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Resumen 

El alperujo es un residuo agrícola obtenido en la producción del aceite de oliva, del 

cual se generan alrededor de 4 millones de toneladas anuales en España. La gestión de este 

residuo plantea problemas debido a su fitotoxicidad y elevado contenido de humedad. Una 

posible alternativa para su gestión y posterior aprovechamiento podría ser someter el alperujo 

fresco a procesos de transformación termoquímica, como la carbonización hidrotermal (HTC). 

Este proceso trabaja a temperaturas relativamente bajas (180 – 350 °C) y a presiones 

autogeneradas que mantienen el agua en condiciones subcríticas. Como resultado se obtiene 

un producto sólido, además de una fase líquida y gaseosa, similar al carbón llamado hidrochar. 

Este sólido posee ciertas propiedades interesantes, ya que aplicado al suelo, puede mejorar su 

capacidad de retención y disponibilidad de agua y nutrientes. Además, al estar formado por 

carbono mayoritariamente, actúa como un sumidero de CO2 atmosférico. Sin embargo, existe 

escaso trabajo científico sobre el proceso HTC y el hidrochar que necesitan ser investigados 

más a fondo. En el presente trabajo se ha estudiado la carbonización hidrotermal de alperujo 

fresco bajo diferentes condiciones de temperatura final, contenido de humedad y tiempo de 

residencia a la temperatura final con el objetivo de estudiar su influencia en el rendimiento del 

proceso y en las propiedades del hidrochar generado. En el proceso experimental se han 

llevado a cabo 20 experimentos de HTC siguiendo un diseño de experimentos factorial 23, 

además de análisis inmediatos y elementales del alperujo fresco y del hidrochar, de análisis del 

líquido y gas y análisis BET del hidrochar. Los resultados obtenidos han mostrado que el 

rendimiento a hidrochar disminuye con la temperatura y el tiempo de residencia. Por el 

contrario, la cantidad de carbono fijo del hidrochar aumenta, por lo que el hidrochar es de 

mejor calidad aunque su producción sea menor. Por otro lado, el área superficial del hidrochar 

es demasiado baja para usarlo como carbón activo a no ser que sea sometido a un proceso de 

activación. Por último, la conclusión que se obtiene es que el tiempo de residencia ejerce una 

mayor influencia sobre el rendimiento a hidrochar y a carbono fijo que la temperatura. El 

hidrochar puede ser utilizado para la mejora de las características del suelo y además, permite 

reducir los gases de efecto invernadero, concretamente de CO2 debido a que retiene más de la 

mitad del carbono de la biomasa. Futuros estudios podrían ampliar el rango de estudio de los 

factores, optimizar el proceso para una mayor estabilidad del hidrochar o estudiar su 

activación física o química. 

Palabras clave: Carbonización hidrotermal, alperujo fresco, hidrochar, carbono fijo, 

temperatura, tiempo de residencia, contenido de humedad.  
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Abstract 

Two-phase olive mill waste or “alperujo” is an agricultural residue widely produced in 

Spain. In this country, around 4 million tons are produced during olive oil production. The 

management of this residue poses some troubles related to his phytotoxicity and high wet 

content. An alternative of its management could be the use of “alperujo” as feedstock at a 

thermochemical conversion process, as hydrothermal carbonization (HTC). This process works 

at relatively low temperatures (180 – 350 °C) and autogenous pressures which keep water in 

subcritical conditions. As a result, it is obtained a carbon solid product called hydrochar, as well 

as a liquid and gaseous phase. This solid has some interesting properties because if it is applied 

to soil, it could enhance the soil water and nutrient retention capacity and their availability. In 

addition, it is mainly formed by carbon thus it works as atmospheric CO2 sink. Nevertheless, 

there is not too much scientific research about HTC and hydrochar, therefore they need to be 

studied in depth. In the current research, the hydrothermal carbonization of wet ”alperujo” 

has been studied under different conditions of final temperature, wet content and residence 

time at the final temperature in order to study their influence in the product yields and 

hydrochar properties. At the experimental process, it have been carried out 20 HTC 

experiments following a 23 factorial design, as well as immediate and elemental analysis of wet 

“alperujo” and hydrochar, analysis of liquid and gaseous phases and BET analysis of hydrochar. 

The obtained results show that the hydrochar yield decreases with the temperature and 

residence time. To the contrary, the fixed carbon content increases, thus the result hydrochar 

has better quality. On the other hand, its surface area is too much low to use it as activated 

carbon unless it will be subjected to an activation process. Finally, the obtained conclusion is 

that residence time exerts bigger influence over the hydrochar and fixed carbon yield than 

temperature. Hydrochar can be used to enhance the soil properties and it helps to reduce 

greenhouse gases, in particular CO2, due to it retains more than half of biomass carbon 

content. Future studies could widen the study level of factors, optimise the process in order to 

reach bigger stability of hydrochar or study its physical or chemical activation. 

  

 

 

Keywords: Hydrothermal carbonization, two-phase olive mil waste, hydrochar, fixed carbon, 

temperature, residence time, wet content.  



7 
 

  



8 
 

Í ndice 

 Introducción ........................................................................................................................ 14 1

1.1 Biomasa ....................................................................................................................... 14 

1.2 Alperujo ....................................................................................................................... 15 

1.3 Procesos de conversión termoquímica de la biomasa ................................................ 18 

1.3.1 Combustión directa de la biomasa ...................................................................... 18 

1.3.2 Pirólisis ................................................................................................................ 19 

1.3.3 Gasificación ......................................................................................................... 20 

1.3.4 Licuefacción ......................................................................................................... 21 

1.3.5 Procesos hidrotermales ....................................................................................... 21 

1.4 Hidrochar ..................................................................................................................... 23 

 Antecedentes ...................................................................................................................... 27 2

2.1 Rendimiento a hidrochar ............................................................................................ 27 

2.2 Producción de líquido y gas ......................................................................................... 29 

2.3 Estabilidad del hidrochar y área superficial ................................................................ 30 

2.3.1 Carbono fijo y ratios H:C y O:C ............................................................................ 30 

2.3.2 Área superficial específica de las partículas ........................................................ 33 

 Objetivos ............................................................................................................................. 35 3

 Material y métodos ............................................................................................................. 36 4

4.1 Micro reactor Parr ....................................................................................................... 36 

4.2 Caracterización de la muestra de alperujo ................................................................. 38 

4.2.1 Determinación de la humedad ............................................................................ 38 

4.2.2 Análisis inmediato ............................................................................................... 39 

4.2.3 Análisis elemental ............................................................................................... 40 

4.3 Diseño experimental ................................................................................................... 41 

4.4 Carbonización hidrotermal .......................................................................................... 43 

4.5 Caracterización de los productos ................................................................................ 45 

4.5.1 Hidrochar ............................................................................................................. 45 

4.5.2 Fase líquida .......................................................................................................... 46 

4.5.3 Fase gaseosa ........................................................................................................ 48 

 Resultados ........................................................................................................................... 51 5

5.1 Resultados experimentales ......................................................................................... 51 



9 
 

5.2 Análisis estadístico de los productos del HTC ............................................................. 51 

5.3 Análisis estadístico de las propiedades del hidrochar ................................................ 56 

 Conclusiones........................................................................................................................ 63 6

 Bibliografía .......................................................................................................................... 65 7

 Nomenclatura ...................................................................................................................... 72 8

8.1 Variables ...................................................................................................................... 72 

8.2 Acrónimos ................................................................................................................... 73 

Anexo I. Instrumentos y equipos utilizados durante el estudio .................................................. 76 

Sección I. Componentes del micro reactor Parr...................................................................... 76 

Sección II. Instrumentos y equipos utilizados para el tratamiento de los productos ............. 77 

Anexo II. Resultados .................................................................................................................... 78 

Sección I. Productos ................................................................................................................ 78 

Sección II. Gráficas detalladas del cromatógrafo de gases ..................................................... 79 

Sección III. Gráficas de la evolución de la presión en función de la temperatura .................. 81 

Sección IV. Tablas de los experimentos .................................................................................. 83 

 

  



10 
 

Í ndice de figuras 

Figura 1.1. Generación de biomasa (IDAE, 2007) ........................................................................ 15 

Figura 1.2. Esquema de los procesos de extracción de aceite de oliva y subproductos 

(Alburquerque, J.A. et al., 2004) ................................................................................................. 17 

Figura 1.3. Alperujo fresco procedente de la almazara ECOSTEAN ............................................ 18 

Figura 1.4. Representación del proceso de pirólisis (Brown, R., 2009) ....................................... 19 

Figura 1.5. Procesos de conversión hidrotermal de la biomasa (Peterson, A.A. et al., 2008; 

Poerschmann, J. et al., 2013) ...................................................................................................... 23 

Figura 1.6. Hidrochar formado en HTC de alperujo fresco. ........................................................ 24 

Figura 1.7. Ciclo del Carbono entre la geosfera, biosfera y atmósfera (Sohi, S. et al., 2009) ..... 25 

Figura 1.8. Descripción del proceso de formación y valorización del hidrochar (Hitzl, M. et al., 

2015) ........................................................................................................................................... 26 

Figura 2.1. Producción de sólido, líquido y gas referido a la biomasa inicial seca en función de 

diferentes temperaturas y tiempos de residencia (Basso, D. et al., 2015) ................................. 30 

Figura 4.1. Micro reactor Parr (parte anterior y posterior) ........................................................ 36 

Figura 4.2. Controlador y horno Parr .......................................................................................... 36 

Figura 4.3. Esquema del micro reactor ....................................................................................... 37 

Figura 4.4. Evolución de la presión conforme el aumento de la temperatura en el reactor 

durante el HTC ............................................................................................................................. 44 

Figura 4.5. Distribución de picos del calibrado (canal A) ............................................................ 49 

Figura 4.6. Distribución de picos del calibrado (canal B) ............................................................ 49 

Figura 4.7. Distribución de los picos del canal A (exp_4 - 200 °C, 12,5 horas, 82,8 %) ............... 49 

Figura 4.8. Distribución de los picos del canal B (exp_4 - 200 °C, 12,5 horas, 82,8 %) ............... 50 

Figura 5.1. Rendimiento a hidrochar en función de la temperatura y el tiempo de residencia . 53 

Figura 5.2. Rendimiento a líquido en función del contenido de humedad y el tiempo de 

residencia .................................................................................................................................... 54 

Figura 5.3. Rendimiento a gas en función del contenido de humedad y la temperatura .......... 55 



11 
 

Figura 5.4. Porcentaje volumétrico del CO2 en base libre de N2 en función de la temperatura y 

tiempo de residencia ................................................................................................................... 56 

Figura 5.5. Rendimiento a carbono fijo en función de la temperatura y el tiempo de residencia

 ..................................................................................................................................................... 58 

Figura 5.6. Ratio H:C en función de la temperatura y del tiempo de residencia ........................ 59 

Figura 5.7. Diagrama de Van Krevelen del hidrochar en función de las condiciones de operación

 ..................................................................................................................................................... 59 

Figura 5.8. Porcentaje de cenizas en función de la temperatura y tiempo de residencia .......... 60 

 

  



12 
 

Í ndice de tablas 

Tabla 1.I. Producción de aceite de oliva por temporada en miles de toneladas (AICA, 2015) ... 16 

Tabla 2.I. Contenido de energía y porcentaje de hidrochar producido a diferentes temperaturas 

a partir de madera de pino de Jeffrey (Pinus jeffreyi) y abeto del Colorado (Abies concolor) 

(Hoekman, S.K. et al., 2011) ........................................................................................................ 27 

Tabla 2.II. Contenido de energía y porcentaje de hidrochar producido a 255 °C bajo diferentes 

tiempos de operación a partir de madera de pino de Jeffrey (Pinus jeffreyi) y abeto del 

Colorado (Abies concolor) (Hoekman, S.K. et al., 2011) .............................................................. 28 

Tabla 2.III. Porcentaje en masa seca de hidrochar producido por HTC a 250°C durante 20 horas 

a partir de diferentes tipos de biomasa (Berge, N.D. et al., 2011) ............................................. 28 

Tabla 2.IV. Rendimiento a hidrochar (γHC) a diferentes temperaturas con diferentes materias 

primas (Fang, J. et al., 2015)........................................................................................................ 28 

Tabla 2.V. Características químicas de las muestras de hidrochar (Xiao, L.-P. et al., 2012) ....... 31 

Tabla 2.VI. Análisis elemental del hidrochar (porcentajes en base libre de cenizas y humedad) 

producido a diferentes temperaturas a partir de bagazo de caña de azúcar (Fang, J. et al., 2015)

 ..................................................................................................................................................... 31 

Tabla 2.VII. Comparación entre las características químicas del hidrochar y el biochar 

producido a partir de rastrojo de maíz (Fuertes, A. et al., 2010) ................................................ 32 

Tabla 2.VIII. Área superficial de hidrochares en función de la temperatura de operación y de la 

biomasa de partida (Fang, J. et al., 2015) ................................................................................... 33 

Tabla 4.I. Contenido en humedad del alperujo fresco y contenido en volátiles, carbono fijo y 

cenizas en base seca.................................................................................................................... 40 

Tabla 4.II. Análisis elemental del alperujo en base seca. ............................................................ 40 

Tabla 4.III. Matriz del diseño factorial adoptado para analizar el HTC de alperujo fresco ......... 42 

Tabla 4.IV. Calibrado ................................................................................................................... 50 

Tabla 5.I. Resultados del análisis estadístico de los rendimientos del HTC ................................ 52 

Tabla 5.II. Resultados del análisis estadístico de las propiedades del hidrochar ........................ 57 

Tabla 5.III. Resultados del análisis BET ........................................................................................ 61 

 



13 
 

 

  



14 
 

 Introducción 1

1.1 Biomasa 

En la actualidad, la cada vez más creciente demanda energética ha provocado un 

aumento de la generación de residuos y de la emisión de gases de efecto invernadero. Estos 

últimos son considerados uno de los actores principales en el cambio climático.  

Por ello, es cada vez más necesario establecer un desarrollo sostenible en la sociedad 

actual, sustituyendo los hábitos actuales de generación de energía y consumo de recursos. El 

uso de energías renovables por ejemplo, ha ido incrementando desde que se popularizó su uso 

hasta alcanzar una contribución del 11,3 % al balance nacional de energía primaria1 en 2010 en 

España (IDAE, 2011). No obstante, este aporte a la producción eléctrica debe continuar 

creciendo, por ello el Plan de Energías Renovables 2011 – 2020 establece que la aportación de 

las energías renovables para el final de dicho periodo debe ser del 20 %, como viene 

dictaminado a su vez en la Directiva 2009/28/CE del Parlamento Europeo y del Consejo, 

relativa al fomento del uso de energía procedente de fuentes renovables. 

Dentro de las energías renovables se incluye la biomasa que, según la Especificación 

Técnica Europea CEN/TS 14588 sobre combustibles sólidos, engloba a “todo el material de 

origen biológico excluyendo aquellos que han sido integrados en formaciones geológicas 

sufriendo un proceso de mineralización” (CEN/TS-14588, 2003). Esta biomasa proviene de 

diferentes fuentes como la madera y residuos forestales, cultivos energéticos y residuos 

agrícolas, residuos sólidos urbanos (RSU), residuos ganaderos, subproductos del 

procesamiento de alimentos y plantas acuáticas y algas (Demirbaş, A., 2001a). La composición 

de la biomasa depende de su origen, sin embargo su composición elemental general suele ser 

la siguiente (ordenados de mayor a menor prevalencia): C, O, H, N, Ca, K, Si, Mg y Al (Vassilev, 

S.V. et al., 2013). 

La biomasa ha sido la principal fuente de energía del ser humano hasta la irrupción de 

los combustibles fósiles y se estima que su contribución actual a la energía primaria mundial es 

de 50 EJ2, lo que representa entre un 10 % y un 14 % del consumo mundial de energía 

(Gadonneix, P. et al., 2010; McKendry, P., 2002a). Para el año 2050 el consumo de biomasa 

para la obtención de energía habrá aumentado, sin embargo esto no influirá en la cantidad de 

dióxido de carbono en la atmósfera (CO2) debido al denominado “balance neutro de la 

biomasa”. La energía que contiene la materia orgánica es energía solar almacenada por las 

                                                           
1
 Energía bruta disponible en la naturaleza antes de ser transformada (Galdos Urrutia, R. et al., 2009) 

2
 Exajulios (10

18
 J) 
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plantas a través de la fotosíntesis (ver Figura 1.1), proceso en el cual toman CO2 del aire para 

formar los compuestos orgánicos que necesitan para crecer y desarrollarse. De esta manera,  

el CO2 liberado a través de un proceso de conversión térmica como la combustión no 

contribuye al aumento de éste ya que forma parte de la atmósfera actual al haber sido tomado 

por las plantas (IDAE, 2007). 

 

Figura 1.1. Generación de biomasa (IDAE, 2007) 

1.2 Alperujo 

El aceite de oliva es producido mayoritariamente en el sur de Europa, Oriente Próximo 

y el norte de África, principalmente en países como España, Italia, Grecia, Túnez, Turquía y 

Marruecos (Alburquerque, J.A. et al., 2004; Cegarra, J. et al., 2006). De entre todos ellos cabe 

destacar España al ser el mayor productor mundial de este producto (Alburquerque, J.A. et al., 

2004), cuya producción suele alcanzar el millón de toneladas (ver Tabla 1.I). 
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Tabla 1.I. Producción de aceite de oliva por temporada en miles de toneladas (AICA, 2015) 

Mes 2011/2012 2012/2013 2013/2014 2014/2015 2015/2016 

Octubre 18,6 6,6 8,8 30,5 22,4 

Noviembre 170,2 87,7 169,7 157,6 257,0 

Diciembre 655,4 296,3 592,2 427,5 599,0 

Enero 577,8 158,9 483,0 160,2 357,3 

Febrero 149,4 49,1 300,1 37,8 0 

Marzo 33,9 10,3 207,9 19,5 0 

Abril 4,4 5,1 14,5 3,2 0 

Mayo 5,3 4,2 5,3 5,9 0 

Junio 0 0 0 0 0 

Julio 0 0 0 0 0 

Agosto 0 0 0 0 0 

Septiembre 0 0 0 0 0 

TOTAL 1615,0 618,2 1781,5 842,2 1235,7 

 

La producción de aceite de oliva, realizada cuando se cosecha la oliva entre los meses 

de noviembre y febrero, se puede realizar mediante el método tradicional o por un proceso de 

centrifugación en continuo. Ambos procesos separan el aceite del agua y del fruto, generando 

como subproducto un orujo que está compuesto por la pulpa y el hueso. Este orujo puede ser 

reutilizado en la industria orujera (Cabrera, F., 1995).  

En España, el método tradicional utilizado hasta el comienzo de los años setenta era el 

sistema de prensa en discontinuo que producía un orujo con escasa humedad, alrededor de un 

25 – 30 % (Cabrera, F., 1995). Sin embargo, debido a la modernización del sector, este proceso 

fue cayendo en desuso por la aparición del sistema de centrifugación en tres fases ya que 

permitía la separación del aceite, del licor acuoso y del orujo en un proceso continuo 

(Alburquerque, J.A. et al., 2004). No obstante, en este sistema se introduce agua caliente en la 

fase de centrifugado lo que incrementa la humedad del orujo (45 – 50 %) y el efluente de agua 

residual con respecto al método tradicional (Cabrera, F., 1995). Esta agua residual se denomina 

alpechín y está compuesto por el agua procedente del fruto y por el agua introducida en el 

proceso de centrifugado. La producción de alpechín supone un problema medioambiental 

debido a su alto poder contaminante, ya que posee gran cantidad de compuestos orgánicos y 

de sólidos disueltos y en suspensión, muy por encima de lo que permite la legislación y 

también porque se genera una gran cantidad del mismo en un periodo muy corto de tiempo 

(Alburquerque, J.A. et al., 2004; Cabrera, F., 1995; Fiestas Ros de Ursinos, J. et al., 1992). 

A principios de los años noventa se introdujo en España un nuevo sistema de 

extracción del aceite de oliva para reducir el impacto ambiental que el sistema de tres fases 
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producía. Este sistema consiste en una centrifugación en dos fases a la que no se añade agua 

caliente como en el anterior, lo que elimina la producción de alpechín (ver Figura 1.2). Por otro 

lado, su desventaja radica en que se genera un residuo lignocelulósico, denominado alperujo 

(ver Figura 1.3), que posee una alta cantidad de humedad que dificulta su manejo 

(Alburquerque, J.A. et al., 2004; Ordóñez, R. et al., 1999). 

 

Figura 1.2. Esquema de los procesos de extracción de aceite de oliva y subproductos (Alburquerque, J.A. et al., 

2004) 

Actualmente el sistema de centrifugación en dos fases es usado en el 90 % de las 

almazaras de toda España (Roig, A. et al., 2006), por lo que se genera una gran cantidad de 

alperujo, lo que sumado a su difícil gestión y transporte hace que sea necesario buscar nuevas 

formas de valorización de este residuo. Diversos estudios han puesto de manifiesto su poder 

como fertilizante mediante su aplicación directa a los cultivos (Ordóñez, R. et al., 1999). Sin 

embargo, el alperujo posee los mismos efectos fitotóxicos y antimicrobianos que el alpechín 

(Alburquerque, J.A. et al., 2004), además de afectar negativamente a la estabilidad estructural 

del suelo (Tejada, M. et al., 1997). Otros autores como Roig et al (2006) proponen otros tipos 

de valorización del alperujo, como, por ejemplo, el secado y extracción de aceite, obtención de 

energía, digestión anaerobia, fermentación en estado sólido y la extracción de productos 

útiles. 
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Figura 1.3. Alperujo fresco procedente de la almazara ECOSTEAN 

Dentro de estos últimos métodos, la utilización del alperujo para la obtención de 

energía a través de procesos termoquímicos es una opción a considerar puesto que es una 

fuente de biomasa abundante que proporcionaría energía renovable y más económica 

(Caputo, A.C. et al., 2003; Masghouni, M. et al., 2000). 

1.3 Procesos de conversión termoquímica de la biomasa 

Los procesos de conversión termoquímica de la biomasa han sido utilizados por la 

sociedad desde hace miles de años y consisten en el uso de calor y catalizadores para la 

transformación de la materia en biocombustibles, compuestos químicos o energía eléctrica 

(Stevens, C. et al., 2011). En la actualidad existen diversos tipos de procesos, siendo los más 

destacados la combustión directa, la pirólisis, la gasificación, la licuefacción y los procesos 

hidrotermales (Demirbaş, A., 2001a; Kambo, H.S. et al., 2015; Manyà, J.J., 2012; McKendry, P., 

2002b; Tekin, K. et al., 2014). 

1.3.1 Combustión directa de la biomasa 

La combustión de la biomasa tiene un amplio rango de usos en los que se aprovecha la 

energía química contenida en los compuestos orgánicos para la producción de calor y/o 

energía eléctrica a través de vapor en calderas, generadores y plantas energéticas (Demirbaş, 

A., 2001a; McKendry, P., 2002b).  

El calor generado durante la combustión depende del poder calorífico y del contenido 

de carbono, cenizas y humedad de la biomasa. El poder calorífico superior (PCS) de un material 

es la energía total liberada cuando se quema en presencia de oxígeno incluyendo el calor 
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latente contenido en el vapor de agua. Sin embargo, este valor puede variar dependiendo de la 

cantidad de humedad de la biomasa, pues afecta a la cantidad de calor generado de manera 

que al aumentar ésta, se reduce la energía liberada. Por otro lado los enlaces C – C contienen 

más energía que los enlaces C – H ó C – O, por lo tanto al incrementar el contenido de carbono 

el poder calorífico aumenta también (McKendry, P., 2002a; Tekin, K. et al., 2014). 

Aunque la combustión sea el proceso más utilizado para la conversión de la biomasa, 

su aplicación a pequeña escala en cocinas domésticas o calderas puede ser muy ineficiente con 

pérdidas de energía entre el 30 y 90 %. En sistemas de generación de energía a gran escala, los 

rendimientos se pueden comparar con los sistemas que utilizan combustibles fósiles aunque 

su coste es mayor debido al contenido de humedad de la biomasa. Con una elevada humedad 

presente en la biomasa (alrededor del 90 %), la energía requerida para secar la materia prima 

es mayor que su poder calorífico. Por ello, para reducir los costes de producción se puede 

utilizar el sistema de cogeneración en el que se produce calor y electricidad al mismo tiempo. 

A parte de la cogeneración existen otras formas de aprovechar la biomasa con elevada 

humedad, incluyendo la mezcla de la biomasa con gas natural u otros combustibles (Demirbaş, 

A., 2001a; Jenkins, B.M. et al., 2011). 

1.3.2 Pirólisis 

La pirólisis es un proceso de descomposición térmica de la biomasa seca a unas 

temperaturas relativamente bajas (en torno a unos 400 – 650 °C) y en ausencia de oxígeno o, 

en su defecto, con una concentración de oxígeno inferior a la requerida para llevar a cabo una 

combustión completa (Mohan, D. et al., 2006; Sohi, S. et al., 2009). 

Tras la pirólisis se forma un residuo sólido que recibe varios nombres como char, 

charcoal o biochar. Este residuo es un sólido con alto contenido en carbono. Además del char, 

se generan compuestos volátiles que son parcialmente condensados formando una fase 

líquida y, a su vez, una fracción gaseosa compuesta por aquellos gases no condensables (ver 

Figura 1.4) (Brownsort, P.A., 2009). 

 

Figura 1.4. Representación del proceso de pirólisis (Brown, R., 2009) 
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La transferencia de calor a la biomasa es un parámetro que determina en gran medida 

la producción y características de los productos generados durante la pirólisis, por ello se 

pueden diferenciar varios tipos de pirólisis en función de ésta (Brownsort, P.A., 2009; Garcia-

Perez, M. et al., 2010; Manyà, J.J., 2012; Mohan, D. et al., 2006; Peacocke, C. et al., 2014; Sohi, 

S. et al., 2009): 

 Pirólisis lenta o pirólisis convencional: El ratio de transferencia de calor es 

muy bajo, entre 5 y 7 °C/min, aunque algunos autores (Onay, O. et al., 2003) 

han utilizado un ratio mayor (30 °C/min). Por otro lado, dependiendo del autor 

se suelen alcanzar temperaturas entre 300 y 700 °C, aunque se ha establecido 

que el tiempo de residencia sea superior a 5 s para que los gases no 

condensables salgan del reactor y puede variar entre algunos minutos, horas e 

incluso días. Esto conlleva una producción de char superior a cualquier otra 

forma de pirólisis (25 – 35 %) y una menor producción de líquido de pirólisis 

(30 – 50 %). 

 Pirólisis rápida: En este caso el ratio de transferencia es muy elevado, 

alrededor de 200 ó 300 °C/min, aunque cabe destacar que las Notas de 

Terminología y Tecnología  en Conversión Termal del IBI (International Biochar 

Initiative) proponen un ratio superior a 1000 °C/s e incluso a 10000 °C/s. La 

biomasa utilizada debe estar formada por partículas de pequeño tamaño 

debido a la baja conductividad térmica de la biomasa. El tiempo de residencia 

de la fase vapor debe ser de 2 s o menos. El objetivo de esta técnica no es la 

producción de char (15 – 25 %) sino la obtención de líquido de pirólisis o bio-oil 

(60 – 75 %). 

1.3.3 Gasificación 

La gasificación es un proceso que consiste en la combustión parcial de la biomasa 

mediante un flujo controlado de oxígeno a temperaturas entre 500 y 800 °C (Brown, R., 2009), 

o entre 800 y 900 °C (McKendry, P., 2002b), según el autor. Este proceso tiene como fin la 

maximización de la producción de gas, formado por CO, H2, CO2 y CH4 (Peacocke, C. et al., 

2014). Además, se genera una cantidad pequeña de char cuya gestión es problemática debido 

a su alta concentración de hidrocarburos aromáticos policíclicos (PAH) y metales alcalinos y 

alcalinotérreos formados como consecuencia de la temperatura a la que se trabaja en la 

gasificación (Ippolito, J.A. et al., 2012). Esta mezcla de gases se puede quemar para producir 

calor y vapor para mover turbinas y generar electricidad, o también para la obtención de 
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biocombustibles y otros compuestos químicos (Brown, R., 2009; Demirbaş, A., 2001a; 

McKendry, P., 2002b). 

1.3.4 Licuefacción 

Este proceso de conversión termoquímica trabaja con biomasa a bajas temperaturas 

(250 – 350 °C), altas presiones (50 - 200 atm) y con el uso de un catalizador e hidrógeno. 

Aunque produce un líquido de alto valor añadido, su uso es escaso debido a que los sistemas 

de producción son complejos y los costes de producción son mayores que los de la pirólisis 

(Agency, E., 2013; Peacocke, C. et al., 2014). 

1.3.5 Procesos hidrotermales 

Los procesos hidrotermales de conversión de la biomasa son aquellos que tienen lugar 

en presencia de agua en condiciones sub- o supercríticas. Esta situación viene determinada por 

el punto crítico del agua que está establecido en 374 °C y 22 MPa. Por debajo de dicha 

temperatura y hasta los 100 °C se habla de condiciones subcríticas y por encima, de 

condiciones supercríticas (Peterson, A.A. et al., 2008). Cuando el agua se encuentra a 

condiciones cercanas a las del punto crítico sus características cambian rápidamente. La 

constante dieléctrica disminuye de manera pronunciada cambiado su capacidad de disolución. 

En estas condiciones, el agua actúa como un compuesto no polar lo que lo convierte en un 

buen solvente para los compuestos orgánicos no polares. El incremento de la temperatura 

también afecta a su viscosidad y densidad, que se ven reducidas en gran medida, lo que 

aumenta su coeficiente de difusión, mejorándose las condiciones de reacción para un ratio de 

reacción superior (Guo, Y. et al., 2010).  

Este procesamiento de la biomasa trae consigo una serie de ventajas con respecto al 

resto de tipos de conversión termoquímica. Permite el uso de biomasa húmeda por lo que no 

es necesario un pretratamiento de secado reduciéndose de esta manera la energía utilizada. 

Los compuestos de los que está compuesta la biomasa como lignocelulosa, ácidos grasos y 

proteínas son transformados en un amplio abanico de combustibles líquidos y gaseosos debido 

a las reacciones en las que el agua actúa como agente catalizador. Por último, se mejoran los 

ratios de reacción y la eficiencia de separación de los productos y los desechos generados 

debido a las variaciones físicas del agua, lo que reduce el consumo de energía global del 

proceso (Libra, J.A. et al., 2011; Peterson, A.A. et al., 2008). 

Se distinguen diferentes tipos de procesos hidrotermales (ver Figura 1.5), dependiendo 

del rango de temperaturas y presiones a los que somete a la materia prima y a su finalidad 

(Peterson, A.A. et al., 2008): 
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 Licuefacción hidrotermal: Este proceso tiene lugar por debajo del punto crítico 

en un rango de temperaturas entre 200 y 350 °C y de presiones entre 4 y 20 

MPa. Los tiempos de residencia suelen variar según el autor, por ejemplo 

Andrew A. Peterson et al. (2008) establecen unos tiempos de residencia de 10 

a 60 minutos. La finalidad de este proceso es la obtención de un líquido 

orgánico (bio-oil). 

 Gasificación hidrotermal: Este proceso empieza a tener lugar a condiciones 

muy cercanas al punto crítico, pudiéndose dar tanto en agua subcrítica como 

supercrítica, con el fin de incrementar la producción de la fase gaseosa 

formada por H2, CO2, CH4, CO e hidrocarburos ligeros (Modell, M., 1985). Hasta 

los 500 °C, el proceso se denomina gasificación catalítica debido a que requiere 

de la acción de un agente catalizador para alcanzar unos ratios de reacción y 

selectividad razonables. Por otro lado, si la temperatura sobrepasa los 500 °C 

la gasificación es homogénea y la termólisis tiene lugar sin problemas, por lo 

que se pasa a denominar gasificación a alta temperatura (Peterson, A.A. et al., 

2008). 

 Carbonización hidrotermal: La carbonización hidrotermal o HTC (por sus siglas 

en inglés) es un proceso novedoso aunque ya empezó a ser estudiado para la 

obtención de char en 1913. Este sistema trabaja a bajas temperaturas (180 – 

350 °C) y a una presión lo suficientemente alta como para mantener el agua en 

estado líquido. La presión de operación depende de los productos que se 

quieran obtener, por lo que puede variar desde los 0,9 MPa (Poerschmann, J. 

et al., 2013), hasta los 20,68 MPa (Singh, K. et al., 2014). Permite la 

transformación de la biomasa lignocelulósica en char, denominado hidrochar, 

además de una fase líquida y gaseosa (Libra, J.A. et al., 2011; Poerschmann, J. 

et al., 2013; Reza, M.T., 2011; Titirici, M.-M. et al., 2007). En el apartado de 

antecedentes se tratará más a fondo este proceso. 
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Figura 1.5. Procesos de conversión hidrotermal de la biomasa (Peterson, A.A. et al., 2008; Poerschmann, J. et al., 

2013) 

1.4 Hidrochar 

El char es el producto sólido rico en carbono originado en los diferentes procesos de 

conversión termoquímica de la biomasa (Joseph, S. et al., 2009). De entre todos estos métodos 

explicados anteriormente, dos de ellos se centran en maximizar la producción de char 

principalmente: la pirólisis seca y la carbonización hidrotermal (Antal, M.J. et al., 2003; Libra, 

J.A. et al., 2011). 

El char puede ser aplicado a los suelos como método de almacenaje de carbono a largo 

plazo, además de incrementar la producción de los campos de cultivo y la capacidad de 

retención y disponibilidad de nutrientes para las plantas (Antal, M.J. et al., 2003; Glaser, B. et 

al., 2002). Es en este contexto cuando se usa el término “biochar”. Cuando el biochar es 

obtenido mediante un proceso de HTC, a éste también se le designa como hidrochar (Ver 

Figura 1.6). En el presente trabajo, el término “biochar” hace referencia al char obtenido 

exclusivamente mediante pirólisis convencional. A pesar de tener un uso y aspecto similar 

(Kambo, H.S. et al., 2015), el biochar y el hidrochar difieren en sus características físicas y 

químicas debido a las condiciones de operación en las que se forman (Kambo, H.S. et al., 2015; 

Wiedner, K. et al., 2013). 

El presente trabajo se centra en el estudio del hidrochar o char producido mediante 

HTC. Sin embargo, debido a la escasa información acerca del hidrochar, para conocer qué 

propiedades son las que hacen a un char una buena enmienda al suelo, es necesario explicar 
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que es el biochar y que lo hace un recurso tan interesante. No obstante, sus propiedades no 

son siempre las mismas y pueden variar principalmente por el tipo de biomasa utilizada y de 

las condiciones de pirólisis (Liu, Y. et al., 2011; Sohi, S. et al., 2009). 

 

Figura 1.6. Hidrochar formado en HTC de alperujo fresco. 

El biochar se obtiene por la pirólisis lenta de biomasa seca en atmósfera libre de 

oxígeno para evitar la combustión. El IBI especifica en su definición el hecho de que el material 

debe ser aplicado como enmienda a los suelos con el fin de mejorar sus características. Una de 

las características que hacen al biochar una enmienda interesante para el suelo es su elevada 

porosidad estructural y capacidad de adsorción. Estas cualidades del biochar aportan a los 

suelos un incremento de su capacidad de retención de agua y de su área superficial, por lo que 

se reduce el consumo de agua por parte de los campos de cultivo (Sohi, S. et al., 2009). 

Además resulta ser una buena materia prima para la elaboración de carbono activo (Libra, J.A. 

et al., 2011). 

Otro aspecto importante que debe ser mencionado es el aumento de la capacidad de 

absorción de nutrientes por parte de las plantas y debido a los procesos físico-químicos que 

facilita al suelo, a parte de los propios nutrientes que aporta el biochar (Sohi, S. et al., 2009). 

Como resultado de las condiciones en las que se da la pirólisis, el biochar tiene una 

estructura aromática con escasos grupos funcionales que le aporta estabilidad y resistencia a 

la descomposición. Por ello, al aplicarlo a los suelos se crea un sumidero de CO2 en forma de 

carbono a largo plazo (Dai, X. et al., 2005; Sohi, S. et al., 2009), como se muestra en la Figura 

1.7.  
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Figura 1.7. Ciclo del Carbono entre la geosfera, biosfera y atmósfera (Sohi, S. et al., 2009) 

Otros gases de efecto invernadero ven reducida su emisión además del CO2 debido a 

los cambios de las propiedades físicas del suelo. El N2O se forma en condiciones anaerobias a 

través de la denitrificación (Manyà, J.J., 2012), por lo que al aumentar la aireación del suelo 

este proceso se ve afectado negativamente (Van Zwieten, L. et al., 2010). La producción de 

metano (CH4) también disminuye debido a una reducción de la metanogénesis por parte de los 

microorganismos (Spokas, K.A. et al., 2009), aunque este hecho aún no está del todo claro 

(Manyà, J.J., 2012). 

El rendimiento a hidrochar y sus propiedades también pueden variar en función de la 

biomasa y de las condiciones del proceso HTC. La principal ventaja que presenta el hidrochar 

sobre el biochar es que se produce a partir de la conversión de biomasa húmeda y no requiere 

una temperatura de operación tan elevada como la de la pirólisis seca, por lo que se reduce la 

energía consumida a lo largo del proceso. Anteriormente, la pirólisis seca había estado 

restringida a biomasas con escasa humedad inicial (Libra, J.A. et al., 2011). 

Aunque la producción de hidrochar es ventajosa en los aspectos mencionados, el 

hidrochar no presenta las mismas cualidades que el biochar, como ya ha sido mencionado 

anteriormente. Algunos estudios establecen que el hidrochar presenta una menor área 

superficial y porosidad (Fuertes, A. et al., 2010). Por ejemplo, en un estudio realizado por  

Fuertes et al (2010) con rastrojos de maíz se obtuvieron unas áreas superficiales de 12 y 4 m2/g 

para el biochar y el hidrochar producido, respectivamente. 

Otros inconvenientes que ciertos autores han encontrado en el uso del hidrochar 

como producto de mejora de las características del suelo es su menor estabilidad estructural y, 

por tanto su menor resistencia a la degradación en comparación con el biochar (Kambo, H.S. et 

al., 2015). Esto permite a los procesos de descomposición de la materia del suelo degradar el 
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hidrochar de forma más sencilla y por lo tanto se liberan más gases de efecto invernadero 

como  CO2,  N2O y  CH4 que en el caso del biochar (Malghani, S. et al., 2013). No obstante, 

durante el proceso de HTC se liberan muchos menos gases peligrosos que durante la pirólisis y 

el producto final no es propenso a la autocombustión por la alta concentración de grupos 

oxigenados en su superficie (Kambo, H.S. et al., 2015). 

A pesar de estas desventajas que presenta el hidrochar frente al biochar, también se 

aprecian ciertos aspectos que lo hacen un producto bastante interesante. Por ello es necesaria 

una investigación más a fondo para definir las aplicaciones prioritarias del hidrochar y así 

poder optimizar el proceso HTC mejorando la estabilidad del hidrochar y sus efectos positivos 

en la productividad agrícola (Glaser, B. et al., 2002; Kambo, H.S. et al., 2015; Mumme, J. et al., 

2011). 

 

Figura 1.8. Descripción del proceso de formación y valorización del hidrochar (Hitzl, M. et al., 2015) 

Tanto la valorización energética como la mejora de la calidad del suelo (ver Figura 1.8) 

son las dos principales funciones del hidrochar (Hitzl, M. et al., 2015). 

El presente trabajo se centra en el estudio experimental del proceso de HTC aplicado a 

alperujo fresco. El objetivo es conocer bajo qué condiciones de operación (temperatura final, 

humedad y tiempo de residencia) se obtiene una mayor producción de hidrochar y con unas 

propiedades más favorables desde una perspectiva de futura aplicación a suelos.  
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 Antecedentes 2

2.1 Rendimiento a hidrochar 

El rendimiento a hidrochar (γHC) indica la cantidad de biomasa que se transforma en 

char a través de un proceso de HTC. Este se obtiene calculando el ratio entre la masa inicial de 

materia prima (mbio) en base seca y la masa de hidrochar seco producido (mHC) siguiendo la 

siguiente ecuación (Antal, M.J. et al., 2000): 

2.1  HC
HC

bio

m

m
   

Este rendimiento depende de varios factores como la temperatura, el tiempo de 

residencia y la concentración y tipo de biomasa (Li, L. et al., 2015). Uno de los que más afecta a 

la producción del char es la temperatura final (Libra, J.A. et al., 2011; Zhang, L. et al., 2015). 

Según los datos de algunos estudios realizados se puede apreciar que al aumentar la 

temperatura, la producción de hidrochar disminuye, sobre todo entre los 190 y los 270 °C 

seguido de un descenso más suave a temperaturas mayores (Berge, N.D. et al., 2011; 

Hoekman, S.K. et al., 2011; Libra, J.A. et al., 2011; Zhang, L. et al., 2015). Este detrimento de la 

producción es debido al aumento de la descomposición de la materia orgánica con la 

temperatura (Sun, Y. et al., 2014). En estudios como el de Hoekman et al. (2011), que analizan 

más aspectos del hidrochar producido, se aprecia que la energía contenida en el hidrochar 

aumenta con la temperatura al contrario que el rendimiento a hidrochar (ver Tabla 2.I). 

Tabla 2.I. Contenido de energía y porcentaje de hidrochar producido a diferentes temperaturas a partir de 
madera de pino de Jeffrey (Pinus jeffreyi) y abeto del Colorado (Abies concolor)

3
 (Hoekman, S.K. et al., 2011) 

 Biomasa 215°C 235°C 255°C 275°C 295°C 

Contenido de 
energía 
(MJ/kg) 

20,32 22,58 24,27 
28,26 ± 

0,28 
29,02 29,52 

Rendimiento 
Hidrochar (% 
masa) 

- 69,1 63,7 50,3 ± 0,5 50,9 50,1 

 

Otro factor que interviene en el rendimiento del proceso y al contenido de energía es 

el tiempo de residencia a la temperatura final, el cual afecta de la misma manera que la 

temperatura como se observa en la Tabla 2.II (Hoekman, S.K. et al., 2011). La materia sufre una 

mayor descomposición cuanto más tiempo se encuentre dentro del reactor. 

                                                           
3
 El tiempo de residencia fue de 30 minutos en todos los experimentos 
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Tabla 2.II. Contenido de energía y porcentaje de hidrochar producido a 255 °C bajo diferentes tiempos de 
operación a partir de madera de pino de Jeffrey (Pinus jeffreyi) y abeto del Colorado (Abies concolor) (Hoekman, 
S.K. et al., 2011) 

 
Biomasa 

inicial 
5 min 10 min 30 min 60 min 

Contenido 
energético 
(MJ/kg) 

20,32 25,10 26,04 28,26 ± 0,28 29,17 

Rendimiento 
Hidrochar (%) 

- 57,7 55,5 50,3 ± 0,5 52,1 

 

El tipo de biomasa utilizada en HTC afecta también al rendimiento del proceso según la 

Tabla 2.III  (Berge, N.D. et al., 2011): 

Tabla 2.III. Porcentaje en masa seca de hidrochar producido por HTC a 250°C durante 20 horas a partir de 
diferentes tipos de biomasa (Berge, N.D. et al., 2011) 

 
Papel Alimentos RSU 

Residuos de 
digestión 
anaerobia 

Hidrochar 
(% bs) 

29,2 ± 0,24 43,8 ± 3,2 63,2 ± 5,0 47,1 ± 13 

 

En el estudio de Fang et al. (2015) también muestra la influencia de la biomasa. En él 

se utilizan como materias primas bagazo de la caña de azúcar, madera de nogal americano 

(Juglans nigra) y cáscaras de cacahuete para el proceso de HTC a 200, 250 y 300 °C. Según sus 

resultados (ver Tabla 2.IV), la producción de hidrochar a partir del bagazo de la caña de azúcar 

fue menor que la del resto de biomasas a cualquier temperatura. Este menor rendimiento es 

debido a una mayor cantidad de celulosa, la cual resiste menos la degradación (Fang, J. et al., 

2015). La madera y las cáscaras tienen mayor cantidad de lignina, que está relacionada con 

una mayor productividad de hidrochar (Demirbaş, A., 2001b; Fang, J. et al., 2015). La lignina 

posee una estructura poli-fenólica estable que le permite resistir más tiempo las reacciones de 

degradación que se dan en el proceso HTC (Kang, S. et al., 2012). 

Tabla 2.IV. Rendimiento a hidrochar (γHC) a diferentes temperaturas con diferentes materias primas (Fang, J. et 
al., 2015) 

Materia prima 200°C 250°C 300°C 

Bagazo de caña de 
azúcar 

47,75 33,50 26,75 

Madera de nogal 
americano 

54,60 49,60 27,80 

Cáscaras de 
cacahuete 

50,55 44,91 36,91 
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Por otro lado la concentración de la biomasa de partida o contenido de humedad 

también parece afectar al rendimiento. El estudio de Danso-Boateng et al. (2013) sobre 

carbonización hidrotermal de biomasa fecal determinó que la producción de hidrochar es 

mayor en las muestras de biomasa con un mayor contenido de sólidos. 

El rendimiento a hidrochar (γHC) disminuyó conforme la cantidad de agua de la biomasa 

aumentó. Con un 75 % de humedad el rendimiento fue de 53 – 62 %, al 85 % se redujo hasta el 

50 – 58 % y finalmente con 95 % de humedad alcanzó un valor de 46 – 56 % (Danso-Boateng, 

E. et al., 2013). 

Debido a las condiciones a las que se lleva a cabo la HTC, el rendimiento a char de este 

proceso ha demostrado ser algo mayor que la pirólisis seca. En ciertos estudios se han 

realizado comparaciones de ambos procesos obteniéndose un rendimiento del 36 % en el HTC 

y del 28 % en la pirólisis (Fuertes, A. et al., 2010). 

La pirólisis, al someter la biomasa a mayor temperatura que en el HTC, se producen 

más gases y una mayor cantidad de líquidos debido a aumento de las reacciones de 

descomposición.  

2.2 Producción de líquido y gas 

Para el rango de temperaturas 215 – 295 °C, Hoekman et al., (2011) obtuvieron un 

rendimiento de conversión de la biomasa a gas de entre el 5 y 12 % y un rendimiento a líquido 

de entre 12 y 15 %. Dentro de los gases destaca la presencia de CO2 que constituye el 90 – 95 

% del volumen total, seguido del CO con un 5 – 10 % y trazas de CH4, H2 e hidrocarburos ligeros 

(Basso, D. et al., 2015; Hoekman, S.K. et al., 2011). No se apreció variación de la composición 

de los gases según la materia prima utilizada. Esta predominancia del CO2 indica la presencia 

de reacciones de descarboxilación (Basso, D. et al., 2015; Berge, N.D. et al., 2011). 

Las condiciones de operación claramente afectan al proceso de conversión de la 

biomasa. Si bien ya ha sido mencionado anteriormente, la temperatura y el tiempo de 

residencia juegan un papel importante en la productividad, pues a mayor temperatura la 

biomasa sufre más reacciones de degradación que producen una mayor cantidad de gas y de 

líquido llegando a constituir casi el 10 y el 50 % en masa de la producción a 250 °C, 

respectivamente. Por otra parte, el tiempo que está operando la HTC acelera este proceso 

aunque no es tan determinante como el otro. El porcentaje de cada fase varía poco entre 1 h y 

8 h, aunque sí que hace disminuir la producción de sólidos (ver Figura 2.1) (Basso, D. et al., 

2015). 
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Figura 2.1. Producción de sólido, líquido y gas referido a la biomasa inicial seca en función de diferentes 
temperaturas y tiempos de residencia (Basso, D. et al., 2015) 

Estos factores no sólo afectan a la producción sino también a la composición de los 

gases. El CO2 es el gas predominante a cualquier temperatura, sin embargo conforme se 

aumentan los valores de temperatura y tiempo de residencia del proceso otros gases 

empiezan a formarse. A elevadas temperaturas y tiempos de residencia el CO comienza a ser 

importante en la composición de los gases de HTC debido a que se favorece la 

descarbonilación de los compuestos orgánicos con grupos carbonilos liberando este gas.  

Por su parte la fase líquida está compuesta por productos derivados de los azúcares y 

la lignina presente en la materia prima y que puede ser utilizada para la producción de 

productos químicos de valor añadido (Xiao, L.-P. et al., 2012). Estos compuestos retienen el 27 

– 48 % del carbono presente en la biomasa de partida (Basso, D. et al., 2015). La hidrólisis 

durante la HTC transforma la celulosa y la hemicelulosa en compuestos como furfural, 2-etil-5-

metil-furano y 2-hidroxi-3-metil-2-ciclopenten-1-ona, los cuales varían según la materia prima 

(Xiao, L.-P. et al., 2012). Por otro lado, la descomposición de la lignina da lugar a la formación 

de compuestos fenólicos (Xiao, L.-P. et al., 2012). 

2.3 Estabilidad del hidrochar y área superficial 

2.3.1 Carbono fijo y ratios H:C y O:C 

Durante la HTC se dan reacciones de deshidratación, condensación y descarboxilación 

que resultan en una pérdida de carbono, hidrógeno y oxígeno. Con el incremento de la 

temperatura y tiempo de residencia, el hidrochar obtenido aumenta su concentración de 

carbono y reduce la de hidrógeno y oxígeno (Basso, D. et al., 2013; Hoekman, S.K. et al., 2011). 

Más de la mitad del carbono procedente de la biomasa lignocelulósica se queda en el 

hidrochar (ver Tabla 2.V), en concreto alrededor de un 54,2 – 58,6 % según el estudio de Xiao 

et al. (2012) en el que utilizan tallos de maíz (CS) y Tamariz ramosissima (TR) como materia 

prima en HTC a 250 °C durante 4 horas. El resto del carbono va a parar a la fracción líquida y 
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gaseosa. Además, este hidrochar posee un alto contenido en lignina lo que sugiere que las 

reacciones de hidrólisis descomponen casi totalmente la celulosa y la hemicelulosa durante el 

proceso (Xiao, L.-P. et al., 2012). 

El rendimiento a carbono fijo (γFC) se puede calcular siguiendo la siguiente ecuación a 

partir del rendimiento a hidrochar (calculado como se muestra en la ecuación 2.1), del 

porcentaje de carbono fijo del hidrochar y del porcentaje de cenizas de la biomasa de partida 

(Antal, M.J. et al., 2000): 


%

2.2  
100 %

HC
FC

bio

m FC

m Cenizas


  
   

  
 

La HTC produce un char menos condensado (mayores ratios H:C y O:C) que el biochar 

producido por pirólisis (Sun, Y. et al., 2014; Xiao, L.-P. et al., 2012). 

Tabla 2.V. Características químicas de las muestras de hidrochar (Xiao, L.-P. et al., 2012) 

 γHC (%) % C % H % O H:C O:C γFC (%) 

CS - 46.84 6.26 40.70 1.591 0.652 - 

CS (250 °C) 35,48 71.36 5.60 16.27 0.935 0.171 54.21 

TR - 47.95 6.62 43.37 1.646 0.679 - 

TR (250 °C) 38,10 72.08 5.42 20.87 0.896 0.217 58.55 

 

En la Tabla 2.V se puede observar la disminución de los ratios molares H:C y O:C con la 

temperatura y un aumento de la concentración de C y la disminución del O a partir de una 

misma biomasa. La disminución de los ratios molares H:C y O:C viene determinado por las 

reacciones de deshidratación y descarboxilación que se ven favorecidas por el incremento de 

la temperatura y que tienden a eliminar los grupos hidroxilos y los grupos carboxilos y 

carbonilo de la biomasa, respectivamente (Basso, D. et al., 2013). 

Tabla 2.VI. Análisis elemental del hidrochar (porcentajes en base libre de cenizas y humedad) producido a 
diferentes temperaturas a partir de bagazo de caña de azúcar (Fang, J. et al., 2015) 

 % C % H % O H:C O:C 

Bagazo de caña de 
azúcar (200 °C) 

69,15 5,11 25,74 0,07 0,37 

Bagazo de caña de 
azúcar (250 °C) 

75,05 5,64 19,28 0,08 0,26 

Bagazo de caña de 
azúcar (300 °C) 

79,31 5,34 15,35 0,07 0,19 
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La reducción del H y O también es debida a que se encuentran entre fracciones 

químicas más solubles que, por lo tanto, se disuelven más fácilmente con el incremento de la 

temperatura y presión (Fang, J. et al., 2015).  

Según sugieren algunos autores, los ratios H:C y O:C están relacionados con los niveles 

de aromaticidad y por lo tanto con la estabilidad del char. A temperaturas más elevadas, el 

hidrochar adquiere mayores niveles de aromaticidad lo que le aporta más estabilidad contra la 

degradación (Bai, M. et al., 2014). 

A bajas temperaturas se obtiene un hidrochar con mayor ratio O:C (ver Tabla 2.VI) lo 

que indica gran cantidad de grupos funcionales oxigenados en la superficie del char, tales 

como grupos hidroxilo, carboxílicos y carbonilos (Joseph, S. et al., 2009). Estos grupos 

oxigenados aportan al hidrochar una gran capacidad de intercambio catiónico por lo que 

aplicado a los suelos puede mejorar su capacidad de retención de nutrientes y adsorción de 

contaminantes como metales pesados (Uchimiya, M. et al., 2011). Los grupos carboxilos e 

hidroxilos son más abundantes en el hidrochar que en el biochar aunque menores que en la 

biomasa, por lo que el hidrochar es menos hidrofílico que la biomasa aunque más que el 

biochar (Basso, D. et al., 2013; Fuertes, A. et al., 2010). 

No obstante, otros autores sugieren que la explicación por la que el ratio O:C es mayor 

en el hidrochar que en el biochar es debido a una presencia de grupos estables como grupos 

éter, pirona o quinona en lugar de los grupos oxigenados mencionados (Fuertes, A. et al., 

2010).  

Tabla 2.VII. Comparación entre las características químicas del hidrochar y el biochar producido a partir de 
rastrojo de maíz (Fuertes, A. et al., 2010) 

Muestra 
Composición química (bs %) 

H:C O:C 
Carbono 

recuperado 
(%) C H O 

Rastrojo de 
maíz 

42,9 5,8 41,7 1,62 0,84 - 

Hidrochar4 67,8 5,3 16,2 0,94 0,27 57 

Biochar5 74,3 2,7 8,0 0,44 0,12 46 

 

Fuertes et al. (2010) realizaron una comparación de los productos sólidos obtenido por 

pirólisis y por HTC a partir de rastrojos de maíz. En él se puede apreciar diferencias en las 

                                                           
4
 Hidrochar obtenido por HTC a 250 °C durante 4 horas. 

5
 Biochar obtenido por pirólisis a 550 °C durante 15 minutos. 
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características químicas de los productos finales (ver Tabla 2.VII). El biochar obtenido por 

pirólisis posee una mayor concentración de carbono y una menor concentración de hidrógeno 

y oxígeno debido a que la temperatura de operación es más elevada, lo que favorece las 

reacciones de degradación mencionadas anteriormente. Esto, además, deriva en unos ratios 

H:C y O:C menores. Por su parte, el hidrochar, aunque no supera en estos valores al biochar, el 

estudio indica que este producto retiene más carbono de la biomasa que el biochar por lo que 

el HTC consigue mejores resultados en la retención de carbono (Fuertes, A. et al., 2010). 

2.3.2 Área superficial específica de las partículas 

El área superficial de las partículas de hidrochar suele ser bastante bajo, similar al área 

de la biomasa de partida. En la Taba 2.VIII se muestra cómo influye la temperatura en el área 

específica del hidrochar (el área disminuye levemente con un aumento de la temperatura de la 

HTC) (Fang, J. et al., 2015). 

Tabla 2.VIII. Área superficial de hidrochares en función de la temperatura de operación y de la biomasa de partida 
(Fang, J. et al., 2015) 

 Área superficial (m2/g) 

Bagazo de caña de azúcar (200°C) 10,7 

Bagazo de caña de azúcar (250°C) 3,9 

Bagazo de caña de azúcar (300°C) 4,9 

Madera de nogal americano (200°C) 7,8 

Madera de nogal americano (250°C) 8,9 

Madera de nogal americano (300°C) 1,8 

Cáscaras de cacahuete (200°C) 7,1 

Cáscaras de cacahuete (250°C) 1,1 

Cáscaras de cacahuete (300°C) - 

 

La pirólisis, por su parte, produce biochar con una mayor área superficial debido al 

valor más elevado de la temperatura final, lo que facilita una mayor producción de volátiles. En 

el estudio de Liu et al. (2010) se realizó esta comparación al someter madera de pino un 

proceso de pirólisis a 700 °C y de HTC a 300 °C. Mediante un análisis Brunauer – Emmet – 

Teller (BET) obtuvieron un hidrochar y un biochar con un área superficial de 21 m2/g y 29 m2/g, 

respectivamente (Liu, Z. et al., 2010). Por su lado, en otro estudio se obtuvieron a 250 °C 

durante 4 horas, unos hidrochares con un área superficial de 30 m2/g, mayor que Liu et al. 

(2010), a partir de biomasa celulósica (Sevilla, M. et al., 2009).  

La pirólisis produce char con mayor área superficial y además el aumento de la 

temperatura durante el proceso favorece el incremento de esta área superficial en char 
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producido (Sun, Y. et al., 2014). Diversos autores han detectado que existe una temperatura 

óptima a la que se obtiene la máxima área superficial en biochar, a partir de la cual este valor 

comienza a decrecer (Sharma, R.K. et al., 2001). A partir de ciertas temperaturas que suelen 

rondar entre los 700 y los 800 °C se encuentra este punto de inflexión a partir del cual el 

incremento de la temperatura comienza a ser contraproducente. 

Este declive es debido al cierre de los poros del char a elevadas temperaturas (Brown, 

R.A. et al., 2006), aunque otros autores lo achacan a un colapso y fusión de los poros (Wagner, 

W., 1973). Como se ha visto en la Tabla 2.VIII, esta tendencia no es seguida por el hidrochar ya 

que el incremento de la presión generada durante el HTC como consecuencia del aumento de 

la temperatura podría bloquear los poros sin necesidad de alcanzar las mismas temperaturas 

que en la pirólisis (Fang, J. et al., 2015; Wagner, W., 1973). 

Otros estudios sobre char obtenido mediante pirólisis han analizado la influencia del 

tiempo de retención de la biomasa en el área superficial del producto sólido final. 

Generalmente, el aumento del tiempo mejora la porosidad del char como ocurre con la 

temperatura. Sin embargo, a partir de los 900 °C esta tendencia cambia y el tiempo de 

residencia comienza a ser un factor contraproducente (Guo, J. et al., 1998). 
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 Objetivos 3

El objetivo general de este trabajo de fin de grado consiste en el estudio de la 

influencia de diferentes condiciones de operación sobre los productos obtenidos en la 

carbonización hidrotermal de alperujo fresco. Para ello se contemplan los siguientes objetivos 

específicos: 

 Analizar la influencia de los tres factores de estudio seleccionados 

(temperatura final, contenido en agua y tiempo de residencia) sobre los 

rendimientos a hidrochar, líquido y gas. 

 Realizar una caracterización del hidrochar obtenido en cada experimento para 

conocer su composición elemental, el porcentaje a carbono fijo (%FC), el 

rendimiento a carbono fijo del proceso (γFC), su área superficial y su estabilidad 

(ratios H:C y O:C). 

 Analizar el contenido de agua de las muestras de líquido y la composición de 

los gases. 
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 Material y métodos 4

4.1 Micro reactor Parr 

El proceso de carbonización hidrotermal se ha llevado a cabo en un micro-reactor Parr 

de la serie 4590 de 100 mL de acero inoxidable, que puede soportar una presión máxima de 

350 bar y una temperatura máxima de 350 °C (ver Figura 4.1). La temperatura de consigna y el 

tiempo de residencia son controlados mediante un controlador Parr 4858 conectado al 

termopar y al horno (ver Figura 4.2). 

 

Figura 4.1. Micro reactor Parr (parte anterior y posterior) 

 

Figura 4.2. Controlador y horno Parr 
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Como se puede apreciar en la Figura 4.3, el micro reactor está compuesto por las 

siguientes partes: 

 Horno cilíndrico [1] 

 Vasija del reactor de acero inoxidable [2] 

 Cabeza del reactor 

o Válvula de entrada de gas [3] 

o Válvula de salida de gases [4] 

o Válvula de toma de muestras de líquido [5] 

o Disco de ruptura de seguridad. Este dispositivo está diseñado para 

romperse y liberar presión del reactor antes de que éste alcance 

niveles peligrosos de presión [6] 

o Termopar [7] 

o Manómetro para el control de la presión dentro del reactor [8] 

o Motor de agitación magnético [9] 

o Agitador [10] 

 Controlador Parr 4858 al que está conectado el termopar [11] 

 

Figura 4.3. Esquema del micro reactor 

TI TC

PSV
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[2]
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4.2 Caracterización de la muestra de alperujo 

El alperujo utilizado proviene de la almazara ecológica ECOSTEAN, situada en el 

municipio de Costean cerca de Barbastro, Huesca. El aceite de oliva es producido mediante el 

sistema de centrifugación en dos fases. Tras el lavado y molienda de las olivas se forma una 

pasta que es batida y posteriormente sometida a una primera centrifugación en la que se 

separan la fase oleosa de la sólida. Esta fase oleosa es sometida posteriormente a una segunda 

centrifugación donde se inyecta agua para separar el agua del aceite de oliva virgen. Por su 

parte la fase sólida es el residuo resultante de este proceso y lo que se denomina alperujo 

(Espínola Lozano, F., 1996). 

El alperujo que va a ser utilizado en la elaboración de los experimentos del presente 

trabajo no ha sido sometido a ningún tratamiento de secado por lo que su contenido de agua 

es elevado y ha de cuantificarse. 

Por otro lado, el contenido de carbono fijo y la composición elemental del hidrochar 

resultante del proceso de HTC son variables respuesta que se obtienen tras un análisis 

inmediato y elemental, respectivamente. Conocer estos valores en la muestra de alperujo 

inicial es necesario para observar cómo afecta la HTC a la estabilidad y composición del 

hidrochar resultante. 

4.2.1 Determinación de la humedad 

Para determinar la humedad de la biomasa se ha llevado a cabo el siguiente proceso 

experimental: 

 Primero se pesan tres crisoles cerámicos y una bandeja de vidrio y se anota su 

masa (mc). 

 Se toman tres muestras de alperujo húmedo de aproximadamente 3 gramos y 

una de 245 gramos (malp). 

 Las muestras de alperujo se introducen en una estufa a 100 °C durante 24 

horas. 

 Tras las 24 horas en la estufa, se pesan las muestras (malp.seco) para obtener la 

diferencia de masa y así calcular la cantidad de agua del alperujo. 

Conociendo la masa total húmeda (mT) y seca (malp.seco) de los recipientes más la 

biomasa se puede calcular el porcentaje en masa de agua según la ecuación 4.2: 



39 
 

.sec

4.1) 

4.2) % 100

T c alp

T alp o

alp

m m m

m m
Humedad

m

 


 

 

Finalmente, el promedio de la humedad de las cuatro muestras de alperujo húmedo se 

muestra en la Tabla 4.I. 

4.2.2 Análisis inmediato 

El procedimiento llevado a cabo para obtener el contenido de volátiles, cenizas y 

carbono fijo ha sido el siguiente: 

 Se pesan cuatro crisoles cerámicos (mc) a los que se les añade 

aproximadamente 2,5 gramos (malp.seco) de alperujo seco que ha sido obtenido 

en el procedimiento de determinación de humedad. 

 Posteriormente, se cubren los crisoles con una tapa cerámica y se introducen 

en la mufla a 750 °C durante 7 minutos. 

 Tras los 7 minutos y dejar que se enfríen los crisoles, se vuelven a pesar los 

crisoles para poder obtener la diferencia de masa. 

 Una vez anotadas las masas de las muestras sin los volátiles (mf), se meten a la 

mufla de nuevo a 750°C durante 2 horas. 

 Después de dos horas, todo el carbono ha sido eliminado y sólo quedan las 

cenizas cuya masa es determinada (mash). 

Con las siguientes ecuaciones se puede calcular el contenido de volátiles, cenizas y 

carbono fijo en base seca de la biomasa: 
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Los resultados de la humedad y del análisis inmediato (estos últimos en base seca) se 

muestran en la Tabla 4.I. Los valores del contenido en volátiles, cenizas y carbono fijo han sido 

hallados en base seca, tomando la masa de alperujo seco para realizar los cálculos: 
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Tabla 4.I. Contenido en humedad del alperujo fresco y contenido en volátiles, carbono fijo y cenizas en base seca. 

 Humedad Volátiles Carbono fijo Cenizas 

Media (% masa) 77,80 76,63 19,52 3,84 

Desv. estándar 0,008 0,002 0,003 0,002 

4.2.3 Análisis elemental 

El análisis elemental se llevó a cabo en el Instituto de Investigación en Ingeniería de 

Aragón (I3A) mediante un microanalizador elemental CHNS LECO. La técnica se basa en la 

oxidación completa de la muestra a través de la combustión con oxígeno puro a una 

temperatura de 1000°C. En esta combustión se produce CO2, H2O y N2 que son transportados a 

través de un tubo de reducción mediante el gas portador He. Luego son separados en 

columnas específicas para más tarde ser desorbidos térmicamente y pasar separadamente por 

un detector de conductividad térmica que proporciona una señal proporcional a la 

concentración de los gases individualmente. 

El oxígeno se ha calculado mediante diferencia de porcentajes teniendo en cuenta el 

contenido de cenizas de la biomasa inicial en base seca: 

4.7) % % % % % %O C H N S Cenizas      

En la Tabla 4.II se muestran los resultados del análisis elemental en base seca o libre de 

humedad ya que han sido calculados con alperujo seco: 

Tabla 4.II. Análisis elemental del alperujo en base seca. 

 C N H S O 

Media (% masa) 56,17 1,408 7,409 0,115 31,059 

Desv. estándar 0,063 0,3521 0,1096 0,0016 0,0041 

 

Una vez obtenidos los componentes elementales de la biomasa de partida es posible 

calcular los ratios molares H:C y O:C utilizando las siguientes ecuaciones: 
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Aplicando las ecuaciones 4.8 y 4.9 se obtienen los ratios H:C y O:C del alperujo fresco 

los cuales son 1,58 y 0,41; respectivamente. 

4.3 Diseño experimental 

Para el diseño experimental de este proyecto se ha optado por un diseño factorial de 

experimentos 23, es decir, tres factores de estudio a dos niveles, con dos réplicas por 

tratamiento. Esto da lugar a 16 experimentos realizados a los que se deben añadir cuatro más 

que corresponden a cuatro réplicas en el punto central (valores medios de cada uno de los 

factores de estudio). En total, se han realizado 20 experimentos en los que se han evaluado los 

rendimientos y las propiedades de los productos obtenidos. 

Los factores de estudio seleccionados han sido la temperatura final, el tiempo de 

residencia a esa temperatura y el contenido de humedad inicial. Los niveles de temperatura 

fueron elegidos a partir la bibliografía existente acerca de la carbonización hidrotermal. Ésta 

indica que dicho proceso tiene lugar alrededor de temperaturas en torno a los 180 – 350 °C. 

Por ello el nivel inferior seleccionado es de 180 y el superior de 220 °C. Para los tiempos de 

residencia se ha elegido entre 1 hora y 24 horas para ver con claridad la influencia de este 

factor durante el proceso. Los niveles de humedad fueron establecidos una vez se halló la 

humedad de la biomasa de partida, cuyo valor fue considerado como nivel inferior dentro del 

diseño factorial. Para el nivel superior se ha optado por añadirle un 10 % más de agua (agua 

destilada) a la masa de alperujo tomada para realizar cada experimento (87,8014 %). En 

cuanto a los puntos centrales, estos se componen de los valores medios de los niveles de cada 

factor, por consiguiente se realizaron cuatro experimentos a 200 °C durante 12,5 horas y con 

un 5 % más de agua (82,8014 %). 

En la Tabla 4.III se muestran los factores de estudio junto con sus niveles inferiores, 

centrales y superiores además de la nomenclatura utilizada para nombrarlos durante el 

presente trabajo. Además se presenta el orden en el que se han realizado los 20 ensayos de 

HTC de alperujo fresco con el micro reactor y los niveles de los factores. 
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Tabla 4.III. Matriz del diseño factorial adoptado para analizar el HTC de alperujo fresco 

Nivel Factores 

 β1 β2 β3 

 Temperatura (°C) Humedad (%) Tiempo de residencia (h) 

Inferior (–1) 180 77,8014 1 

Medio (0) 200 82,8014 12,5 

Superior (+1) 220 87,8014 24 

Experimentos Factores 

 β1 β2 β3 

1 –1 –1 +1 

2 0 0 0 

3 –1 –1 –1 

4 0 0 0 

5 –1 +1 +1 

6 –1 +1 –1 

7 0 0 0 

8 –1 –1 –1 

9 –1 –1 +1 

10 –1 +1 –1 

11 0 0 0 

12 –1 +1 +1 

13 +1 –1 –1 

14 +1 –1 –1 

15 +1 –1 +1 

16 +1 +1 +1 

17 +1 +1 –1 

18 +1 –1 +1 

19 +1 +1 +1 

20 +1 +1 –1 

 

Los resultados obtenidos se han analizado estadísticamente utilizando el programa 

Minitab 16. En este programa informático se introduce la matriz factorial deseada (en este 

caso 23) junto con los factores de estudio y sus valores representados como –1, 0 y +1 (estos 

valores representan los niveles inferior, medio y superior de los factores como se muestra en 

la Tabla 4.III). En cada columna se añade una variable respuesta y sus valores obtenidos en 

cada experimento. De esta forma, el software calcula la influencia de los factores sobre las 

variables y permite estimar como es su comportamiento al variar las condiciones. 



43 
 

Para ello se debe prestar atención a diferentes datos que muestra el programa. Entre 

ellos se encuentra el signo del coeficiente de cada factor que determina si es el incremento de 

este produce un incremento de la variable en cuestión (el coeficiente será positivo) o por el 

contrario provoca su detrimento (el coeficiente será negativo). Por otro lado, el P-valor indica 

si ese factor es significativo o no siempre y cuando sea inferior a 0,05 ya que el nivel de 

confianza ha sido fijado en el 95 %. La curvatura puede ser significativa también si se 

encuentra por debajo de este nivel de confianza lo que supondrá que el modelo de regresión 

lineal no sea el más apropiado, ya que la variación del factor no será proporcional a la de la 

variable. 

4.4 Carbonización hidrotermal 

En la elaboración de los experimentos se ha seguido un protocolo de actuación para 

asegurar la repetitividad de los experimentos: 

 Se pesan 25 gramos de alperujo fresco, que luego se introducen en un inserto 

de teflón, con el fin de que la cantidad de biomasa seca sea la misma en todos 

los experimente independientemente del contenido de humedad de la 

muestra. 

 Como acaba de ser mencionado, dependiendo del experimento se le añade a 

los 25 gramos de alperujo agua destilada para alcanzar el nivel de humedad 

requerido (si el experimento en cuestión es al nivel inferior de humedad no se 

le añade nada). 


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 El inserto con la biomasa se introduce dentro del reactor de acero y se cierra 

herméticamente con la parte superior asegurándose de que el agitador y el 

termopar entran correctamente. 

 Se crea una atmósfera inerte dentro del reactor. Para ello se abren las válvulas 

de entrada y salida de gases y se deja circular una corriente de N2 conectada a 

la válvula de entrada durante unos minutos para purgar el aire que ha 

quedado dentro. Luego se cierra la corriente de N2 y las válvulas para 

garantizar la estanqueidad del reactor, se introduce éste en el horno, se 

conecta el agitador al agitador magnético y se abre la corriente de agua de 

refrigeración que va conectada a la parte superior del reactor. 
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 Una vez lista la biomasa en las condiciones requeridas se selecciona en el 

controlador el tiempo de residencia de la biomasa a la temperatura de 

consigna y el tiempo que necesita el horno para alcanzar dicha temperatura. 

 Finalizado el proceso, se saca el reactor del horno y se introduce en un dewar 

con agua y hielos para que se enfríe. 

 Cuando ha alcanzado unos 30 °C de temperatura, ya se puede continuar con el 

proceso de extracción y separación de las fases sólida, líquida y gas que se han 

formado durante el HTC. 

Como control de la realización de los experimentos se ha ido anotando el aumento de 

la temperatura y de la presión en función del tiempo, con la intención de conocer el ritmo de 

calentamiento del micro reactor y la influencia de la temperatura en el aumento de la presión 

generada en el propio proceso. 

En la Figura 4.4 se muestra a modo de ejemplo cómo ha ido evolucionando la presión 

conforme aumentaba la temperatura. Además, se observa la velocidad de calentamiento del 

reactor.  

 

Figura 4.4. Evolución de la presión conforme el aumento de la temperatura en el reactor durante el HTC 

Durante el proceso de calentamiento de la biomasa, la presión aumenta a la par que la 

temperatura hasta alcanzar los 5 bares cuando la temperatura es de 180 °C, para luego 

disminuir de la misma forma que la temperatura una vez ha acabado el experimento hasta casi 

la presión atmosférica. Una gráfica de cada temperatura empleada se puede ver en  la sección 

III del Anexo 2.  
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Los siguientes pasos del proceso experimental viene explicados en el siguiente 

apartado de caracterización de los productos. 

4.5 Caracterización de los productos 

Tras el proceso de carbonización hidrotermal explicado anteriormente, se producen 

una serie de productos que pueden ser clasificados en función de su estado físico. Por una 

parte se obtiene una fracción sólida que se denomina hidrochar, la cual se encuentra mezclada 

con la fase líquida que está compuesta mayoritariamente por agua y por compuestos 

orgánicos. La fase gaseosa está formada por una mezcla de gases originados durante el 

proceso de HTC y por N2. Estos productos se caracterizan siguiendo diferentes procedimientos 

explicados a continuación. 

4.5.1 Hidrochar 

El sólido generado en el proceso es el hidrochar que, como ya ha sido explicado en 

otro apartado anterior, es el fruto de la conversión térmica de la biomasa a temperaturas que 

rondan los 180 y los 220 °C y en una atmósfera saturada de agua en estado subcrítico. 

Las técnicas de caracterización del sólido son prácticamente las mismas que para la 

biomasa de partida. Estas constan de un análisis inmediato para conocer el contenido de 

volátiles, carbono fijo, cenizas y el rendimiento a carbono fijo (γFC) y de un análisis elemental 

con el objetivo de calcular los ratios H:C y O:C. Además de las ya mencionadas, se ha incluido 

un estudio BET de las muestras de hidrochar procedentes de experimentos que se encontrasen 

en los niveles inferior y superior del diseño experimental y una muestra de hidrochar de un 

experimento del punto central, y que además poseyeran unos ratios H:C y O:C extremos. 

Sin embargo, primero se ha de separar el producto sólido del líquido generado 

siguiendo el procedimiento explicado en el apartado 4.5.2. Una vez obtenido el hidrochar se 

procede a su secado en la estufa a 100 °C durante 24 horas. Tras el secado, se pesa el 

hidrochar para calcular el rendimiento a hidrochar (γHC) del proceso utilizando la ecuación 2.1 

(ver apartado 2.1) 

El procedimiento llevado a cabo para realizar el análisis inmediato ha sido el mismo 

que el realizado con el alperujo. La única diferencia radica en que para cada uno de los 

experimentos se utilizaron tres crisoles cerámicos a los que se les añadió 0,5 gramos de 

hidrochar. La temperatura de operación es de 750 °C y el tiempo de residencia de las muestras 

en la mufla es de 7 minutos para calcular volátiles y dos horas para cenizas y carbono fijo. 

Conocido el carbono fijo se puede calcular el γFC mediante la ecuación 2.2 (ver apartado 2.3.1). 
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El análisis elemental de cada una de las muestras de hidrochar de cada experimento ha 

sido realizado en el I3A. El equipo utilizado y el procedimiento adoptado ha sido el mismo que 

en el caso de la caracterización del alperujo. 

Por último, se ha llevado a cabo el análisis del área de superficie (SBET) del hidrochar en 

los laboratorios del grupo de investigación de Catálisis, Separaciones Moleculares e Ingeniería 

de Reactores (CREG) perteneciente a la Universidad de Zaragoza. Se han seleccionado las 

muestras de hidrochar en función de su ratio H:C, O:C y porcentaje de carbono fijo. 

El proceso tiene lugar por medio de adsorción física de N2 a –196 ˚C, en un analizador 

de adsorción de gas TriStar 3000 (Micromeritics, EE.UU.), usando el modelo de Brunauer-

Emmet-Teller (BET), a partir de datos obtenidos de adsorción a bajas presiones relativas (0,05-

0,02). El volumen total de poros (Vt) se determinó a partir de la adsorción específica de N2 a 

p/p0 = 0,99. Por otro lado, el diámetro medio de poro (davg) se calculó a partir de los 

parámetros Vt y SBET. 

4.5.2 Fase líquida 

El líquido generado después de cada experimento se separa del hidrochar mediante 

filtrado con bomba de vacío a través de un embudo con un papel filtrante. El sólido húmedo 

queda entonces retenido por el filtro y el líquido pasa a un Erlenmeyer sobre el cual se aplica el 

vacío a través de una boquilla a la que se conecta el tubo de la bomba. Se anota la masa del 

líquido y se recoge para ser analizado posteriormente. Para completar el balance de materia, 

se ha pesado la muestra de hidrochar antes y después del secado con el objetivo de calcular el 

líquido que queda retenido por el mismo y añadirlo al total de masa de fase acuosa obtenida. 

El porcentaje de agua y de compuestos orgánicos del líquido formado se obtiene 

mediante titulación Karl-Fischer, utilizando un instrumento Metrohm 870 Titrino Plus. Este 

método utiliza HYDRANAL®-Composite como agente reactante durante la valoración, el cual 

está compuesto por yodo, dióxido de azufre e imidazol disueltos en éter monoetílico de 

dietilenglicol (DEGEE). Anteriormente se utilizaba piridina en lugar del imidazol como base en 

la reacción, pero fue sustituida debido a su olor desagradable y a su toxicidad.  

Durante el proceso de titulación se dan lugar dos reacciones. En la primera, un alcohol 

(que puede ser metanol o etanol) reacciona con el dióxido de azufre y la base (RN), que en este 

caso es el imidazol, para dar un sulfato de aquilo: 

  3 2 3 3. 1  rxn CH OH SO RN RNH SO CH    
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A continuación, en la segunda reacción se produce la neutralización del agua al 

reaccionar ésta con el sulfato de aquilo y con el yodo (I2): 

      3 3 2 2 4 3. 2  2 2rxn RNH SO CH I H O RN RNH SO CH RNH I      

El agente reactante reacciona con el agua contenida en la muestra hasta neutralizarla, 

por lo tanto en función de la cantidad de HYDRANAL®-Composite utilizado es posible conocer 

la cantidad de agua del líquido analizado. 

El proceso experimental llevado a cabo para realizar la titulación KF fue el siguiente: 

 Se limpia y se llena el vaso de vidrio donde se realiza la titulación con metanol 

hasta alcanzar poco menos de 25 mL y se introduce el imán para la agitación. 

 Se coloca el vaso en su posición encima del agitador magnético y se enciende 

el aparato. 

 Una vez seleccionado el método KFT Ipol con el controlador se procede a 

realizar el blanco: 

o Para ello se toma una cantidad pequeña de agua destilada con una 

jeringa y se pesa. 

o Se introduce una gota de agua destilada en el vaso de reacción y se 

aprieta el botón OK para que la máquina empiece con la titulación. 

o Se vuelve a pesar la jeringuilla para anotar la cantidad de masa de 

agua introducida en el vaso. 

o De esta manera se puede conocer la cantidad de reactivo necesario 

para neutralizar una muestra con un contenido en agua conocido (100 

%) y poder sacar una relación para calcular el contenido en agua de la 

muestras de líquido HTC. 

 Obtenido el blanco, se procede con las muestras de líquido siguiendo el mismo 

procedimiento. Se toma una muestra pequeña de líquido con una jeringuilla y 

se pesa, luego se introduce una gota en el vaso y se vuelve a pesar para anotar 

la masa introducida. 

 Este experimento se realiza por triplicado (en algunos casos más de tres 

replicas debido a errores en los datos obtenidos) para cada uno de los 

experimentos de HTC realizados. 

Conociendo la masa de muestra introducida y el reactivo necesario para neutralizar el 

agua tanto de la muestra de líquido como del blanco, se puede calcular el porcentaje de agua 

de las muestra de líquido de HTC mediante la siguiente ecuación 4.11: 
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 24.11  %

reactivo blanco

blanco

reactivo líquido

líquido

CC
masa

H O
CC

masa





  

Se calcula el porcentaje promedio entre las réplicas de cada experimento y se obtiene 

el porcentaje de tar por diferencia: 

 24.12  % . 1 %C org H O   

4.5.3 Fase gaseosa 

El gas formado en cada experimento se toma una vez se ha enfriado el reactor dentro 

de un dewar con agua y hielo. Cuando la temperatura se ha reducido al menos hasta los 30 °C, 

se procede a su extracción a través de la válvula de salida de gases, indicada en la Figura 4.3, 

utilizando una bolsa Tedlar de 1 L de capacidad cuya boquilla se adapta a la salida de gas lo 

que permite extraerlo reduciendo al máximo la pérdida de materia. 

Los gases se han analizado con un micro cromatógrafo de gases (μ-GC) Varian CP-4900. 

Este equipo está conectado a un detector de conductividad térmica (TCD) a través de dos 

canales colocados en paralelo. 

Estos canales usan un gas inerte como gas portador (fase móvil) para arrastrar la 

muestra de gas a través de la columna de separación de gases (fase estacionaria). Las 

columnas se diferencian en función de la afinidad que tienen con los gases, por lo que 

dependiendo de éstos se utilizan unas columnas u otras. El canal A utiliza helio como gas 

portador y cuenta con una columna PPQ 10 para la separación de los gases dióxido de carbono 

(CO2), etileno (C2H4), etano (C2H6) y acetileno (C2H2). Tanto el etileno como el acetileno se 

contabilizan juntos como hidrocarburos ligeros. El canal B en su lugar, utiliza argón para 

arrastrar los gases y una columna de tamices moleculares (molsieve 5A) para separar el 

hidrógeno (H2), nitrógeno (N2), monóxido de carbono (CO) y metano (CH4). 

Para poder determinar la concentración de los gases en las muestras de gas de cada 

experimento es necesario realizar un calibrado. Para ello se utiliza una mezcla de los gases a 

analizar con una concentración conocida de cada uno de ellos con el fin de hallar sus factores 

de respuesta. El microcromatógrafo detecta el orden en que van saliendo los gases de la 

columna mostrando los picos en una gráfica (ver Figura 4.5 y 4.6) y el tiempo de retención de 

cada gas permite conocer cuál es cada uno. 
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Figura 4.5. Distribución de picos del calibrado (canal A) 

 

Figura 4.6. Distribución de picos del calibrado (canal B) 

Con ayuda de la concentración de cada gas que hay en la botella y el área de cada pico 

es posible calcular el factor respuesta a través de la fórmula 4.13: 


Concentración del gas (%)

4.13  Factor respuesta
Área del pico

  

Conocido el factor respuesta de cada gas se puede calcular la concentración de estos 

gases en las muestras tomadas después de cada experimento. El área de cada pico es obtenida 

mediante el cromatógrafo como se observa en las Figuras 4.7 y 4.8 correspondientes al 

experimento número 4 (200 °C, 12,5 horas, 82,8 %). 

 

Figura 4.7. Distribución de los picos del canal A (exp_4 - 200 °C, 12,5 horas, 82,8 %) 
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Figura 4.8. Distribución de los picos del canal B (exp_4 - 200 °C, 12,5 horas, 82,8 %) 

Finalmente, se calcula la concentración usando la misma ecuación: 

4.14  Concentración del gas (%) Factor respuesta * Área del pico  

Tabla 4.IV. Calibrado  

Especie 
Concentración 

(%) 

Tiempo de 

retención 
Área media 

Factor de 

respuesta 

CO2 5 0,544 7330843 6,8205*10-7 

C2H2/C2H4 1 0,631 1372957 7,28355*10-7 

C2H6 0,5 0,685 812640,333 6,15278*10-7 

H2 5 0,438 4038334,33 1,23813*10-6 

N2 78,5 0,666 5898474,33 1,33085*10-5 

CH4 5 1.018 747897,667 6,68541*10-6 

CO 5 1.291 433124,667 1,1544*10-5 

 

En la Tabla 4.IV se muestra un ejemplo de calibración de los gases del Micro GC. De 

esta manera se pueden conocer las concentraciones de los gases predominantes formados 

durante el proceso de HTC y cómo varía su cantidad en función de las condiciones de 

operación. Se ha trabajado con porcentajes volumétricos para determinar la composición del 

gas, por lo tanto no representan la cantidad en masa de cada gas en la mezcla. 

Como aclaración se añade que en el trabajo, la masa de gas ha sido obtenida por 

balance. 
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 Resultados 5

5.1 Resultados experimentales 

Los resultados obtenidos en los experimentos revelan una notoria influencia de las 

condiciones de operación en los productos generados. 

La temperatura afecta de forma negativa al rendimiento a hidrochar del HTC ya que a 

mayor temperatura se produce menos producto sólido y más líquido y gas. Esto es debido a un 

incremento de las reacciones que descomponen el alperujo fresco dentro del reactor. Por otro 

lado, se observa que con el incremento de la temperatura de consigna, se incrementa también 

el %FC del hidrochar resultante además del rendimiento a carbono fijo. 

El tiempo de residencia de la biomasa en el reactor también ejerce influencia en el 

resultado del proceso. Como otros estudios han revelado, a mayor tiempo de retención de la 

biomasa, menos rendimiento a hidrochar pero mayores a carbono fijo, líquido y gas. Sin 

embargo, el contenido de humedad apenas afecta al proceso, únicamente a la producción de 

líquido y gas. Los resultados de los experimentos donde se pueden encontrar los valores de 

estas variables en función de los factores de estudio se pueden ver en la Tabla II XXI de la 

sección IV del anexo II.  

5.2 Análisis estadístico de los productos del HTC 

En este apartado se van a analizar los resultados del análisis estadístico de los 

rendimientos a hidrochar, líquido y gas obtenidos tras la carbonización hidrotermal del 

alperujo bajo las condiciones de operación comentadas en el apartado 4.3. 

Como ha sido mencionado anteriormente, el nivel de confianza ha sido fijado en el 

95% y además cabe esperar cierta relación entre la variación de los factores de estudio y el 

rendimiento de los diferentes productos. 

Se ha visto en otros estudios como la temperatura y el tiempo de residencia de la 

biomasa afecta al proceso. Un aumento de ambos factores implica un incremento de las 

reacciones que en la HTC se dan, reduciéndose la cantidad de char formado y maximizando la 

producción de compuestos volátiles y líquidos. 

La Tabla 5.II muestra estos resultados y como intervienen dichos factores en la 

variables mencionadas. Los factores de estudio temperatura, contenido de humedad y tiempo 

de residencia han sido representadas como β1, β2 y β3, respectivamente. β0 corresponde al 

valor de la constante de la ecuación de regresión elaborada por el programa informático de 
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análisis estadístico de datos. Por otro lado,  β1*2, β2*3 y β1*3 representan las interacciones entre 

los factores de estudio y cómo afectan a las diferentes variables su acción conjunta. 

Finalmente el término Ct Pt representa la curvatura global. 

Tabla 5.I. Resultados del análisis estadístico de los rendimientos del HTC 

 β0 β1 β2 β3 β1*2 β1*3 β2*3 Ct Pt R2(adj) 

γHC 0,677 
–0,037 

(0,002) 

–0,008 

(0,376) 

–0,061 

(0,000) 

–0,012 

(0,208) 

0,030 

(0,008) 

0,002 

(0,777) 

–0,043 

(0,063) 
0,782 

γlíq 0,788 
0,011 

(0,074) 

0,059 

(0,000) 

0,014 

(0,032) 

0,009 

(0,123) 

0,001 

(0,875) 

–0,006 

(0,266) 

–0,009 

(0,477) 
0,857 

%agua 0,851 
0,018 

(0,030) 

0,006 

(0,441) 

–0,008 

(0,271) 

–0,022 

(0,015) 

–0,018 

(0,031) 

0,012 

(0,125) 

0,008 

(0,611) 
0,585 

%C.org 0,149 
–0,018 

(0,030) 

–0,006 

(0,441) 

0,008 

(0,271) 

0,022 

(0,015 

0,018 

(0,031) 

–0,012 

(0,125) 

–0,008 

(0,614) 
0,585 

γgas 0,095 
–0,005 

(0,273) 

–0,024 

(0,000) 

–0,003 

(0,489) 

–0,009 

(0,085) 

–0,006 

(0,241) 

0,003 

(0,524) 

0,017 

(0,147) 
0,607 

%CO26 0,682 
0,024 

(0,029) 

0,017 

(0,107) 

0,062 

(0,000) 

0,029 

(0,011) 

–0,005 

(0,609) 

–0,012 

(0,217) 

–2E-5 

(0,999) 
0,758 

 

En el análisis estadístico se ha comprobado como el rendimiento a hidrochar en base 

seca (γHC) ha disminuido al incrementar la temperatura debido a que se intensifican las 

reacciones que degradan la biomasa en compuestos líquidos y gaseosos. Al igual que la 

temperatura, el tiempo de residencia influye negativamente en γHC debido a que al aumentar 

el tiempo de operación, las reacciones degradan más la biomasa. Por otro lado no existe 

curvatura y la ecuación de regresión es lineal. 

En la siguiente Figura 5.1 se muestra cómo interactúan estos dos factores y cómo 

afectan al rendimiento a hidrochar de la HTC en función de su variación. 

                                                           
6
 Porcentaje volumétrico de CO2 en base libre de N2  
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Figura 5.1. Rendimiento a hidrochar en función de la temperatura y el tiempo de residencia 

Si se analiza la Figura 5.1, a la menor temperatura el tiempo de residencia ejerce un 

papel más importante en la variación de esta variable. Otro aspecto observado en la Figura 5.1 

con referencia a la temperatura es que conforme ésta va aumentando, el rendimiento va 

disminuyendo cada vez más lentamente. Con un tiempo de residencia de 1 h (–1) se reduce de 

0,8 a 0,675 entre 180 (–1) y 200 °C (0), sin embargo para el mismo tiempo entre 200 (0) y 220 

°C (+1) apenas disminuye un 0,05. Por otro lado a 24 h (+1), el aumento de la temperatura no 

altera el rendimiento a hidrochar apenas, sin embargo a 220 °C existe una diferencia de 

rendimiento entre 1 hora y 24 horas de 0,675 a 0,625. Se puede afirmar que el tiempo de 

residencia es más influyente, ya que su variación afecta más al rendimiento a hidrochar de la 

HTC que la temperatura. Esto se ratifica al observar los coeficientes de la temperatura y del 

tiempo de residencia para la variable γHC en la Tabla 5.I, los cuales son –0,037 y –0,061 

respectivamente. El valor absoluto del coeficiente del tiempo de residencia es mayor que el de 

la temperatura lo que significa que ejerce una mayor influencia. 

Durante el HTC, las reacciones de hidrolisis, descarboxilación, descarbonilación y 

deshidratación van transformando el alperujo en compuestos más simples y estables. A su vez, 

el hidrochar también sufre la acción de estas reacciones y se va degradando en compuestos 

que pasan a formar parte de la fase líquida y gaseosa. 

Como se muestra en la Tabla 5.I, el γlíq aumenta con el contenido de humedad y el 

tiempo de retención, pues sus P valores son significativos. La temperatura por su parte no 
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ejerce demasiada influencia pues su P valor es superior al nivel de confianza establecido. 

Además no se aprecia curvatura en la ecuación de regresión. 

 

Figura 5.2. Rendimiento a líquido en función del contenido de humedad y el tiempo de residencia 

El tiempo de residencia solo varía el γlíq en los niveles extremos del diseño factorial (ver 

Figura 5.2). Con un contenido de humedad del 77,8 %, la variación entre 1 y 24 h provoca un 

aumento del rendimiento a líquido de 0,72 a 0,76. Al 87,8 % el aumento es algo menor. Para 

esta variable, el contenido de humedad de la muestra de alperujo fresco es el factor más 

influyente debido a que entre los niveles inferior y superior se produce un aumento mayor del 

rendimiento a líquido que la que produce el tiempo de residencia. Además su coeficiente es 

mayor. 

El líquido que se forma por la degradación de la materia está compuesto por el agua 

formada en el HTC, el agua que formaba parte de la humedad del alperujo y una mezcla de 

compuestos orgánicos denominada tar. La mayor parte consiste en agua (ver Tabla II XXI de la 

sección IV del anexo II) cuyo porcentaje se incrementa con la temperatura de carbonización 

hidrotermal. Por otro lado, el aumento de este factor deriva en una reducción de los 

compuestos orgánicos en el líquido generado. 

La fase gaseosa está formada por los compuestos volátiles no condensables que 

después del enfriamiento del reactor no pasan a la fase líquida. Sólo ha sido posible analizar 

los resultados del CO2 debido a que las concentraciones de CH4, H2 y C2Hx han estado por 

debajo del nivel de detección del cromatógrafo, por lo que no se ha podido establecer su 



55 
 

concentración. En el caso del CO, no se ha realizado el análisis estadístico porque faltan los 

resultados de algunos experimentos debido a fallos en la columna del cromatógrafo. Sin 

embargo, los datos conseguidos en base libre de N2 se muestran en la Tabla II XXI del Anexo II. 

 

Figura 5.3. Rendimiento a gas en función del contenido de humedad y la temperatura 

Como se observa en la Figura 5.3, al nivel superior de temperatura se produce una 

mayor disminución del rendimiento a gas al incrementar el contenido de agua del alperujo 

fresco. Sin embargo para esta variable, solamente es significativo el contenido de humedad, 

aunque este ejerce su mayor influencia a 220 °C. En definición, el γgas disminuye al aumentar el 

contenido de humedad de la muestra inicial de alperujo. Esto es debido probablemente a que 

se produce una mayor cantidad de líquidos. 

La producción de CO2 se ha visto favorecida por el tiempo de residencia, ya que a 

mayores periodos de tiempo, más reacciones de descarboxilación se producen (Basso, D. et al., 

2015; Berge, N.D. et al., 2011). Este factor influye de manera significativa según los datos 

estadísticos obtenidos. Al aumentar el tiempo que reside el alperujo en el reactor, más 

volumen de dióxido de carbono se forma. Aunque ciertos artículos indiquen que existe un 

aumento de las reacciones de descarbonilación al incrementarse tanto la temperatura como el 

tiempo de residencia, en este estudio no se ha podido determinar cómo influyen dichas 

condiciones, ya que no se ha podido detectar CO en todos los experimentos. 
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Figura 5.4. Porcentaje volumétrico del CO2 en base libre de N2 en función de la temperatura y tiempo de 
residencia 

Tanto el incremento del tiempo de residencia como de la temperatura provocan un 

aumento de la producción de CO2, como se aprecia tanto en la Tabla 5.I como en la Figura 5.4. 

En dicha Figura 5.4 se aprecia como el incremento del tiempo de operación provoca un 

aumento del %CO2 de 0,600 a 0,725 a 180 °C y de 0,650 a 0,750 a 220 °C. Por lo tanto, el 

tiempo de residencia produce una mayor variación de esta variable al nivel inferior de 

temperatura. Por otro lado, el tiempo de residencia vuelve a ser el factor más importante en 

esta variable ya que su coeficiente es mayor que el de la temperatura y provoca una mayor 

variación de dicha variable.  

5.3 Análisis estadístico de las propiedades del hidrochar 

En este apartado se van a analizar los datos obtenidos del análisis estadístico de las 

variables respuesta correspondientes a las propiedades del hidrochar. Estas variables son el 

porcentaje a carbono fijo (%FC), el rendimiento a carbono fijo (γFC), los ratios H:C y O:C y el 

porcentaje de cenizas en base seca. En cuanto al ratio O:C, se han analizado sus resultados, sin 

embargo no han sido desarrollados en el presente trabajo.  

Los datos obtenidos han sido resumidos en la Tabla 5.II que se muestra a continuación 

junto con las gráficas elaboradas. 
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Tabla 5.II. Resultados del análisis estadístico de las propiedades del hidrochar 

 β0 β1 β2 β3 β1*2 β1*3 β2*3 Ct Pt R2(adj) 

%FC 0,225 
0,021 

(0,000) 

0,006 

(0,031) 

0,034 

(0,000) 

0,004 

(0,180) 

0,012 

(0,001) 

–0,002 

(0,362) 

0,022 

(0,002) 
0,937 

γFC 0,154 
0,004 

(0,094) 

0,003 

(0,168) 

0,008 

(0,007) 

0,001 

(0,701) 

0,011 

(0,001) 

–4E-5 

(0,989) 

0,009 

(0,134) 
0,611 

H:C 1,455 
–0,060 

(0,000) 

0,009 

(0,420) 

–0,085 

(0,000) 

–0,003 

(0,768) 

0,017 

(0,163) 

–0,001 

(0,895) 

–0,023 

(0,365) 
0,812 

O:C 0,293 
–0,037 

(0,059) 

0,006 

(0,728) 

–0,048 

(0,021) 

–0,012 

(0,498) 

0,015 

(0,416) 

0,003 

(0,838) 

–0,053 

(0,213) 
0,264 

%Ash 0,015 
–0,003 

(0,007) 

–0,002 

(0,097) 

–0,003 

(0,010) 

–0,001 

(0,336) 

0,003 

(0,021) 

2E-4 

(0,848) 

–6E-4 

(0,787) 
0,566 

 

Como se observa en los datos de la Tabla 5.II, el porcentaje de carbono fijo del 

hidrochar (%FC) aumenta con la temperatura, contenido de humedad y tiempo de residencia. 

Por otro lado, la ecuación de regresión no es lineal porque existe curvatura significativa en el 

modelo. Por consiguiente, no se ha podido elaborar una gráfica de contorno. Para solventar el 

problema de la curvatura, se deberían realizar más experimentos aumentando el rango de 

valores de los factores de estudio (experimentos a menor y menor temperatura, tiempo de 

residencia y contenido de humedad). 

El incremento de la temperatura, tiempo de residencia del proceso de HTC provoca la 

concentración de carbono en forma de hidrochar (Basso, D. et al., 2013; Hoekman, S.K. et al., 

2011). Si se comparan los resultados de %FC en la Tabla II XXI se aprecia que cuanto menor es 

el valor de la temperatura y tiempo de residencia, el %FC del hidrochar obtenido es más 

cercano al del alperujo fresco. 

Según los resultados obtenidos, el tiempo de residencia es el factor más importante 

para la variable respuesta %FC pues su coeficiente es mayor que los coeficientes de la 

temperatura y contenido de humedad. 

El rendimiento a carbono fijo (γFC) por su parte también muestra signos de aumentar 

conforme lo hacen los valores de las condiciones de operación. Así pues, el P valor de β3 es 

significativo al igual que la interacción entre β1 y β3, además no existe curvatura por lo que la 
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ecuación de regresión se considera lineal. Esto se traduce en que la temperatura y el tiempo 

de residencia de la biomasa en el proceso de HTC son directamente proporcionales al γFC. 

 

Figura 5.5. Rendimiento a carbono fijo en función de la temperatura y el tiempo de residencia 

En la Figura 5.5 se observa como el tiempo de residencia es más significativo a 

mayores temperaturas de operación y que la temperatura depende del tiempo de operación 

porque con tiempos de residencia de 1 hora, la temperatura no ejerce apenas influencia en la 

variación del γFC y sin embargo a 24 h el incremento de temperatura de 180 a 220 °C provoca 

un incremento de esta variable de 0,15 a 0,174. 

Este incremento del carbono presente en el hidrochar con la temperatura y el tiempo 

de residencia deriva en una reducción del ratio H:C. El P valor de esta variable con respecto a 

los factores antes mencionados es menor al nivel de confianza y el valor de sus coeficientes 

negativo. Observando la Tabla II XXI del anexo II, el %H se mantiene prácticamente inalterado 

como ya se ha visto en otros estudios (Fang, J. et al., 2015), y su proporción es prácticamente 

igual en el hidrochar que el alperujo. Sin embargo el %C si se ve afectado por los factores de 

estudio como ya ha sido explicado, por lo tanto el ratio H:C disminuye con el incremento de 

ambos. 
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Figura 5.6. Ratio H:C en función de la temperatura y del tiempo de residencia 

A menores temperaturas y tiempos de residencia se produce una mayor variación del 

H:C (1,58 a 1,47), sin embargo en el otro extremo también se aprecian cambios (1,40 a 1.33). 

Con el incremento del valor de los factores de estudio se observa un detrimento del ratio H:C 

(ver Figura 5.6). El tiempo de residencia es más influyente que la temperatura porque el valor 

absoluto de su coeficiente es mayor. 

 

Figura 5.7. Diagrama de Van Krevelen del hidrochar en función de las condiciones de operación 
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La Figura 5.7 muestra el diagrama de Van Krevelen que sirve para comparar los ratios 

H:C y O:C de los hidrochares obtenidos. Como indican las flechas, conforme más pequeños son 

ambos ratios, el hidrochar posee una mayor estabilidad. Los hidrochares de los experimentos 

obtenidos a 220 °C y 24 h son los que poseen menores ratios H.C y O:C y se encuentran en la 

esquina inferior izquierda del diagrama. Por otro lado, los experimentos a 180 °C y 1 h poseen 

ratios mayores y se sitúan en la esquina opuesta. Además se puede observar que la media de 

los experimentos del punto central  se encuentra más o menos en el medio del diagrama. Este 

significa que al aumentar las condiciones de operación se incrementa la estabilidad del 

hidrochar producido. 

Para el ratio O:C, el grado de ajuste (R2
adj) del modelo de regresión ha sido muy bajo 

(ver Tabla 5.II), hecho que impide sacar conclusiones acerca del efecto de los parámetros. Una 

posible explicación es el error asociado al cálculo del contenido de oxígeno elemental de las 

muestras de hidrochar, el cual se obtiene por diferencia. 

En el caso del porcentaje de cenizas del hidrochar, tanto la temperatura como el 

tiempo de residencia provocan una reducción significativa de su producción. Esto es debido a 

que parte de las cenizas son solubles, por lo que durante la HTC la materia inorgánica de 

disuelve en el líquido generado. Este hecho puede resultar de especial interés en el caso de 

que la materia de partida presente metales contaminantes en su composición inicial. 

 

Figura 5.8. Porcentaje de cenizas en función de la temperatura y tiempo de residencia 
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Conforme aumentan la temperatura y tiempo de residencia, el contenido de cenizas 

del hidrochar se reduce cada vez más lentamente. Por lo que se produce más variación de esta 

variable a temperaturas y tiempos de residencia bajos. Por otro lado no se puede establecer 

cuál de los dos factores es más significativo o actúa por encima del otro ya que posee 

coeficientes idénticos y el ajuste R2
adj es bastante reducido (no supera el 60 %). 

Se ha llevado a cabo el análisis BET de muestras representativas del conjunto de los 

hidrochares obtenidos en los experimentos de este estudio. Estas muestras se han 

seleccionado en función de sus ratios H:C y O:C y de las condiciones de operación en las que se 

han formado (deben situarse en los extremos del diseño experimental). El área superficial, 

volumen del poro y tamaño del poro de estos hidrochares se muestran a continuación. 

Tabla 5.III. Resultados del análisis BET 

Experimento 
Área superficial 

(m2/g) 

Volumen del poro 

(cm3/g) 

Tamaño medio del 

poro (nm) 

6 (-1, 1, -1) 0,43 0,0008 5,41 

10 (-1, 1, -1) 0,37 0,0007 5,75 

11 (0, 0, 0) 1,37 0,0032 7,93 

16 (1, 1, 1) 1,76 0,0046 7,76 

18 (1, -1, 1) 0,91 0,0024 9,33 

 

El hidrochar producido por HTC a partir de alperujo posee una escasa área superficial 

comparada con el biochar y con el hidrochar proveniente de otros tipos de biomasa. Uno de 

los factores que determina la porosidad del hidrochar es la biomasa de partida. El alperujo es 

un residuo con un elevado contenido en lignina. Por ello, el hidrochar producido tiene escasa 

área superficial, ya que la mayor parte de la lignina no se descompone durante la HTC. 

Por otro lado, en anteriores estudios se ha determinado que el efecto de la 

temperatura y tiempo de residencia durante el HTC es negativo sobre el área superficial de las 

partículas, pues a mayores temperaturas y periodos de operación se genera un hidrochar con 

menor área, justo lo contrario que lo que ocurre con el biochar de pirólisis. Sin embargo en las 

muestras analizadas en este estudio, la tendencia es opuesta. A menor temperatura y tiempo 

de residencia del proceso, como en el experimento 6 (180 °C, 1 h y 77,8 %), se obtiene un área 

de 0,4359 m2/g, un resultado menor que el obtenido en el experimento 16 (220 °C, 24 h y 87,8 
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%) de 1,7617 m2/g. A pesar de que el área superficial haya aumentado, sigue teniendo un valor 

muy pequeño para el uso de este producto como carbón activo, aunque cabe la posibilidad de 

someterlo a un proceso de activación que aumentaría su porosidad. No obstante, no se han 

realizado los suficientes análisis BET en este trabajo para concluir con una conclusión clara y 

precisa del efecto de las condiciones de operación sobre el área superficial, por lo que se 

deberían llevar a cabo más estudios de porosidad a diferentes condiciones para hallar más 

respuestas. 
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 Conclusiones 6

Tras el análisis de los resultados obtenidos en los experimentos las principales 

conclusiones de este estudio se muestran a continuación: 

1.  Una mayor temperatura de carbonización y tiempo de residencia ha supuesto el 

consiguiente descenso de rendimiento a hidrochar a costa de una mayor producción de 

líquido y gas. El rendimiento a hidrochar es mayor a 180 °C y 1 h que a 220 °C y 24 h. 

Además, en este trabajo se concluye que el tiempo de residencia posee una influencia 

mayor en el rendimiento a hidrochar que la temperatura, para el rango estudiado de los 

factores. Por otro lado, el rendimiento a líquido está muy relacionado con el contenido de 

humedad ya que al aumentar este factor, la variable respuesta aumenta también. A su 

vez, un aumento del tiempo de residencia y, en menor medida, de la temperatura final se 

ha traducido en un aumento de la carbonización: aumento del  %FC e γFC y un descenso 

del ratio H:C.  

2. El hidrochar no posee tanta área superficial como el biochar. No obstante, algunos 

estudios han confirmado que, tras una activación del hidrochar, éste podría ser utilizado 

como carbono activo también (Jain, A. et al., 2015). 

3.  En el proceso HTC se utiliza biomasa húmeda eliminando los costes de secado y se opera 

a temperaturas relativamente bajas y con presiones autogeneradas. Todo ello reduce la 

demanda energética del proceso por lo que la producción de hidrochar es un proceso más 

acorde con la necesidad de encontrar sistemas más eficientes y más respetuosos con el 

medio ambiente. 

En resumen, el hidrochar producido tras la carbonización hidrotermal de alperujo 

húmedo posee unas características que propician su uso como producto potencial de mejora 

de las características del suelo. Además, como añadidura, su producción y uso permitiría 

reducir los efectos del cambio climático debido a un menor consumo energético del proceso y 

a la reducción de la emisión de gases de efecto invernadero, concretamente de CO2 por el 

papel que desempeña como sumidero de carbono en el suelo. 

Finalmente, trabajos futuros deberían contemplar los siguientes aspectos: 

1. Ampliar el rango de estudio de los factores utilizados para encontrar un modelo más 

adecuado para aquellas variables respuesta en la cuales ha salido significativa la 

curvatura.  



64 
 

2. Optimizar el proceso de HTC en función de las características de la biomasa de partida y 

los factores de estudio elegidos para la obtención de hidrochar con una mayor 

estabilidad. 

3. Estudiar posibles modificaciones del hidrochar ya sea por activación física o química de 

cara a su aplicación como soporte catalítico o adsorbente. 

4. Realizar una comparación entre la estabilidad del hidrochar y la del biochar. 

5. Determinación de los compuestos orgánicos que forman el líquido de la HTC y la materia 

inorgánica de las cenizas para cuantificar los metales pesados del hidrochar. 

6. Estudiar el balance global de energía de la carbonización hidrotermal y de la pirólisis, 

contemplando la energía consumida y la que se genera mediante la combustión de los 

productos generados. 
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 Nomenclatura 8

8.1 Variables 

β0  Constante 

β1  Temperatura 

β2  Contenido de agua 

β3  Tiempo de residencia 

%Volátiles Porcentaje de compuestos volátiles 

%FC  Porcentaje de carbono fijo 

%Cenizas Porcentaje de cenizas 

%Ash  Porcentaje de cenizas en el análisis estadístico 

%O  Porcentaje de oxígeno elemental 

%N  Porcentaje de nitrógeno elemental 

%C  Porcentaje de carbono elemental 

%H  Porcentaje de hidrógeno elemental 

%S  Porcentaje de azufre elemental 

%Humedad Porcentaje de humedad de la muestra de alperujo húmedo 

%Sólidos Porcentaje de sólidos de la muestra de alperujo húmedo 

%H2O  Porcentaje de agua contenido en la fase líquida 

%C.org  Porcentaje de compuestos orgánicos contenido en la fase líquida 

H1  Porcentaje de humedad del alperujo húmedo que se quiere obtener 

Ms0  Porcentaje inicial de biomasa seca del alperujo húmedo 

mc  Masa crisol 

malp  Masa muestra de alperujo húmedo 

malp.seco  Masa muestra de alperujo tras el secado 

mT  Masa crisol más la muestra de alperujo húmedo 

mT1  Masa crisol más la muestra de alperujo seco 

mf  Masa crisol más la muestra de alperujo tras eliminar los compuestos volátiles 
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mash  Masa crisol más las cenizas 

PMC  Masa atómica del carbono 

PMO  Masa atómica del oxígeno 

magua  Masa de agua a añadir a la muestra tomada de alperujo en cada experimento 

m0  Masa de alperujo inicial tomada en cada experimento 

mblanco  Masa de agua introducida en la titulación KF para obtener el blanco 

mlíquido  Masa de líquido introducida en la titulación KF 

H:C  Relación entre la cantidad de hidrógeno y carbono de la muestra de alperujo 

O:C  Relación entre la cantidad de oxígeno y carbono de la muestra de alperujo 

CCreactivo-blanco Concentración de reactivo utilizado en el blanco 

CCreactivo-líquido Concentración de reactivo utilizado para neutralizar la humedad del líquido 

mt  Masa total de productos generada en el proceso de conversión termoquímica 

γHC  Rendimiento a hidrochar 

mHC  Masa hidrochar seco 

mHC+w  Masa hidrochar húmedo 

mbio  Masa biomasa seca 

γFC  Rendimiento a carbono fijo 

mlíquido  Masa líquido obtenido 

mgas  Masa gas obtenido 

 

8.2 Acrónimos 

Alp  Alperujo húmedo 

bs  Base seca 

bh  Base húmeda 

RSU  Residuos Sólidos Urbanos 

PCS  Poder Calorífico Superior 

IBI  International Biochar Initiative  
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Anexo I. Instrumentos y equipos utilizados durante el estudio 

En este anexo se muestra la instrumentación y equipos analíticos utilizados en la 

elaboración de este trabajo. 

Sección I. Componentes del micro reactor Parr 

    

Figura I 1. Micro reactor Parr montado dentro del horno  Figura I 2. Inserto de teflón 

 

Figura I 3. Reactor de acero inoxidable 
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Sección II. Instrumentos y equipos utilizados para el tratamiento de 

los productos 

   

Figura I 4. Mufla    Figura I 5. Instrumento de titulación Karl-Fischer 

 

   

Figura I 6. Estufa de secado Figura I 7. Micro reactor Parr dentro de la campana de 
extracción de gases 

 

Figura I 8. Micro cromatógrafo de gases (μ-GC) Varian CP-4900 
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Anexo II. Resultados 

Sección I. Productos 

     

Figura II 1. Hidrochar (Exp_3 – 180 °C, 1 h, 77,8 %) Figura II 2. Hidrochar (Exp_19 – 220 °C, 24 h, 87,8 %) 

 

    

Figura II 3. Muestra de cenizas   Figura II 4. Líquido HTC (Experimentos 16, 8, 11) 

 
Figura II 5. Garrafa llena de alperujo húmedo utilizado en los experimentos de HTC  
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Sección II. Gráficas detalladas del cromatógrafo de gases 

 

Figura II 6. Calibrado del canal A del micro cromatógrafo de gases 

 

 

Figura II 7. Calibrado del canal B del micro cromatógrafo de gases 
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Figura II 8. Canal A del micro cromatógrafo de gases (experimento 4 – 200 °C, 12,5 h, 82,8 %) 

 

 

Figura II 9. Canal B del micro cromatógrafo de gases (experimento 4 – 200 °C, 12,5 h, 82,8 %) 
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Sección III. Gráficas de la evolución de la presión en función de la 

temperatura 

Gráficas complementarias del apartado 4.4 

 

Figura II 10. Evolución de la presión en función de la temperatura del experimento 3 

 

 

Figura II 11. Evolución de la presión en función de la temperatura del experimento 18 
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Figura II 12. Evolución de la presión en función de la temperatura del experimento 19 
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Sección IV. Tablas de los experimentos 

Tabla II I. Experimento 1 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 77,80%   

tiempo (h) 24 % Sólidos 22,19% 
Masa inicial de 
alperujo (g) 

40,08 

malp (g) 40,08 mbio (g) 8,89 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 0,16 
Erlenmeyer 
(g) 

227,80 
  

Embudo (g) 98,60 Goma (g) 12,16   

Resultados HTC   

mlíquido (g) 29,92 γlíquido 74,64%   

mHC+w (g) 15,77 γHC (bh) 13,31%   

mHC (g) 5,33 γHC (bs) 59,95%   

mgas (g) 4,82 γgas 12,04%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

123,30 0,52 123,82   
  

114,65 0,51 115,16   yFC 14,61% 

110,73 0,51 111,24       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

123,40 0,42 81,01% 22,19% 2,37 17,98% 

114,78 0,37 73,19% 22,19% 2,30 16,24% 

110,87 0,37 71,96% 22,19% 2,32 15,97% 

  PROMEDIO 75,39%   PROMEDIO 16,73% 

  
Desv. 
Estándar 

0,049   Desv. Estándar 0,011 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,10 0,09 17,76% 22,19% 2,37 3,94% 

0,13 0,13 25,88% 22,19% 2,30 5,74% 

0,14 0,13 26,67% 22,19% 2,32 5,92% 

  PROMEDIO 23,44%   PROMEDIO 5,20% 

  
Desv. 
Estándar 

0,049   Desv. Estándar 0,011 

Cenizas 

Masa Cenizas (g) % Cenizas (bs)     

0,006 1,21%     

0,004 0,92%     

0,007 1,35%     

PROMEDIO 1,16% 
Desv. 
Estándar 

0,002   



84 
 

Tabla II II. Experimento 2 

Condiciones iniciales    

Temperatura (°C) 200 % Humedad 82,80%   

tiempo (h) 12° 30' % Sólidos 17,19% 
Masa inicial de 
alperujo (g) 

25,54 

malp (g) 32,97 mbio (g) 5,67 Agua añadida (g) 7,40 

Masa instrumentos   

Peso filtro (g) 0,16 
Erlenmeyer 
(g) 

227,80 
  

Embudo (g) 98,71 Goma (g) 13,25   

Resultados HTC   

mlíquido (g) 27,32 γlíquido 82,88%   

mHC+w (g) 9,05 γHC (bh) 11,30%   

mHC (g) 3,72 γHC (bs) 65,74%   

mgas (g) 1,91 γgas 5,81%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

26,20 0,51 26,71   
  

25,00 0,51 25,52   yFC 17,37% 

25,61 0,50 26,12       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

26,33 0,38 74,34% 17,19% 2,97 12,78% 

25,13 0,38 74,41% 17,19% 2,98 12,79% 

25,75 0,36 73,46% 17,19% 2,92 12,63% 

  PROMEDIO 74,07%   PROMEDIO 12,73% 

  
Desv. 
Estándar 

0,005   Desv. Estándar 0,0009 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,13 0,12 25,40% 17,19% 2,97 4,36% 

0,13 0,12 25,11% 17,19% 2,98 4,31% 

0,13 0,12 25,72% 17,19% 2,92 4,42% 

  PROMEDIO 25,41%   PROMEDIO 4,37% 

  
Desv. 
Estándar 

0,003 
  Desv. Estándar 

0,0005 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,001 0,25%     

0,002 0,46%     

0,004 0,81%     

PROMEDIO 0,51% 
Desv. 
Estándar 

0,002 
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Tabla II III. Experimento 3 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 77,80%   

tiempo (h) 1 % Sólidos 
22,19% Masa inicial de 

alperujo (g) 
25,75 

malp (g) 25,75 mbio (g) 5,71 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,40 Erlenmeyer 

(g) 
227,80   

Embudo (g) 135,70 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 18,02 γlíquido 70,00%   

mHC+w (g) 19,92 γHC (bh) 19,00%   

mHC (g) 4,89 γHC (bs) 85,61%   

mgas (g) 2,83 γgas 10,99%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

114,64 0,51 115,16   
  

110,73 0,54 111,27   yFC 15,58% 

26,17 0,51 26,69       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

114,75 0,40 79,26% 22,19% 2,92 17,59% 

110,85 0,42 77,89% 22,19% 2,98 17,29% 

26,27 0,41 79,73% 22,19% 2,94 17,69% 

  PROMEDIO 78,96%   PROMEDIO 17,52% 

  
Desv. 
Estándar 

0,009 
  Desv. Estándar 

0,002 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,10 0,08 17,02% 22,19% 2,92 3,78% 

0,12 0,09 17,75% 22,19% 2,98 3,94% 

0,10 0,09 17,71% 22,19% 2,94 3,93% 

  PROMEDIO 17,49%   PROMEDIO 3,88% 

  
Desv. 
Estándar 

0,004 
  Desv. Estándar 

0,0009 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,02 3,70%     

0,02 4,35%     

0,01 2,55%     

PROMEDIO 3,53% 
Desv. 
Estándar 

0,009 
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Tabla II IV. Experimento 4 

Condiciones iniciales    

Temperatura (°C) 200 % Humedad 82,80%   

tiempo (h) 12° 30' % Sólidos 17,19% 
Masa inicial de 
alperujo (g) 

25,59 

malp (g) 33,03 mbio (g) 5,68 Agua añadida (g) 7,4 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 26,24 γlíquido 79,45%   

mHC+w (g) 9,36 γHC (bh) 10,41%   

mHC (g) 3,44 γHC (bs) 60,56%   

mgas (g) 3,34 γgas0 10,12%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

110,73 0,52 111,25   
  

114,64 0,50 115,15   yFC 14,63% 

25,89 0,50 26,40       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

110,87 0,38 73,72% 17,19% 3,05 12,67% 

114,77 0,38 75,47% 17,19% 2,94 12,98% 

26,02 0,38 75,31% 17,19% 2,93 12,95% 

  PROMEDIO 74,83%   PROMEDIO 12,87% 

  
Desv. 
Estándar 

0,009   Desv. Estándar 0,001 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,13 0,12 23,99% 17,19% 3,05 4,12% 

0,12 0,11 22,39% 17,19% 2,94 3,85% 

0,12 0,11 23,31% 17,19% 2,93 4,01% 

  PROMEDIO 23,23%   PROMEDIO 3,99% 

  
Desv. 
Estándar 

0,007   Desv. Estándar 0,001 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,01 2,28%     

0,01 2,12%     

0,007 1,36%     

PROMEDIO 1,92% 
Desv. 
Estándar 

0,005  
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Tabla II V. Experimento 5 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 87,80%   

tiempo (h) 24 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,10 

malp (g) 45,69 mbio (g) 5,57 Agua añadida (g) 20,6 

Masa instrumentos   

Peso filtro (g) 
0,36 Erlenmeyer 

(g) 
227,80   

Embudo (g) 135,70 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 38,32 γlíquido 83,88%   

mHC+w (g) 19,56 γHC (bh) 8,17%   

mHC (g) 3,736 γHC (bs) 67,03%   

mgas (g) 3,62 γgas 7,94%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

114,65 0,54 115,20   
  

110,74 0,51 111,25   yFC 15,63% 

25,89 0,53 26,43       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

114,78 0,42 76,71% 12,19% 4,49 9,35% 

110,86 0,39 75,67% 12,19% 4,23 9,23% 

26,03 0,40 75,39% 12,19% 4,41 9,19% 

  PROMEDIO 75,93%   PROMEDIO 9,26% 

  
Desv. 
Estándar 

0,007 
  Desv. Estándar 

0,0008 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,12 0,12 22,41% 12,19% 4,49 2,73% 

0,12 0,11 22,65% 12,19% 4,23 2,76% 

0,13 0,11 22,20% 12,19% 4,41 2,70% 

  PROMEDIO 22,42%   PROMEDIO 2,73% 

  
Desv. 
Estándar 

0,002 
  Desv. Estándar 

0,0002 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,004 0,87%     

0,008 1,66%     

0,012 2,39%     

PROMEDIO 1,64% 
Desv. 
Estándar 

0,007 
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Tabla II VI. Experimento 6 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 87,80%   

tiempo (h) 1 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,28 

malp (g) 46,01 mbio (g) 5,61 Agua añadida (g) 20,7 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 37,31 γlíquido 81,18%   

mHC+w (g) 15,70 γHC (bh) 9,64%   

mHC (g) 4,43 γHC (bs) 79,02%   

mgas (g) 4,22 γgas 9,17%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

110,73 0,50 111,24   
  

114,64 0,53 115,17   yFC 15,25% 

25,90 0,50 26,40       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

110,84 0,39 78,85% 12,19% 4,12 9,61% 

114,76 0,41 78,37% 12,19% 4,34 9,56% 

26,00 0,40 80,03% 12,19% 4,12 9,76% 

  PROMEDIO 79,08%   PROMEDIO 9,64% 

  
Desv. 
Estándar 

0,008 
  Desv. Estándar 

0,001 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,10 0,09 18,70% 12,19% 4,12 2,28% 

0,11 0,10 18,92% 12,19% 4,34 2,30% 

0,10 0,09 18,05% 12,19% 4,12 2,20% 

  PROMEDIO 18,56%   PROMEDIO 2,26% 

  
Desv. 
Estándar 

0,004 
  Desv. Estándar 

0,0005 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,01 2,44%     

0,01 2,69%     

0,009 1,90%     

PROMEDIO 2,35% 
Desv. 
Estándar 

0,004 
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Tabla II VII. Experimento 7 

Condiciones iniciales    

Temperatura (°C) 200 % Humedad 82,80%   

tiempo (h) 12° 30' % Sólidos 
17,19% Masa inicial de 

alperujo (g) 
25,21 

malp (g) 32,54 mbio (g) 5,59 Agua añadida (g) 7,3 

Masa instrumentos   

Peso filtro (g) 
0,38 Erlenmeyer 

(g) 
227,80   

Embudo (g) 135,70 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 25,62 γlíquido 78,76%   

mHC+w (g) 17,14 γHC (bh) 11,42%   

mHC (g) 3,71 γHC (bs) 66,43%   

mgas (g) 3,19 γgas 9,81%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

114,65 0,51 115,17   
  

110,74 0,50 111,24   yFC 17,65% 

22,46 0,51 22,98       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

114,79 0,38 73,75% 17,19% 3,01 12,68% 

110,88 0,36 73,24% 17,19% 2,92 12,59% 

22,60 0,37 73,07% 17,19% 2,98 12,56% 

  PROMEDIO 73,35%   PROMEDIO 12,61% 

  
Desv. 
Estándar 

0,003 
  Desv. Estándar 

0,0006 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,13 0,13 25,60% 17,19% 3,01 4,40% 

0,13 0,13 26,18% 17,19% 2,92 4,50% 

0,13 0,12 24,85% 17,19% 2,98 4,27% 

  PROMEDIO 25,54%   PROMEDIO 4,39% 

  
Desv. 
Estándar 

0,006 
  Desv. Estándar 

0,001 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,003 0,63%     

0,002 0,57%     

0,010 2,06%     

PROMEDIO 1,09% 
Desv. 
Estándar 

0,008 
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Tabla II VIII. Experimento 8 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 77,80%   

tiempo (h) 1 % Sólidos 
22,19% Masa inicial de 

aleprujo (g) 
25,51 

malp (g) 25,51 mbio (g) 5,66 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 18,62 γlíquido 73,01%   

mHC+w (g) 15,37 γHC (bh) 16,62%   

mHC (g) 4,24 γHC (bs) 74,89%   

mgas (g) 2,64 γgas 10,35%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

110,74 0,52 111,26   
  

26,18 0,25 26,43   yFC 14,29% 

22,47 0,25 22,72       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

110,84 0,42 81,70% 22,19% 2,34 18,13% 

26,23 0,19 77,84% 22,19% 1,13 17,28% 

22,52 0,20 79,64% 22,19% 1,15 17,67% 

  PROMEDIO 79,73%   PROMEDIO 17,69% 

  
Desv. 
Estándar 

0,02 
  Desv. Estándar 

0,004 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,09 0,08 15,91% 22,19% 2,34 3,53% 

0,05 0,05 21,00% 22,19% 1,13 4,66% 

0,05 0,04 18,13% 22,19% 1,15 4,02% 

  PROMEDIO 18,35%   PROMEDIO 4,07% 

  
Desv. 
Estándar 

0,02 
  Desv. Estándar 

0,005 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,012 2,38%     

0,002 1,14%     

0,005 2,22%     

PROMEDIO 1,91% 
Desv. 
Estándar 

0,006 
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Tabla II IX. Experimento 9 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 77,80%   

tiempo (h) 24 % Sólidos 
22,19% Masa inicial de 

alperujo (g) 
25,65 

malp (g) 25,65 mbio (g) 5,69 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,27   

Resultados HTC   

mlíquido (g) 18,74 γlíquido 73,06%   

mHC+w (g) 7,86 γHC (bh) 14,13%   

mHC (g) 3,62 γHC (bs) 63,65%   

mgas (g) 3,28 γgas 12,80%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,60 0,52 26,13   
  

26,82 0,53 27,36   yFC 14,08% 

24,98 0,50 25,49       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

25,73 0,40 76,28% 22,19% 2,38 16,93% 

26,95 0,41 77,00% 22,19% 2,41 17,09% 

25,09 0,39 78,42% 22,19% 2,29 17,40% 

  PROMEDIO 77,23%   PROMEDIO 17,14% 

  
Desv. 
Estándar 

0,01 
  Desv. Estándar 

0,002 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,12 0,11 22,35% 22,19% 2,38 4,96% 

0,12 0,11 21,47% 22,19% 2,41 4,76% 

0,11 0,10 19,98% 22,19% 2,29 4,43% 

  PROMEDIO 21,27%   PROMEDIO 4,72% 

  
Desv. 
Estándar 

0,01 
  Desv. Estándar 

0,002 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,007 1,36%     

0,008 1,51%     

0,008 1,59%     

PROMEDIO 1,48% 
Desv. 
Estándar 

0,001 
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Tabla II X. Experimento 10 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 87,80%   

tiempo (h) 1 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,72 

malp (g) 46,81 mbio (g) 5,71 Agua añadida (g) 21,1 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,60 Goma (g) 13,26   

Resultados HTC   

mlíquido (g) 38,03 γlíquido 81,23%   

mHC+w (g) 26,76 γHC (bh) 10,10%   

mHC (g) 4,73 γHC (bs) 82,85%   

mgas (g) 4,05 γgas 8,66%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,89 0,50 26,39   
  

25,90 0,56 26,47   yFC 15,59% 

26,18 0,51 26,69       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

25,99 0,40 80,27% 12,19% 4,12 9,79% 

26,02 0,44 79,92% 12,19% 4,61 9,75% 

26,29 0,40 78,10% 12,19% 4,21 9,52% 

  PROMEDIO 79,43%   PROMEDIO 9,68% 

  
Desv. 
Estándar 

0,01 
  Desv. Estándar 

0,001 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,09 0,08 17,60% 12,19% 4,12 2,14% 

0,11 0,09 17,72% 12,19% 4,61 2,16% 

0,11 0,09 18,97% 12,19% 4,21 2,31% 

  PROMEDIO 18,10%   PROMEDIO 2,20% 

  
Desv. 
Estándar 

0,007 
  Desv. Estándar 

0,0009 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,01 2,12%     

0,01 2,34%     

0,01 2,92%     

PROMEDIO 2,46% 
Desv. 
Estándar 

0,004 
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Tabla II XI. Experimento 11 

Condiciones iniciales    

Temperatura (°C) 200 % Humedad 82,80%   

tiempo (h) 12h 30' % Sólidos 
17,19% Masa inicial de 

alperujo (g) 
25,72 

malp (g) 33,20 mbio (g) 5,71 Agua añadida (g) 7,5 

Masa instrumentos   

Peso filtro (g) 
0,39 Erlenmeyer 

(g) 
227,80   

Embudo (g) 135,70 Goma (g) 12,16   

Resultados HTC   

mlíquido (g) 25,03 γlíquido 75,41%   

mHC+w (g) 14,04 γHC (bh) 10,85%   

mHC (g) 3,60 γHC (bs) 63,09%   

mgas (g) 4,56 γgas 13,73%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,60 0,50 26,11   
  

24,99 0,50 25,49   yFC 16,78% 

26,18 0,53 26,71       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

25,73 0,37 74,50% 17,19% 2,92 12,81% 

25,12 0,36 72,98% 17,19% 2,92 12,55% 

26,33 0,37 71,28% 17,19% 3,09 12,25% 

  PROMEDIO 72,92%   PROMEDIO 12,54% 

  
Desv. 
Estándar 

0,016 
  Desv. Estándar 

0,002 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,12 0,12 24,16% 17,19% 2,92 4,15% 

0,13 0,12 25,60% 17,19% 2,92 4,40% 

0,15 0,14 26,95% 17,19% 3,09 4,63% 

  PROMEDIO 25,57%   PROMEDIO 4,39% 

  
Desv. 
Estándar 

0,01 
  Desv. Estándar 

0,002 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,006 1,33%     

0,007 1,41%     

0,009 1,76%     

PROMEDIO 1,50% 
Desv. 
Estándar 

0,002 
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Tabla II XII. Experimento 12 

Condiciones iniciales    

Temperatura (°C) 180 % Humedad 87,80%   

tiempo (h) 24 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,07 

malp (g) 45,62 mbio (g) 5,56 Agua añadida (g) 20,6 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,26   

Resultados HTC   

mlíquido (g) 38,51 γlíquido 84,42%   

mHC+w (g) 9,86 γHC (bh) 7,11%   

mHC (g) 3,24 γHC (bs) 58,32%   

mgas (g) 3,86 γgas 8,46%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,91 0,51 26,42   
  

25,90 0,50 26,40   yFC 14,33% 

26,83 0,53 27,36       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

26,03 0,38 75,66% 12,19% 4,18 9,23% 

26,01 0,39 77,14% 12,19% 4,15 9,41% 

26,97 0,39 73,52% 12,19% 4,39 8,96% 

  PROMEDIO 75,44%   PROMEDIO 9,20% 

  
Desv. 
Estándar 

0,018 
  Desv. Estándar 

0,002 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,12 0,11 23,41% 12,19% 4,18 0,11% 

0,11 0,11 22,10% 12,19% 4,15 0,09% 

0,14 0,13 25,35% 12,19% 4,39 0,13% 

  PROMEDIO 23,62%   PROMEDIO 0,11% 

  
Desv. 
Estándar 

0,016 
  Desv. Estándar 

0,0002 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,004 0,92%     

0,003 0,75%     

0,006 1,11%     

PROMEDIO 0,93% 
Desv. 
Estándar 

0,002 
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Tabla II XIII. Experimento 13 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 77,80%   

tiempo (h) 1 % Sólidos 
22,19% Masa inicial de 

alperujo (g) 
25,33 

malp (g) 25,33 mbio (g) 5,62 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,40 Erlenmeyer 

(g) 
227,80   

Embudo (g) 135,60 Goma (g) 13,26   

Resultados HTC   

mlíquido (g) 16,73 γlíquido 66,05%   

mHC+w (g) 16,76 γHC (bh) 16,16%   

mHC (g) 4,09 γHC (bs) 72,81%   

mgas (g) 4,50 γgas 17,78%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

26,83 0,51 27,34   
  

24,99 0,50 25,50   yFC 14,85% 

26,19 0,51 26,71       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

26,93 0,41 80,25% 22,19% 2,30 17,81% 

25,10 0,39 78,40% 22,19% 2,29 17,40% 

26,30 0,40 77,62% 22,19% 2,33 17,23% 

  PROMEDIO 78,76% 22,19% PROMEDIO 17,48% 

  
Desv. 
Estándar 

0,013 
  Desv. Estándar 

0,003 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,10 0,09 19,00% 22,19% 2,30 4,21% 

0,11 0,10 19,66% 22,19% 2,29 4,36% 

0,11 0,10 20,17% 22,19% 2,33 4,47% 

  PROMEDIO 19,61%   PROMEDIO 4,35% 

  
Desv. 
Estándar 

0,005 
  Desv. Estándar 

0,001 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,00 0,74%     

0,00 1,92%     

0,01 2,20%     

PROMEDIO 1,62% 
Desv. 
Estándar 

0,007 
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Tabla II XIV. Experimento 14 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 77,80%   

tiempo (h) 1 % Sólidos 
22,19% Masa inicial de 

alperujo (g) 
25,33  

malp (g) 25,33 mbio (g) 5,62 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,60 Goma (g) 13,25   

Resultados HTC   

mlíquido (g) 18,72 γlíquido 73,92%   

mHC+w (g) 9,87 γHC (bh) 14,79%   

mHC (g) 3,74 γHC (bs) 66,66%   

mgas (g) 2,85 γgas 11,27%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,61 0,51 26,13   
  

26,19 0,52 26,72   yFC 11,88% 

25,00 0,50 25,50       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

25,74 0,39 75,79% 22,19% 2,32 16,82% 

26,32 0,39 75,98% 22,19% 2,36 16,86% 

25,12 0,37 75,52% 22,19% 2,25 16,76% 

  PROMEDIO 75,77%   PROMEDIO 16,82% 

  
Desv. 
Estándar 

0,002 
  Desv. Estándar 

0,0001 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,12 0,11 22,70% 22,19% 2,32 5,04% 

0,12 0,11 22,58% 22,19% 2,36 5,01% 

0,12 0,03 6,13% 22,19% 2,25 1,36% 

  PROMEDIO 17,14%   PROMEDIO 3,80% 

  
Desv. 
Estándar 

0,095 
  Desv. Estándar 

0,02 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,007 1,49%     

0,007 1,42%     

0,091 1,44%     

PROMEDIO 1,45% 
Desv. 
Estándar 

0,0003 
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Tabla II XV. Experimento 15 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 77,80%   

tiempo (h) 24 % Sólidos 
22,19% Masa inicial de 

aleprujo (g) 
25,25 

malp (g) 25,25 mbio (g) 5,60 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,17 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,60 Goma (g) 13,24   

Resultados HTC   

mlíquido (g) 18,73 γlíquido 74,20%   

mHC+w (g) 7,38 γHC (bh) 14,05%   

mHC (g) 3,54 γHC (bs) 63,31%   

mgas (g) 2,96 γgas 11,74%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

22,46 0,53 23,00   
  

25,91 0,50 26,42   yFC 15,47% 

25,90 0,53 26,43       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

22,64 0,36 67,18% 22,19% 2,42 14,91% 

26,02 0,39 78,55% 22,19% 2,27 17,43% 

26,07 0,36 67,74% 22,19% 2,39 15,03% 

  PROMEDIO 71,16%   PROMEDIO 15,79% 

  
Desv. 
Estándar 

0,064 
  Desv. Estándar 

0,014 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,17 0,16 31,25% 22,19% 2,42 6,93% 

0,10 0,10 19,80% 22,19% 2,27 4,39% 

0,17 0,16 30,37% 22,19% 2,39 6,74% 

  PROMEDIO 27,14%   PROMEDIO 6,02% 

  
Desv. 
Estándar 

0,063 
  Desv. Estándar 

0,01 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,008 1,56%     

0,008 1,64%     

0,010 1,88%     

PROMEDIO 1,69% 
Desv. 
Estándar 

0,001 
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Tabla II XVI. Experimento 16 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 87,80%   

tiempo (h) 24 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,28 

malp (g) 46,01 mbio (g) 5,61 Agua añadida (g) 20,7 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,60 Goma (g) 13,26   

Resultados HTC   

mlíquido (g) 39,23 γlíquido 85,26%   

mHC+w (g) 7,60 γHC (bh) 7,14%   

mHC (g) 3,28 γHC (bs) 58,58%   

mgas (g) 3,49 γgas 7,58%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,90 0,52 26,43   
  

26,19 0,51 26,70   yFC 18,27% 

25,61 0,50 26,11       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

26,06 0,36 69,51% 12,19% 4,32 8,47% 

26,35 0,35 69,02% 12,19% 4,19 8,41% 

25,77 0,34 68,91% 12,19% 4,14 8,40% 

  PROMEDIO 69,14%   PROMEDIO 8,43% 

  
Desv. 
Estándar 

0,003 
  Desv. Estándar 

0,0004 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,16 0,15 29,67% 12,19% 4,32 3,61% 

0,15 0,15 30,27% 12,19% 4,19 3,69% 

0,15 0,15 30,05% 12,19% 4,14 3,66% 

  PROMEDIO 30,00%   PROMEDIO 3,65% 

  
Desv. 
Estándar 

0,003 
  Desv. Estándar 

0,0003 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,004 0,81%     

0,003 0,70%     

0,005 1,02%     

PROMEDIO 0,84% 
Desv. 
Estándar 

0,001 
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Tabla II XVII. Experimento 17 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 87,80%   

tiempo (h) 1 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,53 

malp (g) 46,46 mbio (g) 5,66 Agua añadida (g) 20,9 

Masa instrumentos   

Peso filtro (g) 
0,15 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,26   

Resultados HTC   

mlíquido (g) 40,15 γlíquido 86,42%   

mHC+w (g) 9,90 γHC (bh) 8,09%   

mHC (g) 3,76 γHC (bs) 66,36%   

mgas (g) 2,54 γgas 5,48%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

24,99 0,50 25,50   
  

25,91 0,51 26,43   yFC 14,76% 

22,46 0,50 22,96       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

25,11 0,39 77,87% 12,19% 4,16 9,49% 

26,03 0,40 78,00% 12,19% 4,22 9,51% 

22,58 0,38 76,91% 12,19% 4,11 9,38% 

  PROMEDIO 77,59%   PROMEDIO 9,46% 

  
Desv. 
Estándar 

0,006 
  Desv. Estándar 

0,0007 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,11 0,005 21,06% 12,19% 4,16 2,56% 

0,11 0,004 21,11% 12,19% 4,22 2,57% 

0,11 0,005 21,98% 12,19% 4,11 2,68% 

  PROMEDIO 21,38%   PROMEDIO 2,60% 

  
Desv. 
Estándar 

0,005 
  Desv. Estándar 

0,0006 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,10 1,06%     

0,10 0,87%     

0,11 1,09%     

PROMEDIO 1,01% Desv. 
Estándar 

0,001 
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Tabla II XVIII. Experimento 18 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 77,80%   

tiempo (h) 24 % Sólidos 
22,19% Masa inicial de 

aleprujo (g) 
25,37 

malp (g) 25,37 mbio (g) 5,63 Agua añadida (g) 0 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,60 Goma (g) 13,26   

Resultados HTC   

mlíquido (g) 19,78 γlíquido 77,98%   

mHC+w (g) 8,09 γHC (bh) 13,68%   

mHC (g) 3,47 γHC (bs) 61,63%   

mgas (g) 2,11 γgas 8,33%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

22,46 0,54 23,01   
  

24,99 0,52 25,52   yFC 19,88% 

25,91 0,51 26,43       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

22,64 0,37 67,85% 22,19% 2,45 15,06% 

25,16 0,35 68,26% 22,19% 2,34 15,15% 

26,08 0,34 66,90% 22,19% 2,31 14,85% 

  PROMEDIO 67,67%   PROMEDIO 15,02% 

  
Desv. 
Estándar 

0,007 
  Desv. Estándar 

0,001 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,17 0,16 30,84% 22,19% 2,45 6,84% 

0,16 0,15 30,41% 22,19% 2,34 6,75% 

0,17 0,16 31,81% 22,19% 2,31 7,06% 

  PROMEDIO 31,02%   PROMEDIO 6,88% 

  
Desv. 
Estándar 

0,007 
  Desv. Estándar 

0,001 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,007 1,30%     

0,006 1,32%     

0,006 1,28%     

PROMEDIO 1,30% Desv. 
Estándar 

0,0002 
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Tabla II XIX. Experimento 19 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 87,80%   

tiempo (h) 24 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,79 

malp (g) 46,94 mbio (g) 5,72 Agua añadida (g) 21,1 

Masa instrumentos   

Peso filtro (g) 
0,15 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,25   

Resultados HTC   

mlíquido (g) 41,60 γlíquido 88,62%   

mHC+w (g) 9,33 γHC (bh) 7,30%   

mHC (g) 3,42 γHC (bs) 59,85%   

mgas (g) 1,91 γgas 4,07%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

26,19 0,51 26,71   
  

25,61 0,50 26,12   yFC 18,32% 

25,90 0,50 26,40       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

26,35 0,36 70,12% 12,19% 4,24 8,55% 

25,76 0,35 69,39% 12,19% 4,15 8,46% 

26,05 0,35 69,69% 12,19% 4,14 8,50% 

  PROMEDIO 69,74%   PROMEDIO 8,50% 

  
Desv. 
Estándar 

0,003 
  Desv. Estándar 

0,0004 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,15 0,15 29,19% 12,19% 4,24 3,56% 

0,15 0,15 29,75% 12,19% 4,15 3,62% 

0,15 0,14 29,35% 12,19% 4,14 3,58% 

  PROMEDIO 29,43%   PROMEDIO 3,59% 

  
Desv. 
Estándar 

0,002 
  Desv. Estándar 

0,0003 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,003 0,67%     

0,004 0,84%     

0,004 0,94%     

PROMEDIO 0,82% Desv. 
Estándar 

0,001 
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Tabla II XX. Experimento 20 

Condiciones iniciales    

Temperatura (°C) 220 % Humedad 87,80%   

tiempo (h) 1 % Sólidos 
12,19% Masa inicial de 

alperujo (g) 
25,39 

malp (g) 46,20 mbio (g) 5,63 Agua añadida (g) 20,8 

Masa instrumentos   

Peso filtro (g) 
0,16 Erlenmeyer 

(g) 
227,80   

Embudo (g) 98,59 Goma (g) 13,25   

Resultados HTC   

mlíquido (g) 40,37 γlíquido 87,37%   

mHC+w (g) 8,14 γHC (bh) 7,64%   

mHC (g) 3,53 γHC (bs) 62,63%   

mgas (g) 2,30 γgas 4,98%   

Análisis inmediato  
  

mc (g) mHC (g) 
Masa Total 
(g) 

  
  

25,90 0,50 26,40   
  

25,00 0,51 25,51   yFC 14,08% 

22,46 0,52 22,98       

Volátiles 

Masa Total sin 
volátiles (g) 

Masa 
Volátiles (g) 

% Volátiles 
(bs) 

% 
Sólidos 

Masa Húmeda (g) 
% Volátiles 
(bh) 

26,01 0,39 77,78% 12,19% 4,12 9,48% 

25,11 0,40 77,78% 12,19% 4,24 9,48% 

22,58 0,40 76,68% 12,19% 4,28 9,35% 

  PROMEDIO 77,41%   PROMEDIO 9,44% 

  
Desv. 
Estándar 

0,006 
  Desv. Estándar 

0,0007 

Carbono fijo 

Masa C fijo + Cenizas 
(g) 

Masa C fijo (g) % C fijo (bs) 
% 
Sólidos 

Masa Húmeda (g) % C fijo (bh) 

0,11 0,10 21,32% 12,19% 4,12 2,60% 

0,11 0,11 21,22% 12,19% 4,24 2,58% 

0,12 0,11 22,33% 12,19% 4,28 2,72% 

  PROMEDIO 21,62%   PROMEDIO 2,63% 

  
Desv. 
Estándar 

0,006 
  Desv. Estándar 

0,0007 

Cenizas 

Masa Cenizas (g) % Cenizas 
(bs) 

    

0,004 0,89%     

0,005 0,98%     

0,005 0,97%     

PROMEDIO 0,95% Desv. 
Estándar 

0,0005 
 

 

 



 
 

Tabla II XXI. Tabla global de resultados 

Exp β1 β2 β3 γHC(bs) %FC γFC %N %C %H %S %O H:C O:C γlíq %Agua %C.org γ gas CO2
7 CO8 CO2/CO 

Alp - - - - 19,5 - 1,4 56,1 7,4 0,2 31,0 1,5 0,4 - - - - - - - 

1 –1 –1 +1 59,9 23,4 14,6 2,7 68,4 7,7 0,3 19,5 1,3 0,2 74,6 81,2 18,7 12,0 74,22 - - 

2 0 0 0 65,7 25,4 17,3 1,0 65,7 7,4 0,3 24,9 1,3 0,3 82,9 91,8 8,1 5,8 66,04 - - 

3 –1 –1 –1 85,6 17,5 15,5 5,4 59,9 7,9 0,2 22,9 1,5 0,3 70,0 74,5 25,4 10,9 63,25 3,57 17,68 

4 0 0 0 60,5 23,2 14,6 1,1 68,2 8,1 0,4 20,4 1,4 0,2 79,4 86,7 13,3 10,1 69,86 - - 

5 –1 +1 +1 67,0 22,4 15,6 1,4 63,8 7,5 0,4 25,2 1,4 0,3 83,9 83,3 16,7 7,9 71,79 2,47 29,07 

6 –1 +1 –1 79,0 18,5 15,2 0,5 52,6 7,3 0,1 37,1 1,6 0,5 81,2 87,1 12,8 9,1 55,83 3,00 18,57 

7 0 0 0 66,4 25,5 17,6 1,3 65,7 8,1 0,2 23,4 1,5 0,2 78,7 82,3 17,6 9,8 68,67 4,58 15,00 

8 –1 –1 –1 74,9 18,3 14,3 1,0 55,2 7,3 0,3 34,3 1,6 0,4 73,0 82,2 17,8 10,3 59,40 2,79 21,28 

9 –1 –1 +1 63,6 21,2 14,1 1,2 64,8 7,9 0,3 24,3 1,4 0,3 73,0 83,6 16,3 12,8 71,62 2,23 32,12 

10 –1 +1 –1 82,8 18,1 15,6 1,4 62,6 8,4 0,3 24,8 1,6 0,3 81,2 84,9 15,0 8,6 58,10 - - 

11 0 0 0 63,0 25,5 16,7 1,3 68,2 7,9 0,3 20,7 1,4 0,2 75,4 89,0 10,9 13,7 68,55 4,40 15,55 

12 –1 +1 +1 58,3 23,6 14,3 1,2 65,6 7,8 0,3 24,2 1,4 0,2 84,4 88,7 11,2 8,4 72,73 2,71 26,78 

13 +1 –1 –1 72,8 19,6 14,8 0,7 60,2 7,4 0,3 29,7 1,4 0,3 66,0 97,2 2,8 17,8 53,31 - - 

14 +1 –1 –1 66,6 17,1 11,9 1,2 63,8 7,7 0,2 19,8 1,4 0,2 73,9 92,7 7,3 11,2 60,52 - - 

15 +1 –1 +1 63,3 27,1 15,4 1,1 67,5 7,3 0,3 22,0 1,3 0,2 74,2 80,2 19,7 11,7 72,02 - - 

16 +1 +1 +1 58,6 30,0 18,3 1,1 69,4 7,6 0,3 20,6 1,3 0,2 85,2 85,0 14,9 7,6 73,64 2,39 30,71 

17 +1 +1 –1 66,3 21,4 14,7 1,1 65,1 8,3 0,2 24,2 1,5 0,3 86,4 82,6 17,4 5,5 67,42 - - 

18 +1 –1 +1 61,6 31,0 19,9 1,3 70,7 7,8 0,2 18,6 1,3 0,2 77,9 84,3 15,6 8,3 78,42 1,61 48,64 

19 +1 +1 +1 59,8 29,4 18,3 1,0 69,3 7,8 0,3 20,6 1,3 0,2 88,6 87,4 12,5 4,1 81,55 1,75 46,41 

20 +1 +1 –1 62,6 21,6 14,1 1,2 65,9 7,6 0,3 23,9 1,4 0,2 87,3 86,6 13,3 4,9 78,72 - - 

 

                                                           
7
 Porcentaje volumétrico de CO2 en base libre de N2 

8
 Porcentaje volumétrico de CO en base libre de N2 


