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RESUMEN 

Las enfermedades de la madera o yesca, es una de las enfermedades más importantes en la viticultura 

moderna. En este trabajo se ha evaluado el uso de las imágenes térmicas y multiespectrales para detectar 

la presencia de cepas afectadas por yesca. 

Se han utilizado imágenes térmicas y multiespectrales de un vuelo realizado en el año 2015. De dichas 

imágenes se han extraído los valores de temperatura, NDVI, PCD y los DN (Digital Numbers) de las distintas 

bandas de la imagen multiespectral. Además, usando un GPS de alta precisión se georreferenciaron varias 

cepas sanas y enfermas en dos parcelas distintas. 

Tras extraer los valores de cada parámetro a evaluar en cada cepa, se realizó un análisis estadístico de los 

datos. Tras realizar un análisis de varianza de tipo ANOVA, se observó que no existen diferencias 

significativas entre cepas sanas y enfermas, sin embargo, sí que se detectaron diferencias significativas 

entre cepas de distintas parcelas. 

El análisis de regresión mostró que existe una fuerte correlación entre los valores de las 3 bandas que 

componen la imagen multiespectral, sin embargo, esta correlación es más débil al relacionar la 

temperatura con las distintas bandas. 

Dado que se encontró correlaciones entre los distintos parámetros, se realizó un análisis de componentes 

principales para evaluar si las distintas bandas de la imagen multiespectral y la temperatura estaban 

explicando la misma variabilidad dentro de las muestras analizadas. Dicho análisis mostró que el 95% de 

la variabilidad puede ser explicado por dos componentes principales, los cuales están formados por las 

bandas de la imagen multiespectral. Lo cual implica que la información que nos da la imagen térmica es 

redundante, puesto que la variabilidad puede ser explicada casi en su totalidad por la imagen 

multiespectral. 

Por último, se intentó implementar modelos de clasificación basados en los sistemas de aprendizaje de 

máquina para evaluar si usando este tipo de análisis es posible diferenciar entre cepas sanas y enfermas 

usando la información que contienen las imágenes térmicas y multiespectrales. Pese a que no se habían 

encontrado diferencias significativas en ninguno de los parámetros estudiados, para cepas sanas y 

enfermas, ha sido posible conseguir un índice de acierto de más del 70% para cepas enfermas usando 

modelos de tipo SVM (Support Vector Machine), a costa de aumentar la tasa de error para las cepas sanas. 

De modo que no es posible detectar de forma precisa la presencia de yesca usando imágenes térmicas y 

multiespectrales. Sin embargo, mediante el uso de técnicas de aprendizaje de máquina sí que es posible 

detectar cepas afectadas a costa de aumentar el número de cepas sanas clasificadas como enfermas. Ya 

que este tipo de imágenes es más sensible a otros cambios como los que puede producir una carencia 

mineral o un déficit hídrico. 
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ABSTRACT 

Trunk diseases or esca is one of the most important diseases in modern viticulture. In this study the use 

of multispectral and thermal images for esca detection has been evaluated. 

Multispectral and thermal images from a drone flight of 2015 has been used. From those images 

temperature, NDVI, PCD and DN (Digital Number) of each band of the multispectral image has been 

extracted. In addition, using a high precision GPS esca affected vines and healthy vines has been 

georeferenced. 

After extracting all parameter of each vine, a data statistical analysis has been conducted. ANOVA analysis 

showed no significant differences between healthy and esca affected vines, although there was found 

significant differences between different fields. 

Regression analysis showed a strong correlation between each of the 3 bands that forms the multispectral 

image. In the other hand, correlations of temperature with those bands were weak.  

Given that correlation between bands was found, PCA (Principal Component Analysis) was performed in 

order to evaluated if the bands of multispectral image and the temperature were explaining the same 

variation. PCA showed that 95% of variability could be explained by two PC (Principal Component) form 

by a combination of the 3 bands of the multispectral image. As a result, information of temperature is 

redundant, because most of the variability could be explained using the 3 bands of the multispectral 

image. 

Finally, using supervised machine learning methods, classification models were implemented in order to 

evaluated if those types of analysis are able to differentiate between healthy and esca affected vines using 

information from the multispectral and thermal images. Although no significant differences between 

healthy and esca affected vines were found, classification model with more than 70% true positive rate 

of esca affected using SVM (Support Vector Machine) models, at the expense of increasing false positive 

rate for healthy vines. 

So, its no possible to precisely detect esca affected vine using multispectral and thermal images. However, 

is possible to detect a high proportion of esca affected vines by counting some of the healthy vines as 

vines affected by esca. Multispectral and thermal images are more sensitive to other changes in the vine 

such as nutrient or water stress.  
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INTRODUCCIÓN 

En los últimos años estamos viviendo grandes avances que están modificando la agricultura, como 

podemos observar en el creciente desarrollo de la agricultura de precisión (Zhang et al., 2002). 

La agricultura de precisión es una forma de producir en la que se busca mejorar la eficiencia productiva 

del sistema, es decir, lograr producir más con una menor cantidad de insumos (ya sean fertilizantes, 

plaguicidas, agua, mano de obra…). Esto se consigue mediante el manejo del cultivo de forma específica 

en función de aspectos diferenciales del mismo relacionados con el tipo de suelo, las necesidades hídricas, 

la presencia de enfermedades, etc. (Seelan et al., 2003). 

El desarrollo de la agricultura de precisión ha sido propiciado por el desarrollo de tecnologías como el 

GPS, los sistemas de gestión de información geográfica (GIS), los circuitos miniaturizados, los sensores 

remotos, los aplicadores variables, los smartphones, las mejoras en las telecomunicaciones y los avances 

en el tratamiento de datos (Zhang et al., 2002; Cox 2002). 

El primer paso en cualquier técnica de agricultura de precisión es la obtención de datos que puedan 

aportar información diferenciada de diferentes aspectos relacionados con el cultivo. Dicha obtención se 

puede hacer de forma manual, como puede ser la inspección visual de la parcela, o puede realizarse de 

mediante la utilización de sensores (Zhang and Kovacs., 2012). 

Uno de los sensores más utilizados en agricultura de precisión son las cámaras multiespectrales que son 

cargadas por drones o por satélites, dependiendo de la superficie a estudiar y de la precisión requerida. 

Con estas cámaras se obtienen imágenes, las cuales se tratan para obtener diferentes tipos de 

información siendo la más habitual la generación de mapas de vigor. Dichos mapas de vigor se obtienen 

gracias a las herramientas GIS, que permiten realizar el tratamiento de datos. Finalmente hay que pasar 

de esa información de los mapas de vigor a mapas de aplicación, zonificando la parcela (Zhang & Kovacs., 

2012). 

La viña es uno de los cultivos extensivos más intensificados. Su cultivo requiere de una importante 

cantidad de cuidados, por lo que es especialmente indicado para la aplicación de técnicas de agricultura 

de precisión (Arnó et al., 2012). 

En España, la vid es tras los cereales y el olivar, el cultivo más extendido. Con una superficie total de 

alrededor de un millón de hectáreas. Así mismo, la producción de vino y mosto en el año 2013 generó 

2.142,8 millones de euros, lo cual supone el 8,02% de la producción vegetal 

(http://ec.europa.eu/eurostat). 

Una de las mayores problemáticas de este cultivo en los últimos años es la enfermedad de la madera o 

yesca. Esta enfermedad de origen fúngico causa podredumbre en el interior de la madera de la vid, lo cual 

afecta gravemente a la producción y calidad de la uva (Bertsch et al., 2013). 

Dentro de España, se estima que entre un 10-20% de las cepas están afectadas por la enfermedad de la 

yesca (Cobos, 2008; Blanco, 2013). Por lo que se trata de una enfermedad de gran importancia en la 

viticultura española. En el resto del mundo, la situación es parecida, ya que, según algunos estudios, en 

Australia se han registrado pérdidas de 1.500kg/ha (John et al., 2008), en California se estiman unas 

pérdidas causadas por la yesca de unos 260 millones de dólares anuales (Siebert, 2001), y en Francia se 

estima que un 11% de los viñedos son improductivos debido a la presencia de esta enfermedad 

(Grossman, 2008). De modo que se trata de una enfermedad extendida a nivel mundial.  
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Actualmente en España no se dispone de ninguna sustancia activa capaz de combatir la enfermedad.  Hace 

unos años, se utilizaba el arsenito sódico, que combatía de forma eficaz la yesca, sin embargo, se tuvo 

que prohibir debido a su toxicidad (Bertsch et al., 2013). 

Algunos productos como los compuestos de cobre, los benzimidazoles o los triazoles son capaces de 

reducir el nivel de infección, sin embargo, cada vez son menos utilizados ya que cada vez son menos 

efectivos y además presentan problemas de toxicidad. (Bertsch et al., 2013; Diaz & Latorre, 2013). 

De acuerdo con algunos estudios, la yesca causa alteraciones fisiológicas en la planta que afectan tanto a 

la fotosíntesis, el estado hídrico, la nutrición de la planta o la respiración. No obstante, no existe mucha 

información al respecto (Bertami et al., 2002). 

Puesto que la enfermedad causa alteraciones en la fisiología de la cepa, podría ser posible detectar la 

presencia de la enfermedad mediante el uso de sensores remotos, como una cámara multiespectral o una 

cámara térmica. Ya que un cambio en la tasa de fotosíntesis o cambios en el estado hídrico de la cepa 

pueden ser detectados mediante el uso de índices de vigor como el NDVI o el CSI (Di Genaro et al., 2016). 

En este contexto, se creó el proyecto Retmavid, perteneciente a la convocatoria Retos Colaboración 2015 

del Programa Estatal de I+D+I orientado a los retos de la Sociedad, como un proyecto cuyo objetivo es 

conseguir detectar la yesca de forma eficaz a partir de sensores remotos, desarrollar un compuesto que 

actúe de forma eficaz contra la yesca, para posteriormente aplicar el producto desarrollado únicamente 

en las cepas afectadas que han sido detectadas a través de medios remotos. 

Con ello no solo se conseguiría un ahorro de producto, sino que además se lograría mejorar la vida útil 

del producto, puesto que al tratar un número menor de cepas la aparición de resistencias será más lenta 

o más difícil que en el caso de que se tratara la parcela entera. 

El presente trabajo fin de máster se enmarca dentro del proyecto Retmavid, buscando un método que 

permita la detección de cepas afectadas por yesca mediante el uso de sensores remotos. 
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OBJETIVOS 

Los objetivos del presente trabajo son: 

- Evaluar si es posible detectar la presencia de yesca mediante el uso de imágenes obtenidas con 

una cámara multiespectral montada en un dron. 

- Evaluar si es posible detectar la presencia de yesca mediante el uso de imágenes obtenidas con 

una cámara térmica montada en un dron. 
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REVISIÓN BIBLIOGRÁFICA 

SISTEMAS DE TELEDETECCIÓN 

Los sistemas de teledetección se basan en sensores que miden determinadas propiedades (como puede 

ser la reflectancia de una determinada longitud de onda) de los objetos observados (Sankaran et al., 2010; 

Hall et al., 2003). 

Estos sensores van montados en vehículos terrestres o aéreos que permiten poder realizar las mediciones 

desde una determinada distancia y permiten el desplazamiento del sensor de un punto de muestreo a 

otro (Sankaran et al., 2010; Hall et al., 2003). 

SENSORES 

Existen una gran variedad de sensores. Esta revisión se centrará únicamente en aquellos sensores que son 

más utilizados con fines agrícolas (Hall et al., 2015). 

La mayor parte de los sensores se basan en el hecho de que las plantas tienen una alta absorción en la 

banda del espectro visiblel azul (400-500nm), lo que se traduce en una baja reflectancia, mientras que en 

el verde (500-600nm) la reflectancia se ve incrementada. En el rojo (600-700nm) también se produce una 

fuerte absorción. Así mismo hay una fuerte reflectancia y transmitancia en el infrarrojo cercano (NIR- 700-

1500nm). Esta variabilidad se explica por el comportamiento frente a la radiación de las clorofilas y los 

carotenos (Aguilar, 2015). 

CÁMARAS MULTIESPECTRALES E HIPERESCPECTRALES 

Las cámaras multiespectrales e hiperespectrales son cámaras especiales que son capaces de filtrar la 

emisión electromagnética de acuerdo con su espectro. La principal diferencia entre cámaras 

multiespectrales e hiperespectrales radica en el hecho que las multiespectrales son capaces de trabajar 

con un número pequeño de bandas (2-10) mientras que las hiperespectrales son capaces de trabajar con 

un número mayor de bandas (mayor de 10) (Hall et al., 2015). 

Las cámaras multiespectrales normalmente filtran 4 bandas distintas: infrarrojo cercano (757,5-782,5nm), 

rojo (637,5-662,5nm), verde (537,5-562,5nm) y azul (437,5-462,5nm) (Hall et al., 2003). 

El desarrollo de este tipo de dispositivos se ha producido gracias a la aparición de los dispositivos CCD. Los 

CCD son dispositivos de carga acoplada, un circuito integrado que contiene un número determinado de 

condensadores acoplados. Su alternativa son los CMOS (complementary metal oxide semiconductor). Se 

trata de un sensor con diminutas células fotoeléctricas que registran la imagen, su número determina los 

píxeles. Así mismo con una máscara de Bayer es posible asignar los colores en RGB, o directamente 3 

sistemas RGB separados. Uno de los principales inconvenientes de las cámaras multi-CCD es su elevado 

coste, y su menor resolución, sin embargo, ya existen algunos modelos que incorporan un CCD específico 

para el IR. En las cámaras convencionales con filtro de Bayer se puede obtener el IR quitando el filtro 

adicional que llevan para cumplir con los requisitos de color adicionales (Rabatel et al., 2014). 

Las cámaras hiperespectrales se centran en una pequeña franja de banda de onda en un rango continuo, 

produciendo un espectro continuo de los píxeles de la imagen. Los sensores espectrales también son 

capaces de producir bandas discretas espectrales, sin embargo, estas tienen una menor resolución 

espectral. Así mismo, los sensores hiperespectrales extraen información más detallada que los sensores 

multiespectrales, ya que consiguen incorporar información de todo el espectro en cada píxel (Colomina & 

Molina, 2014; Sankaran et al., 2010). 
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Como inconveniente, pese a que las cámaras de espectro visible han conseguido alcanzar las decenas de 

megapíxeles con equipos de solo unos gramos de peso, en los equipos hiperespectrales no ha sido posible 

debido a la compleja óptica que requieren (Colomina & Molina, 2014, Sankaran et al., 2010). 

Debido a los elevados requisitos de potencia y estabilidad, en el caso de vehículos aéreos, este tipo de 

aparatos sólo pueden ser usados en aviones equipados con un sistema de dos motores, lo cual hace que 

sea un sistema mucho más caro que la imagen multiespectral (Hall et al., 2015). 

Para el estudio de los cultivos se suelen usar cámaras multiespectrales, ya que tienen un coste menor que 

las cámaras hiperespectrales y son más sencillas de manejar (Hall et al., 2015). 

Usando las imágenes multiespectrales se generan índices de vigor que pueden ser correlacionados con el 

estado de la planta, ya que tanto el espectro visible como el infrarrojo, proporcionan la máxima 

información acerca del estrés en las plantas (Sankaran et al., 2010). 

Mediante el uso de imágenes hiperespectrales es posible estudiar parámetros más complejos. Por 

ejemplo, es posible estudiar las características del suelo mediante su reflectancia a distintas bandas, de 

forma que es posible correlacionar esta reflectancia con diversas características como son el contenido 

en materia orgánica o la composición mineral (Lee et al., 2010). 

La reflectancia en las bandas 624nm y 564nm se usan para determinar el contenido en materia orgánica. 

Para el contenido en agua del suelo se aprovecha que el agua tiene fuerte absorción en las bandas 960nm, 

1410nm, 1460nm y 1910nm. Para el contenido en nitrógeno se estudia la reflectancia en las bandas 

correspondientes a 1100-2500nm. Para la estimación del fósforo disponible se puede usar las bandas 

305nm y 1171nm, o incluso si se quiere conocer el total se puede usar la fotoluminiscencia ultravioleta y 

la espectroscopia láser-Raman. Así mismo es posible determinar el pH, conductividad, la CIC, el magnesio, 

las fracciones, el ratio Ca:Mg… (Lee et al., 2010). 

Mediante el uso de imágenes procedentes del infrarrojo visible se ha demostrado que es posible estudiar 

las propiedades de la superficie del suelo (mm de profundidad), sin embargo, se encuentran problemas 

al intentar realizar el estudio en capas más profundas (Lagacherie et al., 2013). 

IMÁGENES TÉRMICAS 

Usando un radiómetro es posible determinar la temperatura de una determinada parte de la planta y así 

observar si dicha planta tiene problemas de estrés hídrico. Esto se debe a la fisiología de la planta, ya que 

cuando la planta tiene suficiente agua abre sus estomas para transpirar y así mantenerse a una 

temperatura adecuada, mientras que si la planta sufre un estrés hídrico mantiene sus estomas cerrados 

para mantener el agua y por tanto su temperatura aumenta (Cox 2002; Möller et al., 2007). 

No obstante determinar la temperatura del cultivo es un método menos efectivo que realizar la medición 

del potencial hídrico de la hoja, ya que, al medir el potencial hídrico de la hoja, se está midiendo 

directamente el estado de la planta mientras que con la temperatura se mide su efecto indirecto. Sin 

embargo, para conocer el estado hídrico de un gran número de plantas es menos costoso realizar una 

imagen térmica que medir el potencial hídrico de cada una de las plantas a estudiar (Möller et al., 2007). 

Otra de las aplicaciones que se pueden obtener del uso de las imágenes térmicas es conocer la variabilidad 

de la temperatura a nivel de hoja, lo cual puede dar idea de su estado (ya sea nutritivo o sanitario). Esto 

es de utilizad para la detección de enfermedades, ya que la puesta en marcha de los mecanismos de 

defensa de la planta ante el ataque de un patógeno, como puede ser la senescencia de la parte atacada, 

puede provocar un aumento en la temperatura de la hoja (Sankaran et al., 2010; Stoll et al., 2008). 
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SISTEMAS LIDAR Y RÁDAR 

Se trata de un sistema láser que permite registrar la distancia hasta un determinado objetivo. Ha sido 

ampliamente utilizado en vuelos con avión, así como en sistemas de agricultura inteligente para mejorar 

la precisión de herramientas como el tractor y evitar bordes u obstáculos (Lee et al., 2010). 

La principal utilidad que tiene este sistema es detectar las zonas de drenaje y ayudar a mejorar el manejo 

hídrico de las parcelas (Cox 2002). 

Este tipo de escáner láser se usa frecuentemente en combinación con las cámaras para fotogrametría. 

Aunque su principal utilidad radica en la detección de obstáculos, este tipo de instrumentos han sido 

también utilizados para realizar mapas de corto alcance (Colomina & Molina, 2014). 

Las cosechadoras modernas utilizadas en viñedo incorporan un sistema de conteo de uvas mediante el 

uso de sensores de peso, sensores ópticos y sensores de rayos gamma. También hay cosechadoras de 

cereal que mediante el uso de láser y fotodetectores son capaces de determinar a qué altura se encuentra 

el cultivo para adaptar mejor la cabeza de corte (Zhang et al., 2002; Cox 2002). 

El uso de tecnologías de radar como es el caso del LIDAR (laser-based radar) permite la obtención en tres 

dimensiones sobre la cobertura del suelo. Dicho radar opera en el espectro visible y en el infrarrojo. Así 

mismo estos sensores son capaces de ofrecer simulaciones de fluorescencia, lo cual es de amplia utilidad 

para el estudio de la salud de las plantas. También puede ser usado para monitorear la polución presente 

en el aire (Cox 2002). 

Dentro de las tecnologías de radar podemos distinguir entre el radar con base en el suelo, radar en 

plataforma aérea y radar de penetración en el suelo (GPR, ground pentrating radar) (Cox 2002). 

El radar de suelo es de gran utilidad para monitorizar el movimiento de los insectos, mientras que el radar 

con base aérea y el GPR son útiles para determinar la cantidad de agua en el suelo (Cox 2002). 

Uno de los principales inconvenientes a los que se enfrenta el radar, es que no se ha conseguido 

miniaturizar consiguiendo unos resultados similares a los obtenidos con radares convencionales, lo que 

hace difícil su implantación en UAS (Colomina & Molina, 2014). 

Recientemente se han realizado importantes avances en la miniaturización del radar, especialmente en 

las bandas de radar P y X, que consiguen formar un modelo digital del terreno. Así mismo también se ha 

logrado un radar de banda W (λ=mm) capaz de obtener una precisión de hasta 15cm (Colomina & Molina, 

2014). 

El uso del radar es más frecuente incorporándolo a los vuelos con avionetas, como fue el caso de los 

vuelos programados por la Unión Europea en el programa EMAC, donde se realizaban vuelos 

incorporando imágenes de radar de apertura sintética (ESAR), espectrómetro (ROSIS) y radiómetro de 

microondas. El radar de este programa funcionaba en 4 frecuencias, X, C, L y P. Mediante este sistema 

fueron capaces de determinar la humedad del suelo a una profundidad de 0 a 10cm (Su et al., 1997; Hadria 

et al., 2009). 

La reflectancia de las bandas de onda correspondientes a las longitudes de onda entre 400 y 2500nm, se 

ve reducida cuando aumenta el contenido en agua del suelo. No obstante, existen importantes 

variaciones entre los diversos tipos de suelo, ya que la reflectancia se ve afectada por la composición del 

suelo, como el contenido en materia orgánica, la composición mineral, la distribución de los tamaños… 

Así mismo dado que la señal tiene una baja penetrancia en el suelo, esta puede verse afectada por 

distorsiones causadas por las irregularidades en la superficie del mismo. El momento óptimo para realizar 

estas mediciones son cuando el campo está sin vegetación (Muller & Décamps, 2000; Hadria et al., 2009). 
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La información de radar se puede obtener desde satélites como el ENVISAT/ASAR. Este satélite dispone 

de un sistema avanzado de apertura sintética de radar (ASAR), el cual opera a una frecuencia de 5,33GHz 

y tiene una longitud de onda de 5,6cm, por lo que se trata de una banda C. Tiene 7 ángulos de incidencia 

diferentes, entre 15 y 45º. Este sistema puede ser utilizado en combinación con los distintos espectros de 

otros satélites (R, G, B, NIR). Una de sus principales utilidades es la detección de humedad o de rugosidad 

del suelo (Hadria et al., 2009). 

 

FLUORESCENCENCIA 

Se trata de una forma de espectroscopia en la que la se estudia la fluorescencia tras la aplicación de un 

haz de luz, habitualmente luz ultravioleta. Habitualmente se estudia dos tipos de fluorescencia. La azul-

verde (400-600nm) y la fluorescencia de la clorofila (650-800nm) (Sankaran et al., 2010). 

Este tipo de aparatos suelen ser de campo, ya que es necesario implementarlos en el propio campo, no 

se pueden colocar en un satélite o en un dron (Sankaran et al., 2010). 

Los cambios en la fluorescencia azul y verde tras la excitación con luz ultravioleta, aporta información 

acerca del estado sanitario de la planta. Se trata de un avance respecto de la espectroscopia, ya que en 

este caso se estudia una imagen, no solo su espectro. (Sakaran et al., 2010; Bellow et al., 2012). 

Se trata de un sensor de campo que determina la respuesta de la planta a la luz. Para ello se una lámpara 

y una cámara de alta resolución. Así mismo se usa también un filtro de rayos UV. Después la fluorescencia 

que emite la planta se mide mediante un filtro GFP-B (Bellow et al., 2012). 

Se trata de un análisis que analiza el máximo rendimiento cuántico de la fotoquímica del fotosistema II en 

forma de (Fv/m=(Fm-F0)/Fm). Siendo Fv/Fm un parámetro calculado con dos medidas, la fluorescencia 

mínima (F0) y la fluorescencia máxima (Fm). Cuando el tejido vegetal está sometido a un estrés, este valor, 

que para plantas sanas suele estar en el orden de 0,85 va decreciendo (Rousseau et al., 2013). 
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VEHÍCULOS 

Estos sensores pueden estar presentes en varios tipos de vehículos: satélites, avionetas, drones y medios 

terrestres (Hall et al., 2015). 

SATÉLITES 

Desde el inicio de la era espacial, se han desarrollado multitud de satélites, la mayor parte de ellos se usan 

para las telecomunicaciones, sin embargo, también existen un considerable número de satélites que se 

utilizan para teledetección (Cox 2002). 

En los años 60 se desarrollaron sensores remotos que podían ser utilizados en plataformas aéreas para la 

observación terrestre. En los 70, se utilizó dicha tecnología en satélites como el Landsat (Cox 2002). 

En los últimos años, gracias a los avances en tecnología espacial se ha logrado conseguir imágenes de la 

superficie de la Tierra a baja altitud, con el uso de LARS (Low Altitude Remote Systems). (Comba et al., 

2015) 

Aun con los últimos desarrollos en la mejora de la resolución de las imágenes satelitales, los satélites 

tienen un bajo poder de resolución, por ejemplo, el Landsat es capaz de detectar objetos hasta 30m y el 

SPOT hasta 20m, actualmente el IKONOS es capaz de detectar objetos de hasta 4m y si se utiliza el 

IKONOS-panoramic, puede llegar hasta 1m (Hahn, 2009). 

Estos satélites tienen periodos de actuación de 16 días para Landsat, 26 días para el SPOT y de 1 a 3 días 

para el IKONOS. Esto supone una desventaja frente a los vuelos de avión o drones, ya que no se pueden 

utilizar siempre que se quiera, sino que únicamente pueden ser usados cuando están en posición. 

Además, tampoco pueden operar si hay nubes altas, las cuales no afectan a los otros dispositivos (Hahn, 

2009). 
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Existen una gran cantidad de satélites disponibles actualmente, tal y como se puede apreciar en la tabla 

1. 

Tabla 1. Satélites utilizados en teledetección. Obtenido de http://www.satimagingcorp.com/satellite-sensors/other-satellite-

sensors/. 

Nombre Agencia Año lanzamiento Sensores Precisión 

ALOS JAXA 2005, 2014, 2015 PRISM, DEMs, AVNIR-2, 
PALSAR 

2,5m (PRISM), resto 
10m 

CARTOSAT ISRO 2005 PSLV, DEMs  

SPOT-5 AIRBUS 2015 MS, SWI, Pan 5m en Pan, 10m en 
MS y 20 en SWI 

RapidEye MDA 2008 Multi-spectral push broom 
imager 

 5m 

LANDSAT-8 NASA 2013 OLI, TIRS 30m 

LANDSAT 7 ETM+ NASA 1999 ETM+ 30m 

ASTER NASA 1999 DEMs, DTM, VNIR, SWIR, TIR 15m (VNIR), 30m 
(SWIR), 90m (TIR)  

CBERS-2 China/Brasil 2003 CCD Cameras 20m 

Sentinel-2A ESA/AIRBUS 2015 MSI 10m 

GeoEye-1 DigitalGlobe 

USA 

2008 MSI 0,46m 

GeoEye-2 DigitalGlobe 2014 MSI, DEMs, DSM, GSD 0,34m 

WorldView-1 DigitalGlobe 2007 MSI, GSD 0,46m 

WorldView-2 DigitalGlobe 2009 MSI (B&W), GSD 0,46m 

WorldView-3 DigitalGlobe 2014 MSI, SWIR, CAVIS, GSD 0,31m 

Pleiades-1A AIRBUS 2011 CE90, GCPs, MSI 0,5m 

Pleiades-1B AIRBUS 2012 MSI (B&W), CE90 0,5m 

KOMPSAT-3A KARI 2015 AEISS, MSI, PAN, MWIR, 
GSD, CCD 

0,55m 

KOMPSAT-3 2012 JAXA, KARI MSI, PAN, GSD, CE90, CCD 0,7m 

QuickBird 2001 DigitalGlobe MSI, CE90, 0,65m 

IKONOS 1999 DigitalGlobe MSI, 3D DTMs, DEMs 0,82m 

SkySat-1 2013 SkyBox MSI, PAN 0,9m 

SkySat 2014 SkyBox MSI 0,9m 

TerraSAR-X 2007 AIRBUS 2D SAR, DEM, MSI, ATI HRSL (1m), SSL 
(0,25m), StripMap 
(3m), ScanSAR 
(18,5m), 
WideScanSAR (40m) 

SPOT-6 2012 AIRBUS MSI, GSD, CE90 1,5m 

SPOT-7 2014 AIRBUS MSI, GSD 1,5m 

Cada vez son más los satélites que están disponibles tanto de forma gratuita como de forma comercial, 

así mismo cada vez tienen mejores prestaciones. 

 

 

http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/
http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/
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AVIONETAS 

Los vuelos mediante avionetas suelen realizarse a unos 3km de altura. Las condiciones de vuelo son 

determinantes, ya que debe realizarse a una hora en la que el sol no incida de forma directa ni haya 

problemas con la nubosidad para poder obtener las imágenes de forma más fácil. 

En la mayor parte de los casos los vuelos suelen ser programados por agencias estatales, ya que requieren 

una fuerte inversión. La planificación del vuelo es un factor muy importante, ya que tiene existir cierta 

superposición de la imagen, y durante el vuelo pueden darse factores como el viento que dificulten el 

paso por los puntos programados. (IGN) 

Este tipo de vehículos se utilizan para cargar con sensores de gran peso o que requieren mucha estabilidad 

como puede ser el caso del radar (Su et al., 1997). 

DRONES 

Existen diversos tipos de vehículos aéreos que podrían ser considerados drones, como es el caso de los 

globos aerostáticos, zeppelines, bombas o cohetes, no obstante, este tipo de artefactos están excluidos 

de la denominación de dron. Sin embargo, no existe una clara distinción entre el dron y el avión de 

aeromodelismo. Los drones suelen están clasificados en uso comercial (fines lucrativos, didácticos…) 

mientras que los aviones de aeromodelismo se clasifican en uso recreativo. Por lo que la diferenciación 

entre ambos se debe al uso que se va a hacer de ellos. El origen de estos, es de tipo militar, aunque hubo 

otros tipos de aparatos no tripulados como el uso de balones equipados con cámara fotográfica, cohetes 

o incluso gorriones equipados con cámara (Colomina & Molina). 

Los drones son vehículos aéreos que no requieren de piloto. Este tipo de vehículos ha proliferado mucho 

durante los últimos años debido a su bajo coste y su elevada funcionalidad. El desarrollo de este tipo de 

vehículos ha sido posible gracias a los últimos avances en computación, que han permitido crear software 

capaz de controlar la estabilidad en vuelo de estos aparatos con un tamaño reducido. La principal 

aplicación de los drones es el uso militar, sin embargo, también tienen importantes usos en otros sectores. 

Los drones deben disponer de varios sensores como giróscopos, acelerómetros, sensores 

electromagnéticos, GPS… para poder computar a tiempo real la aptitud de vuelo, posición y relación con 

respecto a obstáculos. De hecho, este tipo de sensores hacen que el control de estos datos sea mucho 

más eficiente que si se realizase de forma manual. Algunos drones permiten el vuelo autónomo, es decir, 

que describa una trayectoria determinada con anterioridad (Clarke 2014; Colomina & Molina, 2014). 

Los drones se pueden agrupar en tres categorías: 

- VLOS (Visual Line of Sight), este tipo de drones dependen de que el piloto pueda ver el dron 

sin ayuda de sensores o instrumentos, como ha sido el caso hasta ahora de los 

aeromodelismos. 

- FPV (First Person View), el piloto es ayudado por sensores de video o imagen. 

- IBO (Instrument Based Operation), en estos drones el piloto se ayuda de una serie de datos 

y equipos que gestionan dichos datos. 

Uno de los mayores problemas a los que se enfrentan los drones es la recepción de la señal, la cual se ve 

afectada por interferencias, especialmente en áreas urbanas en las que hay una elevada densidad de 

telecomunicaciones. Estas pueden suponer un problema de seguridad al perder el piloto el control del 

aparato, aunque actualmente la mayor parte de estos aparatos, especialmente los de un bajo rango de 

vuelo usan tecnología Wi-Fi (Clarke 2014; Colomina & Molina, 2014). 
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La legislación aplicable a estos vehículos depende de varios factores, tales como el peso, dimensiones y 

altura de vuelo. En Europa la legislación de este tipo de aparatos pasará de depender del Estado a 

depender de la Unión Europea a partir de 2016 (Colomina & Molina). 

De acuerdo con el tamaño del dron podemos distinguir varios tipos de drones: 

- Grandes drones (Large Drones): tienen el tamaño de un avión o vehículo aéreo pilotado, de 

un mínimo de 100-150kg. 

- Mini-drones: son drones de un tamaño comprendido entre los 100-20kg. 

- Micro-drones: drones con un tamaño comprendido entre los 20-0,1kg. 

- Nano-drones: drones con un peso inferior a 0,1kg. 

Los drones tienen numerosas aplicaciones: 

- Su reducido tamaño hace que sean muy manejables. 

- Dan acceso fácilmente a áreas de difícil acceso terrestre. 

- Permiten obtener perspectiva aérea de forma económica. 

- Permite tomar imágenes aéreas. 

- Hacen posible la entrega automática de artículos. 

- Permite hacer pequeños tratamientos localizados. 

- Uso militar de espionaje, detección y ataque. 

- Búsqueda de personas u objetos desaparecidos. 

- Manejo de situaciones de emergencia como inundaciones, terremotos… 

- Lucha contra incendios. 

- Monitorización del tiempo. 

Se han venido equipando con una serie de sensores para darle una mayor aplicabilidad tales como 

sensores electromagnéticos (imagen, vídeo, infrarrojos, emisiones de radio…) u otros tipos de datos como 

meteorológicos, biológicos, magnéticos, geofísicos, sonidos… Sin embargo, una de las principales 

limitaciones tecnológicas es su baja autonomía, que en algunos casos está en los 10-15min (Clarke 2014). 

Se están produciendo incidentes relacionados con drones, que hace que sea cada vez más importante la 

aplicación de una regulación para este tipo de aparatos (Clarke 2014; Colomina & Molina, 2014). 

Actualmente, se estima que, en EEUU, el 80% de los drones vendidos, lo serán para uso agrícola. Sin 

embargo, el uso agrícola de este tipo de vehículos en EEUU está muy limitado debido a la restrictiva 

legislación que tienen. Las mayores restricciones se deben a su posible caída en zonas de tránsito y a la 

problemática de sobrevolar áreas privadas (Freeman & Freeland, 2014). 

En España, la legislación más reciente sobre el uso de drones, es de marzo de 2016. En el que según la ley 

18/2014 se requiere disponer de un carnet de piloto de dron, para poder manejar uno de estos aparatos 

en España. Así mismo, esta ley prohíbe a los drones sobrevolar zonas urbanas, si no se dispone de 

autorización por parte de la Asociación Española de Seguridad Aérea. No obstante, se trata de una ley 

temporal, y se espera que en 2017 se apruebe una nueva ley que sustituya a la 18/2014 (BOE, 2014). 
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Tabla 2. Comparativa de las características de los drones, aviones y satélites. Obtenida de Matese et al., 2015. 

 Dron Avión Satélite 

Distancia cubierta Baja Buena Óptima 

Flexibilidad de vuelo Óptima Buena Baja 

Duración del vuelo Baja Óptima Óptima 

Dependencia de la nubosidad Óptima Buena Alta 

Fiabilidad Normal Buena Óptima 

Carga Normal Buena Óptima 

Resolución Óptima Buena Normal 

Precisión Óptima Buena Normal 

Tiempo de mosaicado y geoprocesamiento Alto Normal Óptima 

Tiempo de procesado Normal Buena Buena 

 

MEDIOS TERRESTRES 

Habitualmente, al hablar de teledetección se tiende a identificar la teledetección con el uso de medios 

aéreos, sin embargo, también puede realizarse a través de medios terrestres como puede ser un tractor, 

un coche, un quad o incluso un robot (Boon et al., 2005). 

Implementar en el propio tractor los sensores tiene la ventaja de que no es necesario hacer un trabajo a 

parte para obtener los datos, sino que a la par que se realiza una tarea (como puede ser una siembra, un 

tratamiento…) se realiza también la obtención de datos (Boon et al., 2005). 

Por ejemplo, en un estudio realizado por Boon et al., en 2005 se equipó un penetrómetro en un tractor 

para que realizando un pase similar al que haría un chisel, ofreciera valores de la resistencia a la 

penetración en toda la parcela. 

Otra de las aplicaciones del uso de medios terrestres, es la determinación de la florescencia de la clorofila. 

Como se ha explicado anteriormente, no es posible determinar la florescencia por medios aéreos debido 

a que se requiere estar cerca de la vegetación y a que los sensores son de gran tamaño, sin embargo, sí 

que es posible montar los sensores para determinar la florescencia de la clorofila en un quad, y medir en 

continuo su variabilidad en las distintas zonas de estudio (Diago et al., 2016). 
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ÍNDICES OBTENIDOS POR TELEDETECCIÓN QUE SE USAN EN CULTIVOS 

La mayor parte de los índices de vigor se basan en los métodos de espectroscopia. Es decir, se basan en 

la distinta reflectancia que tienen a las distintas longitudes de onda. Existen numerosos índices, esta 

revisión se centrará únicamente en los más utilizados (Sankaran et al., 2010). 

NDVI 

El NDVI (Normalized Difference Vegetation Index) es uno de los índices de vegetación más usados en 

teledetección. Se trata de una relación entre las bandas del Infrarrojo cercano y el rojo, que viene definido 

por la ecuación 1: (Manrique, 1999; Hall et al., 2003; Rodríguez-Pérez 2008; Rabatel et al., 2014) 

Ecuación 1: 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                 

Se trata de una transformación no linear del RVI (ratio vegetation index), que viene definido como NIR/R, 

de forma que la expresión del NDVI, queda transpuesta al rango entre +1 y -1 (Rabatel et al., 2014). 

Ecuación 2: 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
=

𝑅𝑉𝐼−1

𝑅𝑉𝐼+1
 

No obstante, existen una gran cantidad de variaciones de la expresión del NDVI, que realizan correcciones 

en función de las condiciones ambientales. (Manrique, 1999) 

Básicamente, lo que mide este índice es el vigor de la vegetación. Esto es posible debido que las plantas 

absorben buena parte de las bandas del espectro visible, mientras que producen una fuerte reflexión del 

infrarrojo cercano. Por ello se busca la relación entre el infrarrojo cercano (700-1300nm) y el rojo (650nm) 

(Manrique, 1999). 

En suelos oscuros se dan valores más altos de NDVI que en suelos claros para una misma vegetación, este 

efecto es de especial importancia en suelos que tienen una baja densidad de vegetación, como podría ser 

el caso de los viñedos (Rodriguez-Moreno & Bullock, 2013). 

La reflectancia del rango visible se incrementa con el aumento de la severidad del estrés. Mientras que la 

reflectancia del infrarrojo cercano se ve reducida en función de cómo evoluciona el estrés (Manrique, 

1999). 

El NDVI es más sensible a vegetaciones bajas en píxeles mezclados que en otros índices como el LAI, el 

RNDVI o el SAVI (Hall et al., 2015). 

Uno de los usos que ha llegado a tener este índice es el de monitorizar la evolución de diversas 

enfermedades vegetales (De la Roque et al., 2004). 

Habitualmente, las plantas sanas, con elevada masa vegetativa tienen un valor cercano al 1, mientras que 

plantas con poca masa vegetativa o enfermas pueden tener valores que rondan el 0. Los valores negativos 

solo se suelen observar en objetos no vivos (Hall et al., 2015). 

Unas de las principales virtudes del NDVI es que no depende de la intensidad de la luz reflejada, ya que la 

reducción producida por una sombra, se verá reducida aproximadamente en la misma magnitud en el 

resto de bandas (Hall et al., 2015). 
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SAVI 

El SAVI (Soil Adjusted Vegetation Index) es el índice de vegetación con ajuste del suelo. Este índice 

representa el vigor y la estructura de la representación, pero además incluye un ajuste arbitrario para la 

cobertura incompleta del suelo (Rodriguez-Moreno & Bullock, 2013; Rodríguez Perez 2008). 

Este índice está menos afectado por las variaciones en el brillo del suelo, por lo que aporta valores que 

tienen una mayor independencia respecto al reflejo del suelo (Rodriguez-Moreno & Bullock, 2013). 

Ecuación 3: 𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅0,76−0,90−𝑁𝐼𝑅0,63−0,69)·1,5

(𝑁𝐼𝑅0,76−0,90+𝑅𝐸𝐷0,63−0,69+1,5)
 

Este índice es de gran utilidad para determinar el efecto de la salinidad del suelo, en áreas con una 

densidad de vegetación alta (Allbed et al., 2014). 

PCD 

El PCD (Plant Cell Density) es un índice usado en viticultura de precisión. Se trata de un índice de vigor, 

similar al NDVI. (Arnó et al., 2009) 

Se calcula como el ratio entre la reflectancia del infrarrojo cercano y la reflectancia del rojo: 

Ecuación 4 𝑃𝐶𝐷 =
𝑁𝐼𝑅

𝑅
 

Un mayor valor de PCD implica un mayor vigor de la planta, ya que implica que la planta está reflejando 

una mayor cantidad de radiación infrarroja, respecto a la que absorbe de rojo. Dado que en el rojo se 

produce una importante absorción de energía para la fotosíntesis (Arnó et al., 2009). 
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WCSI 

El WCSI indica el estrés producido por la deficiencia hídrica. Esto se ve en un aumento de la temperatura 

de la hoja y un descenso en la transpiración de agua (Ghulam et al., 2008). 

Se puede determinar mediante el uso de sensores termales (Ghulam et al., 2008). 

Anteriormente se realizaba el cálculo del WDI (Water Deficit Index), que incorpora tanto la diferencia de 

temperaturas entre los objetos y el aire como el NDVI, sin embargo, no es capaz de distinguir entre la 

evaporación de agua del suelo y la evaporación del agua de las plantas. 

Mediante el uso de satélites se puede determinar el FMC (Fuel Moisture Content), que es la ratio entre el 

contenido de agua y el peso en seco. Esto se puede determinar, ya que el peso en seco se correlaciona 

con el NIR, mientras que el contenido en agua viene correlacionado con SWIR. A medida que aumenta el 

contenido de agua del cultivo aumenta su reflectancia de SWIR, mientras que disminuye la reflectancia 

del NIR (Ghulam et al., 2008). 

Para calcular el WCSI mediante imagen térmica, se toman dos referencias, la Twet (Temperatura de planta 

bien hidratada) y Tdry (Temperatura de la planta seca). Para medir estos parámetros se suele utilizar el 

WARS (material húmedo artificial de referencia) (Möller et al., 2007). 

Ecuación 5: 𝑊𝐶𝑆𝐼 =
𝑇𝑐𝑎𝑛𝑜𝑝𝑦−𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦−𝑇𝑤𝑒𝑡
 

Como alternativa al uso de sensores termales, existe la posibilidad de obtener datos acerca del estrés 

hídrico mediante el estudio de la reflectancia de infrarrojos de onda corta (SWIR). No obstante, es 

complicado realizar este tipo de análisis desde satélite, ya que todavía no se ha conseguido alcanzar la 

resolución suficiente para poder analizar las hojas mediante el infrarrojo (Ghulam et al., 2008; Lee et al., 

2010). 

Ecuación 6: 𝑊𝐶𝑆𝐼 =
𝑅900𝑛𝑚

𝑅970𝑛𝑚
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APLICACIÓN AGRÍCOLA DE LOS ÍNDICES OBTENIDOS A TRAVÉS DE TELEDETECCIÓN 

Todos estos índices deben correlacionarse con alguna característica de interés agronómico, como puede 

ser la presencia de estrés hídrico, carencias de nutrientes, presencia de enfermedades… (Sankaran et al., 

2010). En este apartado se enumeran ejemplos en los que se correlacionan distintos índices con 

información de interés en la viña, principalmente la presencia de enfermedades. 

Uno de los principales problemas que existen para correlacionar el problema de interés con un 

determinado índice, es la separación de los elementos que no corresponden al cultivo (esto es 

especialmente complejo en cultivos perennes como frutales o viñedos). Para ello, primero es necesario 

separar los elementos que no corresponden al cultivo, tales como carreteras, caminos, suelo, árboles… 

Esta tarea es compleja, y requiere de mucha interacción con el usuario, sin embargo, se están 

desarrollando numerosos algoritmos para ayudar a automatizar esta tarea (Comba et al., 2015). 

En cuanto a detección de enfermedades, las técnicas más habituales para detectar la presencia de una 

enfermedad, son el uso de PCR o ELISA, que se basan en la detección de un determinado fragmento de 

ADN o de una proteína de la enfermedad. Sin embargo, estas técnicas son muy costosas, y no son capaces 

de aplicarse a gran escala (Sankaran et al., 2010). 

Por ello, para la detección de enfermedades a gran escala es más eficaz usar técnicas indirectas como el 

tratamiento de imágenes que el uso de técnicas directas como el estudio bioquímico (PCR y ELISA), ya que 

su coste es menor (Sankaran et al., 2010). 

La teoría que permite detectar enfermedades mediante el uso del espectro electromagnético es que las 

plantas sanas absorben, emiten, transmiten y producen fluorescencia electromagnética de forma distinta 

a las plantas enfermas (Lee et al., 2010). 

Una hoja sana tendrá: 

- Baja reflectancia en el espectro visible, debido a que los pigmentos fotoactivos, es decir, las 

clorofilas, antocianinas y carotenoides, absorben la radiación visible. 

- Elevada reflectancia en el infrarrojo cercano (NIR), debido a la dispersión de zonas de aire 

entre las células del tejido interno. 

- Baja reflectancia de las bandas del SWIR debido a la absorción del agua, proteínas y 

compuestos carbonados. 

- Debido al mayor contenido en agua de las hojas sanas, se comportan más como un cuerpo 

negro, de forma que emiten radiación en el infrarrojo termal de acuerdo con su 

temperatura. 

Las alteraciones en la reflectancia se deben a que las plantas sanas parecen más verdes (550nm) debido 

a la eficiencia con la que absorben el resto de los colores. Los cambios producidos por enfermedades se 

suelen dar en el rojo (670nm) (Lee et al., 2010). 

En especies de interés agronómico, como la cebada existen estudios en los que relacionan índices 

obtenidos a través de teledetección con la presencia de una determinada enfermedad. Por ejemplo, en 

la cebada la roya amarilla existe una correlación entre el NVDI y la presencia de dicha enfermedad 

(Moshou et al., 2004; Moshou 2005). 

Para el estudio de enfermedades en la vid el índice más habitual es la diferencia en la fluorescencia 

(Rdf=Fv/Fm), es decir la relación entre la fluorescencia mínima y la fluorescencia máxima. Esto indica el 

funcionamiento o cantidad de clorofila. En presencia de una enfermedad, este índice baja, como se puede 

observar en la vid cuando está afectada por yesca (Christen et al., 2007). 
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Usando los valores de la flourescencia de la clorofila (Fv/Fm) se puede calcular de forma cuantitativa su 

resistencia a una determinada enfermedad o estrés. Esto se ha usado de forma habitual para realizar 

estudios sobre la respuesta de la vid a diversas enfermedades (Rousseau et al., 2013). 

Existen estudios en los que se relaciona mediciones realizadas con SPAD o con NIR, con la presencia de 

filoxera en la vid. Esto se debe a que la enfermedad empieza a manifestarse con una reducción en el 

contenido de clorofila, de forma que también puede ser observable con el uso del NDVI (Baldy et al., 

1996). 

La humedad de la hoja es uno de los factores determinantes a la hora de detectar enfermedades causadas 

por bacterias y hongos, dado que a mayor tiempo en el que la hoja está húmeda, mayor riesgo de que se 

produzca una infección (Hahn, 2009). 

Mediante el uso de imágenes en infrarrojo es posible determinar la presencia de mildiu. En su estudio, 

Stoll y su grupo, observaron que aquellas cepas de vid que habían sido infectadas con mildiu presentaban 

una diferencia de temperatura con respecto a la temperatura ambiente, menor que las plantas sanas. Las 

plantas estresadas presentan una temperatura más similar a la del entorno, debido a que hay una menor 

transpiración (Stoll et al., 2008). 

Mediante el uso combinado de tres índices, NDVI, GNDVI y SAVI, obtenidos a través de una cámara 

multiespectral en un dron, fue posible detectar una zona de viñedo en la que había presencia de yesca y 

podredumbre de la raíz. Además, se detectó que otra zona estaba con estrés nutricional, por lo que era 

más vulnerable a dicha enfermedad (Candiago et al., 2015). 

Mediante la obtención de imágenes hiperespectrales de distintos clones de vid, es posible crear índices 

que permiten distinguir entre los distintos clones de vid (Diago et al., 2013). 
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USO DE MAPAS DE VIGOR, GPS Y TRACTORES INTELIGENTES EN LA APLICACIÓN DE 

INSUMOS 

El uso de estas tecnologías permite ahorrar una considerable cantidad de dinero, debido al ahorro que 

puede producirse en inputs como fertilizante o pesticida, ya que se puede realizar el tratamiento 

únicamente en la zona afectada (Seelan et al., 2003). 

La mayor parte de las tecnologías de agricultura de precisión se basan en el uso de sistemas de gestión de 

tipo SCADA. Un sistema SCADA se compone de un sistema de adquisición de información, un sistema de 

transferencia a la central, un análisis y control de la información en la central, así como un sistema de 

transferencia de las decisiones al control del proceso. Este tipo de sistemas ya se han implementado en 

sistemas de regadío, mediante una serie de sensores colocados en las tuberías de forma que detecten 

tanto los cambios en la presión, el caudal… todo eso pasa la información a un controlador, el cual puede 

ser manejado de forma remota con un ordenador, y a su vez puede modificar el funcionamiento de las 

bombas y demás equipamiento. (Durán-Ros et al., 2008) 

En un tractor, el centro de control y análisis suelen estar situados en la pantalla del tractor. Desde dicha 

pantalla se gestionar toda la información de los sensores que incorpora tanto el tractor como los distintos 

equipos que esté portando dicho tractor. 

Uno de los elementos de mayor importancia dentro de un tractor inteligente, es el sistema de GPS. Este 

sistema es capaz de obtener la posición del tractor a partir de la señal obtenida a partir de los distintos 

satélites de posicionamiento global (ya sean Navstar-GPS, Glonass o Galileo) y en algunos casos a partir 

de estaciones de tipo RTK, que son capaces de corregir la señal GPS y mejorar su precisión (Han et al., 

2015). 

A medida que se aumenta la precisión del sistema GPS, aumenta su coste. Por ello, es importante ajustar 

la precisión de acuerdo a la tarea que va a ser gestionada por la posición GPS. Ya que, por ejemplo, para 

realizar labores como preparación del terreno o pulverizaciones, no se requieren precisiones mayores de 

50cm, sin embargo, para otras tareas como la siembra se requiere una precisión que este por debajo de 

los 5cm (Zhang et al., 2002). 

El uso del GPS hace posible el autoguiado. El cual, no solo facilita el trabajo al operario, sino que además 

permiten un ahorro de combustible, así como una disminución en la emisión de gases de efecto 

invernadero, ya que el software del sistema de guiado esta optimizado para que el motor funcione con el 

menor consumo posible (Coen et al., 2008; Cayacan et al., 2015; Scarlett, 2001).  

En cuanto a los tratamientos fitosanitarios, habitualmente se tiende a aplicar los pesticidas de forma 

uniforme por la parcela. Si se realizara la aplicación de pesticidas de acuerdo a la presencia de la peste a 

eliminar, se disminuiría considerablemente el impacto ambiental y se produciría una disminución de los 

costes de insumos. En el caso de los herbicidas se puede hacer uso de las cámaras CCD y software de 

análisis de imagen para discriminar entre cultivos y malas hierbas a tiempo real, aunque también se puede 

hacer con mapas anteriormente obtenidos (Dammer & Wartenberg, 2007; Carrara et al., 2004). 

La forma más habitual de realizar una aplicación variable de pesticida es mediante la técnica denominada 

On-Off, en la cual se realiza aplicación en aquellas zonas en las que el GPS había indicado que era necesario 

realizar tratamiento. Esta forma tiene la desventaja de que no es posible regular la cantidad de pesticida 

de acuerdo con la presencia de la peste a eliminar, sino que las únicas opciones son tratar o no tratar. En 

contraposición a esta técnica está la aplicación variable en la cual es posible ajustar la dosis que se está 

aplicando mediante la modificación de la presión de la válvula (Carrara et al., 2004). 
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Este tipo de sistemas deben tener un buen sistema de control de fallos, ya que al tratarse de alta 

tecnología el operario puede no ser capaz de detectar fallos en el sistema. Estos sistemas son demasiado 

complejos como para detectar fallos de forma analítica debido a su interacción con el material biológico, 

por ello se hace uso de modelos matemáticos para detectar el patrón de dichos fallos (Craessaert et al., 

2010). 

 

ENFERMEDADES DE LA MADERA EN LA VID (YESCA) 

Se trata de una enfermedad conocida desde antiguo, que es más común en países cálidos, aunque 

actualmente se trata de una enfermedad extendida ampliamente por todo el mundo (Marchi et al., 2006). 

Entre los hongos causantes de la enfermedad están Botryosphaeria obtusa, Fomitiporia punctata, 

Phaeoacremonium aleophilum, Phellinus igniarius, Phaeomoniella chlamydospora, Stereunt hirsitum. Así 

mismo se ha detectado una baja presencia de Cylindrocarpon spp., Eutypa lata y Botryosphaeria dothidea 

(Andolfi et al., 2011). 

Esta enfermedad es capaz de infectar a la cepa a partir de heridas producidas durante la poda. Si no se 

aplican medidas preventivas durante la poda, como podría ser podar en último lugar las cepas afectadas 

por yesca, se puede producir infecciones del resto de cepas, transmitiendo la enfermedad a través de la 

tijera de poda (Bertsch et al., 2013; Sosnowski et al., 2008). 

Otra vía de infección, es durante el proceso de propagación en el vivero. Ya que se ha detectado casos en 

los que, los materiales parentales del vivero estaban infectados con yesca, por lo que, al propagarlos en 

el vivero, pasan la enfermedad a las cepas obtenidas a partir de dicho material vegetal. Esta vía de 

propagación es la más sencilla de eliminar, ya que haciendo un cultivo de meristemos del material 

parental se puede lograr eliminar de la planta los patógenos causantes de la yesca (Bertisch et al., 2013; 

Sosnowski et al., 2008). 

En primavera su propagación a través de la planta se ve favorecida debido a la intensa circulación del 

agua. A temperaturas altas, los tejidos afectados por esta enfermedad no son capaces de mantener la 

elevada evapotranspiración que causa la enfermedad, causando así que dichos tejidos se marchiten 

(Andolfi et al., 2011). 

La velocidad de la enfermedad se ve afectada por el tipo de suelos, actuando a mayor velocidad en suelos 

arcillosos, profundos y frescos, mientras que en suelos silícicos o calizos actúa de forma más lenta 

(Calzarano et al., 2014). 
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SÍNTOMAS 

En su forma lenta suele afectar a la vegetación de uno o más brazos de la cepa. Dichos síntomas pueden 

aparecer durante la floración o durante el verano. Se trata de decoloraciones interviales, en los bordes de 

las hojas. Estas decoloraciones tienen un color amarillento en las variedades blancas, y rojizas en las 

variedades tintas. Las decoloraciones van confluyendo y secándose en el centro, llegando al causar la 

caída de las hojas y que los racimos pierdan peso o lleguen incluso a secarse (Andolfi et al., 2011). 

 

Figura 1. Síntomas visuales de la enfermedad en las hojas. 

 

Figura 2. Síntomas visuales en hoja. 

 

Figura 3. Primeros síntomas en las hojas. Obetenido de Andolfi et al., 
2011. 

 

Figura 4. Síntomas en la madera. Obtenido de Andolfi et al., 2011. 

En la figura 1, se puede apreciar los síntomas visuales de la enfermedad tanto en la hoja (clorosis que 

tienen a confluir en el centro), como en los racimos (que se secan). En la figura 2, se puede apreciar con 

más detalle los síntomas visuales. En la figura 3, se aprecian los primeros síntomas de la enfermedad en 

las hojas (Andolfi et al., 2011). En la figura 4, se puede apreciar el oscurecimiento de la madera, causado 

por la presencia de yesca (Andolfi et al., 2011). 

Cuando actúa de forma rápida, la cepa vigorosa se mustia, tomando un color verde grisáceo y acaba por 

secarse en pocos días (Beltrán et al., 2004). 

En la madera se puede observar, en un corte transversal como el centro de la madera queda algo amarilla, 

rodeada por una zona de madera oscura y un anillo de madera sana (Beltrán et al., 2004). 

El inicio de la zona atacada está en una herida de un tamaño superior al normal. La enfermedad no llega 

al patrón, de forma que puede rebrotar (Beltrán et al., 2004). 

De acuerdo con algunos estudios, como el de Letousey de 2010, las cepas manifiestan síntomas 

fisiológicos, que aparecen antes que los síntomas visuales. Entre estos síntomas está el descenso en la 
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tasa fotosintética, se reduce la tasa de intercambio de gases y un poco antes de manifestar los síntomas 

visuales, las cepas manifiestan síntomas similares al estrés hídrico. 

Además, el daño causado por la yesca no está directamente relacionado con la presencia de los hongos 

en la cepa, sino con la manifestación de síntomas en las hojas. Los síntomas son causados tanto por la 

respuesta de los metabolismos de defensa de la cepa, los cuales son activados con la actividad de los 

patógenos, aunque no siempre se activan, como por micotoxinas producidas por los hongos causantes de 

la yesca, los cuales tampoco se producen de forma uniforme, sino que su aparición varía en función de las 

condiciones ambientales. Esta es la causa por la que, dependiendo del año y de la zona, aparezcan 

síntomas o no de yesca (Calzarano et al., 2014; Andolfi et al., 2011). 

Uno de los factores que aumenta la activación de los factores causantes de la yesca, es el aumento de 

humedad del suelo, a mayor humedad se incrementa la incidencia de la enfermedad. Otro de los factores 

que intervienen en el desarrollo de la enfermedad es la nutrición. En las plantas que no tienen problemas 

nutricionales, la presencia de síntomas disminuye. Este efecto se da especialmente con las carencias de 

calcio y magnesio (Calzarano et al., 2014). 

Existe un trabajo muy reciente, en el que se monitorizaron las cepas afectadas por yesca durante dos 

años. Tomaron muestras de 500 cepas, y registraron su evolución. Con ello consiguieron detectar qué 

cepas estaban infectadas por los patógenos causantes de la yesca, y ente dichas cepas, cuales presentaban 

síntomas y cuáles no. Realizaron distintos vuelos con cámara multiespectral para obtener su índice NDVI, 

y tras analizar los datos, obtuvieron diferencias significativas entre los valores NDVI de las cepas sanas, las 

asíntomáicas y las afectadas con yesca (Di Genaro et al., 2016). 

 

Figura 5. Valores de NDVI en distintos momentos de los años 2012 y 2013. Las cepas sanas (C), cepas enfermas no síntomáticas 

(A) y cepas enfermas sintomáticas (S). Obtenido de Genaro et al., 2016. 
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CONTROL DE LA ENFERMEDAD 

Para su control se puede desinfectar las herramientas de poda, podar en último lugar las cepas afectadas, 

quemar los restos de poda, cubrir heridas de poda con un producto protector, abrir el tronco afectado 

con un hacha y evitar que la herida se cierre, de forma que el hongo se seque con el aire (Beltrán et al., 

2004). 

En cuanto a los métodos de control químico de la enfermedad, actualmente se carece de un método 

efectivo. El único producto que era capaz de controlar la enfermedad era el arsenito sódico, sin embargo, 

fue prohibido debido a su toxicidad. Tras la prohibición del uso de este producto, no existe en el mercado 

un producto capaz de controlar la enfermedad, aunque sí que existen algunos productos capaces de 

reducir los niveles de infección (Bertsch et al., 2013). 

En cuanto a los productos capaces de reducir los niveles de infección, encontramos los compuestos del 

cobre, los benzimidazoles o los triazoles. Sin embargo, su uso no está muy extendido debido a la baja 

efectividad, y a los problemas de toxicidad que pueden ocasionar (Bertsch et al., 2013; Diaz & Latorre, 

2013). 

Tras la prohibición del uso de arsenito sódico, se han desarrollado y probado numerosas materias activas, 

como es el ejemplo del compuesto comercial Escudo®, el cual es un fungicida compuesto de 5g/l de 

flusilazol y 10g/l de carbendazamida de la casa comercial DuPont. Dentro de esta enfermedad es capaz 

de controlar de forma eficaz Phaemoniella chlamydospora y Phaeoacremonium aleophilum, así mismo 

también es capaz de controlar Eutypa lata  (Marquez, 2003). 
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MATERIAL Y MÉTODOS 

ZONA DE ESTUDIO 

La zona de estudio se localiza en unas parcelas pertenecientes a la empresa Viñas del Vero. Dichas parcelas 

se encuentran en el municipio de Barbastro, en el paraje conocido como Coronas. Se han estudiado dos 

fincas, Arce y Canudo. Ambas fincas están plantadas con la variedad de uva Cabernet Sauvignon, mismo 

patrón (SO4) y mismo clon (170). El marco de plantación es el mismo (3mx1,5m). 

Se trata de parcelas con riego por goteo. Las dos parcelas se encuentran en la misma zona, lindando una 

con otra. Al estar situadas en una zona de Corona, presentan una elevada pedregosidad y una baja 

profundidad de suelos. 

 

Figura 6. Localización de las parcelas estudiadas. 
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CÁMARA MULTIESPECTRAL 

Se usó la cámara Tetracam ADC Micro. Esta cámara tiene las siguientes prestaciones: 

- 3 bandas (verde, rojo e infrarrojo) las mismas que el Landsat (TM2, TM3, TM4) 

- Resolución de 2048 x 1536 píxeles 

- 16GB de memoria 

- Lentes de alta calidad de 8,43mm 

- Las imágenes se guardan en formato RAW con metadatos como los datos del vuelo (posición 

GPS, altitud…) 

- Rango de 520nm a 920nm 

- Longitud focal: f/3,2 

- 90g de peso 

- Dimisiones de 75mm x 59mm x 33mm 

- Trabaja a temperaturas ente 32 y 104º y con humedad menor de 85% (por condensación) 

- Consumo de 2W 

Tabla 3. Resolución de las imágenes en función de la altura de vuelo. Obtenido de http://www.tetracam.com/. 

Altura de vuelo Resolución del suelo en mm por píxel FOV (ancho por alto en m) 

122m 46,3 95 x 71 

213,4m 81 165 x 125 

365,8m 138,8m 284 x 213 

915m 347 711 x 534 

Se puede tomar las imágenes de forma manual pulsando el botón situado en la parte superior de la 

cámara. Así mismo también existe la posibilidad de utilizar un temporizador que realice disparos en un 

intervalo dado. Otra forma de toma la imagen es mediante el uso de un conector multi-ES (pin Take Pic 

que dispara la cámara a distancia). 

Desde el ordenador existen varias formas de disparar la cámara, ya sea mediante el interfaz del USB o 

habilitando un comando. O el uso de una aplicación que habilite la cámara de forma que dispare en los 

waypoints establecidos. 

Una vez capturada la imagen, la cámara pasa las imágenes en formato RAW, que contiene los números 

digitales correspondientes a cada banda en cada píxel. Dichos números digitales se pueden transformar a 

la reflectancia de cada banda mediante el uso de unos correctores que varían en función de la situación 

atmosférica en el momento de tomar la imagen. 

Sin embargo, en este proyecto no se ha podido trabajar con la reflectancia de cada banda, ya que la 

empresa encargada de realizar el vuelo no ofreció datos sobre los factores de corrección que habían 

utilizado para obtener las imágenes de NDVI y PCD. Por ello, cuando se trabaje con la imagen 

multiespectral se trabajará con DN (Digital Numbers) y no con reflectancia, aunque en el caso del NDVI y 

PCD sí que han sido calculados con las reflectancias. 

El DN es el valor asignado a un determinado píxel. Se trata de un valor de 8bits que puede estar entre 0 y 

255. A partir de estos valores es posible calcular la reflectancia. Un DN de 0 implica que no hay 

reflectancia, y un valor de 255 implica que la reflectancia es máxima. 
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Figura 7. Cámara multiespectral Tetracam (http://www.tetracam.com/).  

 

 

Figura 8. Cámara térmica Miricle (http://www.thermoteknix.com/). 

 

 



30 

 

CÁMARA TÉRMICA 

Se usó una cámara térmica Miricle 307 KS (Thermoteknix System, UT), la cual tiene las siguientes 

características: 

- Resolución de 640 x 480 

- Respuesta espectral entre 8pm y 12pm 

- Tamaño de píxel de 25pm 

- Tiempo de respuesta de 7ms 

- Sensibilidad menor de 50mK 

- Consumo de 3,7W 

- Zoom digital de x2, x4, x8, x16 

- Peso de 166g 

- Dimensiones de 57,6mm x 45mm 522,5mm 

A 150m de altura se obtiene una resolución espacial de 40cm. 

DRON 

Para cargar con dichos sensores se utilizó un dron de ala fija. En este caso fue el modelo comercial 

Skywalker (Airelectronics).  

 

Figura 9. Dron de ala fija Skywalker (http://www.airelectronics.es/). 

Dicho dron cuenta con un sistema autopiloto que es capaz de gestionar todos los sistemas de vuelo y de 

control de sensores (cámaras que incorpore). Para que este sistema funcione correctamente, requiere de 

una estación de tierra, que se denomina U-Ground. 
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Figura 10. Sistema de control de vuelo del dron de ala fija Skywalker (http://www.airelectronics.es/) 

Tiene un peso de 1,3kg (sin contar los posibles sensores que se le puedan poner).  Su autonomía de vuelo 

es de alrededor de 1 hora de vuelo. 
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CALIBRACIÓN DE LA IMAGEN TÉRMICA 

Se colocaron dos lonas testigo en el campo para calibrar la imagen. Posteriormente se midió la 

temperatura de dichas lonas usando una pistola térmica. 

Con esto se obtuvieron los valores que se correspondieron con los valores de la ortofoto, tal y como se 

puede apreciar en la tabla 3: 

Tabla 4. Calibración de la cámara térmica. 

 Temperatura Valor en la ortofoto 

Lona fría (blanco) 34,5º 29847 

Lona caliente (negro) 65,3º 30492 

Con estos datos se realiza una regresión para conocer la temperatura que corresponde a cada valor en la 

ortofoto. 
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GPS 

Se utilizó el GPS Leica GS15. Es un GPS con corrección RTK, lo cual quiere decir que utiliza una tarjeta SIM 

(las utilizadas por las compañías telefónicas en nuestros móviles) para realizar correcciones en la señal 

que obtiene desde los distintos satélites GPS (tanto GPS, GLONASS, GALILEO). 

 

Figura 11. GPS Leica GS15. 

Su precisión mínima garantizada con la tarjeta SIM es de 4cm. 

El instrumento se compone de una antena, donde se recibe la señal GPS y se colocan tanto las baterías 

como la tarjeta SIM, y un pequeño ordenador de campo, con el que se gestiona el funcionamiento del 

aparato y la toma de puntos. 
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VUELO Y GEORREFERENCIACIÓN DE CEPAS 

El vuelo se realizó el 6 de Agosto de 2015, por la mañana, en condiciones soleadas y de poco viento. Dicho 

vuelo fue realizado por la compañía Galtel. La misma compañía se encargó de realizar el mosaicado de 

imágenes la obtención de los valores de NDVI, PCD y Temperatura. 

Para realizar la georreferenciación de las cepas afectadas por yesca se utilizó el GPS Leica CS15. 

Anteriormente se probó a usar un GPS de campo, pero los datos obtenidos fueron de baja precisión 

(alrededor de 1m), lo que hacía inservibles los resultados, ya que la distancia entre cepas es de 1,5m, y 

con ese margen de error no es posible distinguir entre cepas. 

La georreferenciación de cepas enfermas se realizó el 8 de Julio de 2016. Las cepas enfermas que se 

georreferenciaron fueron aquellas que habían presentado síntomas de yesca en 2014 (las cuales estaban 

marcas con una cinta amarilla y negra) y que en ese momento empezaban a presentar síntomas de yesca.  

En cuanto a la georreferenciación de cepas sanas, se georreferenciaron cepas que no estaban marcadas 

y que no presentaban síntomas de yesca en el momento de realizar la georreferenciación, y que en ese 

momento no presentaban síntomas de yesca. 

 

Figura 12. Cepa que presentó síntomas de yesca en 2014 y que en el momento de georreferenciar presentaba síntomas de yesca. 

Para estimar si la homogeneidad de la parcela afecta a la viabilidad de la detección de la yesca, se 

muestrearon dos zonas distintas. Una zona en la que hay poca variablidad entre las cepas, es decir, en la 

que casi todas las cepas presentan un aspecto similar, más homogénea. Y una zona con mayor variabilidad 

entre las cepas, más heterogénea, donde hay más síntomas de deficiencias nutricionales. Se eligió una 

zona homogénea en Canudo y una zona heterogénea en Arce. 
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En Canudo solo se georreferenciaron cepas de la zona oeste, la cual de acuerdo con los mapas de vigor de 

NDVI y PCD presentaba una menor variabilidad. Dentro de esa zona se georreferenciaron un total de 82 

cepas enfermas y 55 cepas sanas. 

En Arce se georreferenciaron las cepas de casi toda la parcela, salvo las de la parte oeste de la parcela, ya 

que en esta zona había muchas cepas muertas, y muchas que presentaban síntomas de carencias 

nutricionales. Dado que la superficie estudiada era bastante mayor que en Canudo, se georreferenciaron 

únicamente alrededor de 6 cepas (entre sanas y enfermas) aleatoriamente por cada línea. En total se 

georreferenciaron 169 cepas enfermas y 189 cepas sanas. 

 

Figura 13. Zonas de muestreo. Canudo (azul) y Arce (amarillo). 
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TRATAMIENTO DE DATOS 

El paquete informático que se ha utilizado para trabajar con las imágenes multiespectrales y térmicas, así 

como los puntos GPS ha sido el ArcGIS (Esri). Este paquete informático es el más extendido en el mundo 

para el trabajo en GIS. Para este trabajo únicamente se ha utilizado su módulo central, el ArcMap. Con 

este programa se han realizado la georreferenciación de las imágenes, la gestión de los puntos GPS y la 

extracción de datos. 

Se ha trabajado con tres índices: 

- NDVI: obtenido a través de la imagen multiespectral usando la ecuación 1: 

 

Ecuación 1: 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
 

 

(Siendo NIR la radiación infrarroja reflejada, y R la radiación del rojo reflejada) 

 

- PCD: obtenido a través de la imagen multiespectral usando la ecuación 4: 

 

Ecuación 4: 𝑃𝐶𝐷 =
𝑁𝐼𝑅

𝑅
 

(Siendo NIR la radiación infrarroja reflejada, y R la radiación del rojo reflejada) 

 

- Temperatura: obtenido a través de la imagen térmica, realizando una regresión mediante los 

valores obtenidos en un testigo blanco y un testigo negro. 

- Las imágenes se georreferenciaron utilizando varios puntos de control que se tomaron el mismo 

día que se georreferenciaron las cepas enfermas y sanas. Los puntos utilizados fueron el inicio y 

final de 4 líneas de Arce y Canudo. Se estima que el error de la georreferenciación pueda estar 

en torno a ±10-15cm debido a las dimensiones del inicio y final de línea. 

- También se ha trabajado con las bandas individuales de la cámara multiespectral (verde, rojo e 

infrarrojo). Usando como valores los números digitales de cada banda. Estos valores son 

proporcionales a la reflectancia. 

Para extraer los valores de NDVI, PCD, temperatura y DN de cada banda, se creó una capa en ArcGIS con 

la superficie aproximada de cada cepa. Para ello, primero se cargaban en el ArcGIS los puntos GPS, y sobre 

cada punto se generaba un rectángulo que tenía como centro el punto GPS, y las dimensiones estimadas 

de cada cepa (1,5mx1,5m). 

Para el tratamiento estadístico de los datos, pese a que es posible realizarlo con el ArcGIS, se ha utilizado 

el MatLab (MathWorks) para tener la opción de realizar tratamientos de datos más complejos si fuese 

necesario. 

En cuanto al tratamiento de datos, se agruparon en una hoja Excel los datos proporcionados por el ArcGIS 

(que te da la media, el máximo, el mínimo, el rango y la desviación estándar de los valores extraídos en 

cada objeto, es decir en cada punto GPS). 

Primero, se agruparon los valores de acuerdo a la parcela a la que pertenecen, y según estén sanas o 

enfermas.  

Posteriormente se evaluaron el ajuste de cada muestra a una distribución normal, para conocer las 

características de las muestras, y elegir de forma correcta el tipo de análisis estadístico.  
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Si se obtiene un buen ajuste a la distribución normal, se ha realizado un análisis de tipo ANOVA para 

determinar si existen diferencias estadísticas entre las distintas muestras. 

Una vez determinadas la presencia o ausencia de diferencias significativas, se utilizará el módulo de 

“Classification Learner” de Matlab para generar modelos estadísticos que incorporan técnicas de 

aprendizaje de máquina capaces de diferenciar entre cepas sanas y enfermas. 

Los modelos generados estarán basados en distintos métodos de aprendizaje de máquina supervisado 

(Han et al., 2011). 

- Árboles de decisión 

- SVM (Support Vector Machine) 

- Análisis discriminante 

- KNN (K Nearest Neighbors) 

Para realizar la validación interna de estos modelos se usará una validación cruzada de 5 iteraciones. 

Con este método se obtendrá la precisión teórica (Han et al., 2011). 

Por último, se ha realizado un muestreo aleatorio en la zona estudiada de la imagen multiespectral y 

térmica. Se extraerán los valores del muestreo y se pasarán a los modelos que se habían creado 

anteriormente, para que determinen donde estiman que hay yesca y donde no. Finalmente, se evaluará 

en campo la fiabilidad de esos resultados. 
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RESULTADOS 

Tras la creación de los mosaicos y el tratamiento de las imágenes, los resultados fueron los siguientes: 

MAPAS DE VIGOR 

NDVI 

 

Figura 14. Mapa de NDVI en la parcela de Arce. 

Esta parcela presenta una elevada variabilidad de valores de NDVI. En la zona más baja el vigor es más 

elevado, mientras que en la parte alta (especialmente la esquina izquierda de la parcela) tiene un vigor 

más bajo y una mayor heterogeneidad de valores NDVI. 
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Figura 15. Mapa de NDVI en la parcela de Canudo. 

En este mapa podemos observar como esta parcela es bastante homogénea, presentando valores bajo 

únicamente en los bordes de la parcela y en alguna zona del centro. 
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PCD 

 

Figura 16. Mapa de PCD en la parcela de Arce. 

En este caso la variabilidad es menor que en el caso del NDVI. No obstante, también es posible diferenciar 

entre la parte inferior y la superior, así como se mantiene la heterogeneidad en la esquina superior 

izquierda de la parcela. 
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Figura 17. Mapa de PCD en la parcela de Canudo. 

De forma similar al mapa de NDVI, el mapa de PCD de Canudo, presenta una elevada homogeneidad, 

conteniendo valores bajo únicamente en los extremos de la parcela y en alguna zona interior. 
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TEMPERATURA 

 

Figura 18. Mapa de temperatura en la parcela de Arce. 

El mapa de temperaturas tiene un patrón similar al que podemos observar en el NDVI o en el PCD, sin 

embargo, el mapa de temperaturas parece presentar una mayor variabilidad. Así mismo se observa como 

hay algunas zonas que presentan elevadas temperaturas en sus laterales. 
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Figura 19. Mapa de temperatura en la parcela de Canudo. 

El mapa de temperaturas en Canudo presenta una mayor variabilidad que en los casos anteriores. A simple 

vista se observa que existen zonas puntales en la zona central que tienen una menor temperatura. 
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MUESTREO 

Tras la toma de puntos GPS de las cepas sanas y enfermas, se obtuvo el siguiente mapa de muestreo: 

 

Figura 20. Muestreo en la parcela de Canudo. Las cepas sanas están representadas con un punto verde y las que tienen yesca 

están representadas con un punto rojo. 
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Figura 21. Muestreo en la parcela de Arce. Las cepas sanas están representadas por un punto verde y las cepas con yesca con un 

punto rojo. 
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AJUSTE DE LOS VALORES A UNA DISTRIBUCIÓN NORMAL 

NDVI 

 

Figura 22. Ajuste a la distribución normal de los valores de 
NDVI de cepas sanas en la parcela de Arce. 

 

Figura 23. Ajuste a la distribución normal de los valores de 
NDVI de cepas con yesca en la parcela de Arce. 

 

Figura 24. Ajuste a la distribución normal de los valores de 
NDVI de cepas sanas en la parcela de Canudo. 

 

Figura 25. Ajuste a la distribución normal de los valores de 
NDVI de cepas con yesca en la parcela de Canudo. 

 

Las características de las distintas distribuciones se resumen en la tabla 4.: 

Tabla 5. Ajuste a la distribución normal de los valores de NDVI. 

 Media (µ) Error std  de µ Varianza (σ) Error std de σ Log likehood 

Arce sano 0.300382 0.00225379 0.000985438 0.00159987 396.701 

Arce yesca 0.304719 0.0026407 0.0348332 0.00187536 337.755 

Canudo sano 0.333327    0.0030001 0.0222493   0.00215092 131.758 

Canudo yesca 0.323394   0.00312637 0.0289927 0.00223021 182.972 

En este caso los valores de NDVI tienen un buen ajuste a la distribución normal, ya que tienen un Log 

likehood elevado. 

Al observar los valores de las medias, se aprecia que son casi iguales para cepas sanas y enfermas. Sin 

embargo, sí que se observa cierta diferencia en las varianzas de cepas sanas y enfermas. 
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PCD 

 

Figura 26. Ajuste a la distribución normal de los valores de 
PCD de las cepas sanas en la parcela de Arce. 

 

Figura 27. Ajuste a la distribución normal de los valores de 
PCD de las cepas con yesca en Arce. 

 

Figura 28. Ajuste a la distribución normal de los valores de 
PCD de las cepas sanas en la parcela de Canudo. 

 

Figura 29. Ajuste a la distribución normal de los valores de 
PCD de las cepas con yesca en Canudo. 

 

En la tabla 5, se resumen las características del ajuste a la distribución normal de los valores de PCD. 

Tabla 6. Ajuste a la distribución normal de los valores de PCD. 

 Media (µ) Error std  de µ Varianza (σ) Error std de σ Log likehood 

Arce sano 1.70597 0.0143027 0.199214 0.0101529 38.2209 

Arce yesca 1.75062 0.0167173 0.219245   0.0118728 17.4638 

Canudo sano 1.38811 0.0234218 0.173701 0.0167923 18.7316 

Canudo sano 1.3519   0.0196229 0.181976   0.0139981 25.0052 

En el caso de los valores de PCD, el log likehood es menor que en el caso del NDVI. Aun así el ajuste a la 

distribución normal es bastante bueno. 

Si observamos las medias, se aprecia como son similares para cepas sanas y enfermas, lo mismo ocurre 

con la varianza. 

 

 

 

 



48 

 

TEMPERATURA  

 

Figura 30. Ajuste a la distribución normal de los valores de 
temperatura de cepas sanas en la parcela de Arce. 

 

Figura 31. Ajuste a la distribución normal de los valores de 
temperatura en cepas con yesca en la parcela de Arce. 

 

Figura 32. Ajuste a la distribución normal de los valores de 
temperatura en cepas sanas en la parcela de Canudo. 

 

Figura 33. Ajuste a la distribución normal de los valores de 
temperatura en cepas con yesca en la parcela de Canudo. 

En la tabla 6, se resumen las características del ajuste a la distribución normal de los valores de 

temperatura en las distintas muestras. 

Tabla 7. Ajuste a la distribución normal de los valores de temperatura. 

 Media (µ) Error std  de µ Varianza (σ) Error std de σ Log likehood 

Arce sano 30.6183 0.213257 2.97033    0.151382 -485.977 

Arce yesca 30.5844    0.236149 3.09706    0.167715 -437.995 

Canudo sano 32.665    0.313992 2.32863    0.225117 -124.032 

Canudo yesca 33.1134 0.394766 3.66091    0.281609 -233.132 

Para la temperatura el log likehood es bastante bajo. Sin embargo, pese a tratarse de un valor bajo, no 

implica que no se ajuste bien a una distribución normal, sino que el ajuste es peor que en los dos casos 

anteriores. 

En este caso, al observar tanto las medias como las varianzas, no se aprecian diferencias entre cepas sanas 

y enfermas. 
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DN EN LA BANDA 1 (VERDE) 

 

Figura 34. Ajuste a la distribución normal de los valores DN 
en la banda 1 de cepas sanas en la parcela de Arce. 

 

Figura 35. Ajuste a la distribución normal de los valores DN 
en la banda 1 de cepas con yesca en la parcela de Arce. 

 

Figura 36. Ajuste a la distribución normal de los valores DN 
en la banda 1 de cepas sanas en la parcela de Canudo. 

 

Figura 37. Ajuste a la distribución normal de los valores DN 
en la banda 1 en cepas con yesca en la parcela de Canudo. 

En la tabla 8 se muestran las características del ajuste de los valores DN en la banda 1 (verde) a la 

distribución normal. 

Tabla 8. Características del ajuste a la distribución normal de los valores DN de la banda 1 (verde). 

 Media (µ) Error std  de µ Varianza (σ) Error std de σ Log likehood 

Arce sano 79.0137 0.43863 6.10941    0.311365 -625.881 

Arce yesca 78.3982    0.462734 6.05103    0.328647 -549.978 

Canudo sano 69.2827    0.630472 4.6757    0.452017 -162.373 

Canudo yesca 71.6202     1.12277 10.4122    0.800937 -323.025 

En este caso, al igual que en el caso de la temperatura, tenemos un log likehood bastante bajo, de modo 

que el ajuste a la distribución normal es peor que en el caso del NDVI y PCD. 

En cuanto a las medias, sí que difieren un poco entre sanas y enfermas. Sin embargo, la diferencia es 

pequeña. La varianza en Arce es similar en sanas y enfermas, pero en Canudo es más alta para cepas 

enfermas. 
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DN EN LA BANDA 2 (ROJO) 

  

Figura 38. Ajuste a la distribución normal de los valores DN 
en la banda 2 de cepas sanas de la parcela de Arce. 

 

Figura 39. Ajuste a la distribución normal de los valores DN 
en la banda 2 de cepas con yesca en la parcela de Arce. 

 

Figura 40. Ajuste a la distribución normal de los valores DN 
en la banda 2 de cepas sanas en la parcela de Canudo. 

 

Figura 41. Ajuste a la distribución normal de los valores DN 
en la banda 2 de cepas con yesca en la parcela de Canudo. 

En la tabla 9 se muestran las características del ajuste de los valores DN en la banda 2 (rojo) a la 

distribución normal. 

Tabla 9. Características del ajuste a la distribución normal de los valores de DN en la banda 2 (rojo). 

 Media (µ) Error std  de µ Varianza (σ) Error std de σ Log likehood 

Arce sano 86.6757     0.38053 5.30017    0.270121 -598.315 

Arce yesca 86.3335    0.400863 5.24197    0.284704 -525.434 

Canudo sano 78.8509    0.647931 4.80519    0.464535 -163.875 

Canudo yesca 81.0887     1.00252 9.29703    0.715156 -313.283 

El ajuste a la distribución normal es similar al de la banda 1 y la temperatura. Tiene un log likehood 

bastante bajo, por lo que el ajuste es peor que en el caso del NDVI y el PCD. 

Las medias son similares en cepas sanas y enfermas en la parcela de Arce, sin embargo, en la parcela de 

Canudo sí que se son ligeramente diferentes. Ocurre lo mismo con la varianza. 
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DN EN LA BANDA 3 (INFRARROJO)  

 

Figura 42. Ajuste a la distribución normal de los valores DN 
en la banda 3 en cepas sanas en la parcela de Arce. 

 

Figura 43. Ajuste a la distribución normal de los valores DN 
en la banda 3 en cepas con yesca en la parcela de Arce. 

 

Figura 44. Ajuste a la distribución normal de los valores DN 
en la banda 3 en cepas sanas en la parcela de Canudo. 

 

Figura 45. Ajuste a la distribución normal de los valores Dn en 
la banda 3 en cepas con yesca en la parcela de Canudo. 

En la tabla 9 se muestran las características del ajuste de los valores DN en la banda 3 (infrarrojo) a la 

distribución normal. 

Tabla 10. Características del ajuste a la distribución normal para los DN de la banda 3 (infrarrojo). 

 Media (µ) Error std  de µ Varianza (σ) Error std de σ Log likehood 

Arce sano 154.402    0.595926 8.30029    0.423022 -685.334 

Arce yesca 154.563    0.691611 9.04398    0.491202 -618.698 

Canudo sano 146.925     1.22769 9.10481    0.880195 -199.026 

Canudo yesca 148.926 1.17835   10.9275    0.84058   -327.179 

En este caso el log likehood es bajo, como en los casos de la temperatura y las bandas 1 y 2. Por lo que el 

ajuste a la distribución normal es peor que en el caso del NDVI y el PCD. 

Así mismo, al igual que en la banda 2, en Arce la media y varianza de cepas sanas y enfermas es similar, 

sin embargo, en Canudo sí que se observa que son ligeramente diferentes. 

 

 

 

 

 

 



52 

 

ANÁLISIS ANOVA 

ANÁLISIS ANOVA DE DATOS 

Mediante el uso de la función de Matlab: [p,tbl,stats]=anova1(Datos) se ha realizado el análisis de la 

varianza de los datos, tomando como variables independientes los valores de NDVI, PCD, temperatura y 

los números digitales de las bandas 1,2 y 3. Y como variable dependiente la muestra, es decir la parcela y 

si la cepa estaba sana o enferma. 

Para la muestra Sano Arce N=195, en la muestra Yesca Arce N=174, en la muestra Sano Canudo N=55 y en 

la muestra de Yesca Canudo N=86. 

Tras realizar dicho análisis, se obtuvo que, para todas las variables independientes, existían diferencias 

significativas entre las diferentes muestras.  

Una vez ejecutado dicho análisis, usando la función [results,means]=multcompare(stats) se ha estimado 

que grupos eran significativamente diferentes (p<0,05) entre sí. 

Tabla 11. Diferencias significativas entre las distintas muestras, en la que aparece la media con la desviación típica y un 

superíndice que si es igual en dos de las muestras indica que no existen diferencias significativas entre ambas muestras (p<0,05). 

 Sano Arce Yesca Arce Sano Canudo Yesca Canudo 

NDVI 0,300 ± 0,002a 0,305 ± 0,002a 0,333 ± 0,005b 0,323 ± 0,003b 

PCD 1,706 ± 0,014a 1,751 ± 0,015a 1,388 ± 0,027b 1,352 ± 0.022b 

Temperatura 30,618 ± 0,221a 30,584 ± 0,235a 32,665 ± 0,415b 33,113 ± 0,332b 

Banda 1 (verde) 79,014 ± 0,495a 78,399 ± 0,527a 69,283 ± 0,929b 71,620 ± 0,743b 

Banda 2 (rojo) 86,676 ± 0,438a 86,333 ± 0,466a 78,851 ± 0,823b 81,089 ± 0,657b 

Banda 3 (infrarrojo) 154,402 ± 0,655a 154,563 ± 0,698a 146,925 ± 1,231b 148,926 ± 0,984b 

 

Se puede apreciar como en todas las variables estudiadas, existen diferencias significativas entre distintas 

parcelas, pero sin embargo no existen diferencias significativas entre cepas sanas y enfermas de una 

misma parcela. 

 

 

 

 

 

 

 

 

REGRESIÓN ENTRE DISTINTAS VARIABLES 
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Una vez realizado el análisis de componentes principales, y determinado que la variabilidad puede ser 

explicada mayoritariamente por dos factores, se procede a la realización de un análisis de regresión para 

determinar qué variables son dependientes entre sí. 

Igual que en el análisis de componentes principales, el análisis de regresión se realizará únicamente con 

las 3 bandas de la cámara multiespectral y con la temperatura. Ya que cómo se ha explicado en apartados 

anteriores, los índices NDVI y PCD se obtienen a partir de los valores de las bandas 2 y 3 (rojo e infrarrojo). 

 

Figura 46. Regresión entre los valores DN en la Banda 1 (verde) y la Banda 2 (rojo). 

 

Figura 47. Regresión entre los valores DN en la Banda 1 (verde) y la Banda 3 (infrarrojo). 
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Figura 48. Regresión entre los valores DN en la Banda 1 (verde) y la temperatura. 

 

Figura 49. Regresión entre los valores DN en la Banda 2 (rojo) y Banda 3 (infrarrojo). 

 

Figura 50. Regresión entre los valores DN en la Banda 2 y la temperatura. 
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Figura 51. Regresión entre los valores DN en la banda 3 (infrarrojo) y la temperatura. 

En la tabla 10 se resumen los valores R2 que han sido obtenidos de los distintos análisis de regresión: 

Tabla 12. Correlación entre las distintas variables. 

 Banda 1 (verde) Banda 2 (rojo) Banda 3 (Infrarrojo Temperatura 

Banda 1 (verde) 1    

Banda 2 (rojo) 0,917 1   

Banda 3 (infrarrojo) 0,268 0,53 1  

Temperatura 0,025 0,001 0,089 1 

Tanto en las distintas gráficas como en la tabla resumen con los valores de R2, se puede apreciar como la 

correlación entre las tres bandas de la cámara multiespectral es elevada, sin embargo, la correlación entre 

dichas bandas y la temperatura es baja.  

Así mismo se observa una correlación muy elevada entre las bandas 1 (verde) y 2 (rojo). 
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ANÁLISIS DE COMPONENTES PRINCIPALES 

Tal y como se ha observado en el estudio de la regresión, existe cierta correlación entre las distintas 

variables. Por lo tanto, es posible que todas o varias de esas variables expliquen la misma variabilidad. 

Para comprobarlo, el análisis de más utilidad es el Análisis de Componentes Principales, el cual agrupa las 

variables en un número determinado de grupos de acuerdo con la variabilidad que son capaces de 

explicar. 

En este análisis únicamente se han utilizado los valores correspondientes a los canales de la cámara 

multiespectral (verde, rojo e infrarrojo) y la temperatura. No se han utilizado los valores de NDVI y PCD 

debido a que son índices obtenidos a partir del rojo e infrarrojo. 

Tabla 13. Matriz de autovectores, que muestra la asociación de cada variable al componente principal (CP). 

 1ºCP 2ºCP 3ºCP 4ºCP 

Banda 1 (verde) 0,5306 -0,6139 -0,1755 -0,5574 

Banda 2 (rojo) 0,5161 -0,2717 -0,0617 0,8099 

Banda 3 (infrarrojo) 0,6719 0,6828 0,2216 -0,1822 

Temperatura -0,0250 -0,2882 0,9572 -0,0078 

 

Tabla 14. Variabilidad explicada y acumulada en cada componente principal. 

 Variablidad explicada Variablidad acumulada 

1ºCP 76,0401 76,041 

2ºCP 20,1609 96,201 

3ºCP 3,6676 3,667 

4ºCP 0,1314 100 

 

El análisis de componentes principales muestra como la mayor parte de la variabilidad puede ser explicado 

por 2 componentes. Estos dos componentes están formados principalmente por las bandas 1,2 y 3, es 

decir, las bandas de la cámara multiespectral. 

La temperatura contribuye principalmente al tercer componente, el cual explica una menor parte de la 

variabilidad. 
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CLASIFICACIÓN DE DATOS POR APRENDIZAJE DE MÁQUINA 

Usando el módulo de MatLab Classification Learner podemos agrupar las distintas variables de acuerdo a 

unos prescriptores.  

Tras realizar la modelización, se obtienen los siguientes índices para cada modelo de clasificación: 

CLASIFICACIÓN SIN PARCELA 

Primero se realizó la clasificación sin tener en cuenta la parcela, para que el modelo pudiese ser utilizado 

en otras parcelas. Los resultados se resumen en la siguiente tabla: 

Tabla 15. Precisión de los distintos modelos de clasificación, sin usar la parcela como variable de predicción. 

 Precisión 

(%) 

Yesca 

verdadera 

(%) 

Sano 

verdadero 

(%) 

Yesca 

falsa (%) 

Sano falso 

(%) 

Árbol complejo 51,4 48 52 48 52 

Árbol medio 54,5 41 69 31 59 

Árbol simple 51,4 43 60 40 57 

Discriminante lineal 50,4 50 51 49 50 

Discriminante cuadrático 51,6 42 62 38 58 

Regresión logística 54,2 56 53 47 44 

SVM linear 51,8 44 59 41 56 

SVM cuadrática 53,8 38 70 30 62 

SVM cúbica 55,1 53 58 42 47 

SVM gaussiana fina 54,2 61 47 53 39 

SVM gaussiana media 51,4 53 50 50 47 

SVM gaussiana gruesa 54 51 57 43 49 

KNN fina 52,6 52 53 47 48 

KNN media 51,4 40 63 37 60 

KNN gruesa 55,1 49 61 39 51 

KNN coseno 53,2 43 64 36 57 

KNN cubica 50,6 39 63 37 61 

KNN ponderado 52,8 54 51 49 46 

Ensemble Boosted Trees 50,6 47 54 46 53 

Ensemble Bagged Trees 52 50 54 46 50 

Ensemble Subspace Discriminant 51,2 50 51 49 50 

Ensemble Subspace KNN 48,8 47 50 50 53 

Ensemble RUSBoosted Trees 53 46 61 39 54 
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Se puede apreciar cómo todos los modelos tienen una precisión global entorno al 50%. Se trata de una 

precisión muy baja.  

Además, los modelos parecen presentar una precisión más elevada para la detección de cepas sanas, que 

para la detección de cepas con yesca. 

CLASIFIACIÓN CON PARCELA 

Puesto que la precisión obtenida sin parcela ha sido bastante baja, se ha realizado la clasificación teniendo 

en cuenta también la parcela a la que pertenecen las cepas, para evaluar si el hecho de incluir la parcela 

en la clasificación mejora la precisión del modelo. 

En este caso, el número de modelos de clasificación será menor que en el caso anterior, ya que estamos 

usando como una de las variables de predicción la parcela, la cual es un valor de tipo cadena. De modo 

que no será posible aplicar modelos del tipo KNN o discriminantes. 

La siguiente tabla muestra los resultados obtenidos para los distintos modelos de clasificación, utilizando 

la variable parcela como uno de las variables de predicción: 

Tabla 16. Precisión de los modelos de clasificación incluyendo la parcela como variable de predicción. 

 Precisión 

(%) 

Yesca 

Verdadera 

(%) 

Sano 

verdadero 

(%) 

Yesca falsa 

(%) 

Sano falso 

(%) 

Árbol complejo 50,2 48 48 52 52 

Árbol medio 55,1 43 67 33 57 

Árbol simple 52 42 62 58 38 

Regresión logística 52 50 54 46 50 

SVM linear 55,3 33 78 22 67 

SVM cuadrática 54,7 49 61 39 51 

SVM cúbica 55,3 56 55 45 44 

SVM gaussiana fina 53,8 60 47 53 40 

SVM gaussiana media 53,8 50 55 45 50 

SVM gaussiana gruesa 54,9 42 69 31 58 

Boosted Trees 52,6 50 55 45 50 

Bagged Trees 50,2 47 53 47 53 

Ensemble RUSBoosted Trees 55,3 48 63 52 37 

Pese a haber incluido la parcela en el análisis, la precisión estimada del modelo sigue siendo baja. Así 

mismo se sigue observando, que, de forma general, la precisión estimada para las cepas sanas es mayor 

que para las cepas con yesca. 
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VALIDACIÓN DE MODELOS 

Aunque la precisión estimada de los modelos ha sido baja, se van a evaluar utilizando nuevos datos para 

determinar si la precisión real se corresponde con la real o es diferente. 

Para ello se tomarán puntos de forma aleatoria en los mapas de vigor de ambas parcelas. Posteriormente, 

se extraen los valores que requieren los modelos para su análisis, es decir se extrae su valor en la banda 

1 (verde), banda 2 (rojo), banda 3 (infrarrojo) y su temperatura. Una vez reunidos estos datos en una 

tabla, se procesan con el modelo correspondiente, el cual devolverá como resultado si la cepa está sana 

o tiene yesca. 

Una vez recopilados los resultados de cada modelo, se toman los puntos GPS de las cepas analizadas, se 

va al campo a comprobar si la cepa está afectada o no con yesca.  

Se seleccionan los siguientes modelos: 

Para los que hay parcela: 

Precisión: Cubic SVM 55,3% 

Sanos acertados: Linear SVM 78% 

Yesca acertados: Fine Gaussian SVM 60% 

Para los que no hay parcela : 

Precisión: 55,1% Coarse KNN 

Sanos acertados: 70% Quadratic SVM 

Yesca acertados: 61% Fine Gaussian 

Tabla 17. Validación de los modelos de clasificación. 

 Incluyendo la parcela Sin incluir la parcela 

 SVM 
cúbico 

SVM linear SVM 
gaussiano 

fino 

KNN 
grueso 

SVM 
cuadrático 

SVM 
gaussiano 

fino 

Total 67% 65% 54% 64% 66% 55% 

Arce 67% 90% 65% 75% 81% 65% 

Canudo 65% 100% 27% 36% 28% 28% 

Sanas Arce 67% 100% 64% 82% 84% 64% 

Yesca Arce 70% 0% 70% 18% 47% 76% 

Sanas Canudo 72% 0% 29% 39% 31% 31% 

Yesca Canudo 42% 100% 25% 36% 27% 26% 

 

Pese a que, a simple vista, el modelo SVM linear incluyendo la parcela, parezca ser más preciso, ha 

resultado el menos eficaz de todos, ya que este modelo asignaba automáticamente el valor yesca si estaba 

en la parcela de Canudo, y el valor sano si estaba en la parcela de Arce. 
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 Se puede apreciar cómo en la mayor parte de los modelos, la precisión obtenida en Arce es mayor a la 

obtenida en Canudo. Así mismo, la precisión tiene a ser más elevada para las cepas sanas que para las 

cepas enfermas.  
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DISCUSIÓN 

EVALUACIÓN VISUAL DE LOS DATOS 

Tras examinar los mapas de vigor, se observa variabilidad entre las distintas zonas e incluso entre cepas. 

Por ejemplo, se detectan fácilmente dentro del mapa cepas que presentan un bajo vigor, como muestra 

la siguiente imagen: 

 

Figura 52. Detalle dentro de la parcela de Arce de los valores de NDVI, siendo las zonas rojas las que tienen un valor de NDVI más 

bajo, y las zonas verdes las que lo tienen más alto. 

En esta imagen se puede apreciar como hay cepas que presentan un bajo vigor (en color rojo). Sin 

embargo, un bajo vigor puede ser causado por múltiples causas, que abarcan desde una carencia 

nutricional, estrés hídrico, daños por enfermedades… por lo que extraer conclusiones de esta información 

sin más datos adicionales debe ser realizado con prudencia. 

Por ello, tras incorporar los datos del muestreo de cepas sanas y enfermas se puede valorar dicha 

información de una forma más lógica. 

En el mapa de vigor correspondiente al NDVI, se aprecia como hay algunas cepas enfermas que presentan 

de forma marcada un vigor más bajo, tal y como se puede apreciar en la figura 53 (izquierda). Sin embargo, 

también hay cepas sanas que manifiestan este vigor más bajo. Tal y como se puede apreciar en la figura 

53 (derecha). 
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Figura 53. Detalle de NDVI a nivel de cepa, en las que los rectángulos rojos representan a cepas con yesca y los rectángulos verdes 

representan a las cepas sanas. 

De modo que visualmente, no es posible distinguir entre cepas sanas y enfermas usando el índice NDVI. 

Si usamos el mapa de vigor obtenido a partir del índice PCD, nos encontramos con el mismo problema. 

Detectamos cepas enfermas con un vigor más bajo, pero también detectamos cepas sanas con un vigor 

bajo, tal y como muestran la figura 54. 

  

Figura 54. Detalle del PCD a nivel de cepa, en el que los rectángulos verdes representan a las cepas sanas y los rectángulos rojos 

representan a las cepas enfermas. 

La inspección visual de la temperatura a nivel de cepa es más compleja, ya que el tamaño de píxel es 

bastante más grande que en el caso del NDVI y PCD, y los cambios de píxel a píxel son muy marcados. No 

obstante, es posible detectar ciertos patrones. En este caso, visualmente sí que parece que las cepas 

enfermas tienen una mayor temperatura, tal y como podemos apreciar en la figura 55. 
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Figura 55. Detalle de las temperaturas a nivel de cepa. Los colores rojos indican zonas más calientes y las zonas verdes son más 

frías. Los rectángulos verdes son cepas sanas y los rojos cepas enfermas. 

Aunque, esto también se observa en las cepas sanas, no da la sensación de ser tan frecuente como en los 

índices NDVI y PCD. De todos modos, de forma visual no es posible diferenciar entre cepas sanas y 

enfermas. 

Pese a que la inspección visual de los mapas de vigor y temperatura no permite detectar la presencia de 

yesca, sí que permiten observar otras problemáticas del viñedo. Por ejemplo, tanto en el mapa de NDVI 

como de PCD, se observa cómo la zona izquierda de la parcela de Arce tiene un vigor mucho más bajo. 

Dicha zona, tiene un suelo más pobre, y al observar en campo las cepas de esa zona, se ve cómo la mayor 

parte de esas cepas manifiestan síntomas de carencias nutricionales. 

En la figura 56 se puede observar como el borde izquierdo de la parcela tiene colores rojos, lo cual indica 

un bajo vigor. Mientras que en la imagen de la derecha muestra los síntomas que presenta una cepa de 

esa misma zona que aparece en el mapa con un vigor bajo. 

  

Figura 56. Detalle de una zona con bajo vigor (colores rojos y amarillos) y aspecto de las hojas en la misma zona. 

  

Otro efecto que podemos observar, en este caso en la imagen térmica, es el efecto del sol. En todas las 

parcelas se aprecia como hay un gran número de cepas que tienen el lateral derecho en un color rojo o 

anaranjado, lo cual implica una mayor temperatura. Esto es debido a que el lateral derecho de la imagen 

se corresponde con el Este, y al haberse realizado el vuelo por la mañana, era el lateral donde estaba 

incidiendo de forma más directa la luz solar. 
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El hecho de que se caliente más un lateral puede enmascarar cambios en la temperatura debido a otros 

fenómenos. O, por el contrario, podría potenciar los cambios debidos a la presencia de la yesca. Ya que la 

yesca causa necrosis foliar, y la superficie foliar necrosada se calentará más que la superficie viva, ya que 

en la superficie necrosada no hay transpiración. 

En la siguiente imagen se observa cómo los laterales derechos de las líneas presentan una temperatura 

más elevada. Aunque también hay alguna línea, que no presenta este patrón, son minoritarias. 

 

Figura 57. Detalle del efecto del sol. Se aprecia una zona a más temperatura (colores rojos) en el lateral derecho. 

El efecto del sol se podría haber evitado al realizando el vuelo cuando el sol está más alto, y la radiación 

índice de forma uniforme por toda la cepa, es decir, al mediodía. 

DISTRIBUCIONES DE LOS DATOS 

Los diferentes índices obtenidos a partir de las imágenes se han ajustado bien a una distribución normal. 

Este hecho ha permitido realizar un análisis de varianza ANOVA para evaluar si existen diferencias 

significativas entre cepas sanas y enfermas. 

También se observa que las medias de las distribuciones de cepas sanas y enfermas de una misma cepa 

son prácticamente iguales en todas las variables analizadas. De modo que será difícil encontrar diferencias 

significativas entre cepas sanas y enfermas. 

En cuanto a la varianza, en la mayor parte de los casos no se observan diferencias entre cepas sanas y 

enfermas.  

Sin embargo, tanto al observar las distribuciones normales como las medias, se observa como las 

distribuciones de las dos parcelas, para todas las variables, parecen algo distintas. De modo que sí que 

parece posible encontrar diferencias significativas entre parcelas. 

ANÁLISIS ESTADÍSTICO DE LOS DATOS 

Tal y como se esperaba, tras ver las distribuciones y las medias, no existen diferencias significativas entre 

las cepas sanas y con yesca. Dentro de una misma parcela, tanto los valores de NDVI, PCD, temperatura y 

los valores de las bandas 1(verde), 2(rojo), 3(infrarrojo) no presentan diferencias significativas entre cepas 

sanas y con yesca. 

De acuerdo con el trabajo de Ghulam y su equipo, en 2008, la yesca causa síntomas similares al estrés 

hídrico. Por lo que teóricamente, las cepas afectadas con yesca deberían haber mostrado temperaturas 

más elevadas, ya que, al tratarse de regadío, todas las cepas deberían mostrar el mismo estrés hídrico (y, 
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por lo tanto, misma temperatura), por lo que la diferencias en las temperaturas debería poder deberse a 

la presencia de yesca. Sin embargo, no se ha obtenido este resultado. Las temperaturas no son 

significativamente diferentes entre cepas sanas y enfermas. 

Di Genaro y su equipo en 2016, obtuvieron diferencias significativas entre los valores de NDVI (Figura 5) 

cepas sanas y cepas infectadas (tanto sintomáticas como asintomáticas). En el presente trabajo, no se ha 

diferenciado entre cepas sintomáticas y asintomáticas, ya que no se ha realizado un análisis biológico de 

las cepas estudiadas. Por lo que parte de las cepas que han considerado como sanas, pudieran ser cepas 

infectadas asintomáticas, lo que supone una fuente de error respecto al estudio de Di Genaro y su equipo. 

Otro de los factores que contribuyen al hecho de no haber encontrado diferencias significativas entre 

cepas sanas y cepas con yesca, es el hecho de que no se ha tenido en cuenta en el estudio si las cepas 

estaban afectadas por alguna carencia (carencia de fósforo, calcio…) o si estaban afectadas por otra 

enfermedad como el mildiu. Esto no ha sido posible debido al hecho de que el vuelo fue realizado en 

2015, mientras que las muestras se tomaron en 2016.  

Donde sí que se observan diferencias significativas en todas las variables, es entre parcelas. 

Para el NDVI, la parcela de Canudo presenta un NDVI significativamente más elevado, por lo que tiene un 

mayor vigor. Lo cual, se corresponde con lo que se ven en la parcela, donde se aprecia que la parcela de 

Canudo está más verde que la parcela Arce. 

Sin embargo, el PCD es significativamente más elevado en Arce que en Canudo. Este resultado contrasta 

con el anterior, ya que en el NDVI era al revés, pese a que la diferencia fuese pequeña. 

Para encontrar la causa de este fenómeno debemos mirar a las bandas que han utilizado para calcular 

dichos índices, es decir las bandas 2 y 3 (rojo e infrarrojo). En este proyecto no se ha trabajado con la 

reflectancia en cada banda, sino que se ha trabajado con DN (Digital Number) obtenidos a partir de la 

cámara. El DN es un valor que va de 0 a 255 y es proporcional a la reflectancia, sin embargo, para obtenerla 

es necesario aplicar unos factores de corrección que dependen de las condiciones atmosféricas. Dado que 

el proveedor de las imágenes no proporcionó los correctores que habían usado, no se ha podido trabajar 

con las reflectancias. No obstante, dado que los DN son proporcionales a la reflectancia, se puede recurrir 

a dichos números digitales para determinar qué es lo que causa que el NDVI sea ligeramente mayor en 

Canudo, mientras que con el PCD sucede lo contrario. 

Primero si nos fijamos en la ecuación del NDVI: 

Ecuación 1: 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 

Podemos observar que si tenemos una misma diferencia entre el infrarrojo y el rojo (como es el caso de 

Arce y Canudo, que en DN ambas tienen una diferencia de 68 DN de media), si la radiación reflejada es 

mayor en ambas bandas, el NDVI será menor. 

Esto es exactamente lo que se observa, ya que los DN son significativamente mayores para el rojo y para 

el infrarrojo (8 DN más, de media) en Arce que en Canudo. Eso explica que el NDVI sea más elevado en 

Canudo que en Arce. 

Así mismo, es posible que existan otros factores que conduzcan a un valor de NDVI más elevado en una 

parcela que en otra. Por ejemplo, ambas parcelas tienen cubierta vegetal, pero el hecho de que se haya 

pasado la picadora más tarde en una parcela que en otra, hará que la cubierta de una parcela tenga más 

vigor que la otra, y cause un aumento del NDVI de las zonas donde se encuentra esa cubierta (Rodriguez-

Moreno & Bullock, 2013). 
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En el caso del PCD, al ser únicamente la relación entre la reflectancia del infrarrojo y la reflectancia del 

rojo. La diferencia entre ambas parcelas es debido a que Arce refleja mayor cantidad de radiación 

infrarroja en relación a la que refleja de radiación roja, de la que hace Canudo. 

El hecho de que hayan realizado correcciones atmosféricas para el cálculo de NDVI y PCD, causa que 

habitualmente la reflectancia de la radiación roja baje, mientras que la radiación infrarroja suele 

aumentar. Por lo que tanto PCD como NDVI serán más elevados. 

En cuanto a la temperatura, se ve que es significativamente superior en la parcela Canudo, en el orden de 

2 grados de diferencia aproximadamente.  

Habitualmente, una mayor temperatura se suele relacionar con un mayor estrés de la planta. El estrés 

que mejor se relaciona con la temperatura es el estrés hídrico. 

De acuerdo con todos estos datos, da la impresión que la parcela de Arce está en un mejor estado que la 

parcela de Canudo, ya que tiene menor temperatura, mayor PCD y un NDVI casi igual. Sin embargo, al ir 

a la parcela de Arce, se aprecia un mayor número de cepas con problemas (ya sean nutricionales, de 

enfermedades…) respecto a Canudo. 

Sin embargo, si nos fijamos en la banda número 3 (infrarrojo), vemos que la reflectancia es 

significativamente superior en Arce que en Canudo. Una mayor reflectancia de infrarrojo suele estar 

causada porque la parcela tiene más vegetación, pero la reflectancia que determina más la actividad 

fotosintética, y por tanto el estado de la planta, es la reflectancia del rojo, el cual es significativamente 

inferior en Canudo que en Arce. A menor reflectancia del rojo, mayor ha sido la absorción de esta banda, 

por lo que hay mayor actividad fotosintética. Esto es un claro ejemplo de los errores que puede haber al 

interpretar una imagen con índices como el NDVI, ya que, pese a que dan mucha información acerca del 

estado del cultivo, podemos perder parte de la información. Por ello, si se quiere analizar de forma 

detallada una parcela, es mejor mirar de forma individual la reflectancia de cada banda (Lee et al., 2010; 

Di Genaro et al., 2016). 

De forma que de los datos de las bandas 2 (rojo) y 3 (infrarrojo), podemos deducir que la parcela de Arce 

tiene más vegetación, pero con menor eficiencia fotosintética que la parcela de Canudo. Lo cual puede 

ser la causa de que a simple vista la parcela de Arce encontremos más cepas con problemas que en la 

parcela de Canudo. 

En cuanto a la diferencia de temperaturas, esta puede ser fácilmente explicada con el riego. Ya que el 

vuelo ha sido realizado en pleno verano, cuando la cepa está sometida a elevadas temperaturas y tiene 

una elevada tasa de transpiración. Bajo esas condiciones climáticas, la diferencia de regar un día más tarde 

una parcela que otra pude causar diferencias en sus temperaturas (Bellvert et al., 2012). 

ANÁLISIS DE COMPONENTES PRINCIPALES Y REGRESIÓN 

En cuanto a las regresiones, es llamativo la elevada correlación existente entre la banda 1 y 2 (rojo y 

verde), con un R2 de 0,91. Además tanto la banda 1 y 3, como la 2 y 3 presentan correlaciones elevadas, 

no tanto como en el caso anterior, pero sí cierta correlación. Lo que da a entender que las tres bandas de 

la cámara multiespectral están bastante relacionadas entre sí. 

La temperatura es la única que no tiene correlación con ninguna de las bandas. 

El análisis de componentes principales muestra como más del 95% de la variabilidad puede ser explicada 

usando únicamente 2 factores, esos dos factores combinaciones de las 3 bandas de la cámara 

multiespectral. 
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Sin embargo, la temperatura no parece incorporar más información sobre la variabilidad, ya que 

contribuye básicamente al tercer componente, el cual explica entorno al 3% de la variabilidad. De modo 

que pese a que nos esté dando una información independiente de la que nos da la imagen multiespectral, 

está explicando prácticamente la misma variabilidad. 

CLASIFICACIÓN DE DATOS 

Todos los modelos que se han creado, tienen una baja precisión, esperable tras el análisis ANOVA. Esto 

no es un hecho sorprendente, ya que en el tratamiento de datos se observó que no existían diferencias 

significativas entre los datos, pero al tratarse de un trabajo académico se ha querido realizar un esfuerzo 

de utilizar otras herramientas estadísticas y de modelización. En todos los casos, la precisión estaba 

ligeramente por encima del 50%. 

Sin embargo, algunos de los modelos tienen una precisión mayor para detectar las cepas, siendo de hasta 

el 61% en el modelo SVM gaussiano fino, realizado sin parcela. Como es esperable, a mayor tasa cepas 

con yesca detectadas, menor será la detección de cepas sanas, ya que considera como enfermas, cepas 

que están sanas 

Al validar el modelo, los resultados son muy variables, probablemente debido a la baja precisión de los 

modelos. El mejor resultado, es el del SVM linear, sin embargo, tal y como se ha mencionado en los 

resultados, este algoritmo clasifica automáticamente como sanas o enfermas en función de la parcela a 

la que pertenecen. Por lo que no se puede tener en cuenta. 

El siguiente modelo que ofrece mejores resultados en la validación es el SVM gaussiano fino, tanto en el 

caso de tener en cuenta la parcela, como en el caso de no tener en cuenta la parcela. Si tenemos en cuenta 

la parcela, obtenemos una precisión global del 54, el cual es similar a la precisión teórica que había sido 

estimada con el Matlab, 53,8%. Sin embargo, dentro de la parcela de Arce, el modelo es capaz de clasificar 

de forma correcta el 70% de las cepas con yesca, y el 64% de las cepas sanas. Lo que supone una buena 

tasa de acierto. 

Los resultados son similares a los obtenidos al no tener en cuenta la parcela. Con un 55% de precisión 

global, el cual es similar a la teórica, 54,2%. Y en la parcela de Arce, el porcentaje de acierto fue superior 

tanto para cepas sanas como para cepas enfermas, siendo especialmente alto para las enfermas, de 76%. 

El modelo que mejor precisión da es el SVM cuadrático, ya que tiene una precisión global del 66% y una 

precisión del 81% en Arce. En dicha parcela, el modelo fue capaz de clasificar de forma correcta el 84% de 

las cepas sanas, sin embargo, solo fue capaz de clasificar de forma correcta el 47% de las cepas enfermas. 

En la discusión de los resultados obtenidos en la validación de los modelos, se han omitido los resultados 

de la parcela de Canudo, ya que la tasa de acierto que se ha obtenido en dicha parcela, ha sido muy baja, 

en la mayor parte de los casos por debajo del 50%.  

La menor precisión obtenida en Canudo, se puede deber a varios factores. En primer lugar, durante el 

muestreo aleatorio se han detectado muy pocas cepas con yesca (7 únicamente). Además, si observamos 

el mapa de vigor, vemos como este es bastante uniforme, en comparación con el de Arce, lo cual puede 

complicar la clasificación. 

Por lo tanto, pese a que no hay diferencias significativas, es posible clasificar correctamente un alto 

porcentaje de cepas afectadas con yesca. Sin embargo, es necesario mejorar el muestreo de forma que 

sea posible encontrar diferencias significativas que hagan posible establecer un modelo de clasificación 

como el que se ha realizado en este trabajo de mayor precisión. 
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CONCLUSIONES 

No ha sido posible encontrar diferencias significativas entre los distintos índices y valores utilizados para 

diferenciar entre cepas sanas y enfermas. 

Se han encontrado diferencias significativas entre las distintas parcelas para todos los valores estudiados, 

por lo que pese a estar en condiciones de cultivo similares, existen diferencias entre ellas que pueden 

estar debidas al manejo del riego, al estado de la cubierta vegetal, la presencia de plagas o a diferencias 

en la fertilidad del suelo de cada zona. 

El análisis de regresión muestra que existe una elevada correlación entre los DN de las distintas bandas 

que componen la imagen multiespectral. Sin embargo, la correlación entre la temperatura y las distintas 

bandas de la imagen multiespectral es muy baja. 

El análisis de componentes principales muestra que el 95% de la variabilidad puede ser explicada 

utilizando únicamente 2 componentes principales, los cuales están formados por las 3 bandas de la 

imagen multiespectral. De modo, que la temperatura explica una pequeña parte de la variabilidad, por lo 

que la mayor parte de la información que obtenemos de ella es redundante con la imagen multiespectral. 

Pese a que las diferencias entre cepas sanas y enfermas no han sido significativas, ha sido posible obtener 

unos modelos de clasificación basado en aprendizaje de máquina capaces de clasificar con cierta 

precisión. Aunque para obtener cierta precisión en el acierto de cepas con yesca, el modelo toma muchas 

cepas sanas como cepas afectadas por yesca. 
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