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ABSTRACT
Modelling plays an important role in the development of software
applications, in particular for the assessment of non-functional re-
quirements such as performance. The value of a model depends on
the level of alignment with the reality.

In this paper, we propose a systematic approach to get a per-
formance model that is a good representation of the system under
analysis. From an UML-based system design we get automatically
a normative Petri net model, which formally represents the system
supposed behavior, by applying model-to-model (M2M) transfor-
mation techniques. Then, a conformance checking technique is it-
eratively applied to align -from the qualitative point of view- the
normative model and the data log until the required fitness thresh-
old is not reached. Finally, a trace-driven simulation technique is
used to enrich the aligned model with timing specification from the
data log, then obtaining the performance Generalized Stochastic
Petri Net (GSPN) model.

The proposed approach has been applied to a customizable Inte-
grated Port Operations Management System, POSIDONIA Opera-
tions, where the performance model has been used to analyze the
scalability of the product considering different deployment config-
urations.

Keywords
Model-driven transformation, process mining, trace and log analy-
sis, performance, Generalized Stochastic Petri Nets (GSPN), Uni-
fied Modeling Language (UML), data-intensive application.

1. INTRODUCTION
Modelling plays an important role in the development of software

applications, in particular for the assessment of non-functional re-
quirements -such as performance, reliability, safety and security.
Essentially, two types of models can be used: informal and for-
mal. The former (e.g., Unified Modeling Language) are used by the
software engineers for requirement/design/test specification, while
the latter (e.g. Petri nets) are more suitable for the analysis.
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Regardless of the type, the value of a model depends on level
of alignment with the reality. For example, it is useless and risky
to conduct simulation experiments to analyze the scalability of the
system using a model that represents an idealized version of the ac-
tual behavior, since -based on the analysis results- incorrect design
decisions could be made.

Process mining [24] is a relatively new discipline that builds
on model-driven approaches and data mining. It aims at provid-
ing methods, techniques and tools for the construction of models
aligned with the reality, considering system execution traces (i.e.,
logs). Although lots of process mining techniques have been pro-
posed and several tools are available, their usage still requires ex-
pertise in formal modelling and analysis. Therefore, they cannot
be considered as straightforward solutions from the perpective of
software engineers, who are usually more acquainted with infor-
mal models.

In this paper, we propose a systematic approach to get a good
performance model, where the quality of the model is based on
the fitness estimation of the model with the system data log. We
assume to have an UML-based design, that includes the specifi-
cation of a (set of) system execution scenario(s) and the resource
restrictions, and the data log, that includes a set of execution traces
obtained from either testing or production environments. By apply-
ing model-to-model (M2M) transformation techniques, we get au-
tomatically a Petri net model from the UML specification, namely
a normative model which formally represents the system supposed
behavior. Then, a conformance checking technique is iteratively
applied to align the normative model and the data log from the
qualitative point of view, (i.e., that is considering only the event oc-
currences and neglecting the timing information) until the required
fitness threshold is not reached. Finally, a trace-driven simulation
technique is used to enrich the aligned model with timing specifica-
tion from the data log, then obtaining the performance model, i.e.,
a Generalized Stochastic Petri Net (GSPN) model [19].

The proposed approach has been applied to a customizable Inte-
grated Port Operations Management System, POSIDONIA Opera-
tions, one of the data-intensive applications selected as demonstra-
tor of the DICE project [10].

The paper is organized as follows: Section 2 considers the related
work. Section 3 introduces the Posidonia case study. Section 4 de-
scribes the approach overview. Sections 5 and 6 describe in detail
the application of the conformance checking and trace-driven simu-
lation techniques, respectively, on the case study. Finally, Section 7
provides conclusion and future work.

2. RELATED WORK
Model-driven engineering aimed at assessing non-functional (or



quality) requirements of software systems is a well-established dis-
cipline due to the broad contribution provided by the software engi-
neering community in the last decade [5, 7, 16]. Concerning UML-
based software specification, most of the approaches define ad-hoc
UML profiles to specify non-functional properties (NFPs) and pro-
pose transformation methods to get formal models (such as Petri
nets, queuing networks, fault trees, process algebras, etc.) suitable
for the analysis. Such efforts, especially the ones addressing perfor-
mance and schedulability assessment, contributed to the definition
of standard OMG UML profiles, such as MARTE [21].

In this paper, we rely on the transformation approach [17] that
generates a GSPN model from UML Activity Diagrams (AD). The
approach has been enhanced to consider resource restrictions and
the MARTE performance extensions, and has been implemented in
the DICE-simulation tool [13].

On the other hand, process mining [24] mainly provides methods
for: process discovery, that is deriving process models from logs,
conformance checking, that is checking the alignment of an exist-
ing/derived process model and logs, and process enhancement, that
is enriching the process model through mining additional perspec-
tives such as timing. The data input for process mining may come
from different sources and need to be pre-processed to get event
logs, i.e., structured data related to ordered events occurring within
a process.

Although process mining mainly addresses the context of busi-
ness processes, recent works apply such a discipline to also other
domains such as software systems and, in particular, data-intensive
software applications. In [18] a discovery technique is proposed
that extracts constraint-based reference models from logs generated
by a maritime safety and security system. The work also proposes
an on-line monitoring technique to detect constraint violations of
the reference model. The use of process mining for data-intensive
applications is nowadays challenging, since there is a need of ef-
ficient and highly scalable techniques [1] to deal with event logs
of several hundreds of gigabytes. Some contributions have been
proposed to address this issue, such as [14] where a framework has
been developed to enable the execution of Map Reduce-based pro-
cess mining tasks.

Knowing if the runtime behaviour of a system is compliant with
the original design specification needs a deep and exhaustive explo-
ration of all the potential behaviors. One of the goals of this paper
is the detection of deviations between the execution traces and the
normative model indicating errors. We apply conformance check-
ing for this purpose, however other approaches have been proposed
that rely on equivalence checking. Equivalence checking is a for-
mal process for proving that two representations -usually expressed
as Labelled Transition Systems (LTSs)- of a system exhibit exactly
the same functionality. The comparison of two LTSs requires the
definition of an equivalence relation between the states of the mod-
els or between the trace (language) of actions that they may exe-
cute. Different kind of equivalence relations are provided in the
literature depending on whether they focus on models or traces [6]:
strong [22], branching [26], observational [20], tau [12] or safety
equivalence [8] for models, and trace or weak trace equivalence [9]
for languages.

3. THE POSIDONIA CASE STUDY
POSIDONIA Operations [15] is a customizable Integrated Port

Operations Management System that allows a port to optimize the
operational maritime activities related to the vessel flow within the
service area of the port, integrating all the involved stakeholders
and all the relevant information systems.

The vessel becomes the centre of the system, and all the ac-

tions and data are linked to the vessels through an integrated oper-
ator console that centralizes all the significant information coming
from external sources and systems, like AIS, Radar, VTS, meteo-
rology, communications, Port Management Systems, Port Commu-
nity Systems, safety & security, cartography, etc.

POSIDONIA Operations is designed to cover all the phases of
a vessel: request, authorization, port approach, port enter, berthing
and unberthing, berth change, anchoring and port leaving. It also
fulfils port operations, including berth planning, coordination and
register of pilots, tugs and moorers activities, vessel supplies and
bunkering, wastes & disposal, incidents, repairs, port inner traffic,
etc.

A real time analysis engine based on spatial information can be
configured to automatize relevant operational events like anchor-
ing, berthing/unberthing, pilots and tugs operations, bunkering, en-
ter and exit of areas like port service area, waypoints or inner har-
bour, port exit with pending requested anchoring, etc.

3.1 Architecture
POSIDONIA Operations is a data-intensive application (DIA)

implemented in Java. It processes streamed data from Automatic
Identification System (AIS) receivers [2, 3], a system that gets ves-
sels position and meta-data in real time. The encoding protocol of
an AIS sentence can be found in [4].

To get data from an AIS Network, a TCP connection to the port
AIS receiver is used. Once an AIS stream is parsed, it is published
to a message queue for further processing: analysis, complex event
processing, data integration, visualization, etc. An AIS message
is a binary encoded sentence that can be decoded into key-value
objects. Its size is usually under 100 bytes. Velocity and volume
of data depends on the number of parallel AIS streams to be pro-
cessed.

The core components of interest for performance analysis are:
1) a streaming processor -or AIS parser- that collects the data from
the AIS receiver and parses it (Figure 1 shows the main scenario);
2) a message queue for subscribing/publishing data such as AIS
messages or detected events; and 3) a complex event processing
(CEP) engine that subscribes to AIS messages and correlates them
in time and space to identify events.

3.2 Test Scenarios
POSIDONIA Operations is a commercial product already de-

ployed and operated in several port authorities. An example of de-
ployment of the AIS parser of Balearic Islands and the CEP of one
port area (Palma) is given in Figure 2.

Being a product already in production, we have to ensure its per-
formance under different velocity and volume of data to be pro-
cessed. For a single area of a port, a velocity of about hundred
AIS messages per second with a volume of about five million mes-
sages per day can be observed. These numbers may vary and can
be multiplied by the number of port areas managed by the product
for a given Port Authority. Several instances of the CEP would then
need to be instantiated, one for each port area. In this case, one of
the challenges is related to the scalability of the product in terms of
data processing, storage and analysis.

4. APPROACH OVERVIEW
We aim at deriving a formal model, concretely a GSPN model,

amenable to be used for performance predictions. To that end, we
propose the systematic approach summarized by the Algorithm 1.

The input specification consists of: 1) a UML-based design that
includes a (set of) Activity Diagram(s) AD, which represent the
execution process(es) of a data-intensive application -such as the
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Figure 1: Parsing scenario.
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Figure 2: Deployment.

Algorithm 1 Approach
Input: UML design (AD,DD), data log (L)
Output: Performance model (GSPN ) & results (R)
1: Get a normative model N from AD
2: Pre-process data log to get event log EL
3: repeat
4: Filter EL
5: Check for conformance N and EL
6: until fitness � thres
7: Enhance N with timing perspective: GSPN
8: Performance analysis with GSPN : R

parsing scenario of POSIDONIA shown in Figure 1- and a De-
ployment Diagram DD, which specifies the software component
allocation on computing nodes, such as the DD of Figure 2; and 2)
the data log L which include a set of process execution traces.

In the first step (Step 1), a Petri Net model N is automatically
derived from each AD and the DD via a model-to-model (M2M)
transformation [17], using the DICE simulation tool [13]. This
Petri Net model represents the normative model since it is derived
from the known behavioural specification of the system. Observe
that the AD in Figure 1 is annotated using the MARTE profile; in
particular, input parameters are assigned to the mean durations of

the action steps (i.e., hostDemand tagged-values) and to the data
stream arrival rate (i.e., arrivalRate tagged-value). Figure 3 shows
the two Petri net subnets, in the dotted rectangles, that are derived
from the parsing scenario of Figure 1 and a CEP scenario1, con-
sidering the (logical) resource restrictions specified in the DD of
Figure 2 (poolSize tagged-values).

The next step (Step 2) consists in pre-processing the data log L
to convert it into the event log XES [27] standard format, where
each execution trace is characterized by an ordered set of event oc-
currences together with their timestamps. The data logs of POSI-
DONIA were collected in separate .csv files, 4 files related to the
parsing process -one for each parser thread- with a mean number of
69920 traces, and one single file related to the CEP process with a
total of 56698 traces. Each parsing trace represents the transforma-
tion of an NMEA message -from the AIS receiver of the Balearic
Islands- into an AIS sentence and includes 8 event occurrences,
which correspond to the start and completion of each action mod-
elled in the AD of Figure 1. Each trace of the CEP process repre-
sents the message handling by the CEP of the Palma port. In the
original log, the traces contain several event occurrences including
the activation and firing of single rules. The pre-processing step
produces an event log where only the event occurrences which cor-

1The Activity Diagram representing the CEP scenario has been
omitted due to space limitation.
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Figure 3: GSPN model.

respond to the start and completion of the actions modelled in the
AD are considered in order to align it with the latter. Each trace
of the CEP, finally includes between 4 and 8 event occurrences; in-
deed, 5.5% of the traces are partial execution of the CEP scenario.

In the Steps 3-6, the event log and the Petri net model are aligned
using the ProM tool [25] in order to reach a fitness threshold (e.g.,
thres = 1 means a 100% alignment between the event log and
the model); the alignment may require several iterations. The next
Section 5 describes such steps using the case study.

Once the required fitness is reached, then the Petri Net model is
enriched with timing specification (Step 7) to get a GSPN model.
In particular, the parameters associated to the timed transitions of
the GSPN model are set to values which are estimated using the
event log and the trace-driven simulator of the ProM tool. Finally,
the GSPN model is used to carry out performance analysis (Step
8). In particular, in the case study the objective of the analysis is to
evaluate the scalability of the application. Such steps are detailed
in Section 6.

5. CONFORMANCE CHECKING
A normative model N is an abstract representation of the system

that includes a set of behavior scenarios, while an event log EL
consists of a set of execution traces each one describing a possible
behavior. The normative model does not consider all the possible
system behaviors. Similarly, the event log provides information
about the running system, but it is not guaranteed that it includes a
full description of all the combinations of the environment.

In Steps 3-6 (Algorithm 1), the normative model (without tem-
poral information yet) and the event log are aligned in order to as-
sess whether the normative model is a good representative of the
event log. To this aim, the execution traces in the event log are
replayed on the normative model using the conformance checking
algorithm [23], implemented as plugin in the ProM tool [25]. The
ProM plugin requires each event of EL to be mapped to the corre-
sponding transition in N as well as an initial and final marking to
be set for N .

The ProM plugin returns a fitness score that estimates the confor-

mance of the execution traces with respect to the normative model
(Step 5). We worked with the default configuration to compute the
fitness, that penalizes mismatches with a unitary cost per miss when
moving a token on the model but not in the log, or vice versa.

First, we analyzed the normative model of the AIS NMEA Parser
(Figure 3, top subnet), where the initial transition t_NMEAstream
and the immediate ones were considered not observable in the con-
formance checking because they didn’t have a direct correspon-
dence with the events in the log. The mean fitness score of the non-
filtered event logs produced by the four parser threads was 0.998,
meaning that almost all the traces in the logs can be replayed on the
model.

In this case, the application of a filter (Step 4) removed erroneous
traces. Indeed, by analyzing the event logs, we found that some
traces presented an anomalous initial (or end) event. On average,
the 0.025% of the traces (around 18 sequences per parser) started
with a wrong event, and the 0.016% of the traces (around 11 se-
quences per parser) finished in a wrong one. For instance, Figure 4
shows a trace where the ParsingTask.PostProcessing starts the exe-
cution before the task Parser.Parsing. Finally, the fitness score for
filtered logs was 1.0.

The second normative model to check for conformance was the
CEP scenario (Figure 3, bottom subnet). In this case, the fitness
score of the non-filtered event log produced by the CEP was 0.98.
By analyzing the event log, we detected some incomplete traces:
only the initial part of the CEP scenario was executed (i.e., conver-
sion and handling of the message) but not the insertion and firing
of the rules. These traces represented a 5.5% of the log (3065
sequences). The fitness score rose up to 1.0 by removing such in-
complete traces.

Finally, with conformance checking we found some situations
where the order of certain events of a trace were inverted with
respect to the corresponding transitions of the normative model.
This happened occasionally in case of events labeled with the same
timestamp, since the conformance checker has not enough infor-
mation for inferring the exact succession. The traces that fall in
this last category were not considered as incorrect traces.



Figure 4: Example of erroneous trace.

6. PERFORMANCE ENHANCEMENT
In order to carry out performance analysis, we need to enrich the

aligned normative model with timing specifications, then obtaining
a GSPN model (Step 7 of the Algorithm 1). To that end, we use the
trace-driven simulator of the ProM tool [25] that replays the event
log and computes the mean and standard deviation of the transitions
firing times. The table in Figure 3 (right side) shows the mean
values obtained for the timed transitions of the two GSPN subnets
of POSIDONIA (left side), which resulted by the analysis of the
filtered logs (removing less frequent traces - Step 4).

The mean values of the parsing scenario were calculated as the
average execution time of the four parser threads. The arrival rate
of the data stream (t_NMEAstream) was estimated according to the
timestamps of the parsing starting events in the logs. All the tran-
sition firing times were characterized by the negative exponential
distribution, since the standard deviations were similar to the mean
values.

Concerning the CEP scenario, transition firing time t_firingAll
rules had a lower standard deviation value (63.09 ms) and it was
approximated by an Erlang distribution with k = 3 steps. The rest
of transition firing times were all exponentially distributed.

We validaded separately the two GSPN subnets by considering
four parser threads and a single CEP (last two rows of the table in
Figure 3), and the mean processing time as performance metric of
reference. We used both the analytical solver and the event driven
simulator of GreatSPN [11]. The relative error of the mean pro-
cessing time of the parsing with respect to the one inferred by the
logs was less than 1%, while the relative error of the mean process-
ing time of the CEP was around 10%. This is probably due to the
abstraction level of the normative model, where the activation and
firing of single CEP business rules are not explicitly represented.

Once the GSPN model is validated, it can be used for perfor-
mance analysis (Step 8 - Algorithm 1). In the case of POSIDO-
NIA, we used the complete GSPN model -representing the parsing
and the CEP scenarios, and the message queue- to study the scala-
bility of the system under different assumptions on the deployment
environment.

Parsers (threads) CEP Mean arrival time (msg/sec.)
1 (4) 1 5
1 (4) 1 7
1 (4) 1 8
1 (4) 5 40
1 (4) 7 15

Table 1: Deployment basic configurations.

Table 1 shows the deployment basic configurations that represent
the normal situation of one parser (with 4 threads) and one CEP for
each geographical area. The number of parsers is related to the
number of AIS receptors; each port authority provides the access
to a unique AIS receptor. Instead, the number of CEPs depends on
the number of ports managed by the port authority, i.e., one CEP for
each managed port. The mean arrival time of the data stream ranges
between 5 and 40 messages per second. Such values may change

between seasons (summer/winter) and daytime (light/night), and
can be multiplied up to a factor of 10.

Figure 5 shows some performance results obtained via simula-
tion with the GreatSPN tool2. The curve on the left shows the parser
utilization vs/ the mean arrival time of the data stream: the resource
becomes saturated when the data stream rises to 280 msg/sec. The
curves on the right show the trend of the mean processing time of
the CEP for the three different values vs/ the mean arrival time. For
one CEP, the system is not stable for the considered message work-
load: indeed the size of the message queue increases, the CEP uti-
lization is 100% and the processing time ranges in [138, 153] ms.
In the other two configurations, the processing time is maintained
in the range [136, 139] ms. and there is not significant difference
between using five or seven CEPs.

7. CONCLUSION
We have proposed a systematic approach to get a performance

model by applying M2M transformation and process mining tech-
niques. The former enables to automatically obtain a normative
model from UML-based design specifications, while the latter is
used to get a performance model that is a good representation of
the system under analysis, by considering the data logs from system
executions. The approach has been exemplified with the POSIDO-
NIA Operations case study, where the performance model has been
used to analyze the scalability of the product considering different
deployment configurations.

The size of the POSIDONIA event logs, analyzed in this work, is
of the order of 100 megabytes. As future work, we aim at investi-
gating the efficiency and scalability of the current available process
mining techniques when big data logs are considered. On the other
hand, the case study deserves an in-depth analysis since the devel-
opers are interested also in other performance and reliability issues,
such as to figure out the impact of a new CEP business rule on the
quality metrics.
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