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RESUMEN

Las enfermedades de la madera o yesca, es una de las enfermedades mds importantes en la viticultura
moderna. En este trabajo se ha evaluado el uso de las imagenes térmicas y multiespectrales para detectar
la presencia de cepas afectadas por yesca.

Se han utilizado imagenes térmicas y multiespectrales de un vuelo realizado en el afio 2015. De dichas
imagenes se han extraido los valores de temperatura, NDVI, PCD y los DN (Digital Numbers) de las distintas
bandas de laimagen multiespectral. Ademas, usando un GPS de alta precision se georreferenciaron varias
cepas sanas y enfermas en dos parcelas distintas.

Tras extraer los valores de cada parametro a evaluar en cada cepa, se realizé un andlisis estadistico de los
datos. Tras realizar un analisis de varianza de tipo ANOVA, se observd que no existen diferencias
significativas entre cepas sanas y enfermas, sin embargo, si que se detectaron diferencias significativas
entre cepas de distintas parcelas.

El analisis de regresion mostrd que existe una fuerte correlacion entre los valores de las 3 bandas que
componen la imagen multiespectral, sin embargo, esta correlacién es mas débil al relacionar la
temperatura con las distintas bandas.

Dado que se encontré correlaciones entre los distintos parametros, se realizé un andlisis de componentes
principales para evaluar si las distintas bandas de la imagen multiespectral y la temperatura estaban
explicando la misma variabilidad dentro de las muestras analizadas. Dicho analisis mostré que el 95% de
la variabilidad puede ser explicado por dos componentes principales, los cuales estan formados por las
bandas de la imagen multiespectral. Lo cual implica que la informacion que nos da la imagen térmica es
redundante, puesto que la variabilidad puede ser explicada casi en su totalidad por la imagen
multiespectral.

Por ultimo, se intentd implementar modelos de clasificacion basados en los sistemas de aprendizaje de
magquina para evaluar si usando este tipo de analisis es posible diferenciar entre cepas sanas y enfermas
usando la informacién que contienen las imagenes térmicas y multiespectrales. Pese a que no se habian
encontrado diferencias significativas en ninguno de los parametros estudiados, para cepas sanas y
enfermas, ha sido posible conseguir un indice de acierto de mas del 70% para cepas enfermas usando
modelos de tipo SVM (Support Vector Machine), a costa de aumentar la tasa de error para las cepas sanas.

De modo que no es posible detectar de forma precisa la presencia de yesca usando imagenes térmicas y
multiespectrales. Sin embargo, mediante el uso de técnicas de aprendizaje de maquina si que es posible
detectar cepas afectadas a costa de aumentar el nimero de cepas sanas clasificadas como enfermas. Ya
que este tipo de imagenes es mas sensible a otros cambios como los que puede producir una carencia
mineral o un déficit hidrico.



ABSTRACT

Trunk diseases or esca is one of the most important diseases in modern viticulture. In this study the use
of multispectral and thermal images for esca detection has been evaluated.

Multispectral and thermal images from a drone flight of 2015 has been used. From those images
temperature, NDVI, PCD and DN (Digital Number) of each band of the multispectral image has been
extracted. In addition, using a high precision GPS esca affected vines and healthy vines has been
georeferenced.

After extracting all parameter of each vine, a data statistical analysis has been conducted. ANOVA analysis
showed no significant differences between healthy and esca affected vines, although there was found
significant differences between different fields.

Regression analysis showed a strong correlation between each of the 3 bands that forms the multispectral
image. In the other hand, correlations of temperature with those bands were weak.

Given that correlation between bands was found, PCA (Principal Component Analysis) was performed in
order to evaluated if the bands of multispectral image and the temperature were explaining the same
variation. PCA showed that 95% of variability could be explained by two PC (Principal Component) form
by a combination of the 3 bands of the multispectral image. As a result, information of temperature is
redundant, because most of the variability could be explained using the 3 bands of the multispectral
image.

Finally, using supervised machine learning methods, classification models were implemented in order to
evaluated if those types of analysis are able to differentiate between healthy and esca affected vines using
information from the multispectral and thermal images. Although no significant differences between
healthy and esca affected vines were found, classification model with more than 70% true positive rate
of esca affected using SVM (Support Vector Machine) models, at the expense of increasing false positive
rate for healthy vines.

So, its no possible to precisely detect esca affected vine using multispectral and thermal images. However,
is possible to detect a high proportion of esca affected vines by counting some of the healthy vines as
vines affected by esca. Multispectral and thermal images are more sensitive to other changes in the vine
such as nutrient or water stress.



INTRODUCCION

En los Ultimos afios estamos viviendo grandes avances que estdn modificando la agricultura, como
podemos observar en el creciente desarrollo de la agricultura de precisidn (Zhang et al., 2002).

La agricultura de precisidn es una forma de producir en la que se busca mejorar la eficiencia productiva
del sistema, es decir, lograr producir mas con una menor cantidad de insumos (ya sean fertilizantes,
plaguicidas, agua, mano de obra...). Esto se consigue mediante el manejo del cultivo de forma especifica
en funcidn de aspectos diferenciales del mismo relacionados con el tipo de suelo, las necesidades hidricas,
la presencia de enfermedades, etc. (Seelan et al., 2003).

El desarrollo de la agricultura de precisién ha sido propiciado por el desarrollo de tecnologias como el
GPS, los sistemas de gestion de informacidn geografica (GIS), los circuitos miniaturizados, los sensores
remotos, los aplicadores variables, los smartphones, las mejoras en las telecomunicaciones y los avances
en el tratamiento de datos (Zhang et al., 2002; Cox 2002).

El primer paso en cualquier técnica de agricultura de precision es la obtencion de datos que puedan
aportar informacién diferenciada de diferentes aspectos relacionados con el cultivo. Dicha obtencién se
puede hacer de forma manual, como puede ser la inspeccién visual de la parcela, o puede realizarse de
mediante la utilizacion de sensores (Zhang and Kovacs., 2012).

Uno de los sensores mas utilizados en agricultura de precisién son las cdmaras multiespectrales que son
cargadas por drones o por satélites, dependiendo de la superficie a estudiar y de la precisidon requerida.
Con estas camaras se obtienen imagenes, las cuales se tratan para obtener diferentes tipos de
informacion siendo la mas habitual la generacién de mapas de vigor. Dichos mapas de vigor se obtienen
gracias a las herramientas GIS, que permiten realizar el tratamiento de datos. Finalmente hay que pasar
de esa informacion de los mapas de vigor a mapas de aplicacién, zonificando la parcela (Zhang & Kovacs.,
2012).

La vifia es uno de los cultivos extensivos mas intensificados. Su cultivo requiere de una importante
cantidad de cuidados, por lo que es especialmente indicado para la aplicacion de técnicas de agricultura
de precisidn (Arno et al., 2012).

En Espafia, la vid es tras los cereales y el olivar, el cultivo mas extendido. Con una superficie total de
alrededor de un millén de hectareas. Asi mismo, la produccién de vino y mosto en el afio 2013 generd
2.142,8 millones de euros, lo cual supone el 8,02% de Ila produccion vegetal
(http://ec.europa.eu/eurostat).

Una de las mayores problematicas de este cultivo en los Ultimos afios es la enfermedad de la madera o
yesca. Esta enfermedad de origen flingico causa podredumbre en el interior de la madera de la vid, lo cual
afecta gravemente a la produccién y calidad de la uva (Bertsch et al., 2013).

Dentro de Espafia, se estima que entre un 10-20% de las cepas estan afectadas por la enfermedad de la
yesca (Cobos, 2008; Blanco, 2013). Por lo que se trata de una enfermedad de gran importancia en la
viticultura espafiola. En el resto del mundo, la situacién es parecida, ya que, segun algunos estudios, en
Australia se han registrado pérdidas de 1.500kg/ha (John et al., 2008), en California se estiman unas
pérdidas causadas por la yesca de unos 260 millones de ddlares anuales (Siebert, 2001), y en Francia se
estima que un 11% de los vifiedos son improductivos debido a la presencia de esta enfermedad
(Grossman, 2008). De modo que se trata de una enfermedad extendida a nivel mundial.



Actualmente en Espafia no se dispone de ninguna sustancia activa capaz de combatir la enfermedad. Hace
unos anos, se utilizaba el arsenito sédico, que combatia de forma eficaz la yesca, sin embargo, se tuvo
que prohibir debido a su toxicidad (Bertsch et al., 2013).

Algunos productos como los compuestos de cobre, los benzimidazoles o los triazoles son capaces de
reducir el nivel de infeccidn, sin embargo, cada vez son menos utilizados ya que cada vez son menos
efectivos y ademas presentan problemas de toxicidad. (Bertsch et al., 2013; Diaz & Latorre, 2013).

De acuerdo con algunos estudios, la yesca causa alteraciones fisioldgicas en la planta que afectan tanto a
la fotosintesis, el estado hidrico, la nutricién de la planta o la respiracion. No obstante, no existe mucha
informacion al respecto (Bertami et al., 2002).

Puesto que la enfermedad causa alteraciones en la fisiologia de la cepa, podria ser posible detectar la
presencia de la enfermedad mediante el uso de sensores remotos, como una camara multiespectral o una
camara térmica. Ya que un cambio en la tasa de fotosintesis o cambios en el estado hidrico de la cepa
pueden ser detectados mediante el uso de indices de vigor como el NDVI o el CSI (Di Genaro et al., 2016).

En este contexto, se cred el proyecto Retmavid, perteneciente a la convocatoria Retos Colaboracién 2015
del Programa Estatal de 1+D+l orientado a los retos de la Sociedad, como un proyecto cuyo objetivo es
conseguir detectar la yesca de forma eficaz a partir de sensores remotos, desarrollar un compuesto que
actue de forma eficaz contra la yesca, para posteriormente aplicar el producto desarrollado Unicamente
en las cepas afectadas que han sido detectadas a través de medios remotos.

Con ello no solo se conseguiria un ahorro de producto, sino que ademads se lograria mejorar la vida util
del producto, puesto que al tratar un nimero menor de cepas la aparicion de resistencias sera mas lenta
o mas dificil que en el caso de que se tratara la parcela entera.

El presente trabajo fin de master se enmarca dentro del proyecto Retmavid, buscando un método que
permita la deteccién de cepas afectadas por yesca mediante el uso de sensores remotos.



OBJETIVOS

Los objetivos del presente trabajo son:

- Evaluar si es posible detectar la presencia de yesca mediante el uso de imagenes obtenidas con
una camara multiespectral montada en un dron.

- Evaluar si es posible detectar la presencia de yesca mediante el uso de imagenes obtenidas con
una camara térmica montada en un dron.



REVISION BIBLIOGRAFICA

SISTEMAS DE TELEDETECCION

Los sistemas de teledeteccion se basan en sensores que miden determinadas propiedades (como puede
ser la reflectancia de una determinada longitud de onda) de los objetos observados (Sankaran et al., 2010;
Hall et al., 2003).

Estos sensores van montados en vehiculos terrestres o aéreos que permiten poder realizar las mediciones
desde una determinada distancia y permiten el desplazamiento del sensor de un punto de muestreo a
otro (Sankaran et al., 2010; Hall et al., 2003).

SENSORES

Existen una gran variedad de sensores. Esta revision se centrara Unicamente en aquellos sensores que son
mas utilizados con fines agricolas (Hall et al., 2015).

La mayor parte de los sensores se basan en el hecho de que las plantas tienen una alta absorcidén en la
banda del espectro visiblel azul (400-500nm), lo que se traduce en una baja reflectancia, mientras que en
el verde (500-600nm) la reflectancia se ve incrementada. En el rojo (600-700nm) también se produce una
fuerte absorcidn. Asi mismo hay una fuerte reflectancia y transmitancia en el infrarrojo cercano (NIR- 700-
1500nm). Esta variabilidad se explica por el comportamiento frente a la radiacion de las clorofilas y los
carotenos (Aguilar, 2015).

CAMARAS MULTIESPECTRALES E HIPERESCPECTRALES

Las camaras multiespectrales e hiperespectrales son cdmaras especiales que son capaces de filtrar la
emisién electromagnética de acuerdo con su espectro. La principal diferencia entre cdmaras
multiespectrales e hiperespectrales radica en el hecho que las multiespectrales son capaces de trabajar
con un nimero pequefio de bandas (2-10) mientras que las hiperespectrales son capaces de trabajar con
un nimero mayor de bandas (mayor de 10) (Hall et al., 2015).

Las cdmaras multiespectrales normalmente filtran 4 bandas distintas: infrarrojo cercano (757,5-782,5nm),
rojo (637,5-662,5nm), verde (537,5-562,5nm) y azul (437,5-462,5nm) (Hall et al., 2003).

El desarrollo de este tipo de dispositivos se ha producido gracias a la aparicion de los dispositivos CCD. Los
CCD son dispositivos de carga acoplada, un circuito integrado que contiene un nimero determinado de
condensadores acoplados. Su alternativa son los CMOS (complementary metal oxide semiconductor). Se
trata de un sensor con diminutas células fotoeléctricas que registran la imagen, su nimero determina los
pixeles. Asi mismo con una mdscara de Bayer es posible asignar los colores en RGB, o directamente 3
sistemas RGB separados. Uno de los principales inconvenientes de las cdmaras multi-CCD es su elevado
coste, y sumenor resolucién, sin embargo, ya existen algunos modelos que incorporan un CCD especifico
para el IR. En las cdmaras convencionales con filtro de Bayer se puede obtener el IR quitando el filtro
adicional que llevan para cumplir con los requisitos de color adicionales (Rabatel et al., 2014).

Las cdmaras hiperespectrales se centran en una pequefia franja de banda de onda en un rango continuo,
produciendo un espectro continuo de los pixeles de la imagen. Los sensores espectrales también son
capaces de producir bandas discretas espectrales, sin embargo, estas tienen una menor resolucion
espectral. Asi mismo, los sensores hiperespectrales extraen informacidon mas detallada que los sensores
multiespectrales, ya que consiguen incorporar informacion de todo el espectro en cada pixel (Colomina &
Molina, 2014; Sankaran et al., 2010).
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Como inconveniente, pese a que las camaras de espectro visible han conseguido alcanzar las decenas de
megapixeles con equipos de solo unos gramos de peso, en los equipos hiperespectrales no ha sido posible
debido a la compleja dptica que requieren (Colomina & Molina, 2014, Sankaran et al., 2010).

Debido a los elevados requisitos de potencia y estabilidad, en el caso de vehiculos aéreos, este tipo de
aparatos solo pueden ser usados en aviones equipados con un sistema de dos motores, lo cual hace que
sea un sistema mucho mas caro que la imagen multiespectral (Hall et al., 2015).

Para el estudio de los cultivos se suelen usar cdmaras multiespectrales, ya que tienen un coste menor que
las cdmaras hiperespectrales y son mas sencillas de manejar (Hall et al., 2015).

Usando las imagenes multiespectrales se generan indices de vigor que pueden ser correlacionados con el
estado de la planta, ya que tanto el espectro visible como el infrarrojo, proporcionan la maxima
informacion acerca del estrés en las plantas (Sankaran et al., 2010).

Mediante el uso de imagenes hiperespectrales es posible estudiar pardmetros mas complejos. Por
ejemplo, es posible estudiar las caracteristicas del suelo mediante su reflectancia a distintas bandas, de
forma que es posible correlacionar esta reflectancia con diversas caracteristicas como son el contenido
en materia organica o la composicion mineral (Lee et al., 2010).

La reflectancia en las bandas 624nm y 564nm se usan para determinar el contenido en materia organica.
Para el contenido en agua del suelo se aprovecha que el agua tiene fuerte absorcion en las bandas 960nm,
1410nm, 1460nm y 1910nm. Para el contenido en nitrogeno se estudia la reflectancia en las bandas
correspondientes a 1100-2500nm. Para la estimacidn del fésforo disponible se puede usar las bandas
305nmy 1171nm, o incluso si se quiere conocer el total se puede usar la fotoluminiscencia ultravioleta y
la espectroscopia ldser-Raman. Asi mismo es posible determinar el pH, conductividad, la CIC, el magnesio,
las fracciones, el ratio Ca:Mg... (Lee et al., 2010).

Mediante el uso de imagenes procedentes del infrarrojo visible se ha demostrado que es posible estudiar
las propiedades de la superficie del suelo (mm de profundidad), sin embargo, se encuentran problemas
al intentar realizar el estudio en capas mas profundas (Lagacherie et al., 2013).

IMAGENES TERMICAS

Usando un radidmetro es posible determinar la temperatura de una determinada parte de la planta y asi
observar si dicha planta tiene problemas de estrés hidrico. Esto se debe a la fisiologia de la planta, ya que
cuando la planta tiene suficiente agua abre sus estomas para transpirar y asi mantenerse a una
temperatura adecuada, mientras que si la planta sufre un estrés hidrico mantiene sus estomas cerrados
para mantener el agua y por tanto su temperatura aumenta (Cox 2002; Mdller et al., 2007).

No obstante determinar la temperatura del cultivo es un método menos efectivo que realizar la medicidn
del potencial hidrico de la hoja, ya que, al medir el potencial hidrico de la hoja, se esta midiendo
directamente el estado de la planta mientras que con la temperatura se mide su efecto indirecto. Sin
embargo, para conocer el estado hidrico de un gran numero de plantas es menos costoso realizar una
imagen térmica que medir el potencial hidrico de cada una de las plantas a estudiar (Méller et al., 2007).

Otra de las aplicaciones que se pueden obtener del uso de las imagenes térmicas es conocer la variabilidad
de la temperatura a nivel de hoja, lo cual puede dar idea de su estado (ya sea nutritivo o sanitario). Esto
es de utilizad para la deteccién de enfermedades, ya que la puesta en marcha de los mecanismos de
defensa de la planta ante el ataque de un patégeno, como puede ser la senescencia de la parte atacada,
puede provocar un aumento en la temperatura de la hoja (Sankaran et al., 2010; Stoll et al., 2008).



SISTEMAS LIDAR Y RADAR

Se trata de un sistema laser que permite registrar la distancia hasta un determinado objetivo. Ha sido
ampliamente utilizado en vuelos con avidn, asi como en sistemas de agricultura inteligente para mejorar
la precisidon de herramientas como el tractor y evitar bordes u obstaculos (Lee et al., 2010).

La principal utilidad que tiene este sistema es detectar las zonas de drenaje y ayudar a mejorar el manejo
hidrico de las parcelas (Cox 2002).

Este tipo de escaner laser se usa frecuentemente en combinacion con las camaras para fotogrametria.
Aunque su principal utilidad radica en la deteccién de obstaculos, este tipo de instrumentos han sido
también utilizados para realizar mapas de corto alcance (Colomina & Molina, 2014).

Las cosechadoras modernas utilizadas en vifiedo incorporan un sistema de conteo de uvas mediante el
uso de sensores de peso, sensores Opticos y sensores de rayos gamma. También hay cosechadoras de
cereal que mediante el uso de laser y fotodetectores son capaces de determinar a qué altura se encuentra
el cultivo para adaptar mejor la cabeza de corte (Zhang et al., 2002; Cox 2002).

El uso de tecnologias de radar como es el caso del LIDAR (laser-based radar) permite la obtencién en tres
dimensiones sobre la cobertura del suelo. Dicho radar opera en el espectro visible y en el infrarrojo. Asi
mismo estos sensores son capaces de ofrecer simulaciones de fluorescencia, lo cual es de amplia utilidad
para el estudio de la salud de las plantas. También puede ser usado para monitorear la polucidn presente
en el aire (Cox 2002).

Dentro de las tecnologias de radar podemos distinguir entre el radar con base en el suelo, radar en
plataforma aérea y radar de penetracidon en el suelo (GPR, ground pentrating radar) (Cox 2002).

El radar de suelo es de gran utilidad para monitorizar el movimiento de los insectos, mientras que el radar
con base aérea y el GPR son utiles para determinar la cantidad de agua en el suelo (Cox 2002).

Uno de los principales inconvenientes a los que se enfrenta el radar, es que no se ha conseguido
miniaturizar consiguiendo unos resultados similares a los obtenidos con radares convencionales, lo que
hace dificil su implantacién en UAS (Colomina & Molina, 2014).

Recientemente se han realizado importantes avances en la miniaturizacion del radar, especialmente en
las bandas de radar P y X, que consiguen formar un modelo digital del terreno. Asi mismo también se ha
logrado un radar de banda W (A=mm) capaz de obtener una precision de hasta 15cm (Colomina & Molina,
2014).

El uso del radar es mas frecuente incorporandolo a los vuelos con avionetas, como fue el caso de los
vuelos programados por la Unidon Europea en el programa EMAC, donde se realizaban vuelos
incorporando imagenes de radar de apertura sintética (ESAR), espectrometro (ROSIS) y radiémetro de
microondas. El radar de este programa funcionaba en 4 frecuencias, X, C, L y P. Mediante este sistema
fueron capaces de determinar la humedad del suelo a una profundidad de 0 a 10cm (Su et al., 1997; Hadria
et al., 2009).

La reflectancia de las bandas de onda correspondientes a las longitudes de onda entre 400 y 2500nm, se
ve reducida cuando aumenta el contenido en agua del suelo. No obstante, existen importantes
variaciones entre los diversos tipos de suelo, ya que la reflectancia se ve afectada por la composicién del
suelo, como el contenido en materia organica, la composicién mineral, la distribucion de los tamarios...
Asi mismo dado que la sefial tiene una baja penetrancia en el suelo, esta puede verse afectada por
distorsiones causadas por las irregularidades en la superficie del mismo. El momento éptimo para realizar
estas mediciones son cuando el campo esta sin vegetacion (Muller & Décamps, 2000; Hadria et al., 2009).
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La informacién de radar se puede obtener desde satélites como el ENVISAT/ASAR. Este satélite dispone
de un sistema avanzado de apertura sintética de radar (ASAR), el cual opera a una frecuencia de 5,33GHz
y tiene una longitud de onda de 5,6cm, por lo que se trata de una banda C. Tiene 7 angulos de incidencia
diferentes, entre 15y 452, Este sistema puede ser utilizado en combinacién con los distintos espectros de
otros satélites (R, G, B, NIR). Una de sus principales utilidades es la deteccion de humedad o de rugosidad
del suelo (Hadria et al., 2009).

FLUORESCENCENCIA

Se trata de una forma de espectroscopia en la que la se estudia la fluorescencia tras la aplicacién de un
haz de luz, habitualmente luz ultravioleta. Habitualmente se estudia dos tipos de fluorescencia. La azul-
verde (400-600nm) y la fluorescencia de la clorofila (650-800nm) (Sankaran et al., 2010).

Este tipo de aparatos suelen ser de campo, ya que es necesario implementarlos en el propio campo, no
se pueden colocar en un satélite o en un dron (Sankaran et al., 2010).

Los cambios en la fluorescencia azul y verde tras la excitacion con luz ultravioleta, aporta informacién
acerca del estado sanitario de la planta. Se trata de un avance respecto de la espectroscopia, ya que en
este caso se estudia una imagen, no solo su espectro. (Sakaran et al., 2010; Bellow et al., 2012).

Se trata de un sensor de campo que determina la respuesta de la planta a la luz. Para ello se una ldmpara
y una camara de alta resolucién. Asi mismo se usa también un filtro de rayos UV. Después la fluorescencia
que emite la planta se mide mediante un filtro GFP-B (Bellow et al., 2012).

Se trata de un analisis que analiza el maximo rendimiento cuantico de la fotoquimica del fotosistema Il en
forma de (Fv/m=(Fm-F0)/Fm). Siendo Fv/Fm un parametro calculado con dos medidas, la fluorescencia
minima (F0) y la fluorescencia maxima (Fm). Cuando el tejido vegetal esta sometido a un estrés, este valor,
que para plantas sanas suele estar en el orden de 0,85 va decreciendo (Rousseau et al., 2013).
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VEHICULOS

Estos sensores pueden estar presentes en varios tipos de vehiculos: satélites, avionetas, drones y medios
terrestres (Hall et al., 2015).

SATELITES

Desde el inicio de la era espacial, se han desarrollado multitud de satélites, la mayor parte de ellos se usan
para las telecomunicaciones, sin embargo, también existen un considerable nimero de satélites que se
utilizan para teledeteccion (Cox 2002).

En los afios 60 se desarrollaron sensores remotos que podian ser utilizados en plataformas aéreas para la
observacion terrestre. En los 70, se utilizé dicha tecnologia en satélites como el Landsat (Cox 2002).

En los ultimos afos, gracias a los avances en tecnologia espacial se ha logrado conseguir imagenes de la
superficie de la Tierra a baja altitud, con el uso de LARS (Low Altitude Remote Systems). (Comba et al.,
2015)

Aun con los ultimos desarrollos en la mejora de la resolucion de las imagenes satelitales, los satélites
tienen un bajo poder de resolucién, por ejemplo, el Landsat es capaz de detectar objetos hasta 30m vy el
SPOT hasta 20m, actualmente el IKONOS es capaz de detectar objetos de hasta 4m y si se utiliza el
IKONOS-panoramic, puede llegar hasta 1m (Hahn, 2009).

Estos satélites tienen periodos de actuacidn de 16 dias para Landsat, 26 dias para el SPOTy de 1 a 3 dias
para el IKONOS. Esto supone una desventaja frente a los vuelos de avidn o drones, ya que no se pueden
utilizar siempre que se quiera, sino que Unicamente pueden ser usados cuando estan en posicidn.
Ademas, tampoco pueden operar si hay nubes altas, las cuales no afectan a los otros dispositivos (Hahn,
2009).
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Existen una gran cantidad de satélites disponibles actualmente, tal y como se puede apreciar en la tabla

1.

Tabla 1. Satélites utilizados en teledeteccion. Obtenido de http://www.satimagingcorp.com/satellite-sensors/other-satellite-

sensors/.
Nombre Agencia Ao lanzamiento  Sensores Precision
ALOS JAXA 2005, 2014, 2015 PRISM, DEMs, AVNIR-2, 2,5m (PRISM), resto
PALSAR 10m
CARTOSAT ISRO 2005 PSLV, DEMs
SPOT-5 AIRBUS 2015 MS, SWI, Pan 5m en Pan, 10m en
MSy 20 en SWI
RapidEye MDA 2008 Multi-spectral push broom 5m
imager
LANDSAT-8 NASA 2013 OLI, TIRS 30m
LANDSAT 7 ETM+  NASA 1999 ETM+ 30m
ASTER NASA 1999 DEMs, DTM, VNIR, SWIR, TIR  15m  (VNIR), 30m
(SWIR), 90m (TIR)
CBERS-2 China/Brasil 2003 CCD Cameras 20m
Sentinel-2A ESA/AIRBUS 2015 MSI 10m
GeoEye-1 DigitalGlobe 2008 MSI 0,46m
USA
GeoEye-2 DigitalGlobe 2014 MSI, DEMs, DSM, GSD 0,34m
WorldView-1 DigitalGlobe 2007 MSI, GSD 0,46m
WorldView-2 DigitalGlobe 2009 MSI (B&W), GSD 0,46m
WorldView-3 DigitalGlobe 2014 MSI, SWIR, CAVIS, GSD 0,31m
Pleiades-1A AIRBUS 2011 CE90, GCPs, MSI 0,5m
Pleiades-1B AIRBUS 2012 MSI (B&W), CE9O 0,5m
KOMPSAT-3A KARI 2015 AEISS, MSI, PAN, MWIR, 0,55m
GSD, CCD
KOMPSAT-3 2012 JAXA, KARI MSI, PAN, GSD, CE90, CCD 0,7m
QuickBird 2001 DigitalGlobe MSI, CE90, 0,65m
IKONOS 1999 DigitalGlobe MSI, 3D DTMs, DEMs 0,82m
SkySat-1 2013 SkyBox MSI, PAN 0,9m
SkySat 2014 SkyBox MSI 0,9m
TerraSAR-X 2007 AIRBUS 2D SAR, DEM, MSI, ATI HRSL (1m), SSL
(0,25m), StripMap
(3m), ScanSAR
(18,5m),
WideScanSAR (40m)
SPOT-6 2012 AIRBUS MSI, GSD, CE9O 1,5m
SPOT-7 2014 AIRBUS MSI, GSD 1,5m

Cada vez son mas los satélites que estan disponibles tanto de forma gratuita como de forma comercial,

asi mismo cada vez tienen mejores prestaciones.
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AVIONETAS

Los vuelos mediante avionetas suelen realizarse a unos 3km de altura. Las condiciones de vuelo son
determinantes, ya que debe realizarse a una hora en la que el sol no incida de forma directa ni haya
problemas con la nubosidad para poder obtener las imagenes de forma mas facil.

En la mayor parte de los casos los vuelos suelen ser programados por agencias estatales, ya que requieren
una fuerte inversion. La planificacion del vuelo es un factor muy importante, ya que tiene existir cierta
superposicion de la imagen, y durante el vuelo pueden darse factores como el viento que dificulten el
paso por los puntos programados. (IGN)

Este tipo de vehiculos se utilizan para cargar con sensores de gran peso o que requieren mucha estabilidad
como puede ser el caso del radar (Su et al., 1997).

DRONES

Existen diversos tipos de vehiculos aéreos que podrian ser considerados drones, como es el caso de los
globos aerostaticos, zeppelines, bombas o cohetes, no obstante, este tipo de artefactos estan excluidos
de la denominacion de dron. Sin embargo, no existe una clara distincién entre el dron y el avion de
aeromodelismo. Los drones suelen estan clasificados en uso comercial (fines lucrativos, didacticos...)
mientras que los aviones de aeromodelismo se clasifican en uso recreativo. Por lo que la diferenciacién
entre ambos se debe al uso que se va a hacer de ellos. El origen de estos, es de tipo militar, aunque hubo
otros tipos de aparatos no tripulados como el uso de balones equipados con camara fotografica, cohetes
o incluso gorriones equipados con camara (Colomina & Molina).

Los drones son vehiculos aéreos que no requieren de piloto. Este tipo de vehiculos ha proliferado mucho
durante los ultimos afios debido a su bajo coste y su elevada funcionalidad. El desarrollo de este tipo de
vehiculos ha sido posible gracias a los ultimos avances en computacion, que han permitido crear software
capaz de controlar la estabilidad en vuelo de estos aparatos con un tamafo reducido. La principal
aplicacién de los drones es el uso militar, sin embargo, también tienen importantes usos en otros sectores.
Los drones deben disponer de varios sensores como girdscopos, acelerémetros, sensores
electromagnéticos, GPS... para poder computar a tiempo real la aptitud de vuelo, posicidn y relacién con
respecto a obstaculos. De hecho, este tipo de sensores hacen que el control de estos datos sea mucho
mas eficiente que si se realizase de forma manual. Algunos drones permiten el vuelo auténomo, es decir,
que describa una trayectoria determinada con anterioridad (Clarke 2014; Colomina & Molina, 2014).

Los drones se pueden agrupar en tres categorias:

- VLOS (Visual Line of Sight), este tipo de drones dependen de que el piloto pueda ver el dron
sin ayuda de sensores o instrumentos, como ha sido el caso hasta ahora de los
aeromodelismos.

- FPV (First Person View), el piloto es ayudado por sensores de video o imagen.

- IBO (Instrument Based Operation), en estos drones el piloto se ayuda de una serie de datos
y equipos que gestionan dichos datos.

Uno de los mayores problemas a los que se enfrentan los drones es la recepcion de la sefial, la cual se ve
afectada por interferencias, especialmente en dreas urbanas en las que hay una elevada densidad de
telecomunicaciones. Estas pueden suponer un problema de seguridad al perder el piloto el control del
aparato, aunque actualmente la mayor parte de estos aparatos, especialmente los de un bajo rango de
vuelo usan tecnologia Wi-Fi (Clarke 2014; Colomina & Molina, 2014).
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La legislacion aplicable a estos vehiculos depende de varios factores, tales como el peso, dimensiones y
altura de vuelo. En Europa la legislacién de este tipo de aparatos pasara de depender del Estado a
depender de la Uniéon Europea a partir de 2016 (Colomina & Molina).

De acuerdo con el tamafio del dron podemos distinguir varios tipos de drones:

- Grandes drones (Large Drones): tienen el tamaifio de un avidn o vehiculo aéreo pilotado, de
un minimo de 100-150kg.

- Mini-drones: son drones de un tamano comprendido entre los 100-20kg.

- Micro-drones: drones con un tamaino comprendido entre los 20-0,1kg.

- Nano-drones: drones con un peso inferior a 0,1kg.

Los drones tienen numerosas aplicaciones:

- Sureducido tamafio hace que sean muy manejables.

- Dan acceso facilmente a areas de dificil acceso terrestre.
- Permiten obtener perspectiva aérea de forma econdmica.
- Permite tomar imagenes aéreas.

- Hacen posible la entrega automatica de articulos.

- Permite hacer pequefios tratamientos localizados.

- Uso militar de espionaje, deteccion y ataque.

- Busqueda de personas u objetos desaparecidos.

- Manejo de situaciones de emergencia como inundaciones, terremotos...
- Lucha contra incendios.

- Monitorizacién del tiempo.

Se han venido equipando con una serie de sensores para darle una mayor aplicabilidad tales como
sensores electromagnéticos (imagen, video, infrarrojos, emisiones de radio...) u otros tipos de datos como
meteoroldgicos, bioldgicos, magnéticos, geofisicos, sonidos... Sin embargo, una de las principales
limitaciones tecnoldgicas es su baja autonomia, que en algunos casos esta en los 10-15min (Clarke 2014).

Se estan produciendo incidentes relacionados con drones, que hace que sea cada vez mds importante la
aplicacién de una regulacion para este tipo de aparatos (Clarke 2014; Colomina & Molina, 2014).
Actualmente, se estima que, en EEUU, el 80% de los drones vendidos, lo serdn para uso agricola. Sin
embargo, el uso agricola de este tipo de vehiculos en EEUU esta muy limitado debido a la restrictiva
legislacion que tienen. Las mayores restricciones se deben a su posible caida en zonas de transito y a la
problematica de sobrevolar areas privadas (Freeman & Freeland, 2014).

En Espafia, la legislacidn mas reciente sobre el uso de drones, es de marzo de 2016. En el que segun la ley
18/2014 se requiere disponer de un carnet de piloto de dron, para poder manejar uno de estos aparatos
en Espafia. Asi mismo, esta ley prohibe a los drones sobrevolar zonas urbanas, si no se dispone de
autorizacién por parte de la Asociacion Espaiola de Seguridad Aérea. No obstante, se trata de una ley
temporal, y se espera que en 2017 se apruebe una nueva ley que sustituya a la 18/2014 (BOE, 2014).
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Tabla 2. Comparativa de las caracteristicas de los drones, aviones y satélites. Obtenida de Matese et al., 2015.

Dron Avion Satélite
Distancia cubierta Baja Buena Optima
Flexibilidad de vuelo Optima Buena Baja
Duracién del vuelo Baja Optima Optima
Dependencia de la nubosidad Optima Buena Alta
Fiabilidad Normal Buena Optima
Carga Normal Buena Optima
Resolucion Optima Buena Normal
Precision Optima Buena Normal
Tiempo de mosaicado y geoprocesamiento Alto Normal Optima
Tiempo de procesado Normal Buena Buena

MEDIOS TERRESTRES

Habitualmente, al hablar de teledeteccion se tiende a identificar la teledeteccidn con el uso de medios
aéreos, sin embargo, también puede realizarse a través de medios terrestres como puede ser un tractor,
un coche, un quad o incluso un robot (Boon et al., 2005).

Implementar en el propio tractor los sensores tiene la ventaja de que no es necesario hacer un trabajo a
parte para obtener los datos, sino que a la par que se realiza una tarea (como puede ser una siembra, un
tratamiento...) se realiza también la obtencion de datos (Boon et al., 2005).

Por ejemplo, en un estudio realizado por Boon et al., en 2005 se equipd un penetrémetro en un tractor
para que realizando un pase similar al que haria un chisel, ofreciera valores de la resistencia a la
penetracidn en toda la parcela.

Otra de las aplicaciones del uso de medios terrestres, es la determinacion de la florescencia de la clorofila.
Como se ha explicado anteriormente, no es posible determinar la florescencia por medios aéreos debido
a que se requiere estar cerca de la vegetacién y a que los sensores son de gran tamafio, sin embargo, si
que es posible montar los sensores para determinar la florescencia de la clorofila en un quad, y medir en
continuo su variabilidad en las distintas zonas de estudio (Diago et al., 2016).
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INDICES OBTENIDOS POR TELEDETECCION QUE SE USAN EN CULTIVOS

La mayor parte de los indices de vigor se basan en los métodos de espectroscopia. Es decir, se basan en
la distinta reflectancia que tienen a las distintas longitudes de onda. Existen numerosos indices, esta
revision se centrara Unicamente en los mas utilizados (Sankaran et al., 2010).

NDVI

El NDVI (Normalized Difference Vegetation Index) es uno de los indices de vegetacion mas usados en
teledeteccion. Se trata de una relacidn entre las bandas del Infrarrojo cercano y el rojo, que viene definido
por la ecuacion 1: (Manrique, 1999; Hall et al., 2003; Rodriguez-Pérez 2008; Rabatel et al., 2014)

NIR—-RED
NIR+RED

Ecuacion 1: NDVI =
Se trata de una transformacidén no linear del RVI (ratio vegetation index), que viene definido como NIR/R,
de forma que la expresién del NDVI, queda transpuesta al rango entre +1y -1 (Rabatel et al., 2014).

NIR-RED _ RVI-1
NIR+RED ~ RVI+1

Ecuacion 2: NDVI =

No obstante, existen una gran cantidad de variaciones de la expresion del NDVI, que realizan correcciones
en funcidn de las condiciones ambientales. (Manrique, 1999)

Basicamente, lo que mide este indice es el vigor de la vegetacion. Esto es posible debido que las plantas
absorben buena parte de las bandas del espectro visible, mientras que producen una fuerte reflexién del
infrarrojo cercano. Por ello se busca la relacidn entre el infrarrojo cercano (700-1300nm) y el rojo (650nm)
(Manrique, 1999).

En suelos oscuros se dan valores mas altos de NDVI que en suelos claros para una misma vegetacion, este
efecto es de especial importancia en suelos que tienen una baja densidad de vegetacién, como podria ser
el caso de los vifiedos (Rodriguez-Moreno & Bullock, 2013).

La reflectancia del rango visible se incrementa con el aumento de la severidad del estrés. Mientras que la
reflectancia del infrarrojo cercano se ve reducida en funcién de cdmo evoluciona el estrés (Manrique,
1999).

El NDVI es mas sensible a vegetaciones bajas en pixeles mezclados que en otros indices como el LA, el
RNDVI o el SAVI (Hall et al., 2015).

Uno de los usos que ha llegado a tener este indice es el de monitorizar la evoluciéon de diversas
enfermedades vegetales (De la Roque et al., 2004).

Habitualmente, las plantas sanas, con elevada masa vegetativa tienen un valor cercano al 1, mientras que
plantas con poca masa vegetativa o enfermas pueden tener valores que rondan el 0. Los valores negativos
solo se suelen observar en objetos no vivos (Hall et al., 2015).

Unas de las principales virtudes del NDVI es que no depende de la intensidad de la luz reflejada, ya que la
reduccién producida por una sombra, se vera reducida aproximadamente en la misma magnitud en el
resto de bandas (Hall et al., 2015).
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SAVI

El SAVI (Soil Adjusted Vegetation Index) es el indice de vegetacién con ajuste del suelo. Este indice
representa el vigor y la estructura de la representacién, pero ademas incluye un ajuste arbitrario para la
cobertura incompleta del suelo (Rodriguez-Moreno & Bullock, 2013; Rodriguez Perez 2008).

Este indice esta menos afectado por las variaciones en el brillo del suelo, por lo que aporta valores que
tienen una mayor independencia respecto al reflejo del suelo (Rodriguez-Moreno & Bullock, 2013).

SAVI = (NIRo,76-0,00=NIRg,63-0,69)1,5
(NIRo,76-0,90+REDg 63-0,6911,5)

Ecuacién 3:

Este indice es de gran utilidad para determinar el efecto de la salinidad del suelo, en areas con una
densidad de vegetacion alta (Allbed et al., 2014).

PCD

El PCD (Plant Cell Density) es un indice usado en viticultura de precision. Se trata de un indice de vigor,
similar al NDVI. (Arnd et al., 2009)

Se calcula como el ratio entre la reflectancia del infrarrojo cercano y la reflectancia del rojo:

Ecuacién 4 PCD = %

Un mayor valor de PCD implica un mayor vigor de la planta, ya que implica que la planta esta reflejando
una mayor cantidad de radiacion infrarroja, respecto a la que absorbe de rojo. Dado que en el rojo se
produce una importante absorcidn de energia para la fotosintesis (Arnd et al., 2009).
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WCSI

El WCSI indica el estrés producido por la deficiencia hidrica. Esto se ve en un aumento de la temperatura
de la hoja y un descenso en la transpiracion de agua (Ghulam et al., 2008).

Se puede determinar mediante el uso de sensores termales (Ghulam et al., 2008).

Anteriormente se realizaba el calculo del WDI (Water Deficit Index), que incorpora tanto la diferencia de
temperaturas entre los objetos y el aire como el NDVI, sin embargo, no es capaz de distinguir entre la
evaporacion de agua del suelo y la evaporacion del agua de las plantas.

Mediante el uso de satélites se puede determinar el FMC (Fuel Moisture Content), que es la ratio entre el
contenido de agua y el peso en seco. Esto se puede determinar, ya que el peso en seco se correlaciona
con el NIR, mientras que el contenido en agua viene correlacionado con SWIR. A medida que aumenta el
contenido de agua del cultivo aumenta su reflectancia de SWIR, mientras que disminuye la reflectancia
del NIR (Ghulam et al., 2008).

Para calcular el WCSI mediante imagen térmica, se toman dos referencias, la Twet (Temperatura de planta
bien hidratada) y Tary (Temperatura de la planta seca). Para medir estos pardmetros se suele utilizar el
WARS (material himedo artificial de referencia) (Méller et al., 2007).

Ecuacidn 5: wCs] = leanopyTwet
Tdry_Twet
Como alternativa al uso de sensores termales, existe la posibilidad de obtener datos acerca del estrés
hidrico mediante el estudio de la reflectancia de infrarrojos de onda corta (SWIR). No obstante, es
complicado realizar este tipo de analisis desde satélite, ya que todavia no se ha conseguido alcanzar la
resolucién suficiente para poder analizar las hojas mediante el infrarrojo (Ghulam et al., 2008; Lee et al.,
2010).

., R
Ecuacion 6: wcsl = 20nm
R970nm
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APLICACION AGRICOLA DE LOS INDICES OBTENIDOS A TRAVES DE TELEDETECCION

Todos estos indices deben correlacionarse con alguna caracteristica de interés agronédmico, como puede
ser la presencia de estrés hidrico, carencias de nutrientes, presencia de enfermedades... (Sankaran et al.,
2010). En este apartado se enumeran ejemplos en los que se correlacionan distintos indices con
informacion de interés en la vifia, principalmente la presencia de enfermedades.

Uno de los principales problemas que existen para correlacionar el problema de interés con un
determinado indice, es la separacion de los elementos que no corresponden al cultivo (esto es
especialmente complejo en cultivos perennes como frutales o vifiedos). Para ello, primero es necesario
separar los elementos que no corresponden al cultivo, tales como carreteras, caminos, suelo, arboles...
Esta tarea es compleja, y requiere de mucha interaccién con el usuario, sin embargo, se estan
desarrollando numerosos algoritmos para ayudar a automatizar esta tarea (Comba et al., 2015).

En cuanto a deteccion de enfermedades, las técnicas mas habituales para detectar la presencia de una
enfermedad, son el uso de PCR o ELISA, que se basan en la deteccion de un determinado fragmento de
ADN o de una proteina de la enfermedad. Sin embargo, estas técnicas son muy costosas, y no son capaces
de aplicarse a gran escala (Sankaran et al., 2010).

Por ello, para la deteccién de enfermedades a gran escala es mds eficaz usar técnicas indirectas como el
tratamiento de imagenes que el uso de técnicas directas como el estudio bioquimico (PCR y ELISA), ya que
su coste es menor (Sankaran et al., 2010).

La teoria que permite detectar enfermedades mediante el uso del espectro electromagnético es que las
plantas sanas absorben, emiten, transmiten y producen fluorescencia electromagnética de forma distinta
a las plantas enfermas (Lee et al., 2010).

Una hoja sana tendra:

- Bajareflectancia en el espectro visible, debido a que los pigmentos fotoactivos, es decir, las
clorofilas, antocianinas y carotenoides, absorben la radiacion visible.

- Elevada reflectancia en el infrarrojo cercano (NIR), debido a la dispersidn de zonas de aire
entre las células del tejido interno.

- Baja reflectancia de las bandas del SWIR debido a la absorcién del agua, proteinas y
compuestos carbonados.

- Debido al mayor contenido en agua de las hojas sanas, se comportan mas como un cuerpo
negro, de forma que emiten radiacion en el infrarrojo termal de acuerdo con su
temperatura.

Las alteraciones en la reflectancia se deben a que las plantas sanas parecen mas verdes (550nm) debido
a la eficiencia con la que absorben el resto de los colores. Los cambios producidos por enfermedades se
suelen dar en el rojo (670nm) (Lee et al., 2010).

En especies de interés agrondmico, como la cebada existen estudios en los que relacionan indices
obtenidos a través de teledeteccidn con la presencia de una determinada enfermedad. Por ejemplo, en
la cebada la roya amarilla existe una correlacién entre el NVDI y la presencia de dicha enfermedad
(Moshou et al., 2004; Moshou 2005).

Para el estudio de enfermedades en la vid el indice mas habitual es la diferencia en la fluorescencia
(Rdf=Fv/Fm), es decir la relacién entre la fluorescencia minima y la fluorescencia maxima. Esto indica el
funcionamiento o cantidad de clorofila. En presencia de una enfermedad, este indice baja, como se puede
observar en la vid cuando esta afectada por yesca (Christen et al., 2007).
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Usando los valores de la flourescencia de la clorofila (Fv/Fm) se puede calcular de forma cuantitativa su
resistencia a una determinada enfermedad o estrés. Esto se ha usado de forma habitual para realizar
estudios sobre la respuesta de la vid a diversas enfermedades (Rousseau et al., 2013).

Existen estudios en los que se relaciona mediciones realizadas con SPAD o con NIR, con la presencia de
filoxera en la vid. Esto se debe a que la enfermedad empieza a manifestarse con una reduccion en el
contenido de clorofila, de forma que también puede ser observable con el uso del NDVI (Baldy et al.,
1996).

La humedad de la hoja es uno de los factores determinantes a la hora de detectar enfermedades causadas
por bacterias y hongos, dado que a mayor tiempo en el que la hoja esta humeda, mayor riesgo de que se
produzca una infeccién (Hahn, 2009).

Mediante el uso de imagenes en infrarrojo es posible determinar la presencia de mildiu. En su estudio,
Stoll y su grupo, observaron que aquellas cepas de vid que habian sido infectadas con mildiu presentaban
una diferencia de temperatura con respecto a la temperatura ambiente, menor que las plantas sanas. Las
plantas estresadas presentan una temperatura mas similar a la del entorno, debido a que hay una menor
transpiracion (Stoll et al., 2008).

Mediante el uso combinado de tres indices, NDVI, GNDVI y SAVI, obtenidos a través de una camara
multiespectral en un dron, fue posible detectar una zona de vifiedo en la que habia presencia de yesca y
podredumbre de la raiz. Ademas, se detectd que otra zona estaba con estrés nutricional, por lo que era
mas vulnerable a dicha enfermedad (Candiago et al., 2015).

Mediante la obtencién de imagenes hiperespectrales de distintos clones de vid, es posible crear indices
que permiten distinguir entre los distintos clones de vid (Diago et al., 2013).
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USO DE MAPAS DE VIGOR, GPS Y TRACTORES INTELIGENTES EN LA APLICACION DE
INSUMOS

El uso de estas tecnologias permite ahorrar una considerable cantidad de dinero, debido al ahorro que
puede producirse en inputs como fertilizante o pesticida, ya que se puede realizar el tratamiento
Unicamente en la zona afectada (Seelan et al., 2003).

La mayor parte de las tecnologias de agricultura de precisidn se basan en el uso de sistemas de gestion de
tipo SCADA. Un sistema SCADA se compone de un sistema de adquisicion de informacidn, un sistema de
transferencia a la central, un analisis y control de la informacion en la central, asi como un sistema de
transferencia de las decisiones al control del proceso. Este tipo de sistemas ya se han implementado en
sistemas de regadio, mediante una serie de sensores colocados en las tuberias de forma que detecten
tanto los cambios en la presion, el caudal... todo eso pasa la informacion a un controlador, el cual puede
ser manejado de forma remota con un ordenador, y a su vez puede modificar el funcionamiento de las
bombas y demas equipamiento. (Duran-Ros et al., 2008)

En un tractor, el centro de control y andlisis suelen estar situados en la pantalla del tractor. Desde dicha
pantalla se gestionar toda la informacion de los sensores que incorpora tanto el tractor como los distintos
equipos que esté portando dicho tractor.

Uno de los elementos de mayor importancia dentro de un tractor inteligente, es el sistema de GPS. Este
sistema es capaz de obtener la posicidn del tractor a partir de la sefial obtenida a partir de los distintos
satélites de posicionamiento global (ya sean Navstar-GPS, Glonass o Galileo) y en algunos casos a partir
de estaciones de tipo RTK, que son capaces de corregir la sefial GPS y mejorar su precisiéon (Han et al.,
2015).

A medida que se aumenta la precision del sistema GPS, aumenta su coste. Por ello, es importante ajustar
la precisidon de acuerdo a la tarea que va a ser gestionada por la posicion GPS. Ya que, por ejemplo, para
realizar labores como preparacion del terreno o pulverizaciones, no se requieren precisiones mayores de
50cm, sin embargo, para otras tareas como la siembra se requiere una precisidon que este por debajo de
los 5¢cm (Zhang et al., 2002).

El uso del GPS hace posible el autoguiado. El cual, no solo facilita el trabajo al operario, sino que ademas
permiten un ahorro de combustible, asi como una disminucién en la emisidn de gases de efecto
invernadero, ya que el software del sistema de guiado esta optimizado para que el motor funcione con el
menor consumo posible (Coen et al., 2008; Cayacan et al., 2015; Scarlett, 2001).

En cuanto a los tratamientos fitosanitarios, habitualmente se tiende a aplicar los pesticidas de forma
uniforme por la parcela. Si se realizara la aplicacion de pesticidas de acuerdo a la presencia de la peste a
eliminar, se disminuiria considerablemente el impacto ambiental y se produciria una disminucién de los
costes de insumos. En el caso de los herbicidas se puede hacer uso de las camaras CCD y software de
analisis de imagen para discriminar entre cultivos y malas hierbas a tiempo real, aunque también se puede
hacer con mapas anteriormente obtenidos (Dammer & Wartenberg, 2007; Carrara et al., 2004).

La forma mas habitual de realizar una aplicacién variable de pesticida es mediante la técnica denominada
On-Off, en la cual se realiza aplicacion en aquellas zonas en las que el GPS habia indicado que era necesario
realizar tratamiento. Esta forma tiene la desventaja de que no es posible regular la cantidad de pesticida
de acuerdo con la presencia de la peste a eliminar, sino que las Unicas opciones son tratar o no tratar. En
contraposicion a esta técnica estd la aplicacidn variable en la cual es posible ajustar la dosis que se esta
aplicando mediante la modificacién de la presidn de la valvula (Carrara et al., 2004).
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Este tipo de sistemas deben tener un buen sistema de control de fallos, ya que al tratarse de alta
tecnologia el operario puede no ser capaz de detectar fallos en el sistema. Estos sistemas son demasiado
complejos como para detectar fallos de forma analitica debido a su interaccién con el material bioldgico,
por ello se hace uso de modelos matematicos para detectar el patrén de dichos fallos (Craessaert et al.,
2010).

ENFERMEDADES DE LA MADERA EN LA VID (YESCA)

Se trata de una enfermedad conocida desde antiguo, que es mas comun en paises calidos, aunque
actualmente se trata de una enfermedad extendida ampliamente por todo el mundo (Marchi et al., 2006).

Entre los hongos causantes de la enfermedad estdn Botryosphaeria obtusa, Fomitiporia punctata,
Phaeoacremonium aleophilum, Phellinus igniarius, Phaeomoniella chlamydospora, Stereunt hirsitum. Asi
mismo se ha detectado una baja presencia de Cylindrocarpon spp., Eutypa lata y Botryosphaeria dothidea
(Andolfi et al., 2011).

Esta enfermedad es capaz de infectar a la cepa a partir de heridas producidas durante la poda. Si no se
aplican medidas preventivas durante la poda, como podria ser podar en ultimo lugar las cepas afectadas
por yesca, se puede producir infecciones del resto de cepas, transmitiendo la enfermedad a través de la
tijera de poda (Bertsch et al., 2013; Sosnowski et al., 2008).

Otra via de infeccién, es durante el proceso de propagacion en el vivero. Ya que se ha detectado casos en
los que, los materiales parentales del vivero estaban infectados con yesca, por lo que, al propagarlos en
el vivero, pasan la enfermedad a las cepas obtenidas a partir de dicho material vegetal. Esta via de
propagacion es la mas sencilla de eliminar, ya que haciendo un cultivo de meristemos del material
parental se puede lograr eliminar de la planta los patdgenos causantes de la yesca (Bertisch et al., 2013;
Sosnowski et al., 2008).

En primavera su propagacidn a través de la planta se ve favorecida debido a la intensa circulacién del
agua. A temperaturas altas, los tejidos afectados por esta enfermedad no son capaces de mantener la
elevada evapotranspiracion que causa la enfermedad, causando asi que dichos tejidos se marchiten
(Andolfi et al., 2011).

La velocidad de la enfermedad se ve afectada por el tipo de suelos, actuando a mayor velocidad en suelos
arcillosos, profundos y frescos, mientras que en suelos silicicos o calizos actua de forma mas lenta
(Calzarano et al., 2014).
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SINTOMAS

En su forma lenta suele afectar a la vegetacién de uno o mas brazos de la cepa. Dichos sintomas pueden
aparecer durante la floracion o durante el verano. Se trata de decoloraciones interviales, en los bordes de
las hojas. Estas decoloraciones tienen un color amarillento en las variedades blancas, y rojizas en las
variedades tintas. Las decoloraciones van confluyendo y secandose en el centro, llegando al causar la
caida de las hojas y que los racimos pierdan peso o lleguen incluso a secarse (Andolfi et al., 2011).

Figura 3. Primeros sintomas en las hojas. Obetenido de Andolfietal., Figura 4. Sintomas en la madera. Obtenido de Andolfi et al., 2011.
2011.

En la figura 1, se puede apreciar los sintomas visuales de la enfermedad tanto en la hoja (clorosis que
tienen a confluir en el centro), como en los racimos (que se secan). En la figura 2, se puede apreciar con
mas detalle los sintomas visuales. En la figura 3, se aprecian los primeros sintomas de la enfermedad en
las hojas (Andolfi et al., 2011). En la figura 4, se puede apreciar el oscurecimiento de la madera, causado
por la presencia de yesca (Andolfi et al., 2011).

Cuando actua de forma rapida, la cepa vigorosa se mustia, tomando un color verde grisaceo y acaba por
secarse en pocos dias (Beltran et al., 2004).

En la madera se puede observar, en un corte transversal como el centro de la madera queda algo amarilla,
rodeada por una zona de madera oscura y un anillo de madera sana (Beltran et al., 2004).

El inicio de la zona atacada estd en una herida de un tamafio superior al normal. La enfermedad no llega
al patrdn, de forma que puede rebrotar (Beltran et al., 2004).

De acuerdo con algunos estudios, como el de Letousey de 2010, las cepas manifiestan sintomas
fisioldgicos, que aparecen antes que los sintomas visuales. Entre estos sintomas estd el descenso en la
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tasa fotosintética, se reduce la tasa de intercambio de gases y un poco antes de manifestar los sintomas
visuales, las cepas manifiestan sintomas similares al estrés hidrico.

Ademas, el dafio causado por la yesca no estd directamente relacionado con la presencia de los hongos
en la cepa, sino con la manifestacién de sintomas en las hojas. Los sintomas son causados tanto por la
respuesta de los metabolismos de defensa de la cepa, los cuales son activados con la actividad de los
patdgenos, aunque no siempre se activan, como por micotoxinas producidas por los hongos causantes de
la yesca, los cuales tampoco se producen de forma uniforme, sino que su aparicion varia en funcion de las
condiciones ambientales. Esta es la causa por la que, dependiendo del afio y de la zona, aparezcan
sintomas o no de yesca (Calzarano et al., 2014; Andolfi et al., 2011).

Uno de los factores que aumenta la activacion de los factores causantes de la yesca, es el aumento de
humedad del suelo, a mayor humedad se incrementa la incidencia de la enfermedad. Otro de los factores
que intervienen en el desarrollo de la enfermedad es la nutricion. En las plantas que no tienen problemas
nutricionales, la presencia de sintomas disminuye. Este efecto se da especialmente con las carencias de
calcio y magnesio (Calzarano et al., 2014).

Existe un trabajo muy reciente, en el que se monitorizaron las cepas afectadas por yesca durante dos
afios. Tomaron muestras de 500 cepas, y registraron su evolucién. Con ello consiguieron detectar qué
cepas estaban infectadas por los patdgenos causantes de la yesca, y ente dichas cepas, cuales presentaban
sintomas y cuales no. Realizaron distintos vuelos con cdmara multiespectral para obtener su indice NDVI,
y tras analizar los datos, obtuvieron diferencias significativas entre los valores NDVI de las cepas sanas, las
asintomaicas y las afectadas con yesca (Di Genaro et al., 2016).
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Figura 5. Valores de NDVI en distintos momentos de los afios 2012 y 2013. Las cepas sanas (C), cepas enfermas no sintomaticas

(A) y cepas enfermas sintomaticas (S). Obtenido de Genaro et al., 2016.

25




CONTROL DE LA ENFERMEDAD

Para su control se puede desinfectar las herramientas de poda, podar en ultimo lugar las cepas afectadas,
qguemar los restos de poda, cubrir heridas de poda con un producto protector, abrir el tronco afectado
con un hacha y evitar que la herida se cierre, de forma que el hongo se seque con el aire (Beltran et al.,
2004).

En cuanto a los métodos de control quimico de la enfermedad, actualmente se carece de un método
efectivo. El Unico producto que era capaz de controlar la enfermedad era el arsenito sddico, sin embargo,
fue prohibido debido a su toxicidad. Tras la prohibicion del uso de este producto, no existe en el mercado
un producto capaz de controlar la enfermedad, aunque si que existen algunos productos capaces de
reducir los niveles de infeccién (Bertsch et al., 2013).

En cuanto a los productos capaces de reducir los niveles de infeccién, encontramos los compuestos del
cobre, los benzimidazoles o los triazoles. Sin embargo, su uso no estd muy extendido debido a la baja
efectividad, y a los problemas de toxicidad que pueden ocasionar (Bertsch et al., 2013; Diaz & Latorre,
2013).

Tras la prohibicion del uso de arsenito sodico, se han desarrollado y probado numerosas materias activas,
como es el ejemplo del compuesto comercial Escudo®, el cual es un fungicida compuesto de 5g/l de
flusilazol y 10g/I de carbendazamida de la casa comercial DuPont. Dentro de esta enfermedad es capaz
de controlar de forma eficaz Phaemoniella chlamydospora y Phaeoacremonium aleophilum, asi mismo
también es capaz de controlar Eutypa lata (Marquez, 2003).
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MATERIAL Y METODOS

ZONA DE ESTUDIO

La zona de estudio se localiza en unas parcelas pertenecientes a la empresa Vifias del Vero. Dichas parcelas
se encuentran en el municipio de Barbastro, en el paraje conocido como Coronas. Se han estudiado dos
fincas, Arce y Canudo. Ambas fincas estan plantadas con la variedad de uva Cabernet Sauvignon, mismo
patrén (SO4) y mismo clon (170). El marco de plantacién es el mismo (3mx1,5m).

Se trata de parcelas con riego por goteo. Las dos parcelas se encuentran en la misma zona, lindando una
con otra. Al estar situadas en una zona de Corona, presentan una elevada pedregosidad y una baja

profundidad de suelos.

Figura 6. Localizacion de las parcelas estudiadas.
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CAMARA MULTIESPECTRAL

Se usé la camara Tetracam ADC Micro. Esta cdmara tiene las siguientes prestaciones:

- 3bandas (verde, rojo e infrarrojo) las mismas que el Landsat (TM2, TM3, TM4)

- Resolucion de 2048 x 1536 pixeles

- 16GB de memoria

- Lentes de alta calidad de 8,43mm

- Las iméagenes se guardan en formato RAW con metadatos como los datos del vuelo (posicion
GPS, altitud...)

- Rango de 520nm a 920nm

- Longitud focal: f/3,2

- 90g de peso

- Dimisiones de 75mm x 59mm x 33mm

- Trabaja a temperaturas ente 32 y 1042 y con humedad menor de 85% (por condensacion)

- Consumo de 2W

Tabla 3. Resolucién de las imagenes en funcién de la altura de vuelo. Obtenido de http://www.tetracam.com/.

Altura de vuelo Resolucion del suelo en mm por pixel FOV (ancho por alto en m)
122m 46,3 95x71
213,4m 81 165 x 125
365,8m 138,8m 284 x 213
915m 347 711x 534

Se puede tomar las imagenes de forma manual pulsando el botdn situado en la parte superior de la
camara. Asi mismo también existe la posibilidad de utilizar un temporizador que realice disparos en un
intervalo dado. Otra forma de toma la imagen es mediante el uso de un conector multi-ES (pin Take Pic
que dispara la cdmara a distancia).

Desde el ordenador existen varias formas de disparar la cdmara, ya sea mediante el interfaz del USB o
habilitando un comando. O el uso de una aplicacidon que habilite la cdmara de forma que dispare en los
waypoints establecidos.

Una vez capturada la imagen, la camara pasa las imagenes en formato RAW, que contiene los nimeros
digitales correspondientes a cada banda en cada pixel. Dichos nimeros digitales se pueden transformar a
la reflectancia de cada banda mediante el uso de unos correctores que varian en funcién de la situacidn
atmosférica en el momento de tomar la imagen.

Sin embargo, en este proyecto no se ha podido trabajar con la reflectancia de cada banda, ya que la
empresa encargada de realizar el vuelo no ofrecié datos sobre los factores de correccion que habian
utilizado para obtener las imagenes de NDVI y PCD. Por ello, cuando se trabaje con la imagen
multiespectral se trabajara con DN (Digital Numbers) y no con reflectancia, aunque en el caso del NDVIy
PCD si que han sido calculados con las reflectancias.

El DN es el valor asignado a un determinado pixel. Se trata de un valor de 8bits que puede estar entre O y
255. A partir de estos valores es posible calcular la reflectancia. Un DN de 0 implica que no hay
reflectancia, y un valor de 255 implica que la reflectancia es maxima.
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Figura 7. Camara multiespectral Tetracam (http://www.tetracam.com/).

Figura 8. Camara térmica Miricle (http://www.thermoteknix.com/).
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CAMARA TERMICA

Se usé una camara térmica Miricle 307 KS (Thermoteknix System, UT), la cual tiene las siguientes
caracteristicas:

- Resolucién de 640 x 480

- Respuesta espectral entre 8pmy 12pm

- Tamafio de pixel de 25pm

- Tiempo de respuesta de 7ms

- Sensibilidad menor de 50mK

- Consumo de 3,7W

- Zoom digital de x2, x4, x8, x16

- Pesode 166g

- Dimensiones de 57,6mm x 45mm 522,5mm

A 150m de altura se obtiene una resolucidn espacial de 40cm.

DRON

Para cargar con dichos sensores se utilizd un dron de ala fija. En este caso fue el modelo comercial

Skywalker (Airelectronics).

Figura 9. Dron de ala fija Skywalker (http://www.airelectronics.es/).

Dicho dron cuenta con un sistema autopiloto que es capaz de gestionar todos los sistemas de vuelo y de
control de sensores (cdmaras que incorpore). Para que este sistema funcione correctamente, requiere de
una estacion de tierra, que se denomina U-Ground.
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Figura 10. Sistema de control de vuelo del dron de ala fija Skywalker (http://www.airelectronics.es/)

Tiene un peso de 1,3kg (sin contar los posibles sensores que se le puedan poner). Su autonomia de vuelo
es de alrededor de 1 hora de vuelo.

31



CALIBRACION DE LA IMAGEN TERMICA

Se colocaron dos lonas testigo en el campo para calibrar la imagen. Posteriormente se midié la
temperatura de dichas lonas usando una pistola térmica.

Con esto se obtuvieron los valores que se correspondieron con los valores de la ortofoto, tal y como se
puede apreciar en la tabla 3:

Tabla 4. Calibracion de la camara térmica.

Temperatura Valor en la ortofoto
Lona fria (blanco) 34,59 29847
Lona caliente (negro) 65,32 30492

Con estos datos se realiza una regresidn para conocer la temperatura que corresponde a cada valor en la
ortofoto.
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GPS

Se utiliz6 el GPS Leica GS15. Es un GPS con correccidon RTK, lo cual quiere decir que utiliza una tarjeta SIM

(las utilizadas por las compafiias telefénicas en nuestros méviles) para realizar correcciones en la sefial
que obtiene desde los distintos satélites GPS (tanto GPS, GLONASS, GALILEO).

Figura 11. GPS Leica GS15.
Su precision minima garantizada con la tarjeta SIM es de 4cm.

El instrumento se compone de una antena, donde se recibe la sefial GPS y se colocan tanto las baterias
como la tarjeta SIM, y un pequeiio ordenador de campo, con el que se gestiona el funcionamiento del
aparato y la toma de puntos.
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VUELO Y GEORREFERENCIACION DE CEPAS

El vuelo se realizo el 6 de Agosto de 2015, por la mafiana, en condiciones soleadas y de poco viento. Dicho
vuelo fue realizado por la compafiia Galtel. La misma compaiiia se encargd de realizar el mosaicado de
imagenes la obtencion de los valores de NDVI, PCD y Temperatura.

Para realizar la georreferenciacion de las cepas afectadas por yesca se utilizd6 el GPS Leica CS15.
Anteriormente se probd a usar un GPS de campo, pero los datos obtenidos fueron de baja precision
(alrededor de 1m), lo que hacia inservibles los resultados, ya que la distancia entre cepas es de 1,5m, y
con ese margen de error no es posible distinguir entre cepas.

La georreferenciacidon de cepas enfermas se realizo el 8 de Julio de 2016. Las cepas enfermas que se
georreferenciaron fueron aquellas que habian presentado sintomas de yesca en 2014 (las cuales estaban
marcas con una cinta amarilla y negra) y que en ese momento empezaban a presentar sintomas de yesca.

En cuanto a la georreferenciacion de cepas sanas, se georreferenciaron cepas que no estaban marcadas
Yy que no presentaban sintomas de yesca en el momento de realizar la georreferenciacién, y que en ese

momento no presentaban sintomas de yesca.

Figura 12. Cepa que presentoé sintomas de yesca en 2014 y que en el momento de georreferenciar presentaba sintomas de yesca.

Para estimar si la homogeneidad de la parcela afecta a la viabilidad de la deteccion de la yesca, se
muestrearon dos zonas distintas. Una zona en la que hay poca variablidad entre las cepas, es decir, en la
que casi todas las cepas presentan un aspecto similar, mas homogénea. Y una zona con mayor variabilidad
entre las cepas, mas heterogénea, donde hay mas sintomas de deficiencias nutricionales. Se eligié una
zona homogénea en Canudo y una zona heterogénea en Arce.
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En Canudo solo se georreferenciaron cepas de la zona oeste, la cual de acuerdo con los mapas de vigor de
NDVIy PCD presentaba una menor variabilidad. Dentro de esa zona se georreferenciaron un total de 82
cepas enfermas y 55 cepas sanas.

En Arce se georreferenciaron las cepas de casi toda la parcela, salvo las de la parte oeste de la parcela, ya
que en esta zona habia muchas cepas muertas, y muchas que presentaban sintomas de carencias
nutricionales. Dado que la superficie estudiada era bastante mayor que en Canudo, se georreferenciaron
Unicamente alrededor de 6 cepas (entre sanas y enfermas) aleatoriamente por cada linea. En total se

georreferenciaron 169 cepas enfermas y 189 cepas sanas.

Figura 13. Zonas de muestreo. Canudo (azul) y Arce (amarillo).
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TRATAMIENTO DE DATOS

El paquete informatico que se ha utilizado para trabajar con las imagenes multiespectrales y térmicas, asi
como los puntos GPS ha sido el ArcGIS (Esri). Este paquete informatico es el mas extendido en el mundo
para el trabajo en GIS. Para este trabajo Unicamente se ha utilizado su mdédulo central, el ArcMap. Con
este programa se han realizado la georreferenciacién de las imagenes, la gestion de los puntos GPS vy la
extraccion de datos.

Se ha trabajado con tres indices:
- NDVI: obtenido a través de la imagen multiespectral usando la ecuacién 1:

NIR—-R
NIR+R

Ecuacidn 1: NDVI =

(Siendo NIR la radiacion infrarroja reflejada, y R la radiacién del rojo reflejada)

- PCD: obtenido a través de la imagen multiespectral usando la ecuacién 4:

Ecuacién4:  PCD = %

(Siendo NIR la radiacién infrarroja reflejada, y R la radiacién del rojo reflejada)

- Temperatura: obtenido a través de la imagen térmica, realizando una regresion mediante los
valores obtenidos en un testigo blanco y un testigo negro.

- Lasimdagenes se georreferenciaron utilizando varios puntos de control que se tomaron el mismo
dia que se georreferenciaron las cepas enfermas y sanas. Los puntos utilizados fueron el inicio y
final de 4 lineas de Arce y Canudo. Se estima que el error de la georreferenciacion pueda estar
en torno a +10-15cm debido a las dimensiones del inicio y final de linea.

- También se ha trabajado con las bandas individuales de la cdmara multiespectral (verde, rojo e
infrarrojo). Usando como valores los nimeros digitales de cada banda. Estos valores son
proporcionales a la reflectancia.

Para extraer los valores de NDVI, PCD, temperatura y DN de cada banda, se cred una capa en ArcGIS con
la superficie aproximada de cada cepa. Para ello, primero se cargaban en el ArcGlIS los puntos GPS, y sobre
cada punto se generaba un rectangulo que tenia como centro el punto GPS, y las dimensiones estimadas
de cada cepa (1,5mx1,5m).

Para el tratamiento estadistico de los datos, pese a que es posible realizarlo con el ArcGlIS, se ha utilizado
el MatLab (MathWorks) para tener la opcion de realizar tratamientos de datos mds complejos si fuese
necesario.

En cuanto al tratamiento de datos, se agruparon en una hoja Excel los datos proporcionados por el ArcGIS
(que te da la media, el maximo, el minimo, el rango y la desviacion estandar de los valores extraidos en
cada objeto, es decir en cada punto GPS).

Primero, se agruparon los valores de acuerdo a la parcela a la que pertenecen, y segln estén sanas o
enfermas.

Posteriormente se evaluaron el ajuste de cada muestra a una distribucidon normal, para conocer las
caracteristicas de las muestras, y elegir de forma correcta el tipo de andlisis estadistico.
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Si se obtiene un buen ajuste a la distribucién normal, se ha realizado un analisis de tipo ANOVA para
determinar si existen diferencias estadisticas entre las distintas muestras.

Una vez determinadas la presencia o ausencia de diferencias significativas, se utilizara el médulo de
“Classification Learner” de Matlab para generar modelos estadisticos que incorporan técnicas de
aprendizaje de maquina capaces de diferenciar entre cepas sanas y enfermas.

Los modelos generados estaran basados en distintos métodos de aprendizaje de maquina supervisado
(Han et al., 2011).

- Arboles de decisién

- SVM (Support Vector Machine)
- Andlisis discriminante

- KNN (K Nearest Neighbors)

Para realizar la validacidon interna de estos modelos se usara una validacion cruzada de 5 iteraciones.
Con este método se obtendra la precision tedrica (Han et al., 2011).

Por ultimo, se ha realizado un muestreo aleatorio en la zona estudiada de la imagen multiespectral y
térmica. Se extraerdn los valores del muestreo y se pasaran a los modelos que se habian creado
anteriormente, para que determinen donde estiman que hay yesca y donde no. Finalmente, se evaluara
en campo la fiabilidad de esos resultados.
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RESULTADOS

Tras la creacion de los mosaicos y el tratamiento de las imagenes, los resultados fueron los siguientes:

MAPAS DE VIGOR

NDVI

NDVI Arce

NDVI_valor_pixel

I 0.000000
[ 0.088778
[ 0.177556
[ 10.266333
I 0.355111

Figura 14. Mapa de NDVI en la parcela de Arce.

Esta parcela presenta una elevada variabilidad de valores de NDVI. En la zona mas baja el vigor es mas
elevado, mientras que en la parte alta (especialmente la esquina izquierda de la parcela) tiene un vigor
mas bajo y una mayor heterogeneidad de valores NDVI.
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NDVI Canudo

NDVI_valor_pixel

I 0.000000
I 0.088778
[ 0.177556
10266333
I 0.355111

Figura 15. Mapa de NDVI en la parcela de Canudo.

En este mapa podemos observar como esta parcela es bastante homogénea, presentando valores bajo
Unicamente en los bordes de la parcela y en alguna zona del centro.
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PCD

PCD Arce

PCD_valor_pixel

I 0.000000
I 0.524900
[ 1.049800
[ 1.574700
I 2.099600

Figura 16. Mapa de PCD en la parcela de Arce.

En este caso la variabilidad es menor que en el caso del NDVI. No obstante, también es posible diferenciar
entre la parte inferior y la superior, asi como se mantiene la heterogeneidad en la esquina superior
izquierda de la parcela.
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PCD Canudo

PCD_valor_pixel
[ 0.000000
I 0.524900
[ 1.049800
[ 1.574700
I 2.099600

Figura 17. Mapa de PCD en la parcela de Canudo.

De forma similar al mapa de NDVI, el mapa de PCD de Canudo, presenta una elevada homogeneidad,
conteniendo valores bajo Unicamente en los extremos de la parcela y en alguna zona interior.
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TEMPERATURA

Temperatura Arce

Termica_valor_pixel

B 24.111700
[ 31.499975
[ 138.888250
[ 46.276525
I 53.664800

Figura 18. Mapa de temperatura en la parcela de Arce.

El mapa de temperaturas tiene un patrén similar al que podemos observar en el NDVI o en el PCD, sin
embargo, el mapa de temperaturas parece presentar una mayor variabilidad. Asi mismo se observa como
hay algunas zonas que presentan elevadas temperaturas en sus laterales.
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Temperatura Canudo

Termica_valor_pixel

I 24.111700
[ 31499975
138.888250
[ 146.276525
I 53.664800

Figura 19. Mapa de temperatura en la parcela de Canudo.

El mapa de temperaturas en Canudo presenta una mayor variabilidad que en los casos anteriores. A simple
vista se observa que existen zonas puntales en la zona central que tienen una menor temperatura.
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MUESTREO

Tras la toma de puntos GPS de las cepas sanas y enfermas, se obtuvo el siguiente mapa de muestreo:

Figura 20. Muestreo en la parcela de Canudo. Las cepas sanas estan representadas con un punto verde y las que tienen yesca
estan representadas con un punto rojo.
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Figura 21. Muestreo en la parcela de Arce. Las cepas sanas estan representadas por un punto verde y las cepas con yesca con un
punto rojo.
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AJUSTE DE LOS VALORES A UNA DISTRIBUCION NORMAL

NDVI

—— NDVI Sanas Arce
= Distribucion Normal

022 024 026

Figura 22. Ajuste a la distribucion normal de los valores de

0.28

03 032 034
Data

0.36

NDVI de cepas sanas en la parcela de Arce.

20

038 04

Density

——NDVI Yesca Arce
= Distribucién Normal

0.2 0.25

0.35 0.4

NDVI de cepas con yesca en la parcela de Arce.

——NDVI Sano Canudo
18 [ | = Distribucién Normal

A

1/

R

0 .
028 029 03 031 032 033 034 035 036 037 0.38

Figura 24. Ajuste a la distribucion normal de los valores de
NDVI de cepas sanas en la parcela de Canudo.

Data

18 NDVI Yesca Canudo
= Distribucién Normal

0.22 0.24 0.26 0.28

0.3 0.32 0.34 0.36
Data

NDVI de cepas con yesca en la parcela de Canudo.

Las caracteristicas de las distintas distribuciones se resumen en la tabla 4.:

Tabla 5. Ajuste a la distribucion normal de los valores de NDVI.

Figura 23. Ajuste a la distribucién normal de los valores de

Figura 25. Ajuste a la distribuciéon normal de los valores de

Media (p) Error std de p Varianza (o) Error std de o Log likehood
Arce sano 0.300382 0.00225379 0.000985438 0.00159987 396.701
Arce yesca 0.304719 0.0026407 0.0348332 0.00187536 337.755
Canudo sano 0.333327 0.0030001 0.0222493 0.00215092 131.758
Canudo yesca 0.323394 0.00312637 0.0289927 0.00223021 182.972

En este caso los valores de NDVI tienen un buen ajuste a la distribuciéon normal, ya que tienen un Log

likehood elevado.

Al observar los valores de las medias, se aprecia que son casi iguales para cepas sanas y enfermas. Sin

embargo, si que se observa cierta diferencia en las varianzas de cepas sanas y enfermas.
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PCD

——PCD Sano Arce ——PCD Yesca Arce
2 / —— Distribucién Normal 2 | ——Distribucién Normal
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Data Data
Figura 27. Ajuste a la distribucién normal de los valores de

Figura 26. Ajuste a la distribuciéon normal de los valores de
PCD de las cepas con yesca en Arce.

PCD de las cepas sanas en la parcela de Arce.

——PCD Sano Canudo | 3 PCD Yesca Canudo
== Distribucién Normal | = Distribucién Normal
2 ]
25

Density

05 1
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Data

Data

Figura 28. Ajuste a la distribucion normal de los valores de  Figura 29. Ajuste a la distribucion normal de los valores de
PCD de las cepas sanas en la parcela de Canudo. PCD de las cepas con yesca en Canudo.

En la tabla 5, se resumen las caracteristicas del ajuste a la distribuciéon normal de los valores de PCD.

Tabla 6. Ajuste a la distribucion normal de los valores de PCD.

Media (p) Error std de p Varianza (o) Error std de o Log likehood
Arce sano 1.70597 0.0143027 0.199214 0.0101529 38.2209
Arce yesca 1.75062 0.0167173 0.219245 0.0118728 17.4638
Canudo sano 1.38811 0.0234218 0.173701 0.0167923 18.7316
Canudo sano 1.3519 0.0196229 0.181976 0.0139981 25.0052

En el caso de los valores de PCD, el log likehood es menor que en el caso del NDVI. Aun asi el ajuste a la

distribucidon normal es bastante bueno.

Si observamos las medias, se aprecia como son similares para cepas sanas y enfermas, lo mismo ocurre

con la varianza.
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TEMPERATURA
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= Distribucion Normal
0.16

0.14

.
[)
I

0.12

Density

0.08

0.06

0.04

0.02

Data

Figura 30. Ajuste a la distribucién normal de los valores de
temperatura de cepas sanas en la parcela de Arce.
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Figura 32. Ajuste a la distribucidon normal de los valores de
temperatura en cepas sanas en la parcela de Canudo.
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Figura 31. Ajuste a la distribucion normal de los valores de
temperatura en cepas con yesca en la parcela de Arce.
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Figura 33. Ajuste a la distribucién normal de los valores de
temperatura en cepas con yesca en la parcela de Canudo.

En la tabla 6, se resumen las caracteristicas del ajuste a la distribucion normal de los valores de

temperatura en las distintas muestras.

Tabla 7. Ajuste a la distribuciéon normal de los valores de temperatura.

Media (p) Error std de n Varianza (o) Error std de ¢ Log likehood
Arce sano 30.6183 0.213257 2.97033 0.151382 -485.977
Arce yesca 30.5844 0.236149 3.09706 0.167715 -437.995
Canudo sano 32.665 0.313992 2.32863 0.225117 -124.032
Canudo yesca 33.1134 0.394766 3.66091 0.281609 -233.132

Para la temperatura el log likehood es bastante bajo. Sin embargo, pese a tratarse de un valor bajo, no
implica que no se ajuste bien a una distribucién normal, sino que el ajuste es peor que en los dos casos

anteriores.

En este caso, al observar tanto las medias como las varianzas, no se aprecian diferencias entre cepas sanas

y enfermas.
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DN EN LA BANDA 1 (VERDE)

| ——Banda 1 Sano Arce |

0.06 [ | = Distribucién Normal |

Banda 1 Yesca Arce
= Distribucion Normal

65 70 75 80 65 70 75 80 85 20 95
Data Data

Figura 34. Ajuste a la distribucién normal de los valores DN  Figura 35. Ajuste a la distribucién normal de los valores DN

en la banda 1 de cepas sanas en la parcela de Arce. en la banda 1 de cepas con yesca en la parcela de Arce.
0.14 . ! ' " N N " " 1
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Figura 36. Ajuste a la distribucién normal de los valores DN Figura 37. Ajuste a la distribucién normal de los valores DN
en la banda 1 de cepas sanas en la parcela de Canudo. en la banda 1 en cepas con yesca en la parcela de Canudo.

En la tabla 8 se muestran las caracteristicas del ajuste de los valores DN en la banda 1 (verde) a la
distribucion normal.

Tabla 8. Caracteristicas del ajuste a la distribucién normal de los valores DN de la banda 1 (verde).

Media (p) Error std de u Varianza (o) Error std de ¢ Log likehood

Arce sano 79.0137 0.43863 6.10941 0.311365 -625.881
Arce yesca 78.3982 0.462734 6.05103 0.328647 -549.978
Canudo sano 69.2827 0.630472 4.6757 0.452017 -162.373
Canudo yesca 71.6202 1.12277 10.4122 0.800937 -323.025

En este caso, al igual que en el caso de la temperatura, tenemos un log likehood bastante bajo, de modo
que el ajuste a la distribucidon normal es peor que en el caso del NDVIy PCD.

En cuanto a las medias, si que difieren un poco entre sanas y enfermas. Sin embargo, la diferencia es
pequefia. La varianza en Arce es similar en sanas y enfermas, pero en Canudo es mas alta para cepas
enfermas.
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DN EN LA BANDA 2 (ROJO)

Banda 2 Sano Arce
—— Distrubucin Normal
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Figura 38. Ajuste a la distribucion normal de los valores DN
en la banda 2 de cepas sanas de la parcela de Arce.
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Figura 40. Ajuste a la distribucién normal de los valores DN
en la banda 2 de cepas sanas en la parcela de Canudo.
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Figura 39. Ajuste a la distribucion normal de los valores DN
en la banda 2 de cepas con yesca en la parcela de Arce.

0.09 Two_CCY data | |
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Figura 41. Ajuste a la distribucion normal de los valores DN
en la banda 2 de cepas con yesca en la parcela de Canudo.

En la tabla 9 se muestran las caracteristicas del ajuste de los valores DN en la banda 2 (rojo) a la

distribucidon normal.

Tabla 9. Caracteristicas del ajuste a la distribucion normal de los valores de DN en la banda 2 (rojo).

Media (p) Error std de p Varianza (o) Error std de o Log likehood
Arce sano 86.6757 0.38053 5.30017 0.270121 -598.315
Arce yesca 86.3335 0.400863 5.24197 0.284704 -525.434
Canudo sano 78.8509 0.647931 4.80519 0.464535 -163.875
Canudo yesca 81.0887 1.00252 9.29703 0.715156 -313.283

El ajuste a la distribucion normal es similar al de la banda 1 y la temperatura. Tiene un log likehood

bastante bajo, por lo que el ajuste es peor que en el caso del NDVI y el PCD.

Las medias son similares en cepas sanas y enfermas en la parcela de Arce, sin embargo, en la parcela de

Canudo si que se son ligeramente diferentes. Ocurre lo mismo con la varianza.
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DN EN LA BANDA 3 (INFRARROIJO)
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Figura 42. Ajuste a la distribucién normal de los valores DN  Figura 43. Ajuste a la distribucién normal de los valores DN
en la banda 3 en cepas sanas en la parcela de Arce. en la banda 3 en cepas con yesca en la parcela de Arce.
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Figura 45. Ajuste a la distribucion normal de los valores Dn en

Figura 44. Ajuste a la distribuciéon normal de los valores DN
la banda 3 en cepas con yesca en la parcela de Canudo.

en la banda 3 en cepas sanas en la parcela de Canudo.

En la tabla 9 se muestran las caracteristicas del ajuste de los valores DN en la banda 3 (infrarrojo) a la
distribucion normal.

Tabla 10. Caracteristicas del ajuste a la distribucién normal para los DN de la banda 3 (infrarrojo).

Media (p) Error std de p Varianza (o) Error std de o Log likehood

Arce sano 154.402 0.595926 8.30029 0.423022 -685.334
Arce yesca 154.563 0.691611 9.04398 0.491202 -618.698
Canudo sano 146.925 1.22769 9.10481 0.880195 -199.026
Canudo yesca 148.926 1.17835 10.9275 0.84058 -327.179

En este caso el log likehood es bajo, como en los casos de la temperatura y las bandas 1y 2. Por lo que el
ajuste a la distribucidn normal es peor que en el caso del NDVIy el PCD.

Asi mismo, al igual que en la banda 2, en Arce la media y varianza de cepas sanas y enfermas es similar,
sin embargo, en Canudo si que se observa que son ligeramente diferentes.
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ANALISIS ANOVA

ANALISIS ANOVA DE DATOS

Mediante el uso de la funcidon de Matlab: [p,tbl,stats]=anoval(Datos) se ha realizado el analisis de la
varianza de los datos, tomando como variables independientes los valores de NDVI, PCD, temperatura y
los numeros digitales de las bandas 1,2 y 3. Y como variable dependiente la muestra, es decir la parcela'y
si la cepa estaba sana o enferma.

Para la muestra Sano Arce N=195, en la muestra Yesca Arce N=174, en la muestra Sano Canudo N=55y en
la muestra de Yesca Canudo N=86.

Tras realizar dicho analisis, se obtuvo que, para todas las variables independientes, existian diferencias
significativas entre las diferentes muestras.

Una vez ejecutado dicho andlisis, usando la funcién [results,means]=multcompare(stats) se ha estimado
que grupos eran significativamente diferentes (p<0,05) entre si.

Tabla 11. Diferencias significativas entre las distintas muestras, en la que aparece la media con la desviacién tipica y un
superindice que si es igual en dos de las muestras indica que no existen diferencias significativas entre ambas muestras (p<0,05).

Sano Arce Yesca Arce Sano Canudo Yesca Canudo
NDVI 0,300 £ 0,002° 0,305 £ 0,002° 0,333 +0,005° 0,323 +0,003°
PCD 1,706 £ 0,014° 1,751 £ 00,0152 1,388 £ 0,027° 1,352 +0.022°
Temperatura 30,618 + 0,221° 30,584 +0,235? 32,665 +0,415° 33,113 +0,332°
Banda 1 (verde) 79,014 + 0,495? 78,399 +0,527° 69,283 £ 0,929° 71,620 £ 0,743°
Banda 2 (rojo) 86,676 + 0,438 86,333 £ 0,466° 78,851 +0,823° 81,089 +0,657°
Banda 3 (infrarrojo) 154,402 + 0,655? 154,563 + 0,698 146,925 + 1,231° 148,926 + 0,984°

Se puede apreciar como en todas las variables estudiadas, existen diferencias significativas entre distintas

parcelas, pero sin embargo no existen diferencias significativas entre cepas sanas y enfermas de una

misma parcela.

REGRESION ENTRE DISTINTAS VARIABLES
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Una vez realizado el andlisis de componentes principales, y determinado que la variabilidad puede ser
explicada mayoritariamente por dos factores, se procede a la realizacidén de un analisis de regresion para

determinar qué variables son dependientes entre si.

Igual que en el andlisis de componentes principales, el andlisis de regresidn se realizara Unicamente con
las 3 bandas de la cdmara multiespectral y con la temperatura. Ya que cémo se ha explicado en apartados
anteriores, los indices NDVI y PCD se obtienen a partir de los valores de las bandas 2 y 3 (rojo e infrarrojo).

T T T T T T T .
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Figura 46. Regresion entre los valores DN en la Banda 1 (verde) y la Banda 2 (rojo).
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Figura 47. Regresion entre los valores DN en la Banda 1 (verde) y la Banda 3 (infrarrojo).
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Figura 48. Regresion entre los valores DN en la Banda 1 (verde) y la temperatura.
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Figura 49. Regresion entre los valores DN en la Banda 2 (rojo) y Banda 3 (infrarrojo).
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Figura 50. Regresion entre los valores DN en la Banda 2 y la temperatura.
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Figura 51. Regresion entre los valores DN en la banda 3 (infrarrojo) y la temperatura.

En la tabla 10 se resumen los valores R? que han sido obtenidos de los distintos analisis de regresion:

Tabla 12. Correlacion entre las distintas variables.

Banda 1 (verde) Banda 2 (rojo) Banda 3 (Infrarrojo Temperatura

Banda 1 (verde) 1

Banda 2 (rojo) 0,917 1

Banda 3 (infrarrojo) 0,268 0,53 1

Temperatura 0,025 0,001 0,089 1

Tanto en las distintas graficas como en la tabla resumen con los valores de R?, se puede apreciar como la

correlacion entre las tres bandas de la camara multiespectral es elevada, sin embargo, la correlacion entre
dichas bandas y la temperatura es baja.

Asi mismo se observa una correlacién muy elevada entre las bandas 1 (verde) y 2 (rojo).
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ANALISIS DE COMPONENTES PRINCIPALES

Tal y como se ha observado en el estudio de la regresion, existe cierta correlaciéon entre las distintas
variables. Por lo tanto, es posible que todas o varias de esas variables expliquen la misma variabilidad.

Para comprobarlo, el analisis de mas utilidad es el Analisis de Componentes Principales, el cual agrupa las
variables en un numero determinado de grupos de acuerdo con la variabilidad que son capaces de
explicar.

En este andlisis Unicamente se han utilizado los valores correspondientes a los canales de la camara
multiespectral (verde, rojo e infrarrojo) y la temperatura. No se han utilizado los valores de NDVIy PCD
debido a que son indices obtenidos a partir del rojo e infrarrojo.

Tabla 13. Matriz de autovectores, que muestra la asociacidn de cada variable al componente principal (CP).

1eCcp 2eCpP 3oCP 42CP
Banda 1 (verde) 0,5306 -0,6139 -0,1755 -0,5574
Banda 2 (rojo) 0,5161 -0,2717 -0,0617 0,8099
Banda 3 (infrarrojo) 0,6719 0,6828 0,2216 -0,1822
Temperatura -0,0250 -0,2882 0,9572 -0,0078

Tabla 14. Variabilidad explicada y acumulada en cada componente principal.

Variablidad explicada Variablidad acumulada
lecp 76,0401 76,041
2eCpP 20,1609 96,201
3ecp 3,6676 3,667
42CP 0,1314 100

El andlisis de componentes principales muestra como la mayor parte de la variabilidad puede ser explicado
por 2 componentes. Estos dos componentes estan formados principalmente por las bandas 1,2 y 3, es
decir, las bandas de la cdmara multiespectral.

La temperatura contribuye principalmente al tercer componente, el cual explica una menor parte de la
variabilidad.
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CLASIFICACION DE DATOS POR APRENDIZAJE DE MAQUINA

Usando el médulo de MatLab Classification Learner podemos agrupar las distintas variables de acuerdo a

unos prescriptores.

Tras realizar la modelizacion, se obtienen los siguientes indices para cada modelo de clasificacion:

CLASIFICACION SIN PARCELA

Primero se realizo la clasificacidn sin tener en cuenta la parcela, para que el modelo pudiese ser utilizado

en otras parcelas. Los resultados se resumen en la siguiente tabla:

Tabla 15. Precision de los distintos modelos de clasificacion, sin usar la parcela como variable de prediccion.

Precision  Yesca Sano Yesca Sano falso
(%) verdadera verdadero falsa (%) (%)
(%) (%)

Arbol complejo 51,4 48 52 48 52
Arbol medio 54,5 41 69 31 59
Arbol simple 51,4 43 60 40 57
Discriminante lineal 50,4 50 51 49 50
Discriminante cuadratico 51,6 42 62 38 58
Regresion logistica 54,2 56 53 47 44
SVM linear 51,8 44 59 41 56
SVM cuadratica 53,8 38 70 30 62
SVM cubica 55,1 53 58 42 47
SVM gaussiana fina 54,2 61 47 53 39
SVM gaussiana media 51,4 53 50 50 47
SVM gaussiana gruesa 54 51 57 43 49
KNN fina 52,6 52 53 47 48
KNN media 51,4 40 63 37 60
KNN gruesa 55,1 49 61 39 51
KNN coseno 53,2 43 64 36 57
KNN cubica 50,6 39 63 37 61
KNN ponderado 52,8 54 51 49 46
Ensemble Boosted Trees 50,6 47 54 46 53
Ensemble Bagged Trees 52 50 54 46 50
Ensemble Subspace Discriminant 51,2 50 51 49 50
Ensemble Subspace KNN 48,8 47 50 50 53
Ensemble RUSBoosted Trees 53 46 61 39 54
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Se puede apreciar cdmo todos los modelos tienen una precision global entorno al 50%. Se trata de una
precision muy baja.

Ademas, los modelos parecen presentar una precision mas elevada para la deteccidn de cepas sanas, que
para la deteccion de cepas con yesca.

CLASIFIACION CON PARCELA

Puesto que la precisidn obtenida sin parcela ha sido bastante baja, se ha realizado la clasificacidn teniendo
en cuenta también la parcela a la que pertenecen las cepas, para evaluar si el hecho de incluir la parcela
en la clasificacion mejora la precision del modelo.

En este caso, el numero de modelos de clasificacién serd menor que en el caso anterior, ya que estamos
usando como una de las variables de prediccidn la parcela, la cual es un valor de tipo cadena. De modo
que no sera posible aplicar modelos del tipo KNN o discriminantes.

La siguiente tabla muestra los resultados obtenidos para los distintos modelos de clasificacion, utilizando
la variable parcela como uno de las variables de prediccion:

Tabla 16. Precision de los modelos de clasificacion incluyendo la parcela como variable de prediccion.

Precision  Yesca Sano Yesca falsa Sano falso
(%) Verdadera verdadero (%) (%)
(%) (%)

Arbol complejo 50,2 48 48 52 52
Arbol medio 55,1 43 67 33 57
Arbol simple 52 42 62 58 38
Regresion logistica 52 50 54 46 50
SVM linear 55,3 33 78 22 67
SVM cuadratica 54,7 49 61 39 51
SVM cubica 55,3 56 55 45 44
SVM gaussiana fina 53,8 60 47 53 40
SVM gaussiana media 53,8 50 55 45 50
SVM gaussiana gruesa 54,9 42 69 31 58
Boosted Trees 52,6 50 55 45 50
Bagged Trees 50,2 47 53 47 53
Ensemble RUSBoosted Trees 55,3 48 63 52 37

Pese a haber incluido la parcela en el andlisis, la precisién estimada del modelo sigue siendo baja. Asi
mismo se sigue observando, que, de forma general, la precisidon estimada para las cepas sanas es mayor
que para las cepas con yesca.
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VALIDACION DE MODELOS

Aunque la precision estimada de los modelos ha sido baja, se van a evaluar utilizando nuevos datos para
determinar si la precision real se corresponde con la real o es diferente.

Para ello se tomaran puntos de forma aleatoria en los mapas de vigor de ambas parcelas. Posteriormente,
se extraen los valores que requieren los modelos para su analisis, es decir se extrae su valor en la banda
1 (verde), banda 2 (rojo), banda 3 (infrarrojo) y su temperatura. Una vez reunidos estos datos en una
tabla, se procesan con el modelo correspondiente, el cual devolvera como resultado si la cepa estd sana
o tiene yesca.

Una vez recopilados los resultados de cada modelo, se toman los puntos GPS de las cepas analizadas, se
va al campo a comprobar si la cepa estd afectada o no con yesca.

Se seleccionan los siguientes modelos:
Para los que hay parcela:

Precisidon: Cubic SVM 55,3%

Sanos acertados: Linear SVM 78%

Yesca acertados: Fine Gaussian SVM 60%
Para los que no hay parcela :

Precisidn: 55,1% Coarse KNN

Sanos acertados: 70% Quadratic SVM

Yesca acertados: 61% Fine Gaussian

Tabla 17. Validacién de los modelos de clasificacion.

Incluyendo la parcela Sin incluir la parcela
SVM SVM linear SVM KNN SVM SVM
cubico gaussiano grueso cuadratico gaussiano

fino fino

Total 67% 65% 54% 64% 66% 55%
Arce 67% 90% 65% 75% 81% 65%
Canudo 65% 100% 27% 36% 28% 28%
Sanas Arce 67% 100% 64% 82% 84% 64%
Yesca Arce 70% 0% 70% 18% 47% 76%
Sanas Canudo 72% 0% 29% 39% 31% 31%
Yesca Canudo 42% 100% 25% 36% 27% 26%

Pese a que, a simple vista, el modelo SVM linear incluyendo la parcela, parezca ser mas preciso, ha
resultado el menos eficaz de todos, ya que este modelo asignaba automaticamente el valor yesca si estaba
en la parcela de Canudo, y el valor sano si estaba en la parcela de Arce.

59



Se puede apreciar como en la mayor parte de los modelos, la precision obtenida en Arce es mayor a la
obtenida en Canudo. Asi mismo, la precision tiene a ser mdas elevada para las cepas sanas que para las
cepas enfermas.
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DISCUSION

EVALUACION VISUAL DE LOS DATOS

Tras examinar los mapas de vigor, se observa variabilidad entre las distintas zonas e incluso entre cepas.
Por ejemplo, se detectan facilmente dentro del mapa cepas que presentan un bajo vigor, como muestra

la siguiente imagen:

Figura 52. Detalle dentro de la parcela de Arce de los valores de NDVI, siendo las zonas rojas las que tienen un valor de NDVI mas
bajo, y las zonas verdes las que lo tienen mas alto.

En esta imagen se puede apreciar como hay cepas que presentan un bajo vigor (en color rojo). Sin
embargo, un bajo vigor puede ser causado por multiples causas, que abarcan desde una carencia
nutricional, estrés hidrico, dafios por enfermedades... por lo que extraer conclusiones de esta informacion
sin mas datos adicionales debe ser realizado con prudencia.

Por ello, tras incorporar los datos del muestreo de cepas sanas y enfermas se puede valorar dicha
informacion de una forma mas ldgica.

En el mapa de vigor correspondiente al NDVI, se aprecia como hay algunas cepas enfermas que presentan
de forma marcada un vigor mas bajo, tal y como se puede apreciar en la figura 53 (izquierda). Sin embargo,
también hay cepas sanas que manifiestan este vigor mas bajo. Tal y como se puede apreciar en la figura
53 (derecha).
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Figura 53. Detalle de NDVI a nivel de cepa, en las que los rectangulos rojos representan a cepas con yesca y los rectangulos verdes
representan a las cepas sanas.

De modo que visualmente, no es posible distinguir entre cepas sanas y enfermas usando el indice NDVI.

Si usamos el mapa de vigor obtenido a partir del indice PCD, nos encontramos con el mismo problema.
Detectamos cepas enfermas con un vigor mas bajo, pero también detectamos cepas sanas con un vigor
bajo, tal y como muestran la figura 54.

Figura 54. Detalle del PCD a nivel de cepa, en el que los rectangulos verdes representan a las cepas sanas y los rectangulos rojos
representan a las cepas enfermas.

La inspeccidn visual de la temperatura a nivel de cepa es mas compleja, ya que el tamafio de pixel es
bastante mas grande que en el caso del NDVI y PCD, y los cambios de pixel a pixel son muy marcados. No
obstante, es posible detectar ciertos patrones. En este caso, visualmente si que parece que las cepas
enfermas tienen una mayor temperatura, tal y como podemos apreciar en la figura 55.
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Figura 55. Detalle de las temperaturas a nivel de cepa. Los colores rojos indican zonas mas calientes y las zonas verdes son mas
frias. Los rectangulos verdes son cepas sanas y los rojos cepas enfermas.

Aunque, esto también se observa en las cepas sanas, no da la sensacion de ser tan frecuente como en los
indices NDVI y PCD. De todos modos, de forma visual no es posible diferenciar entre cepas sanas y
enfermas.

Pese a que la inspeccidn visual de los mapas de vigor y temperatura no permite detectar la presencia de
yesca, si que permiten observar otras problematicas del vifiedo. Por ejemplo, tanto en el mapa de NDVI
como de PCD, se observa cdmo la zona izquierda de la parcela de Arce tiene un vigor mucho mas bajo.
Dicha zona, tiene un suelo mas pobre, y al observar en campo las cepas de esa zona, se ve como la mayor
parte de esas cepas manifiestan sintomas de carencias nutricionales.

En la figura 56 se puede observar como el borde izquierdo de la parcela tiene colores rojos, lo cual indica
un bajo vigor. Mientras que en la imagen de la derecha muestra los sintomas que presenta una cepa de
esa misma zona que aparece en el mapa con un vigor bajo.

Figura 56. Detalle de una zona con bajo vigor (colores rojos y amarillos) y aspecto de las hojas en la misma zona.

Otro efecto que podemos observar, en este caso en la imagen térmica, es el efecto del sol. En todas las
parcelas se aprecia como hay un gran nimero de cepas que tienen el lateral derecho en un color rojo o
anaranjado, lo cual implica una mayor temperatura. Esto es debido a que el lateral derecho de la imagen
se corresponde con el Este, y al haberse realizado el vuelo por la mafiana, era el lateral donde estaba
incidiendo de forma mas directa la luz solar.
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El hecho de que se caliente mas un lateral puede enmascarar cambios en la temperatura debido a otros
fendmenos. O, por el contrario, podria potenciar los cambios debidos a la presencia de la yesca. Ya que la
yesca causa necrosis foliar, y la superficie foliar necrosada se calentara mas que la superficie viva, ya que
en la superficie necrosada no hay transpiracion.

En la siguiente imagen se observa como los laterales derechos de las lineas presentan una temperatura
mas elevada. Aunque también hay alguna linea, que no presenta este patrén, son minoritarias.

Figura 57. Detalle del efecto del sol. Se aprecia una zona a mas temperatura (colores rojos) en el lateral derecho.

El efecto del sol se podria haber evitado al realizando el vuelo cuando el sol estd mas alto, y la radiacién
indice de forma uniforme por toda la cepa, es decir, al mediodia.

DISTRIBUCIONES DE LOS DATOS

Los diferentes indices obtenidos a partir de las imagenes se han ajustado bien a una distribucién normal.
Este hecho ha permitido realizar un andlisis de varianza ANOVA para evaluar si existen diferencias
significativas entre cepas sanas y enfermas.

También se observa que las medias de las distribuciones de cepas sanas y enfermas de una misma cepa
son practicamente iguales en todas las variables analizadas. De modo que sera dificil encontrar diferencias
significativas entre cepas sanas y enfermas.

En cuanto a la varianza, en la mayor parte de los casos no se observan diferencias entre cepas sanas y
enfermas.

Sin embargo, tanto al observar las distribuciones normales como las medias, se observa como las
distribuciones de las dos parcelas, para todas las variables, parecen algo distintas. De modo que si que
parece posible encontrar diferencias significativas entre parcelas.

ANALISIS ESTADISTICO DE LOS DATOS

Tal y como se esperaba, tras ver las distribuciones y las medias, no existen diferencias significativas entre
las cepas sanas y con yesca. Dentro de una misma parcela, tanto los valores de NDVI, PCD, temperatura y
los valores de las bandas 1(verde), 2(rojo), 3(infrarrojo) no presentan diferencias significativas entre cepas
sanasy con yesca.

De acuerdo con el trabajo de Ghulam y su equipo, en 2008, la yesca causa sintomas similares al estrés
hidrico. Por lo que tedricamente, las cepas afectadas con yesca deberian haber mostrado temperaturas
mas elevadas, ya que, al tratarse de regadio, todas las cepas deberian mostrar el mismo estrés hidrico (y,
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por lo tanto, misma temperatura), por lo que la diferencias en las temperaturas deberia poder deberse a
la presencia de yesca. Sin embargo, no se ha obtenido este resultado. Las temperaturas no son
significativamente diferentes entre cepas sanas y enfermas.

Di Genaro y su equipo en 2016, obtuvieron diferencias significativas entre los valores de NDVI (Figura 5)
cepas sanas y cepas infectadas (tanto sintomaticas como asintomaticas). En el presente trabajo, no se ha
diferenciado entre cepas sintomdticas y asintomaticas, ya que no se ha realizado un analisis bioldgico de
las cepas estudiadas. Por lo que parte de las cepas que han considerado como sanas, pudieran ser cepas
infectadas asintomaticas, lo que supone una fuente de error respecto al estudio de Di Genaro y su equipo.

Otro de los factores que contribuyen al hecho de no haber encontrado diferencias significativas entre
cepas sanas y cepas con yesca, es el hecho de que no se ha tenido en cuenta en el estudio si las cepas
estaban afectadas por alguna carencia (carencia de fésforo, calcio...) o si estaban afectadas por otra
enfermedad como el mildiu. Esto no ha sido posible debido al hecho de que el vuelo fue realizado en
2015, mientras que las muestras se tomaron en 2016.

Donde si que se observan diferencias significativas en todas las variables, es entre parcelas.

Para el NDVI, la parcela de Canudo presenta un NDVI significativamente mas elevado, por lo que tiene un
mayor vigor. Lo cual, se corresponde con lo que se ven en la parcela, donde se aprecia que la parcela de
Canudo esta mas verde que la parcela Arce.

Sin embargo, el PCD es significativamente mas elevado en Arce que en Canudo. Este resultado contrasta
con el anterior, ya que en el NDVI era al revés, pese a que la diferencia fuese pequenia.

Para encontrar la causa de este fendmeno debemos mirar a las bandas que han utilizado para calcular
dichos indices, es decir las bandas 2 y 3 (rojo e infrarrojo). En este proyecto no se ha trabajado con la
reflectancia en cada banda, sino que se ha trabajado con DN (Digital Number) obtenidos a partir de la
camara. EI DN es un valor que va de 0 a 255 y es proporcional a la reflectancia, sin embargo, para obtenerla
es necesario aplicar unos factores de correccién que dependen de las condiciones atmosféricas. Dado que
el proveedor de las imagenes no proporciond los correctores que habian usado, no se ha podido trabajar
con las reflectancias. No obstante, dado que los DN son proporcionales a la reflectancia, se puede recurrir
a dichos numeros digitales para determinar qué es lo que causa que el NDVI sea ligeramente mayor en
Canudo, mientras que con el PCD sucede lo contrario.

Primero si nos fijamos en la ecuacién del NDVI:

NIR—-RED
NIR+RED

Ecuacién 1: NDVI =

Podemos observar que si tenemos una misma diferencia entre el infrarrojo y el rojo (como es el caso de
Arce y Canudo, que en DN ambas tienen una diferencia de 68 DN de media), si la radiacién reflejada es
mayor en ambas bandas, el NDVI serd menor.

Esto es exactamente lo que se observa, ya que los DN son significativamente mayores para el rojo y para
el infrarrojo (8 DN mas, de media) en Arce que en Canudo. Eso explica que el NDVI sea mas elevado en
Canudo que en Arce.

Asi mismo, es posible que existan otros factores que conduzcan a un valor de NDVI mas elevado en una
parcela que en otra. Por ejemplo, ambas parcelas tienen cubierta vegetal, pero el hecho de que se haya
pasado la picadora mds tarde en una parcela que en otra, hara que la cubierta de una parcela tenga mas
vigor que la otra, y cause un aumento del NDVI de las zonas donde se encuentra esa cubierta (Rodriguez-
Moreno & Bullock, 2013).
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En el caso del PCD, al ser Unicamente la relacion entre la reflectancia del infrarrojo y la reflectancia del
rojo. La diferencia entre ambas parcelas es debido a que Arce refleja mayor cantidad de radiacidon
infrarroja en relacidn a la que refleja de radiacion roja, de la que hace Canudo.

El hecho de que hayan realizado correcciones atmosféricas para el calculo de NDVI y PCD, causa que
habitualmente la reflectancia de la radiacidon roja baje, mientras que la radiacién infrarroja suele
aumentar. Por lo que tanto PCD como NDVI serdn mas elevados.

En cuanto a la temperatura, se ve que es significativamente superior en la parcela Canudo, en el orden de
2 grados de diferencia aproximadamente.

Habitualmente, una mayor temperatura se suele relacionar con un mayor estrés de la planta. El estrés
que mejor se relaciona con la temperatura es el estrés hidrico.

De acuerdo con todos estos datos, da la impresidn que la parcela de Arce esta en un mejor estado que la
parcela de Canudo, ya que tiene menor temperatura, mayor PCD y un NDVI casi igual. Sin embargo, al ir
a la parcela de Arce, se aprecia un mayor numero de cepas con problemas (ya sean nutricionales, de
enfermedades...) respecto a Canudo.

Sin embargo, si nos fijamos en la banda numero 3 (infrarrojo), vemos que la reflectancia es
significativamente superior en Arce que en Canudo. Una mayor reflectancia de infrarrojo suele estar
causada porque la parcela tiene mas vegetacion, pero la reflectancia que determina mas la actividad
fotosintética, y por tanto el estado de la planta, es la reflectancia del rojo, el cual es significativamente
inferior en Canudo que en Arce. A menor reflectancia del rojo, mayor ha sido la absorcion de esta banda,
por lo que hay mayor actividad fotosintética. Esto es un claro ejemplo de los errores que puede haber al
interpretar una imagen con indices como el NDVI, ya que, pese a que dan mucha informacién acerca del
estado del cultivo, podemos perder parte de la informacidon. Por ello, si se quiere analizar de forma
detallada una parcela, es mejor mirar de forma individual la reflectancia de cada banda (Lee et al., 2010;
Di Genaro et al., 2016).

De forma que de los datos de las bandas 2 (rojo) y 3 (infrarrojo), podemos deducir que la parcela de Arce
tiene mas vegetacion, pero con menor eficiencia fotosintética que la parcela de Canudo. Lo cual puede
ser la causa de que a simple vista la parcela de Arce encontremos mas cepas con problemas que en la
parcela de Canudo.

En cuanto a la diferencia de temperaturas, esta puede ser facilmente explicada con el riego. Ya que el
vuelo ha sido realizado en pleno verano, cuando la cepa esta sometida a elevadas temperaturas y tiene
una elevada tasa de transpiracion. Bajo esas condiciones climaticas, la diferencia de regar un dia mas tarde
una parcela que otra pude causar diferencias en sus temperaturas (Bellvert et al., 2012).

ANALISIS DE COMPONENTES PRINCIPALES Y REGRESION

En cuanto a las regresiones, es llamativo la elevada correlacion existente entre la banda 1y 2 (rojo y
verde), con un R? de 0,91. Ademas tanto la banda 1y 3, como la 2 y 3 presentan correlaciones elevadas,
no tanto como en el caso anterior, pero si cierta correlaciéon. Lo que da a entender que las tres bandas de
la cdmara multiespectral estan bastante relacionadas entre si.

La temperatura es la Unica que no tiene correlacidn con ninguna de las bandas.

El analisis de componentes principales muestra como mas del 95% de la variabilidad puede ser explicada
usando Unicamente 2 factores, esos dos factores combinaciones de las 3 bandas de la camara
multiespectral.
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Sin embargo, la temperatura no parece incorporar mas informacién sobre la variabilidad, ya que
contribuye basicamente al tercer componente, el cual explica entorno al 3% de la variabilidad. De modo
que pese a que nos esté dando una informacion independiente de la que nos da la imagen multiespectral,
esta explicando practicamente la misma variabilidad.

CLASIFICACION DE DATOS

Todos los modelos que se han creado, tienen una baja precision, esperable tras el andlisis ANOVA. Esto
no es un hecho sorprendente, ya que en el tratamiento de datos se observé que no existian diferencias
significativas entre los datos, pero al tratarse de un trabajo académico se ha querido realizar un esfuerzo
de utilizar otras herramientas estadisticas y de modelizacién. En todos los casos, la precision estaba
ligeramente por encima del 50%.

Sin embargo, algunos de los modelos tienen una precision mayor para detectar las cepas, siendo de hasta
el 61% en el modelo SVM gaussiano fino, realizado sin parcela. Como es esperable, a mayor tasa cepas
con yesca detectadas, menor sera la deteccion de cepas sanas, ya que considera como enfermas, cepas
que estan sanas

Al validar el modelo, los resultados son muy variables, probablemente debido a la baja precision de los
modelos. El mejor resultado, es el del SVM linear, sin embargo, tal y como se ha mencionado en los
resultados, este algoritmo clasifica automaticamente como sanas o enfermas en funcién de la parcela a
la que pertenecen. Por lo que no se puede tener en cuenta.

El siguiente modelo que ofrece mejores resultados en la validacion es el SVM gaussiano fino, tanto en el
caso de tener en cuenta la parcela, como en el caso de no tener en cuenta la parcela. Si tenemos en cuenta
la parcela, obtenemos una precision global del 54, el cual es similar a la precisidén tedrica que habia sido
estimada con el Matlab, 53,8%. Sin embargo, dentro de la parcela de Arce, el modelo es capaz de clasificar
de forma correcta el 70% de las cepas con yesca, y el 64% de las cepas sanas. Lo que supone una buena
tasa de acierto.

Los resultados son similares a los obtenidos al no tener en cuenta la parcela. Con un 55% de precisidn
global, el cual es similar a la tedrica, 54,2%. Y en la parcela de Arce, el porcentaje de acierto fue superior
tanto para cepas sanas como para cepas enfermas, siendo especialmente alto para las enfermas, de 76%.

El modelo que mejor precisién da es el SVM cuadratico, ya que tiene una precision global del 66% y una
precision del 81% en Arce. En dicha parcela, el modelo fue capaz de clasificar de forma correcta el 84% de
las cepas sanas, sin embargo, solo fue capaz de clasificar de forma correcta el 47% de las cepas enfermas.

En la discusion de los resultados obtenidos en la validacion de los modelos, se han omitido los resultados
de la parcela de Canudo, ya que la tasa de acierto que se ha obtenido en dicha parcela, ha sido muy baja,
en la mayor parte de los casos por debajo del 50%.

La menor precisién obtenida en Canudo, se puede deber a varios factores. En primer lugar, durante el
muestreo aleatorio se han detectado muy pocas cepas con yesca (7 Unicamente). Ademas, si observamos
el mapa de vigor, vemos como este es bastante uniforme, en comparacion con el de Arce, lo cual puede
complicar la clasificacion.

Por lo tanto, pese a que no hay diferencias significativas, es posible clasificar correctamente un alto
porcentaje de cepas afectadas con yesca. Sin embargo, es necesario mejorar el muestreo de forma que
sea posible encontrar diferencias significativas que hagan posible establecer un modelo de clasificacion
como el que se ha realizado en este trabajo de mayor precision.
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CONCLUSIONES

No ha sido posible encontrar diferencias significativas entre los distintos indices y valores utilizados para
diferenciar entre cepas sanas y enfermas.

Se han encontrado diferencias significativas entre las distintas parcelas para todos los valores estudiados,
por lo que pese a estar en condiciones de cultivo similares, existen diferencias entre ellas que pueden
estar debidas al manejo del riego, al estado de la cubierta vegetal, la presencia de plagas o a diferencias
en la fertilidad del suelo de cada zona.

El analisis de regresion muestra que existe una elevada correlacion entre los DN de las distintas bandas
que componen la imagen multiespectral. Sin embargo, la correlacidn entre la temperatura y las distintas
bandas de la imagen multiespectral es muy baja.

El andlisis de componentes principales muestra que el 95% de la variabilidad puede ser explicada
utilizando Unicamente 2 componentes principales, los cuales estdn formados por las 3 bandas de la
imagen multiespectral. De modo, que la temperatura explica una pequefia parte de la variabilidad, por lo
que la mayor parte de la informacién que obtenemos de ella es redundante con la imagen multiespectral.

Pese a que las diferencias entre cepas sanas y enfermas no han sido significativas, ha sido posible obtener
unos modelos de clasificacion basado en aprendizaje de maquina capaces de clasificar con cierta
precision. Aunque para obtener cierta precisidn en el acierto de cepas con yesca, el modelo toma muchas
cepas sanas como cepas afectadas por yesca.
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