnica muy sensible que permite analizar la composición de la 

materia en superficie por lo que aporta información cuantitativa de gran interés. Como se 

puede observar en la Figura 18 conforme avanza la reacción se observa la aparición de 

elementos característicos de cada etapa.  

 

Figura 18. Espectro global de XPS de las diferentes etapas de funcionalización: Si) superficie de óxido de 
silicio (tras lavados); OH) superficie de óxido de silicio activada con piraña; Br) superficie funcionalizada 

con un bromoderivado; N3) superficie funcionalizada con azida. 

Entre los dos primeros espectros no se observan grandes cambios en el espectro global ya 

que no se ha incorporado ningún nuevo elemento a la superficie, únicamente se observa un 

aumento de la cantidad porcentual de oxígeno al activar la superficie de sílica con piraña 

formando grupos silanoles (-Si-OH). En el espectro Br se puede observar claramente la 

aparición de una banda a 70.49 eV correspondiente al orbital 3d del bromo que nos indica que 

la reacción se ha producido. Finalmente en el espectro N3 se puede observar como desaparece 

la banda del orbital 3d del bromo y aparecen dos nuevos picos en la zona correspondientes al 

orbital 1s del N- y al orbital 1s del N+ de la azida (-N--N+-N-). El pico de menor intensidad (30.36 

Si OH

h 

Br N3 
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%) a 404.83 eV corresponde al átomo de nitrógeno central (N+) de la azida mientras que el pico 

de mayor intensidad (65.79 %) a 401.18 eV corresponde a los dos átomos de nitrógeno de los 

extremos (N-). Estas intensidades se corresponden con la relación 1:2 de los átomos de 

nitrógeno en la azida y las energías de enlace con las descritas en la bibliografía. [28] 

4.5.3 Ensayo de inmovilización mediante química click de las NPs en superficie 

En este ensayo se intenta determinar la presencia de alquino en la NP de forma indirecta 

tanto por observación de fluorescencia en superficie como por detección de NPs en superficie 

mediante SEM. Para tener una aproximación lo más parecida posible a los experimentos a 

realizar con células vivas, se utilizó la misma concentración de NPs que normalmente se 

emplea en el grupo para dichos experimentos (125 µg/mL de Fe).  

Para ello se han realizado 7 experimentos con 7 superficies funcionalizadas con grupos 

azida sobre las que se van a añadir los cuatro tipos distintos de NPs@alquino (NP@PEG@A1, 

NP@PEG@A2, NP@GLU@A1 y NP@GLU@A2) y tres muestras a modo de control (NP@PEG, 

NP@GLU y un ciclooctino fluorescente comercial, la dibenzociclooctinil-PEG-sulforodamina B, 

DBCO). Los controles de NP@PEG y NP@GLU son controles negativos (no se espera observar 

fluorescencia ni ver NPs por imagen SEM) mientras que el alquino fluorescente DBCO es un 

control positivo de que la reacción click se ha producido (se espera ver fluorescencia). 

Las 7 muestras se sumergieron completamente en 500 µL de NPs con la concentración 

mencionada anteriormente. El experimento se llevó a cabo a temperatura ambiente, con leve 

agitación y en ausencia de luz durante 2 horas. Tras las dos horas se lavaron las superficies con 

acetona, etanol y abundante agua Milli-Q y se secaron con N2.  

El análisis de las superficies mediante microscopia de fluorescencia indicó la correcta 

inmovilización del alquino cíclico fluorescente DBCO. Sin embargo esta técnica no proporcionó 

resultados concluyentes en caso de las muestras de NPs, por lo que el estudio se basa 

exclusivamente en las imágenes obtenidas por SEM (Figura 19). 

     

     

Figura 19. Micrografías de SEM de las superficies@azida con: 1) NP@PEG (control negativo); 2) 

NP@PEG@A1; 3) NP@PEG@A2; 4) NP@GLU (control negativo); 5) NP@GLU@A1 y 6) NP@GLU@A2. 

1 2 3 

4 5 6 
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A la vista de las imágenes de SEM de la Figura 19 se puede comprobar que no existen 

interacciones entre las NPs y la superficie en las muestras 1 y 4 que corresponden con los 

controles negativos (ausencia de alquino). Sin embargo sí se observan NPs en el resto de 

muestras lo que es un claro indicador de que la reacción click se ha producido y de que por 

tanto el alquino se encuentra unido a la nanopartícula. Las diferencias de densidad de NPs 

entre las NP@PEG@A1,2 y NP@GLU@A1,2 pueden deberse a las distintas interacciones que se 

producen entre las moléculas estabilizadoras (PEG y GLU). Las NP@PEG@A1,2 son más estables 

debido al mayor tamaño y densidad de la moléculas de PEG en la NP por lo que interaccionan 

de forma individualizada con la superficie facilitando la reacción click con una distribución más 

homogénea sobre toda ella. Sin embargo, las NP@GLU@A1,2 interactúan de forma más 

eficiente entre ellas (fuerzas intermoleculares más fuertes) por lo que se disminuye la 

probabilidad de contacto entre el grupo alquino de la NP y la azida en superficie propiciando la 

aparición de las zonas de aglomeración y zonas desnudas (muestras 5 y 6). 

En el caso de las NPs@PEG@Alquino se ha llevado a cabo una cuantificación del 

porcentaje de superficie recubierto por las NPs mediante el software ImageJ y el posterior 

tratamiento de los datos en Microsoft Office Excel. El objetivo de este cálculo es discernir, de 

una forma más objetiva que a simple vista, si existen diferencias de comportamiento entre el 

alquino de cadena corta (A1) y el alquino de cadena larga (A2) a la hora de funcionalizar la 

superficie. Para realizar este cálculo se ha tenido en cuenta el área total de la imagen y el área 

de NPs detectada mediante el programa ImageJ para obtener un cálculo del porcentaje de 

superficie que recubierto por NPs (Figura 20). 

        

Figura 20. Cuantificación de la densidad de NPs en superficies@azida con NP@PEG@A1 y NP@PEG@A2 
mediante cálculo de áreas de Micrografías de SEM tratadas con ImageJ. 

Tipo de NPs Área porcentual 

NP@PEG@A1 8,32 ± 0,15 % 
NP@PEG@A2 5,96 ± 1,91 % 

Tabla 2. Cuantificación de la densidad de NPs en superficie según su porcentaje de área. 

A la vista de las imágenes de la Figura 20 y de los datos obtenidos en la Tabla 4 se puede 

intuir que la densidad de NPs está entorno al 5-8 %. No es posible asegurar que la reacción 

click con el alquino corto (A1) sea mejor a pesar de ofrecer un recubrimiento porcentual a 

priori superior. Esto es debido a que las diferencias porcentuales son demasiado pequeñas 

para establecer conclusiones claras ya que esta técnica tiene una gran dependencia de la zona 

donde se ha tomado la imagen. 

NP@PEG@A1 NP@PEG@A2 
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5. MATERIALES Y MÉTODOS 

Todos los reactivos empleados fueron adquiridos en casas comerciales (Sigma Aldrich, 

Acros, AnaSpec, Rapp Polymere) exceptuando los ciclooctinos A1 y A2 que fueron sintetizados 

por el laboratorio del profesor Jesus M. Aizpurua de la Universidad del País Vasco (UPV-EHU), 

San Sebastián. 

5.1 Síntesis de nanopartículas en medio orgánico 

Las NPs monodispersas de Fe3O4 de 12 nm de diámetro medio utilizadas en este proyecto 

fueron sintetizadas empleando un método de descomposición térmica ya descrito mediado 

por el recrecimiento de semillas de Fe3O4 de 6 nm de diámetro. [24, 25] 

5.1.1 Síntesis de MNPs de 6 nm de diámetro 

En un matraz de 250 mL de tres bocas provisto de agitación mecánica mediante una 

varilla de vidrio, se añadieron: 0.71 g (2.01 mmol) de Fe(acac)3, 2.58 g (9.98 mmol) de 1,2-

hexadecanodiol, 2 mL (5.65 mmol) de ácido oleico, 2 mL (4.22 mmol) de oleilamina y 40 mL de 

éter bencílico. Tras mezclar los reactivos, el matraz se colocó en una manta calefactora y se 

realizaron tres ciclos de vacío/nitrógeno. La temperatura de la reacción se mantuvo bajo 

control utilizando un controlador de temperatura programando varias rampas de temperatura 

de la siguiente manera: 

Programa de Temperaturas 

Calentamiento de temperatura ambiente a 200 oC Velocidad de 180 oC/h 

Mantenimiento de temperatura de 200 oC 2 h 

Calentamiento de 200 oC a 305 oC Velocidad de 10 oC/min 

Mantenimiento de temperatura de 305 oC 2 h 

Enfriamiento de 305 oC a temperatura ambiente - 

Tabla 3. Programa de temperatura para la síntesis de MNPs de 6 nm de diámetro. 

Tras enfriar la mezcla de reacción hasta temperatura ambiente, se realizaron varios 

lavados para eliminar el exceso de reactivos. En un primer lavado se añadió a las semillas una 

fracción de etanol (cuya función es la desestabilización y precipitación de las NPs) y se utilizó 

un imán para separar las NPs precipitadas del sobrenadante. 

En el resto de lavados, se añadió hexano (como disolvente) y etanol (en proporción 1:2) y 

se realizó el mismo procedimiento. Finalmente, las NPs se resuspendieron en una mezcla de 

hexano, ácido oleico y oleilamina y se almacenaron a 4 oC. 

5.1.2 Recrecimiento de 6 nm a 12 nm 

En este recrecimiento se utilizaron como semillas las MNPs de 6 nm de diámetro medio 

obtenidas según la descripción del apartado anterior. Para ello se partió de una cantidad 

preestablecida de nanopartículas de óxido de hierro (40 mg de Fe).  

Partiendo de las semillas de 6 nm sintetizadas previamente se realizaron 3 etapas de 

lavado idénticas a las descritas en el apartado anterior para eliminar el exceso de ácido oleico y 

oleilamina. Se siguió el mismo protocolo de síntesis con distintas cantidades de los reactivos. 
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Se añadieron: 40 mg de semillas de 6 nm de Fe3O4 disueltas en hexano, 1.42 g (4.02 mmol) de 

Fe(acac)3, 5.16 g (19.97 mmol) de 1,2-hexanodecanodiol, 1 mL (3.12 mmol) de ácido oleico, 1 

mL (3.06 mmol) de oleilamina y 40 mL de éter bencílico. 

El programa de temperaturas diseñado para este proceso es el siguiente: 

Programa de Temperaturas 

Calentamiento de temperatura ambiente a 100 oC Velocidad de 180 oC/h 

Calentamiento de 100 oC a 200 oC Velocidad de 3 oC/min 

Mantenimiento de temperatura de 200 oC 1 h 

Calentamiento de 200 oC a 305 oC Velocidad de 10 oC/min 

Mantenimiento de temperatura de 305 oC 1 h 

Enfriamiento de 305 oC a temperatura ambiente - 

Tabla 4. Programa de temperatura para el recrecimiento de MNPs de 12 nm. 

Una vez se hubieron obtenido las NPs recrecidas de 12 nm, se realizaron los lavados de la 

misma forma que se ha detallado anteriormente y se resuspendieron en la mezcla de hexano, 

ácido oleico y oleilamina para ser finalmente almacenadas a 4 oC. 

Los datos de absorbancia de los estándares permitieron obtener una recta de calibrado 

sobre la cual se extrapoló el dato de absorbancia de la muestra de NPs para determinar su 

concentración. 

La concentración inicial de hierro de la muestra obtenida a partir de la recta de calibrado 

para las semillas de 6 nm en hexano fue de 1.64 mg/mL y para las NPs recrecidas de 12 nm en 

hexano fue de 3.25 mg/mL.  

 

5.2 Transferencia a agua 

Previamente a la funcionalización de las NPs con las diferentes moléculas es necesario 

llevar a cabo su transferencia a agua.  

Protocolo de trabajo  

En un matraz de 500 mL se preparó una disolución de 140 mg de PMAO (30000-50000 Da) 

en 15 mL de CHCl3. Posteriormente se añadieron 2 mg de TAMRA-cadaverina en 2 mL de EtOH 

y la mezcla se dejó reaccionando durante toda la noche con agitación magnética y el matraz 

recubierto con papel de aluminio para evitar la pérdida de fluorescencia. Antes de proceder a 

la adición de las NPs en fase orgánica se añadió CHCl3 hasta un volumen final de 98 mL. 

Las NPs en medio orgánico se lavaron 3 veces con 20 mL (hexano + etanol). Tras el tercer 

lavado las NPs se resuspendieron en 2 mL de CHCl3; esta disolución se añadió gota a gota a la 

disolución de PMAO-TAMRA en CHCl3 en un baño de ultrasonidos durante 15 minutos. El 

disolvente se eliminó en el rotavapor a 40 oC y 400 mbar dejando un volumen mínimo (5-10 

mL) para que las NPs no lleguen a sequedad. 

Una vez eliminado el disolvente se añadieron simultáneamente 10 mL de H2O Mili-Q y 10 

mL de NaOH 0.1 M. La mezcla se introdujo al rotavapor a 70 oC y sin vacío, con el fin de 

evaporar los restos de CHCl3, observándose la formación de espumas en la disolución. Cuando 

las espumas se atenuaron, se fue aumentando el vacío poco a poco hasta alcanzar los 200 
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mbar y manteniéndolo hasta que no se formen más espumas. El líquido obtenido se filtró en 

caliente con un filtro de 0,2 μm para eliminar los posibles agregados de NPs formados durante 

este proceso. Finalmente mediante tres etapas de ultracentrifugación durante 2 horas a 20 oC 

y 25000 rpm se eliminaron las NPs más pequeñas y el exceso de polímero no unido que se 

quedan en el sobrenadante.  

La concentración de hierro de la muestra de NPs@PMAO-TAMRA de 12 nm en agua fue 

de 5.2 mg/mL.   

 

5.3 Ruta de NP@PEG 

5.3.1 Funcionalización de MNPs@PMAO-TAMRA con polietilenglicol (PEG) 

 Previa incorporación de la molécula de ciclooctino se llevó a cabo la estabilización de las 

NPs con PEG. 

Protocolo de trabajo 

En un Eppendorf de 1.5 mL se preparó una disolución de 16.7 mg (22.26 µmol) de NH2-

PEG-OCH3 (MW: 750 g/mol) en 172 µL de tampón tetraborato sódico 50 mM, pH=9 (SSB) y se 

añadió el volumen de NPs correspondiente a 1 mg de Fe.  

Se realizó una primera adición de 6.25 mg de 1-étil-3-(3-dimetilaminopropil)carbodiimida 

(EDC) en 20 µL de SSB (50 mM, pH=9), añadiendo el volumen necesario de tampón SSB (50 

mM, pH=9) hasta llegar a 420 µL para que se mantenga la concentración final de Fe de la 

reacción en [Fe+3]=2.3 mg/mL. Dicha disolución se agitó durante 30 minutos / oscuridad; 

transcurrido este tiempo se realizó una segunda adición de 6.25 mg de EDC en 20 µL de SSB 

(50 mM, pH=9) y se mantuvo en agitación durante 3 horas / oscuridad.  

Para eliminar el exceso de reactivos se realizaron diez lavados con agua Mili-Q (5000 rpm, 

15 min) utilizando dispositivos de filtración por centrifugación con membranas de celulosa 

(Amicon, MilliPore, 100 kDa).  

La concentración de hierro de la muestra de NPs@PMAO-TAMRA@PEG fue de 1.59 

mg/mL.   

 

5.3.2 Funcionalización de MNPs@PMAO-TAMRA@PEG con ciclooctino 

Esta etapa consiste en la unión química entre un alquino cíclico y las nanopartículas de 

Fe3O4 en medio acuoso previamente funcionalizadas con PMAO-TAMRA y estabilizadas con 

PEG. La reacción química que se produce es la unión peptídica entre el grupo amino (-NH2) del 

ciclooctino y los grupos carboxilo (-COOH) libres presentes en la superficie de las MNPs.  

En esta etapa se ha utilizado el mismo protocolo de síntesis con dos moléculas de alquino 

cíclico con diferente longitud de la cadena separadora obteniéndose dos tipos distintos de 

MNPs con un recubrimiento que presenta fluorescencia y un alquino cíclico en el extremo 

accesible y, por tanto, susceptible de reaccionar con azidas a través de una reacción “click” 

bioortogonal. 

En esta etapa se intenta conseguir funcionalizar un 10% de los grupos carboxilo presentes 

en superficie de las nanopartículas con el ciclooctino. El protocolo de funcionalización se 

describe a continuación y es idéntico para ambas moléculas de ciclooctino. 
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Protocolo de trabajo 

En un Eppendorf de 2 mL se preparó una disolución de 2.73 x 10 -4 mmol de ciclooctino, el 

volumen correspondiente a 0.5 mg de NPs y 3.125 mg de EDC en 10 µL de tampón SSB (50 

mM, pH=9). Se añadió el volumen necesario de tampón SSB (50 mM, pH=9) hasta llegar a 1.2 

mL para que se mantuviera la concentración de Fe de la reacción en [Fe+3]= 0.42 mg/mL. El pH 

de la muestra debería estar próximo a 8-9. Dicha disolución se agita durante 30 minutos / 

oscuridad. Se realizó una segunda adición de 3.125 mg de EDC en 10 µL de SSB (50 mM, pH=9) 

a cada uno. Dicha disolución se agitó durante 3 horas / oscuridad. El pH fue medido al acabar 

la reacción. 

Para eliminar el exceso de reactivos se realizaron cuatro lavados con agua Mili-Q (5000 

rpm, 15 min) utilizando dispositivos de filtración por centrifugación con membranas de 

celulosa (Amicon, MilliPore, 100 kDa).  

La concentración de hierro de la muestra de NPs@PMAO-TAMRA@PEG@A1 fue de 1.37 

mg/mL y la de NPs@PMAO-TAMRA@PEG@A2 fue de 1.23 mg/mL.   

 

5.4 Ruta de NP@GLUCOSA 

5.4.1 Funcionalización de MNPs@PMAO-TAMRA con NH2-Glucosa 

Previa incorporación de la molécula de ciclooctino se llevó a cabo la estabilización de las NPs 

con glucosa. 

 Protocolo de trabajo 

En un Eppendorf de 2 mL se preparó una disolución de 10 mg (36.86 µmol) de NH2-PEG-

OCH3 en 960 µL de SSB (50mM, pH=9) y se añadió simultáneamente el volumen de NPs 

correspondiente a 2.4 mg de Fe.  

Se realizó una primera adición de 7,5 mg de EDC en 50 µL de SSB (50 mM, pH=9). El pH de 

la muestra debería estar próximo a 8-9. Dicha disolución fue agitada durante 30 minutos / 

oscuridad. Posteriormente se realizó una segunda adición de 7.5 mg de EDC en 50 µL de SSB 

(50mM, pH=9). El pH de la muestra debería estar próximo a 8-9. Dicha disolución se agitó 

durante 3 horas en la noria / oscuridad. 

Para eliminar el exceso de reactivos se realizaron cuatro lavados con agua Mili-Q (5000 

rpm, 15 min) utilizando dispositivos de filtración por centrifugación con membranas de 

celulosa (Amicon, MilliPore, 100 kDa). Posteriormente se filtra la disolución obtenida a través 

de un filtro 0.22 µm.  

La concentración de hierro de la muestra de NPs@PMAO-TAMRA@GLU fue de 1.57 

mg/mL.   

 

5.4.2. Funcionalización de MNPs@PMAO-TAMRA@Glucosa con ciclooctino 

Esta etapa consiste en la unión química entre un alquino cíclico (A1 y A2) y las 

nanopartículas de Fe3O4 en medio acuoso previamente funcionalizadas con PMAO-TAMRA y 

estabilizadas con Glucosa. La reacción química que se produce es la unión peptídica entre el 
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grupo amino (-NH2) del ciclooctino y los grupos carboxilo (-COOH) libres presentes en la 

superficie de las MNPs.  

En esta etapa se ha utilizado el mismo protocolo de síntesis descrito en el apartado 3.2 

para conseguir un recubrimiento del 10% de los grupos carboxílicos de la superficie de la MNP. 

En este protocolo se utilizan las mismas dos moléculas de alquino cíclico con diferente longitud 

de la cadena separadora para obtener dos tipos distintos de MNPs con un recubrimiento que 

presenta fluorescencia y un alquino cíclico en el extremo accesible y, por tanto, susceptible de 

reaccionar. 

La concentración de hierro de la muestra de NPs@PMAO-TAMRA@GLU@A1 fue de 0.72 

mg/mL y la de NPs@PMAO-TAMRA@GLU@A2 fue de 0.79 mg/mL.   

 

5.5 Funcionalización de superficies de sílica con grupos azida (N3) 

Con el objetivo de realizar un ensayo posterior útil en la caracterización de las NPs se llevó 

a cabo la funcionalización de superficies de óxido de silicio para incorporar grupos azida (N3). El 

principal propósito es observar si se produce la reacción click entre el grupo alquino de las NPs 

y el grupo azida de la superficie funcionalizada. 

Protocolo de trabajo 

En primer lugar se lavaron las superficies de sílica durante 15 min con acetona y 15 min 

con etanol (sonicando en ambos casos). Finalmente se realizó un tercer lavado con agua Milli-

Q previo a la activación con Piraña. 

Se preparó la disolución Piraña (H2SO4/H2O2 3/1 v/v) añadiendo en primer lugar el H2O2 y 

gota a gota el volumen correspondiente de H2SO4. La mezcla se dejó en reposo durante 20 

min, se sumergieron completamente las muestras de sílica y se dejaron reaccionar durante 30 

minutos sin agitación. Las muestras fueron lavadas individualmente con abundante agua Milli-

Q y secadas en corriente de N2. 

Se preparó una disolución de 11-bromoundeciltriclorosilano en tolueno (0.1% vol.) y se 

sumergieron completamente las muestras activadas en dicha disolución durante 45 minutos 

sin agitación. Las muestras fueron lavadas con tolueno, acetona y etanol (15 minutos, 

sonicando) y secadas en corriente de N2.  

Una vez secas se sumergieron en una disolución saturada de azida de sodio (NaN3) en 

dimetilformamida (DMF) y se dejaron reaccionar (48 h, 37 oC, bajo N2 y con agitación suave). 

Finalmente se lavaron las superficies con acetona y etanol (5 minutos, sonicando) y agua Milli-

Q y se secaron en corriente de N2. Todas las muestras se guardaron en el desecador hasta su 

posterior uso o análisis. 
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6. TÉCNICAS DE CARACTERIZACIÓN 

6.1. Determinación de Fe 

La determinación de la cantidad de Fe en las muestras obtenidas es fundamental para 

conocer la concentración de las NPs, que será necesaria para realizar las posteriores 

funcionalizaciones y experimentos. 

Protocolo de la determinación 

La cantidad de Fe se determinó por espectrofotometría, siendo necesario preparar una 

serie de estándares de disoluciones de Fe(III) para obtener una recta de calibrado. Las 

concentraciones de los estándares (en μg/mL) son las siguientes: 0, 100, 200, 400, 600 y 800. 

Para la preparación de las muestras, se toman de 5 a 10 μL de muestra (debido a la 

elevada concentración de NPs en la disolución) y se rellena hasta 50 μL con hexano o agua (en 

función del medio en que se encuentren las NPs).  

A todas las muestras se les añaden 100 μL de agua regia (HCl/HNO3 en proporción 3:1) y 

se calientan durante 15 minutos a 60 ºC para eliminar la capa orgánica. Posteriormente se 

añaden 350 μL de H2O milli-Q a todas las muestras para diluir el agua regia. Del volumen total, 

se toman 50 μL y se trasvasan a una placa de 96 pocillos.  

A cada pocillo se añaden 100 μL de Na3PO4 (pH=9.7; 0.2 M) y 60 μL de una disolución 

formada por 50 μL de KOH (4 N) y 10 μL de Tiron (0.25 M). Tras añadir el Tiron (ácido 1,2-

dihidroxibencen-3,5-disulfónico, compuesto que forma un complejo con el Fe) y el Na3PO4 a 

todos los pocillos de la placa, se deja reposar durante unos 15 minutos. 

Finalmente se mide la absorbancia de las muestras a 480 nm en un espectrofotómetro 

Multiskan Go (Thermo Scientific). Con los datos de los estándares se realiza una recta de 

calibrado que se utiliza para extrapolar el dato de absorbancia de la muestra y obtener de esta 

forma la concentración en Fe de ésta. 

 

6.2. Electroforesis en Gel de Agarosa 

Esta técnica nos permite, por un lado, diferenciar la carga de las NPs en función de su 

capacidad migratoria, y por otro, detectar el polímero presente en la muestra que no se ha 

unido a la superficie de la NP por excitación con luz UV. De esta forma, se utiliza luz visible para 

detectar las NPs y luz UV bajo un filtro azul para detectar las emisiones azules del exceso de 

polímero que no se ha unido. 

En la imagen del gel, se pueden apreciar las NPs como bandas oscuras y el exceso de polímero 

como bandas blanquecinas. 

Protocolo de trabajo 

Se preparó una disolución al 1% (m/v) de agarosa en una disolución tampón 0.5X de Tris-

borato-EDTA (TBE). Una vez preparado el gel, se cargaron las muestras previamente mezcladas 

con una disolución de glicerol al 20% en TBE 0.5X. Finalmente se aplicó un voltaje de 80 V y 3 A 

de intensidad durante 30 minutos (suficiente para observar diferencias en la migración). 
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6.3. Análisis Termogravimétrico (TGA) 

El análisis termogravimétrico (TGA) es una técnica que consiste en la medida del peso de 

una muestra frente a tiempo o temperatura bajo una atmósfera controlada, que puede ser 

estática o dinámica. La TGA permite detectar los cambios en la pesada que suelen producirse 

en reacciones como descomposiciones, sublimaciones, reducciones, desorciones, absorciones, 

etc. De esta forma, puede ser utilizada para cuantificar el recubrimiento orgánico de las NPs. 

El equipo utilizado para analizar la masa de la muestra frente a la temperatura es un 

equipo Universal V4.5A TA Instruments. 

Las medidas de la pérdida de materia orgánica de las muestras se realizan por 

calentamiento de estas en atmósfera de aire, aumentando la temperatura a una velocidad de 

10o C/min hasta una temperatura final de 800 oC. Previamente, se liofilizaron las muestras para 

eliminar restos de agua. 

 

6.4. Microscopía Electrónica de Transmisión (TEM) 

El microscopio electrónico de transmisión (TEM) utiliza un haz de electrones para 

visualizar un objeto, permitiendo aumentar la potencia amplificadora de un microscopio óptico 

(limitada por la longitud de onda de la luz visible). Lo característico de este microscopio es el 

uso de una muestra ultrafina y la obtención de la imagen a partir de los electrones 

transmitidos. 

La microscopía electrónica de transmisión (TEM) es útil en la caracterización morfológica, 

microestructural y composicional de las NPs. En este trabajo las imágenes fueron obtenidas 

con un microscopio Tecnai T20 (FEI), dotado de un cañón termoiónico y voltaje acelerador de 

hasta 200 kV (Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza). 

Para visualizar las NPs en el TEM, es necesario realizar una preparación de la muestra 

diferente en función de si las NPs son solubles en medio orgánico o acuoso. En ambos casos, la 

muestra debe estar muy diluida, siendo las NPs hidrófobas diluidas en hexano y las NPs 

hidrófilas en agua. Se aplicaron 5 μL de las muestras sobre una rejilla de cobre recubierta de 

carbono y se dejaron secar al aire antes de introducirse al microscopio. 

Una vez obtenidas las micrografías de las NPs, con la ayuda del software ImageJ, se midió 

el área de unas 600 NPs (Procedimiento descrito en el Anexo 1), se representó la distribución 

de tamaños en forma de histograma y se realizó el cálculo del tamaño medio de las NPs. 

 

6.5.  Microscopía Electrónica de Barrido (SEM) 

El microscopio electrónico de barrido (SEM), es una técnica de microscopía electrónica 

capaz de producir imágenes de alta resolución de la superficie de una muestra utilizando las 

interacciones electrón-materia. Utiliza un haz de electrones en lugar de un haz de luz para 

formar una imagen. 

En este trabajo se han utilizado imágenes de SEM para visualizar las NPs unidas a las 

superficies funcionalizadas a través de química “click” y para estimar el porcentaje de área 

superficial ocupada por las NPs. 

El instrumento utilizado fue un microscopio electrónico de barrido de emisión de campo 

CSEM-FEG INSPECT F50 (Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza). 
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6.6.  Dispersión dinámica de la luz (DLS) 

El DLS (Dynamic Light Scattering) es una técnica espectroscópica utilizada para 

caracterizar el radio hidrodinámico de diferentes moléculas, partículas o coloides en 

disolución. Por esto DLS es una técnica útil para determinar la distribución de tamaños de NPs 

en suspensión. En esta técnica el analito en suspensión es irradiado con luz láser 

monocromática y se miden entonces las fluctuaciones de la intensidad de la luz difractada en 

función del tiempo. Los datos de intensidad son transformados por el analizador de la señal 

para determinar la distribución de tamaños de las partículas de la muestra. 

Las muestras se prepararon diluyendo las NPs en agua con una concentración final de 

0,05 mg/mL en un volumen final de 1,5 mL. 

Se realizaron 5 medidas de cada muestra a 25 oC y los resultados se analizaron en 

términos de número e intensidad. Las medidas se tomaron en un equipo Malvern Zetasizer, 

siendo las muestras irradiadas con un láser de helio-neón de 633 nm de longitud de onda. 

 

6.7.  Potencial Z 

Las medidas de potencial Z se utilizan para determinar la carga superficial de las NPs y su 

magnitud está relacionada con la estabilidad del sistema coloidal. Si las partículas en 

suspensión tienen un amplio potencial Z negativo o positivo tenderán a repelerse entre ellas 

(repulsión electrónica). Sin embargo, si las partículas tienen valores bajos de potencial Z 

aumenta la inestabilidad del sistema coloidal y pueden llegar a agregar si no existen otro tipo 

de repulsiones de tipo estérico. Esta medida se basa en el uso de un láser como fuente de luz 

que ilumine las partículas de la muestra siendo el rayo láser incidente el que pasa a través del 

centro de la muestra permitiendo detectar la luz dispersada a un ángulo de unos 13o. 

Al aplicar un campo eléctrico a la celda, cualquier partícula en movimiento presente en el 

volumen de medida provocará una fluctuación en la intensidad de la luz detectada con una 

frecuencia proporcional a la velocidad de la partícula.  

El posterior tratamiento de la señal mediante el software adecuado permite obtener 

diversos parámetros relacionados con el potencial Z y la movilidad electroforética de las 

partículas. Las muestras se prepararon en las mismas condiciones y se utilizó el mismo equipo 

de medida que para el DLS.  

 

6.8.  Espectroscopia de fotoelectrones de rayos-X (XPS) 

La técnica espectroscópica de XPS permite realizar análisis cuantitativos de la composición 

elemental, fórmula empírica, entorno químico y estado de oxidación de los elementos 

presentes en la superficie del material con una elevada sensibilidad. Esta técnica consiste en 

irradiar con un láser de rayos X mientras se mide simultáneamente la energía cinética y el 

número de electrones que escapan de la capa superficial, de 0 a 10 nm, del material analizado. 
En el presente trabajo esta técnica se ha utilizado para comprobar las diferentes etapas 

de funcionalización de superficies de silicio y detectar posibles cambios superficiales al añadir 

las diferentes NPs que indicaran si se ha producido la reacción click. 

El instrumento utilizado fue un espectrofotómetro de fotoelectrones de rayos X Kratos 

Analytical AXIS SUPRATM.  
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7. CONCLUSIONES 

En este trabajo se han sintetizado por descomposición térmica NPs magnéticas de Fe3O4 

de 12 nm, que han sido transferidas a un medio acuoso y estabilizadas con polietilenglicol y 

glucosa. Posteriormente se ha conseguido funcionalizar cada una de ellas con dos ciclooctinos 

de diferente longitud de cadena espaciadora y probar su viabilidad mediante una reacción de 

química click sobre una superficie de sílica funcionalizada con grupos azida. 

Uno de los retos de este proyecto era la realización de una caracterización adecuada que 

permitiera demostrar que se ha incorporado el ciclooctino a las NPs. El análisis de las NPs 

mediante microscopía TEM sólo nos permite evaluar la forma, polidispersidad y el tamaño de 

las NPs por lo que han sido necesarias técnicas complementarias que permitan estudiar la 

composición de la capa orgánica de recubrimiento. Utilizando el análisis por TGA únicamente 

se han obtenido datos de composición de la capa orgánica de las NPs. Sin embargo, otras 

técnicas como el DLS, potencial Z y la electroforesis en gel de agarosa han mostrado 

indicadores claros de la presencia de ciclooctino en las NPs. 

Teniendo en cuenta que el objetivo principal de este proyecto es la funcionalización de 

NPs para llevar a cabo una reacción de química click bioortogonal sobre diferentes superficies 

se ha realizado un ensayo indirecto de inmovilización de NPs@alquino sobre 

superficies@azida. Para realizar este ensayo ha sido necesario funcionalizar en varias etapas 

superficies de silicio con el propósito de obtener una superficie recubierta con grupos azida. 

Para demostrar que la azida se encontraba en superficie se han realizado estudios por XPS de 

las superficies en las diferentes etapas de la reacción. Finalmente, este ensayo nos ha 

permitido comprobar que, además de haber conseguido funcionalizar las NPs con el 

ciclooctino, la reacción click sobre una superficie de azida es viable como se observa 

claramente a través de las imágenes de SEM. 

Por último en este trabajo se ha intentado evaluar las posibles diferencias existentes 

entre los dos alquinos a la hora de producirse la reacción click. Para ello se ha tratado de 

cuantificar la densidad de NPs presentes en superficie a través de imágenes de SEM y su 

posterior tratamiento con el software ImageJ. La escasa diferencia entre las imágenes y la gran 

variabilidad existente entre zonas de la misma superficie nos han impedido obtener una 

conclusión clara acerca de si la longitud de la cadena podría afectar al funcionamiento de la 

reacción click en superficie. 
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ANEXOS 

ANEXO I (Obtención de Histogramas mediante el método de ImageJ) 

1) File -> open -> seleccionar imagen * 

* La escala que da menos error es la de 50 nm (imágenes a menos de 8600 SA 

aumentos no ofrecen tanta precisión en la medida de las áreas) 

* Es importante que las NPs estén bien separadas, grupos aislados son más fáciles de 

detectar con su geometría exacta que aglomerados (necesario un mínimo espaciado 

entre NPs, resolución) 

2) Analyze -> Set scale -> known distance (colocar línea recta en la escala previamente a 

dar este valor) 

3) Imagetools (forma rectangular) -> recuadrar toda la imagen excepto la escala 

4) Duplicate image 

a. Con botón secundario -> duplicate 

b. Image –> duplicate 

 

 
 

5) Process -> Smooth (suavizado) 

6) Process -> FFT -> Bandpass filter (Large: 25 y small: 15)  
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7) Process -> Enhance Contrast (7-8 %) 

 

 
 

8) Image -> Adjust -> Threshold * 

 

 

 

 

 

 

 

 

 

 

 

 *ImageJ hace un ajuste por defecto, bastante bueno, pero si queremos ajustar 

mejor el tamaño de las áreas que vamos a medir podemos mover la barra hacia derecha o 

izquierda hasta que veamos que las áreas de nuestra imagen binaria son similares en tamaño a 

las de nuestra imagen original. 

9) Pulsar el botón Apply (dos veces) -> Obtener fondo blanco y NPs en color negro* 

* Si no se hace de esta forma el programa no detectará ninguna NP porque no detecta 

los blancos, solo las áreas en negro. 
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10) Podemos usar una herramienta para eliminar los bordes (son NPs cortadas cuya área 

no va a ser la real y falsean nuestros datos) 

 
 

 

 

11) Eliminamos manualmente los bordes y algunas otras zonas donde el programa haya 

detectado varias NPs como una sola (Esto solo si vemos que es sencillo si no un 

sistema de filtros de Excel nos eliminará en el siguiente paso las áreas que sean 

demasiado grandes o demasiado pequeñas para ser una NP):  

 

 

 

 

 

 

 

 

12) Process -> Binary -> Fill Holes (Brightness: Dark)* 

* Esto solo es necesario en caso de que haya NPs que tengan huecos internos de color 

blanco debido a una detección errónea del programa. 

 

13) Analyze -> Analyze Particles -> OK 
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14) Results -> Edit -> Copy (nos llevamos la tabla de resultados a una hoja de cálculo) 

15) Obtener los valores de: 

a. Área Real (dividir el área obtenida entre 1000) 

b. Radio 

c. Diámetro 

 

 
 

16) Datos -> Filtro -> diámetro -> entre (mayor que 4,5 y menor que 16) 

17) Copiar datos -> pegar solo valores (en columna: datos filtrados) 

 




