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Abstract This paper explores the impact that landmark pa-
rametrization has in the performance of monocular, EKF-
based, 6-DOF simultaneous localization and mapping (SLAM)
in the context of undelayed landmark initialization.

Undelayed initialization in monocular SLAM challenges
EKF because of the combination of non-linearity with the
large uncertainty associated with the unmeasured degrees of
freedom. In the EKF context, the goal of a good landmark
parametrization is to improve the model’s linearity as much
as possible, improving the filter consistency, achieving ro-
buster and more accurate localization and mapping.

This work compares the performances of eight differ-
ent landmark parametrizations: three for points and five for
straight lines. It highlights and justifies the keys for satis-
factory operation: the use of parameters behaving propor-
tionally to inverse-distance, and landmark anchoring. A uni-
fied EKF-SLAM framework is formulated as a benchmark
for points and lines that is independent of the parametriza-
tion used. The paper also defines a generalized linearity in-
dex suited for the EKF, and uses it to compute and compare
the degrees of linearity of each parametrization. Finally,all
eight parametrizations are benchmarked employing analyti-
cal tools (the linearity index) and statistical tools (based on
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Monte Carlo error and consistency analysis), with simula-
tions and real imagery data, using the standard and the robo-
centric EKF-SLAM formulations.

1 Introduction

Simultaneous localization and mapping (SLAM) is the prob-
lem of concurrently estimating in real time the structure
of the surrounding world (themap), perceived by moving
exteroceptive sensors, while simultaneously gettinglocal-
ized in it. The seminal solution to the problem by Smith
and Cheeseman (1987) employs an extended Kalman filter
(EKF) as the central estimator, and has been used exten-
sively. In EKF-SLAM, the map is a large vector stacking
camera and landmark states, and it is modeled by a Gaus-
sian variable. This map, usually called thestochastic map,
is maintained by the EKF through the processes of predic-
tion (the camera moves) and correction (the camera observes
the landmarks in the environment that had been previously
mapped).

In order to achieve true exploration, the EKF machin-
ery is enriched with an extra step oflandmark initialization,
where newly discovered landmarks are added to the map.
Landmark initialization is performed by inverting the obser-
vation function and using it and its Jacobians to compute,
from the camera pose and the measurements, the observed
landmark state and its necessary co- and cross- correlations
with the rest of the map. These relations are then appended
to the state vector and the covariances matrix.

Monocular SLAM refers to the case where the exte-
roceptive sensing means are limited to a single projective
camera. Monocular SLAM gained popularity back in 2003
thanks to the first full real-time implementation by Davi-
son (2003), based on Smith and Cheeseman’s EKF solu-
tion. Davison’s technique elegantly solved a great number
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of problems, but there still remained one that occupied re-
searchers on visual SLAM for some years (Chiuso et al,
2002; Bailey, 2003; Kwok and Dissanayake, 2003; Lemaire
et al, 2005): the problem of landmark initialization.

Landmark initialization in monocular SLAM is difficult
because, due to the projective nature of the sensor, this can-
not provide the distance to the perceived landmarks: the
measurements are rank-deficient and the observation func-
tions are not invertible. This means that a full 3D estimate
of the landmarks just discovered is not available for map-
ping, because the uncertainty in the unobserved DOF is infi-
nite and, being the measurement equations non-linear, EKF
cannot deal with it. Early approaches (Davison, 2003; Bai-
ley, 2003; Lemaire et al, 2005) took advantage of the sensor
motion to achieve fully 3D estimates before actually initial-
izing the landmarks. This family of methods introduces a
delayuntil the sensor motion has gained enough parallax for
triangulation, during which the landmarks, not yet mapped,
cannot provide any information for localization.

Monocular EKF-SLAM reached maturity with the ad-
vent ofundelayed landmark initializationtechniques (ULI,
explained in more detail in the next section), a need of par-
tial initialization firstly stated by Solà et al (2005). Thekey
to ULI is to substitute the unmeasured DOF by a Gaussian
prior: the objective then is to find a way to allow this prior to
possess an infinite uncertainty while still being manageable
by the EKF. Solà et al describe a preliminary solution based
on an exponentially distributed multi-hypotheses depth pa-
rametrization, which was inspired on a previous work by
Kwok and Dissanayake (2004). The problem was success-
fully solved for the first time with the inverse-depth land-
mark parametrization (IDP) by Montiel et al (2006), which
has become very popular. More recently, Marzorati et al
(2008) and Haner and Heyden (2010) have presented new
parametrizations for which the authors claim better perfor-
mances than IDP. Solà (2010) presents a comparative study
of three parametrizations for point landmarks.

A smaller number of works incorporate line landmarks
or segmentsto the EKF-SLAM framework. Gee and Mayol
(2006), Smith et al (2006) and Lemaire and Lacroix (2007)
use delayed techniques for initialization. Solà et al (2009b)
reports the only ULI solution for infinite lines we are aware
of, which uses the Plücker line. Edgelets (very short line
fragments associated to a 3D point) were introduced by Eade
and Drummond (2006a), also in an undelayed manner, using
IDP as the supporting point type.

Overall, the methods here cited have many points in
common. Unfortunately, their differences lie in many parts
of the algorithm other than landmark parametrization, in the
evaluation methods and/or in the heterogeneity of the exper-
imental setups. This makes it difficult to tell which aspects
of the proposed solutions are at the base of the observed dif-
ferences in performance. In this work, we fix the algorithmic

and experimental aspects of the problem and center our at-
tention to the effect that landmark parametrization has, byits
own right, on monocular EKF-SLAM performance. For this,
the paper retakes the problem from a unified perspective that
considers points and lines alike (edgelets are not covered),
and presents and analyzes a compendium of eight different
parametrizations, three for points and five for lines, among
which three are innovative to the best of our knowledge.

1.1 Undelayed landmark initialization (ULI)

To overcome the drawbacks of delayed initialization,unde-
layed landmark initialization(ULI, also known aspartial in-
itialization, Solà et al, 2005) incorporates the partially mea-
sured landmarks at the first observation, that is, before all
of their DOF are determined (orsufficiently estimated). In
bearings-only systems (e.g.a monocular camera, see Fig. 1),
ULI allows landmarks showing low parallax (those that are
at remote distances or close to the motion direction of the
camera) to contribute to SLAM from the first observation,
providing precious bearing information that helps constrain
the camera orientation. In other words, ULI allows us to ex-
ploit the full field of view of the camera up to the infinity
range, regardless of the sensor trajectory, which results in
accurate localization with very low angular drifts.

For example, when turning a corner in a corridor, a vi-
sual SLAM system with ULI can immediately initialize a
point or two at the other end of the corridor, which have just
become visible and will most likely remain visible along the
whole corridor. During this time, the conditions for triangu-
lation are bad, as there is no significant increase in parallax.
Without ULI, these landmarks must be ignored with the con-
sequence of the robot accumulating angular errors that after
a few meters may become the primary source of filter failure
due to inconsistency. Thanks to ULI, observing these land-
marks serves to constrain the camera orientation, meaning
that the robot can reach the end of the corridor without ac-
cumulating angular drift. The total angular drift for a whole
loop closure (say, 4 corridors and 4 corners) is thus lim-
ited to only the drift accumulated during the transitions in
the corners. We encourage the reader to consult (Solà et al,
2005; Civera et al, 2008; Solà et al, 2008) for discussions
on delayed/undelayed initializations and their importance
in monocular SLAM, and (Bailey et al, 2006; Huang and
Dissanayake, 2007; Huang et al, 2008) for insights on the
sources of inconsistency in EKF-SLAM.

ULI is an interesting challenge in EKF because the filter
needs to cope with naturally non-linear equations and huge
uncertainty levels associated with the unmeasured DOF (Fig.
1). The best solutions accepted so far require some degree of
over-parametrization of the landmarks’ states. Two aspects
have been identified as being beneficial (Civera et al, 2008;
Solà et al, 2009b): first, the enormous (potentially infinite)
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(a) The back-projection of a pointu gives place to a semi-infinite
line λ where the point landmarkp must lie. There is 1 unmea-
sured DOF: the point’s depth or distance. To observe it, the cam-
era needs to gain parallax by moving away from the lineλ.
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(b) The back-projection of a segmentl gives place to a semi-
infinite planeπ where the line landmarkL must lie. There are
2 unmeasured DOF: the line’s depth and its orientation inπ.
The camera gains parallax by moving away from the planeπ.

Fig. 1 The problem of undelayed initialization. Back-projectionof detected features in a monocular image at their first observation. The unmea-
sured DOF’s have infinite uncertainty and need to be properlymodeled by Gaussian shapes, and manipulated using reasonably linear functions.

uncertainty must be represented by a single and well-defined
(i.e., bounded) Gaussian. Second, the observation functions
must be reasonably linear inside all this uncertainty range.
These two severe requirements can be elegantly fulfilled
by using parametrizations incorporating the non-observable
DOFs proportionally to inverse-distance, as it is done with
e.g.IDP (Civera et al, 2008), homogeneous points (Marzo-
rati et al, 2008) and Plücker lines (Solà et al, 2009b). This
is because, on one hand, a bounded Gaussian in inverse-
distance including the origin of coordinates naturally maps
onto an unbounded uncertainty region including the infinity,
and on the other hand, the inverse-distance is key in pro-
jective geometry and the projection equations exploiting it
become quasi-linear precisely with respect to these highly
uncertain DOF.

A third aspect that has proved positive is landmark an-
choring. Although not explicitly stated, anchoring was al-
ready used in the delayed method of Davison (2003), and
later in IDP. Recently, it has been explicitly evaluated by
Solà (2010), who compares three different point parametri-
zations. Anchoring allows the landmark uncertainty to be
referenced to a point close-by (theanchor), which is chosen
to be the optical center at initialization time. This allowsthe
system to get rid of many linearization errors accumulated
since the start of the map, and to consider instead mainly the
local motion since the initialization of each particular land-
mark. More complex anchoring uses the whole camera pose
(position and orientation), achieving a higher degree of de-
coupling between global and local motions (Gee and Mayol,
2006; Gee et al, 2008). These last schemes use shared an-
choring to keep the map size small, and thus require that the
landmarks be initialized in groups.

1.2 Points and straight lines

The problems of points and infinite straight lines are surpris-
ingly similar, and one of the aims of this paper is to make
this similarity evident.

For points, Fig. 1(a), ULI means that landmarks must
be initialized so that the uncertainty in distance – the only
unmeasurable DOF – covers all the visual ray up to infinity.

For infinite straight lines, Fig. 1(b), ULI requires the ini-
tial uncertainty to cover 2 unmeasurable DOF: distance up
to infinity, and all possible orientations.

Bounded lines orsegmentspresent additional difficul-
ties. Unlike points, lines can be partially occluded, and the
edge detectors in use return therefore unstable endpoints.
This means that the endpoints of a 3D segment cannot be
established from single observations, and that they are gen-
erally not re-observable. For these (and other possible) rea-
sons, it is common practice to employ the stochastic map
to estimate just the infinite lines supporting the segments,
and to keep track of the segment’s endpoints separately. In
this paper, we focus mainly on the estimation of infinite lines
supporting arbitrarily long segments (not edgelets), and only
general guidelines are given about the management of the
segments’ endpoints.

1.3 Alternative approaches to monocular EKF-SLAM

There exist a significant amount of research investigating the
possibilities of using estimation techniques other than EKF.
We find IDP used in Bayesian frameworks such as Fast-
SLAM2.0 (Eade and Drummond, 2006b) and the unscented
Kalman filter (UKF, Sunderhauf et al, 2007; Holmes et al,
2008). Very recently, methods based on Bundle Adjustment
optimization (BA, Triggs et al, 2000; Engels et al, 2006)
over a sparse set of keyframes on the sequence are gaining
popularity (Klein and Murray, 2007; Konolige and Agrawal,
2008). Real-time operation has been achieved by dividing
the SLAM operation into a Bundle Adjustment thread, us-
ing mainly the software in (SBA, Lourakis and Argyros,
2004) and a camera tracking thread using pairwise geome-
try. Those keyframe approaches have also been successfully
used with edgelets (Klein and Murray, 2008).
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Very recently, (Strasdat et al, 2010) has proved a clear
advantage of keyframe SLAM algorithms: while the domi-
nant computation for EKF-SLAM (a complexityO(n2) in
the state covariance update) has to be performed at every
step, the cost of the non-linear optimization in keyframe
SLAM is amortized among several frames. As a conse-
quence, keyframe algorithms are able to include and mea-
sure more features in their maps, hence improving the gen-
eral accuracy of the keyframe estimation with respect to
the EKF one. Then, while there exist EKF-based algorithms
with performances comparable to keyframe-based ones (Paz
et al, 2008; Civera, 2009), they present a higher computa-
tional cost per map landmark.

Still, EKF-SLAM (or other similar approaches based on
filtering and Gaussians such as UKF-SLAM or extended in-
formation filter (EIF)-SLAM) is still widely used by major
robotics and vision laboratories and is at the core of other lo-
calization, mapping or modeling systems, with points (Paz
et al, 2008; Civera, 2009) (with performances comparable to
those of SBA), lines (Gee and Mayol, 2006), and even intro-
ducing planes (Gee et al, 2008). The opinion of the authors
is that EKF-SLAM can have an important niche of appli-
cations: as stated in (Strasdat et al, 2010), EKF monocular
SLAM presents computational advantages in cases where
the computational budget is low. This particular case could
be of importance now that smart mobile devices are populat-
ing our lives. Also, the EKF keeps an uncertainty estimation
for the map features that would be expensive to extract from
a keyframe algorithm. This is especially valuable in situa-
tions where only a few landmarks are visible, as the filter
keeps a coherent estimate thanks to the prediction stage of
EKF, which is missing in non-linear optimization schemes.
Finally, and apart from the fact that EKF-SLAM is the im-
plementation with the longest tradition, two other technical
reasons in our opinion keep it alive: its (relative) simplicity
of implementation, and the fact that large maps are usually
being built by means of small sub-maps, thus circumventing
most of the EKF drawbacks: one is the mentioned computa-
tional burden; the other is filter consistency, presented inthe
following paragraphs.

1.4 Linearity and EKF consistency

The consistency issues of EKF-SLAM are well known and
have been the subject of numerous studies in the last years.
Castellanos et al (2004) showed that inconsistency appears
even before the computational burden of the problem be-
comes prohibitive, and proposed in (Castellanos et al, 2007)
robocentric SLAM where the local operation of the filter re-
sults in significant linearity improvements. A more concise
study of inconsistency is given by Bailey et al (2006), where
the normalized estimation error squared (NEES) is averaged
over a number of conditionally independent Monte Carlo

runs and used to evaluate consistency. This work shows that
using ground truth Jacobians guarantees filter consistency,
and thus that inconsistency comes from the unavoidable er-
rors produced when linearizing the system. More theoret-
ically sound insights have been provided by a remarkable
work by Huang et al (2008), where it is shown that, using the
authors’ words, “the observable subspace of the linearized
system is of higher dimension than that of the actual, non-
linear one, leading to covariance reductions in directionsof
the state where no information is available, which is a pri-
mary cause of inconsistency”.

All the studies mentioned above assume 2D implemen-
tations using range-and-bearing sensing and Euclidean point
parametrizations, exactly as they appear in the original EKF-
SLAM solution. Our case of study differs from them in at
least four aspects. The first one is 3D operation (i.e., 6 DOF
motion). The second one is that we are dealing with monoc-
ular observations, which convey rank-deficient information
about the landmark locations. The third aspect, which is a
consequence of the previous one, is that landmark param-
etrization can no longer be the trivial, minimal, Euclidean
one, but something more or less complicated and redundant
that seeks an improvement of linearity. The fourth and last
aspect is that we also incorporate lines.

Our aim with this paper, however, is not a theoretical
mathematical analysis (in the style especially of (Huang
et al, 2008)) but a performance comparison that visualizes
the impact that landmark parametrization has on linearity,
estimation error and filter consistency. We show that in-
consistency comes mostly from covariance over-estimation
rather than error magnitude, which corroborates Huang’s
conclusions.

Because inconsistency has its roots in non-linearity, we
correlate our evaluation with measurements of the degree
of linearity of each parametrization. We define for this pur-
pose a linearity index that on one hand is pertinent to EKF
(i.e., it accounts for non-linearityand uncertainty), and on
the other hand it defines its metric in the measurement space
and therefore allows us to compare parametrizations having
state representations of different sizes and natures.

The choice of the classical EKF engine for SLAM is not
casual: as a well-known algorithm, it serves the purpose of a
standard workbench through which to evaluate performance
differences that have their roots in non-linearity. As an inter-
esting counterpoint, we additionally show with large-scale
experiments that algorithms robuster to non-linearity such
as robocentric EKF-SLAM also benefit from the linearity
improvements of the landmark parametrizations proposed in
this article.

1.5 Contributions

We provide several contributions:
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1. A compendium of eight landmark parametrizations for
ULI, three for points (homogeneous points HP, anchored
homogeneous points AHP, and anchored modified-polar
points AMPP) and five for lines (Plücker lines PL, an-
chored Plücker lines APL, homogeneous-points lines
HPL, anchored homogeneous-points lines AHPL, and
anchored modified-polar-points lines AMPPL). Three of
these parametrizations (APL, HPL and AMPPL) are in-
novative to the best of our knowledge.

2. A unified methodology to tackle all eight parametri-
zations emphasizing the two keys to satisfactory ULI,
namely landmark anchoring and inverse-distance behav-
ior.

3. An analytical measure of linearity of multi-dimensional
functions that takes into account the time-varying sup-
port of probability.

4. A statistical evaluation of root mean squared (RMS) er-
rors and average normalized estimation error squared
(NEES) consistency, based on Monte-Carlo simulation
runs.

5. A benchmark with real outdoors imagery of the point pa-
rametrizations on a robocentric SLAM implementation,
showing that our proposed solutions achieve error lev-
els typical of state-of-the-art SLAM based on non-linear
optimization.

1.6 Outline

This paper is organized as follows. In Section 2 we de-
scribe three parametrizations for points and give details on
the necessary algebra to support them. In Section 3 we re-
peat the process with five types of infinite lines. Section 4
describes the initialization and updating procedures. Section
5 describes the methods we use for linearity and consistency
evaluation, with simulation results in Section 6. Further re-
sults with real images are presented in Section 7. The paper
continues with a discussion in Section 8 and the conclusions
in Section 9. A final appendix gives accessory details on seg-
ments endpoints management.

2 Parametrizations for 3D points

This section presents some parametrizations for 3D points,
with their projection and back-projection operations needed
for EKF-SLAM initialization and updates. We start withEu-
clidean points(EP, not suited for ULI) just as a matter of
completeness and to introduce some notation. The discourse
evolves throughhomogeneous points(HP),anchored homo-
geneous points(AHP), and inverse-distance points(IDP),
which we refer to here asanchored modified-polar points
(AMPP) for reasons that will be explained soon.

2.1 Euclidean points (EP)

A Euclidean pointp (EP, Fig. 2(a)) is trivially coded with
three Cartesian coordinates

LEP = p =
[

x y z
]⊤
∈ R

3 ,

where we useLNAME to represent a landmark of type
NAME.

Transformation to camera frame and perspective (pin-
hole) projection are performed with the well-known expres-
sion

u = KR
⊤(p− T) ∈ P

2 , (1)

which we use to introduce some notation. Underlined fonts•
indicate homogeneous coordinates in projective spacesP

n;
K is the intrinsic matrix,

K ,

[

αu 0 u0
0 αv v0
0 0 1

]

; (2)

R = R(Q) andT are the rotation matrix and the translation
vector defining the camera frameC, which is coded by the
vectorC = (T,Q), Q being an orientation representation of
our choice suitable for EKF filtering.1

Euclidean points lead to severely non-linear observation
functions in bearings-only systems and are not suited for
undelayed initialization, as it has been extensively demon-
strated, (Chiuso et al, 2002; Bailey, 2003; Davison, 2003;
Kwok and Dissanayake, 2004; Eade and Drummond, 2006b;
Solà et al, 2008) and most particularly (Solà et al, 2005;
Civera et al, 2008). In brief, the problem of ULI with EP
can be explained as follows. In EKF, the requirements of
function linearity must hold inside the whole uncertainty re-
gion of the state variable. Because in Euclidean parametriza-
tions the uncertainty region of partially observed landmarks
is unbounded (it reaches the infinity in parameter space), the
observation functions’ linear approximation should hold for
a whole unbounded interval, and this is impossible.

2.2 Homogeneous points (HP)

A homogeneous point(HP, Fig. 2(b)) is coded by a 4-vector
in projective spaceP3. It is composed of a 3D vectorm and
a scalarρ (usually referred to as thehomogeneous part),

LHP = p =

[

m

ρ

]

=
[

mx my mz ρ
]⊤
∈ P

3 ⊂ R
4 . (3)

1 We use normalized quaternions for encoding orientation, mainly
because of the absence of gimbal lock, and because the bilinear rela-
tions appearing in the expression of the rotation matrix make the com-
putation of Jacobians very easy.
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(a) Euclidean point
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(b) Homogeneous point (HP)
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(c) Anchored homogeneous point (AHP)
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(d) Anchored modified-polar point
(AMPP)

Fig. 2 Point parametrizations. (a) EP is minimal but not suited forULI. (b,c) HP and AHP do not requirem to be a unit vector. (d) In AMPP the
observed ray is coded by two angles: the derived direction vector is unitary and henceρ is exactly inverse-distance. The anchor pointp0 in AHP
and AMPP corresponds to the optical center at initialization time.

A HP refers to the following EP:

p = m/ρ . (4)

Although HP have been only recently introduced for mo-
nocular EKF-SLAM by Marzorati et al (2008), they have
been extensively used in computer vision for years. In ho-
mogeneous coordinates, a point in 3D space is represented
by an equivalence class, under proportionality transforms, of
a 4-vector(m, ρ). Based on this equivalence several canon-
ical choices are possible. The choiceρ = 1 is the original
Euclidean point representation; the choicemz = 1 is the
conventional inverse-depth choice; and the choice‖m‖ = 1

is the inverse-distance choice. Note that the last two are not
absolutely equivalent, although they are very similar. Unlike
depth (or inverse-depth), which is defined with respect to a
particular direction in space, inverse-distance has the advan-
tage of being isotropic, that is, its properties are independent
of the orientation of the reference frame.

In this paper, however, we do not make a canonical
choice, and let the four parameters ofp free to move to the
values determined by the different steps of the EKF esti-
mator.2 In HP we rather exploit the fact that the scalarρ is
proportional toinverse-distance, as stressed in the following
remark.

Remark 1 (Inverse-distance)When the point is expressed in
the camera frame, the vectorm corresponds to a director
vector of the observed optical ray, and the scalarρ depends
linearly with the inverse of the distanced from the optical
center to the 3D point,

ρ = ‖m‖/d . (5)

The unbounded distance uncertainty, which spans from a
minimal distancedmin to infinity, is transformed into a
bounded intervalρ ∈ (0, ‖m‖/dmin] in parameter space.

2 In fact, we make use of other kinds of redundancy in our param-
etrizations, with very positive results. Refer to Section 8for further
discussion on redundant parametrizations in EKF.

This is of central importance as this is precisely the factor
that will allow us to use such parametrization for ULI (see
Section 4.2 for further justification and details). The same
concept of inverse-distance is found in all the parametriza-
tions described here (except of course EP), even the ones for
lines.

Homogeneous points have the additional interesting
property of presenting a bi-linear frame-transformationequa-
tion:

p = HpC ,

[

R T

0 1

]

pC , (6)

where the super-index•C indicates the local frameC where
the point is referenced to, andH is the homogeneous motion
matrix specifying this frame.

Homogeneous points project into perspective cameras
according to

u = Pp = KP0H
−1p , (7)

with P , KP0H
−1, and whereP0 is the canonical projec-

tion matrix

P0 ,

[

1 0 0 0
0 1 0 0
0 0 1 0

]

.

This can be expressed in terms ofT, R, m andρ,

u = KR⊤(m− Tρ) ∈ P
2 , (8)

which is linear inρ. Notice that when the point is expressed
in camera frame,pC = (mC, ρC), only the non-homoge-
neous partmC appears in the projection expression,

u = K·mC , (9)

meaning that 1 DOF, the point’s range intrinsically con-
tained inρC, is not measurable.
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On back-projection, the observed partmC in camera
frame is obtained by just inverting (9),

mC = K−1u . (10)

The non-observed partρC cannot be obtained from any data
in the system, and must be provided as prior (see Section 4.2
about defining Gaussian priors appropriate for EKF). Over-
all, the back-projection and frame-transformation composi-
tion necessary for landmark initialization (see Section 4.3
for the initialization algorithm) is performed with

LHP = p =

[

m

ρ

]

= H

[

K−1u

ρC

]

=

[

RK−1u+ TρC

ρC

]

,

(11)

whereρC depends inversely with the distancedC to the cam-
era, viaρC = ‖K−1u‖/dC. It must be provided as prior.

Remark 2 (Inverse-distance and frame transformation)In
HP, the interpretation ofρ as the inverse-distance from the
point to the camera is lost after frame transformation (6),
as ρ becomes an inverse-distance to the origin of coordi-
nates. Due to the bilinear character of this transformation,
this might have more or less adverse effects on the perfor-
mance of tools such as the EKF (which demand reason-
ably linear systems). One one hand, whileH (that is, ro-
tationR and translationT) is accurately estimated,i.e., after
small camera motions, bilinearity can be considered quasi-
linearity and the system is expected to work. On the other
hand, whenH is no longer accurate,i.e., after large camera
motions, the system is prone to failure. See also Remark 3.

2.3 Anchored homogeneous points (AHP)

We add an anchor to the HP parametrization to improve lin-
earity, as it is done in the well-known inverse-depth param-
etrization (IDP, Civera et al, 2008), which we will see later.
Anchoring the HP means referencing it to a pointp0 in 3D
space different from the origin (Fig. 2(c)). Theanchor point
p0 is chosen to be the optical center at initialization time.
This leads to theanchored homogeneous point(AHP, Solà,
2010, Fig. 2(c)), parametrized with the 7-vector

LAHP =





p0

m

ρ



 =
[

x0 y0 z0 mx my mz ρ
]⊤
∈ R

7 .

(12)

An AHP refers to the following EP:

p = p0 +m/ρ . (13)

Transformation to camera frame and projection resume to

u = KR
⊤
(

m− (T− p0)ρ
)

∈ P
2 . (14)

Remark 3 (Landmark anchoring)Anchoring the landmarks
at the optical center at initialization time has the effect of
decoupling the uncertainty of the term multiplying the most
uncertain parameter, the inverse-distanceρ. This term wasT
in HP and has become(T−p0) in AHP – see (8) and (14). It
is easily seen that the uncertainty of(T − p0) is small after
initialization, while the current camera poseT is not far from
the anchorp0 and their cross-correlation is significant. See
Remark 2 for the unanchored case, and Section 5.1 for the
impact that uncertainty has on the degree of linearity seen
by EKF.

The back-projection and transformation composition is
performed with

LAHP =





p0

m

ρ



 =





T

RK−1u

ρC



 , (15)

whereρC must be provided as prior; its proportionality to
inverse-distance is given byρC = ‖K−1u‖/d.

2.4 Anchored modified-polar points (AMPP)

We lighten the previous AHP from 7 to 6 parameters by en-
coding the direction vectorm with just elevation and az-
imuth angles(ε, α) of the observed optical ray joiningp0 to
p. When these angles are appended with the inverse of the
distanceρ = 1/d, the result is a 3D point in modified-polar
coordinates,(ε, α, 1/d). Adding the anchorp0 leads to the
anchored modified-polar point(AMPP, Civera et al, 2008,
Fig. 2(d)), coded by the 6-vector

LAMPP =





p0

(ε, α)

ρ



 =
[

x0 y0 z0 ε α ρ
]⊤
∈ R

6 . (16)

Remark 4 (Inverse-depth points)In this article we refer to
the originally named “inverse depth points” (IDP) in (Civera
et al, 2008; Eade and Drummond, 2006b) asanchored modi-
fied-polar points(AMPP). There is absolutely no difference
between IDP and AMPP, and the name change is justified
by two facts: on one hand, our name better explains the na-
ture of the parametrization as it recalls the previously ex-
isting “modified polar coordinates” term (Aidala and Ham-
mel, 1983, and possibly earlier). On the other hand, all our
parametrizations share the concept of inverse-depth (or in-
verse-distance), rendering the term “IDP” ambiguous and
non-informative.
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An AMPP refers to the following EP:

p = p0 +m∗(ε, α)/ρ , (17)

wherem∗(ε, α) is a unit vector in the direction of(ε, α),

m∗(ε, α) =





cos(ε) cos(α)

cos(ε) sin(α)
sin(ε)



 . (18)

Transformation to camera frame and pin-hole projection
to the homogeneous plane are composed to give

u = KR⊤
(

m∗(ε, α)− (T− p0)ρ
)

. (19)

The back-projection and transformation composition is
performed with

LAMPP =





p0

(ε, α)

ρ



 =





T

µ∗(RK−1u)

ρC



 , (20)

whereµ∗(m) gives elevation and azimuth angles(ε, α) of a
director vectorm = (mx,my,mz),

[

ε
α

]

= µ∗(mx,my,mz) =

[

arctan(mz/
√

m2
x +m2

y)

arctan(my/mx)

]

.

(21)

The parameterρC is now exactly the inverse-distance1/d
becausem∗ is unitary. It must be provided as prior.

3 Parametrizations for infinite straight 3D lines

This section mimics the structure of Section 2, now for
the case of infinite straight lines. We remark the numer-
ous parallelisms that can be established among them, and
also between points and lines. We start with a quite ex-
haustive introduction to thePlücker line (PL), which be-
haves surprisingly similar to HP, and where the concept of
inverse-distance is associated to a 3D vector instead of a
scalar. The discourse evolves through theanchored Pl̈ucker
line (APL), the homogeneous-points line(HPL), the an-
chored homogeneous-points line(AHPL), and theanchored
modified-polar-points line(AMPPL).

3.1 Plücker lines (PL)

This sub-section devoted to the Plücker line is long. We
decided to include all this material because, for the sake
of providing a coherent picture, it is important to highlight
many interesting connections between homogeneous points
(HP) and Plücker lines (PL), notably the existence of bilin-
ear transformation and projection equations reproducing the
structure of those of HP, and the inverse-distance behavior

of the homogeneous part of the Plücker vector. These con-
nections clearly arise with the adoption of a discourse that
retraces the one we used for HP. They allow us to propose
the Plücker line as an interesting starting candidate for unde-
layed initialization of lines in monocular EKF-SLAM. Most
of the material here can be found in (Solà et al, 2009b).
The geometry of the Plücker line is taken from (Bartoli and
Sturm, 2001).

3.1.1 The Pl̈ucker coordinates

A line in P
3 can be defined from two pointsa andb of the

line by thePlücker matrix,

L = b·a⊤ − a·b⊤ ∈ R
4×4 , (22)

with a = (a, a) ∈ P
3 and the same forb. This is a4×4 skew-

symmetric matrix (with 12 off-diagonal entrieslij = −lji)
subject to thePlücker constraint,

det(L) = 0 . (23)

The Plücker matrix is independent of the two selected points
of the line (more exactly, any two points of the same line
give place to a matrixL′ ∼ L, i.e., equivalent up to scale).

This line is coded as a homogeneous 6-vectorLPL ∈ P
5

with the so calledPlücker coordinates. These coordinates
are any linearly-independent selection of the entries±lij ,
and have been defined in the literature in a number of dif-
ferent ways, some of them more fortunate (intuitive, easy to
understand or manipulate) than others. In order to make the
similarities with HP visible, it is handy to choose the rep-
resentation suggested by Bartoli and Sturm (2001), that we
name here thePlücker line (PL, introduced to monocular
EKF-SLAM by Lemaire and Lacroix (2007), and then by
Solà et al (2009b) implementing ULI, Fig. 3(a)),

LPL =

[

n

v

]

=
[

nx ny nz vx vy vz
]⊤
∈ P

5 ⊂ R
6 , (24)

which corresponds to writing the Plücker matrixL as

L =

[

[n]
×

v

−v⊤ 0

]

, n,v ∈ R
3 , (25)

with [n]
×

the skew-symmetric matrix associated with the
cross-product (i.e., [n]

×
m ≡ n×m),

[n]
×
,

[

0 −nz ny

nz 0 −nx

−ny nx 0

]

. (26)

This choice and the definition (22) allow us to write

n = a×b (27)

v = ab− ba , (28)

with which the Plücker constraint becomes the orthogonality
conditionn⊤v = 0.
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L
a

b

n

v

q

O

d =
‖n‖

‖v‖

π

(a) Plücker line (PL). The lineL and the originO define the
support planeπ.

e1

e2v
C

n
C

I

C

l

L
C

π
C

(b) Back-projection of a Plücker line. The priorβ for initiali-
zation is expressed in the base{e1, e2}.

Fig. 3 Geometrical interpretations of the Plücker line, with back-projection details. The 3-vectorv is not observable at initialization time. Its initial
covariance, however, must be defined in the planeπC by means of a 2D Gaussian priorβ. See Fig. 10 for further details.

The Plücker coordinates, when defined as in (27–28),
admit a comprehensible geometrical interpretation (in the
Euclidean sense, Fig. 3(a)):

– The vectorn is a vector normal to the planeπ containing
the lineL (hence the pointsa andb) and the originO.

– The vectorv is a director vector of the line, oriented
from a tob.

– The ratio‖n‖/‖v‖ is the Euclidean orthogonal distance
d from the lineL to the originO.

– The point of the line closest to the origin (at the distance
d) is given byq = (v×n)/‖v‖2 ∈ R

3 or q = (v×
n,v⊤v) ∈ P

3.
– The Plücker constraint trivially says thatn ⊥ v.

Remark 5 (Pl̈ucker and inverse-distance)The third property
above, sayingd = ‖n‖/‖v‖, is crucial for undelayed initial-
ization in SLAM, notably because of the inverse-distance
behavior of the sub-vectorv. This is not possible with the
Euclidean Plücker coordinatesLE = (n,u) in (Lemaire and
Lacroix, 2007) because its director vectoru is normalized,
i.e., ‖u‖ = 1 and henced = ‖n‖. Instead of normalizing
v (or u), it would have been more interesting to normalize
n, yielding an exact inverse-distance‖v‖ = 1/d. Anyway,
normalization is not really necessary: as we will see in this
paper, just proportionality to inverse-distance is enoughfor
achieving ULI. See also Remark 6.

3.1.2 Frame transformations and projection

It is easy to see, via (6) and (22), that the Plücker matrix is
transformed according to

L = H·LC ·H⊤ .

This expression is linear in the components ofLC and there-
fore a linear expression exists for its vector counterpartLPL.

Having definedLPL = (n,v), the expression of the trans-
formation is amazingly simple (Bartoli and Sturm, 2001):

LPL = H·LCPL ,

[

R [T]
×
R

0 R

]

·

[

nC

vC

]

. (29)

The inverse transformation is performed with

LCPL = H−1 ·LPL =

[

R⊤ −R⊤ [T]
×

0 R⊤

]

·

[

n

v

]

. (30)

Similarly, the Plücker matrix is projected into a pin-hole
camera according to

[l]
×
= P·L·P⊤ ,

which is again linear inL (see (26) for the meaning of[l]
×

).
The corresponding linear expression for the projected linein
homogeneous coordinates,l ∈ P

2, is also very simple:

l = P·LPL = K·P0 ·H
−1 ·LPL , (31)

with intrinsic and canonical projection Plücker matrices

K =

[

αv 0 0

0 αu 0
−αvu0 −αuv0 αuαv

]

, P0 =

[

1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

]

.

The whole transformation and projection process (31) can
be expressed in terms ofT, R, n andv,

l = K·R⊤ ·(n− T×v). (32)

Notice that when the line is expressed in camera frame,
LCPL = (nC,vC), only the plane’s normalnC appears in
the projection expression,

l = K·nC , (33)

meaning that 2 DOF, the line’s range and orientation con-
tained invC, are not measurable.

We can now fully observe the revealing parallelisms be-
tween PL and HP by comparing equations (29) with (6), (31)
with (7), (32) with (8) and (33) with (9). Roughly speaking,
the vectorn in PL plays the role ofm in HP, andv plays the
role ofρ. We will exploit this fact to achieve ULI operation.



10

3.1.3 Pin-hole back-projection

A segmentl detected in an imageI uniquely determines the
planeπC containing the 3D line and the optical center (Fig.
3(b)). The plane’s normal in camera frame,nC, constitutes
the measured part; it is obtained by simply inverting (33),

nC = K−1 ·l . (34)

The director vectorvC is meant to lie on the planeπC

and has therefore only 2 DOF, which are not measured. We
need to isolate them to be able to provide the necessary
Gaussian prior for initialization. For this, we considervC

to be generated by a linear combination of the vectors of an
orthogonal baseE = [e1, e2] of the planeπC, i.e.,

vC = β1 ·e1 + β2 ·e2 , β1, β2 ∈ R ,

with {e1, e2,nC}mutually orthogonal. Doingβ = (β1, β2) ∈
R

2 we get the matrix form

vC = E·β , (35)

andvC ∈ πC for any value ofβ. The baseE spans the null
space ofnC, thus the Plücker constraintn ⊥ v is satisfied
by construction.

The mutual orthogonality condition between{e1, e2,nC}
gives us some freedom of choice for the baseE. For conve-
nience, we arbitrarily buildE so that‖β‖ is exactly inverse-
distance ande1 is parallel to the image plane. This yields

e1 =

[

nC
2 −n

C
1 0

]⊤

√

(nC
1 )

2 + (nC
2 )

2
·‖nC‖ and e2 =

nC×e1
‖nC‖

. (36)

With this base choice the vectorβ admits the following
geometrical interpretation:

– β = (β1, 0) is a line parallel tol, thus to the image plane,
passing over the pointD = (1/β1, 0).

– β = (0, β2) is a line perpendicular tol (but gener-
ally not to the image plane), passing over the point
D = (0, 1/β2).

– β = (β1, β2) is a line in the direction of(β2,−β1) pass-
ing over the pointD = β/‖β‖2 which is the point of the
line closest to the optical center.

– The orthogonal Euclidean distance from the line to the
optical centerC is given byd = 1/‖β‖.

Fig. 4 shows some examples of parametersβ and their
corresponding lines in the representation planeπC.

Remark 6 (Role ofβ) The planarβ-space is well-suited for
defining our Gaussian prior. Whenβ → (0, 0), the line tends
to infinity. Its orientation is given by the relative strength of
β1 with respect toβ2, and it easily covers the full circumfer-
ence. The value‖β‖ is the inverse of the Euclidean distance
from the line to the origin. When assigning a priorpdf to β

unit circle βA

βB

↓ βC

βC = (0,−2)βB = (1, 0)βA = (0.4, 0.2)

C

DA = βA/‖βA‖
2

e1

e2

β1

β2

v
C

A

v
C

B

v
C

C

A

B

C

Fig. 4 Different lines in the representation planeπC, defined by the
base{e1, e2} in camera frameC, as a function ofβ. The directione1
is parallel to the image plane. Givenβ, obtain the pointD = β/‖β‖2
and pass a line over it in the direction orthogonal toβ. Three exam-
ples: first, the lineA is defined byβA = (0.4, 0.2); its closest point
to C is DA = (2, 1), at a distance1/‖βA‖ = ‖DA‖ =

√
5; it has

directionvC

A = (0.4 e1, 0.2 e2). Second, the lineB is parallel to the
image plane, at a distance of1/‖βB‖ = ‖DB‖ = 1 from the optical
centerC. And third, the lineC is orthogonal to the detected segment
in the image (the image plane is not shown in this figure, please refer
to Fig. 3(b)). Notice that the lineLC is generally not orthogonal to the
image plane, because the planeπC is generally not orthogonal to it.

π

v

n

q

p0

O

d =
‖n‖

‖v‖

L

Fig. 5 Anchored Plücker line (APL).

at initialization time (see Fig. 10 in Section 4 on initializing
thepdf of β), this will be properly mapped to the 3D space
as a planarpdf on the planeπC. The support of high prob-
ability of this pdf covers from a specified minimal distance
to infinity.

Summarizing, back-projection and transformation is per-
formed by composing (29), (34) and (35), yielding

LPL = H

[

nC

vC

]

= H

[

K−1l

Eβ

]

=

[

RK−1l+ T×REβ
REβ

]

,

(37)

whereβ must be provided as prior.

3.2 Anchored Plücker lines (APL)

As we did with points, we add an anchor to the Plücker
parametrization to improve linearity. Theanchored Pl̈ucker
line (APL, introduced here for the first time, Fig. 5) is then
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p1

p2

π

‖m1‖/ρ1

‖m2‖/ρ2

m1

m2

O

L

Fig. 6 Homogeneous-points line (HPL) defined with two HP that sup-
port it.

the 9-vector:

LAPL =





p0

n

v



 ∈ R
9 . (38)

Transformation and projection are accomplished by trans-
forming the line to the camera frame, unanchoring it, and
projecting it into the pin-hole camera. This can be done in
one single expression with:

l = K·R⊤ ·(n− (T− p0)×v) ∈ P
2 , (39)

in which we notice:

– The linear character with respect ton.
– For accurate estimates of(T−p0), which is true for ob-

servations shortly after initialization, the linear character
also with respect to the non-observedv, which addition-
ally exhibits inverse-distance behavior.

Back-projection and transformation resume to

LAPL =





T

RK−1l

REβ



 , (40)

whereβ must be provided as prior.

3.3 Homogeneous-points lines (HPL)

This and the following parametrizations are based on the fact
that a line in 3D space can be represented by two points sup-
porting it. We will use the point parametrizations explored
in Section 2 to build lines, in the hope that this will preserve
most of the properties of the formers.

A homogeneous-points line(HPL, introduced here for
the first time, Fig. 6) is coded by two HP that support it:

LHPL =









m1

ρ1
m2

ρ2









∈ R
8 . (41)

Transformation and pin-hole projection require the pro-
jection of the two support points,i.e., for i ∈ {1, 2},

ui = KR
⊤
(

mi − Tρi)
)

.

This expression (which is obviously equal to HP’s (8)) may
be practical to design appropriate updating algorithms as it
contains information about the segment’s support points in
the image. However, for the sake of comparing HPL against
other line parametrizations, we join the two projected points
into a homogeneous 2D line,

l = u1×u2 . (42)

This yields after a few arrangements3

l = KR⊤

(

(m1×m2)− T×(ρ1m2 − ρ2m1)
)

. (43)

This last expression is important in the sense that it al-
lows us to observe the parallelisms between parametriza-
tions. Comparing HPL (43) against PL (32), and remember-
ing equations (27–28) defining the Plücker sub-vectors, we
observe that:

– The productm1×m2 is a vector orthogonal to the plane
π, and it can be identified with the PL sub-vectorn.

– The term(ρ1m2−ρ2m1) is a vector joining the two sup-
port points of the line. It is therefore its director vector
and can be identified with the PL sub-vectorv.

– With these two identifications, equations (32) and (43)
coincide (using (27–28) this coincidence can be easily
proved to hold exactly).

Obtaining the expression for back-projection and trans-
formation should be trivial after the one used for HP. See
Table 1 in page 13 for details.

3.4 Anchored homogeneous-points lines (AHPL)

The anchored homogeneous-points line(AHPL, used by
Smith et al (2006) with delayed initialization, and intro-
duced here for the first time implementing ULI, Fig. 7(a))
can be built either by adding an anchor to the HPL or by
joining two AHP with a shared anchor:

LAHPL =













p0

m1

ρ1
m2

ρ2













∈ R
11 . (44)

3 To prove (43) we use the distributive property of the cross-product,
the identity(Ma)×(Mb) = det(M)M−⊤(a×b), the fact that regular
and Plücker intrinsic matrices are related byK ∝ K−⊤, and remind
that l ∈ P2 and therefore it remains equivalent under proportionality
transforms.
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O

p0

p1

p2

m1

m2

‖m1‖/ρ1

‖m2‖/ρ2 L

π

(a) Anchored homogeneous-points line (AHPL)

O

p0

α1
α2

ε1

ε2

1/ρ1

1/ρ2 L

p1

p2

π

(b) Anchored modified-polar-points line (AMPPL)

Fig. 7 Anchored point-supported lines. The lines are defined by twosupport points like the ones in Section 2. The anchor is common to both
points.

Transformation and pin-hole projection require the pro-
jection of the two support pointsu1 andu2, which are joined
into a homogeneous line,l = u1×u2. As before, this can be
rearranged as

l = KR⊤

(

(m1×m2)− (T−p0)×(ρ1m2−ρ2m1)
)

. (45)

See Table 1 in page 13 for the back-projection and trans-
formation equation.

3.5 Anchored modified-polar-points lines (AMPPL)

The anchored modified-polar-points line(AMPPL, intro-
duced here for the first time, Fig. 7(b)) is coded by two
AMPP that support it, which share a common anchor:

LAMPPL =













p0

(ε1, α1)

ρ1
(ε2, α2)

ρ2













∈ R
9 . (46)

Transformation and projection resume to

l = KR⊤

(

(m∗

1×m
∗

2)− (T−p0)×(ρ1m
∗

2−ρ2m
∗

1)
)

, (47)

where we used the shortcutm∗
i , m∗(εi, αi), which corre-

sponds to the trigonometric transform (18).
See Table 1 in page 13 for the back-projection and trans-

formation equation.

3.6 Final comment - points and lines

We summarize in Table 1 all points and lines parametriza-
tions with their main manipulation expressions. On comple-
tion of their descriptions we have seen many parallelisms
that should help building a coherent picture of a number of
parametrizations suited for undelayed initialization in mo-
nocular EKF-SLAM. These relations are represented in Fig.

8. We have seen anchored and unanchored representations.
We have seen the surprising similarities between homoge-
neous points and Plücker lines. We have highlighted the par-
allelisms between point-supported and Plücker-based lines.
We have finally situated the modified-polar parametrizations
as lightened versions of homogeneous entities. The figure
shows further parametrizations that fall out of our interest –
refer to the figure’s caption for further justification.

4 Landmark initialization and updates

Undelayed landmark initialization with partial measurements
mimics the algorithm for full measurements and incorpo-
rates the unmeasured magnitudes as Gaussian priors. We
first detail the way we express physical measurements on the
image plane, and the way to define the unmeasured priors.
We finally proceed with details on the initialization and up-
dating procedures related to the EKF machinery. For the ini-
tialization and updates of the segments endpoints, out of the
Kalman filter, please refer to App. A. (For details on cam-
era motion models, refer toe.g.(Davison, 2003, for constant
velocity), (Solà, 2007, for odometry) or (Piniés et al, 2007,
for inertial aiding).)

4.1 2D measurements in the image plane

The previous discourse assumed homogeneous parametri-
zations of points and lines in the projective image planeP

2.
We detail here how to obtain them from real point and line
measurements defined in the Euclidean pixels image. Unfor-
tunately, going from homogeneous space to Euclidean can
only be made at the price of some linearity loss. We decou-
pled the two stages of projection to the homogeneous plane
and transformation to Euclidean because only projection de-
pends on the landmark parametrization. Transformation to
Euclidean only depends on the generic type of landmark,
that is, if it is a point or a line.
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Table 1 Summary of landmark parametrizations with their main manipulations

Lmk (size) back-projection + transformation → g() transformation + projection → h()

EP (3) p = tRK−1u+ T u = KR⊤(p− T)

HP (4)
(

m

ρ

)

=

(

RK−1u
1
+ TρC

ρC

)

u = KR
⊤(m− Tρ)

AHP (7)





p0

m

ρ



 =





T

RK−1u

ρC



 u = KR⊤
(

m− (T− p0)ρ
)

AMPP (6)





p0

(ε, α)
ρ



 =





T

µ∗(RK−1u)
ρC



 u = KR⊤
(

m∗ − (T− p0)ρ
)

PL (6)
(

n

v

)

=

(

RK−1l+ T×REβ
REβ

)

l = KR
⊤(n− T×v)

APL (9)





p0

n

v



 =





T

RK−1l

REβ



 l = KR
⊤
(

n− (T− p0)×v
)

HPL (8)









m1

ρ1
m2

ρ2









=









RK−1u
1
+ TρC

1

ρC
1

RK−1u
2
+ TρC

2

ρC
2









l = KR
⊤
(

(m1×m2)− T×(m2ρ1 −m1ρ2)
)

AHPL (11)











p0

m1

ρ1
m2

ρ2











=











T

RK−1u
1

ρC
1

RK−1u
2

ρC
2











l = KR
⊤
(

(m1×m2) − (T− p0)×(m2ρ1 −m1ρ2)
)

AMPPL (9)











p0

(ε1, α1)
ρ1

(ε2, α2)
ρ2











=











T

µ∗(RK−1u
1
)

ρC
1

µ∗(RK−1u
2
)

ρC
2











l = KR⊤
(

(m∗

1
×m∗

2
) − (T− p0)×(m∗

2
ρ1 −m∗

1
ρ2)

)

Points: A 2D point is measured as two Cartesian coordi-
nates in pixel space, and modeled as a Gaussian variable.
Please note that the numeric value of the measurement cor-
responds to the mean valueū of the distribution:

u =

[

u
v

]

∼ N{ū,U} . (48)

Its homogeneous counterpart is built with

u =

[

u

1

]

∼ N{ū,U} = N

{[

ū

1

]

,

[

U 0

0 0

]}

. (49)

Lines: A bounded 2D segment is measured as a 4-vector
stacking its two endpoints:

s =

[

u1

u2

]

∼ N{s̄,S} = N

{[

ū1

ū2

]

,

[

U 0

0 U

]}

. (50)

The segments homogeneous endpointsui, used for initial-
ization of point-supported lines, are built like the regular
points (Eq. (49)). The homogeneous line, used for initializa-
tion of Plücker lines, is built with (42), yielding a Gaussian
pdf N{̄l,L} with

l̄ = ū1×ū2 (51)

L = [ū1]× U [ū1]
⊤

×
+ [ū2]× U [ū2]

⊤

×
. (52)

4.2 Defining the unmeasured Gaussian priors

Two basic rules apply to the definition of the prior, be itρC

for points orβC for Plücker lines: the origin must be well
inside the2σ support of thepdf, and the minimum consid-
ered distancedmin must (approximately) match the upper
2σ bound. For points and point-supported lines, this resumes
to (see Fig. 9)

ρ̄− nσρ = 0, 0 ≤ n < 2 (53)

ρ̄+ 2σρ = 1/dmin . (54)

A good practice is to choosen = 1, although this choice is
not critical as it will be revealed by the benchmarking. With
n = 1 we obtain

ρ̄ = 1/3dmin, σρ = 1/3dmin . (55)

For point-supported lines HPL, AHPL and AMPPL, we
just need to stack two stochastically independentρC priors,
i.e., if we note such prior withtC ∼ N{t̄;T}, we have

t̄ =

[

ρ̄

ρ̄

]

, T =

[

σ2
ρ 0

0 σ2
ρ

]

. (56)

Defining the 2D Gaussian priorβ ∼ N{β̄;B} for
Plücker lines PL and APL is a bit trickier, as it is difficult to
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Fig. 8 Links between all proposed parametrizations and more. Round boxes are points; square boxes are lines. Single-stroke square boxes are
directly-coded lines. Double-stroke square boxes are point-supported lines. Gray boxes are anchored parametrizations. Arrows indicate the links
that we established within the discourse. The dashed area encloses all parametrizations benchmarked in this paper. Some other possible pa-
rametrizations, in thin line, have not been studied here (there are some repeated acronyms): polar point (PP,i.e., [ε,α, d]), modified-polar point
(MPP,[ε,α, ρ]); the point-supported lines: Euclidean-points line (EPL,[x1, y1, z1, x2, y2, z2]), polar-points line (PPL,[ε1, α1, d1, ε2, α2, d2]), and
modified-polar-points line (MPPL); and the directly-codedlines: polar line (PL,[φ, ε, α, d]), modified-polar line (MPL,[φ, ε, α, ρ]), and anchored
modified-polar line (AMPL). There is no such thing as a directly-coded Euclidean line (EL). Elements in the first column (with dashed boxes)
do not benefit from the inverse-distance property and are notsuited for undelayed initialization. Minimal parametrizations are marked with an
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ρ ρ

ρ̄+ 2σρ

p(ρ)

p(d)

d

d
dmin 10dmin 20dmin

n = 0

n = 1

n = 2

ρ =
K

d

Fig. 9 Inverse-distancepdf for HP, AHP, AMPP, HPL, AHPL and
AMPPL. A Gaussianp(ρ) = N (ρ − ρ̄, σ2ρ) is defined in inverse-dis-
tance (vertical axes). We have ample choice: in one extreme (solid,
n = 0) we may define it so that̄ρ = 0; the other extreme (dotted,
n = 2) takesρ̄−2σρ = 0. In all cases, we have(ρ̄+2σρ) = K/dmin.
They result inpdfsin distance (bottom) that cover from a minimal dis-
tancedmin to infinity.K is just a proportionality constant,e.g.K = 1
for AMPP, andK = ‖K−1u‖ for AHP and HP. We can also normalize
K−1u at initialization time and takeK = 1, in which caseρ is exactly
equal to inverse-distance.

express the conditions as straightforward equations like (53)
and (54). We prefer to refer the reader directly to the expla-
nations of Fig. 10. For all the implementations presented in
this paper we use the solution in Fig. 10(b),

β̄ =

[

1/3dmin

0

]

, B =

[

(1/3dmin)
2 0

0 (1/2dmin)
2

]

.

(57)

1/dmin

β1

β2

β̄

2σβ

3σβ

(a) Isotropic Gaussianpdf with
line’s mean at infinity.

β1

β2

β̄

1/dmin

(b) Non-isotropicpdf penaliz-
ing lines at negative depths.

Fig. 10 Defining a priorβ ∼ N{β̄;B} for PL and APL. (a) The
isotropic Gaussian with̄β = (0, 0) andB = σ2βI contains all possible
lines at a minimum distance ofdmin: it has central symmetry, it in-
cludes the origin which represents the line at infinity, and1/dmin is at
2σ. For reference, a Gaussian shape is superimposed on the horizontal
axis to evaluate the probability values at 2σ and 3σ. (b) An interesting
alternative that penalizes lines at the back of the camera isto approx-
imate just the right-hand half of thepdf in (a) (here shadowed) by a
new Gaussian. A good fit is obtained with̄β = (1/3dmin , 0) and an
anisotropic covarianceB = diag(σ2β1

, σ2β2
) with σβ1

= 1/3dmin and
σβ2

= 1/2dmin .

4.3 Landmark initialization

The ULI algorithm valid for all parametrizations is detailed
below.

1. Identify the mapped magnitudesx ∼ N{x̄,P}, where

x =

[

C

M

]

, x̄ =

[

C̄

M̄

]

, P =

[

PCC PCM

PMC PMM

]

,
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with C = (T,Q) the camera frame andM = (L1, . . . ,LN )

the set of mapped landmarks (points, lines or a mixture
of them).

2. Identify the measurementz ∼ N{z̄,R} (Section 4.1;z
is eitheru or s).

3. Define a Gaussian priorπ ∼ N{π̄;Π} for the unmea-
sured DOFs (Section 4.2;π is eitherρC, tC or βC).

4. Back-project the Gaussian measurement; get landmark
mean and Jacobians

L̄ = g(C̄, z̄, π̄)

GC =
dg

dC

∣

∣

∣

∣

C̄,z̄,π̄

, Gz =
dg

dz

∣

∣

∣

∣

C̄,z̄,π̄

, Gπ =
dg

dπ

∣

∣

∣

∣

C̄,z̄,π̄

with g() the composition of the measurement-to-homo-
geneous transforms (Section 4.1) with the back-projec-
tion and transformation function (functionsg() in Table
1).

5. Compute landmark co- and cross-variances

PLL = GCPCCG
⊤

C
+GzRG⊤

z
+GπΠG⊤

π

PLx = GCPCx = GC[PCC PCM] .

6. Augment the SLAM map

x̄←

[

x̄

L̄

]

, P←

[

P P⊤

Lx

PLx PLL

]

.

4.4 Landmark updates

4.4.1 Point updates

The observation functionh() is the composition of the ones
in Table 1 with the homogeneous-to-Euclidean transform
h2e(),

z = h2e(u) =

[

u1/u3
u2/u3

]

∈ R
2 . (58)

The complete observation function is thereforeh(x) =
h2e(h(x)). Point updates follow the standard EKF-SLAM
formulation,

Innovation mean: y = z− h(x̄) (59)

Innovation covariance: Y = R+H·P·H⊤ (60)

Kalman gain: K = P·H⊤ ·Y−1 (61)

State update: x̄← x̄+K·y (62)

Covariance update: P← P−K·H·P , (63)

with R = U the measurement noise covariance (see (48)),
and the JacobianH = ∂h

∂x

∣

∣

x̄

.

matched 
segment

predicted line

z1

z2

u1

u2

l

Fig. 11 Plücker line observation update. Direct measurement of the
two signed orthogonal distances from the detected endpoints to the ex-
pected (or predicted) line.

4.4.2 Line updates

It is convenient to represent the matched segment by its two
endpoints,s = (u1,u2) ∈ R

4. Due to the aperture problem,
only the measurement components that are orthogonal to the
expected line projection can be used for correction. There-
fore, a proper measurement space that accounts for this or-
thogonality and these distances needs to be defined.

We define the measurement space as the set of 2-vectors
containing the signed orthogonal distances from the detected
endpointsui to a linel. This leads to the measurement func-
tion

z =

[

z1
z2

]

=

[

l⊤ ·u1/
√

l 21 + l 22
l⊤ ·u2/

√

l 21 + l 22

]

∈ R
2 , (64)

which is in pixels units. If we name this functionh1(l, s),
the full observation function is its composition with the pro-
jection functionsh() in Table 1,

z = h(x, s) = h1(h(x), s) . (65)

The EKF innovationy is defined as the difference be-
tween the actual measurement and the expectation,

y = z− h(x̄, s) .

For the measurementz, this corresponds to the distances
from the detected endpoints to the detected linel = u1×u2.
Because this linel is precisely defined by the two endpoints,
the measured vector is zero by definition, and we just need
to consider a covarianceR = U ∈ R

2 (see (48)) repre-
senting the pixel noise in just two of the four dimensions.4

The expectation corresponds to the distances (64) to the ex-
pected linēl = h(C̄, x̄) (Fig. 11). This yields an innovation
y = 0 − h(x̄, s) with covarianceY = R +H·P·H⊤. The
rest of the EKF update is as before.

4 The expressionR = U is only valid if the pixel noise is defined
isotropic viaU = σ2I2, which is most generally the case. Otherwise
we need to computeR = HsSH

⊤
s

with Hs the Jacobian of (64) with
respect to the measured segments. In fact, Hs is such that ifS =
diag(U,U) = σ2I4 thenR = U = σ2I2.
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4.4.3 A first comment about the Plücker constraint

When dealing with Plücker lines PL or APL we do not apply
any kind of correction to enforce the Plücker constraint. We
ensured its satisfaction during landmark initialization,with
the specification of the initial covariance in theβ-plane, Sec-
tion 3.1.3, and its validity at any later time is only approxi-
mately guaranteed through cross-correlations. Although this
is of course not the optimal way to proceed, we decided to
leave the method as parallel as possible with the others pre-
sented here, so that we can impute the differences in perfor-
mance exclusively to landmark parametrization – thus not to
algorithmic aspects. Refer to Section 8.2 for further discus-
sion.

4.5 Landmark re-parametrization

Landmark over-parametrization, which we have defended
for EKF performance so far, is expensive and should only be
used when justified. Landmarks should be reparametrized to
their minimal forms after convergence, that is, when the ob-
servation functions of these minimal forms (thedestination
forms) are judged linear enough.

For points, the natural choice is to reparametrize to EP.
The reparametrization is triggered by the linearity test de-
scribed in Civera et al (2008), which is very cheap to com-
pute and can be easily adapted to HP, AHP and AMPP.

For lines, and because of the need of endpoints, it may
be convenient to choose a non-minimal two-points represen-
tationL = (p1,p2) (EPL, see Fig. 8), with 6 parameters.
In this case we can use the test for points in Civera et al
(2008), which must hold for both support points. We can
also use any of the minimal representations, which are of
size 4 (see also Fig. 8). Tests for these other line represen-
tations might be defined from the linearity indices described
in the next section, although these indices are not conceived
for speed. A compromise that would probably lead to satis-
factory operation is to use the test for EPL, which is simple
and does indicate that the line has already converged, and
then reparametrize to any other form of our convenience.
We have not explored these last possibilities.

5 Linearity and performance evaluation tools

We present here the analytical and statistical tools used in
this article to evaluate the performances of all parametriza-
tions.

5.1 Analytical measure of linearity

The EKF requires high degrees of linearity in the measure-
ment and dynamic model equations. Defining an analytic

measure of linearity allowing us to compare the degrees of
linearity of the observation functions for different parame-
trizations is therefore of clear importance. In (Civera et al,
2008), an analytic linearity index is proposed, based on the
variation in the first derivative of the function inside the
95% probability interval of the most uncertain state variable:
the inverse-distance parameter. This measure is restricted,
thanks to the particular symmetries of the problem, to just
1 DOF, and it is difficult to generalize to our amalgam of
parametrizations. Very related to this work, the trace of the
Hessian of the measurement model is proposed in (Eade and
Drummond, 2007) as a measure of the degree of linearity in
several nodes of a multi-map SLAM. This second measure
has the drawback of not incorporating the dimensions of the
uncertainty region.

In EKF, linearity must always be evaluated with respect
to the extension of the probability concentration region of
the input variable, which is specified by the covariances ma-
trix. We introduce an analytical linearity index for multiple-
input/multiple-output (MIMO) functions which accounts for
this probability region. As a desirable additional quality, the
proposed index is defined in the measurement space and
therefore allows us to compare parametrizations having dif-
ferent state sizes, and even to compare the degree of linearity
of points against lines. As in (Eade and Drummond, 2007), it
involves the computation of the Hessian which concentrates
the local degree of non-linearity of a function.

We are interested in the complete observation functions
z = h(x), i.e., the composition of the transformation and
pin-hole projection functions,h() in Table 1, with the ap-
propriate measurement functions, (58) for points and (64)
for lines. For concision, we define the statex = (C,L), i.e.,
only the pair camera-landmark under consideration, whose
estimate in the map is a GaussianN{x̄,P}. We denote the
measurement and state dimensions withm = dim(z) and
n = dim(x). In our case we have a fixedm = 2, and a
variable10 ≤ n ≤ 18 depending on the selected parametri-
zation.

Our linearity index is based on the error in the filter in-
novationy = z − h(x̄) due to linearization. For any mea-
surementz, this error corresponds to the propagation error
throughh() of the state’s mean (Fig. 12), given by

ǫ , E[h(x)] − h(E[x]) ∈ R
m , (66)

whereE[•] is the expectation operator,i.e., x̄ ≡ E[x]. This
error is a magnitude expressed in the measurement space. To
obtain a computable approximation ofǫ we use the Taylor-
Young expansion for multi-variate functions applied to each
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E[h(x)]
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h(E[x])
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p(x)

p(h(x))p(h(x))

ǫ
ǫ

Fig. 12 Propagation error of the Gaussian mean due to non-linear-
ity. For a given non-linear functionh(), the propagation errorǫ =
E[h(x)] − h(E[x]) is large for Gaussians with large variance (thick
line, left) and unnoticeable for narrow Gaussians (thin line, right).

componenti of h(x),

hi(x) = hi(x̄) +
n
∑

j=1

Jij∆xj

+

n
∑

j=1

n
∑

k=1

1

2
Hijk∆xj∆xk + o(‖∆x‖2) , (67)

where∆x , x − x̄, ∆xj are the components of∆x, hi
are the components ofh(), Jij , ∂hi

∂xj
(x̄) are the compo-

nents of them × n Jacobian matrix of first derivatives, and
Hijk , ∂2hi

∂xjxk
(x̄) are the components of them×n×n Hes-

sian tensor of second derivatives. Inserting (67) into (66)and
ignoringo(‖∆x‖2) yields the first-order approximation

ǫi ≈ E



hi(x̄) +

n
∑

j=1

Jij∆xj +

n
∑

j=1

n
∑

k=1

1

2
Hijk∆xj∆xk





− hi(x̄)

=

n
∑

j=1

JijE[∆xj ] +

n
∑

j=1

n
∑

k=1

1

2
HijkE[∆xj∆xk] . (68)

HavingE[∆x] = 0 and knowing that the covariance ofx is
an×nmatrix given byP , E[∆x∆x⊤], with components
Pjk , E[∆xj∆xk], we obtain

ǫ =







ǫ1
...
ǫm






, ǫi ≈

1

2

n
∑

j=1

n
∑

k=1

HijkPjk . (69)

Finally, taking the norm yields the scalar index

L = ‖ǫ‖2 ∈ R
+ . (70)

Them-dimensional vectorǫ belongs to the measurement
space and is therefore expressed, in our case, in pixel units.
It can be interpreted as the bias introduced in the EKF in-
novation by the non-linearity of the measurement equation.
Its norm, the proposed indexL, also in pixels, is zero for

functions showing a linear behavior inside the probability
region, and positively increasing as the validity of this hy-
pothesis vanishes.

As an example, we illustrate in Fig. 13 the fitness of this
index for a 2-input, 1-output function. Observe that the func-
tion is always the same but the evaluation region changes
position (the evaluation point̄x) and dimensions (the co-
varianceP), greatly affecting the linearity index.

5.2 Monte Carlo RMS errors and consistency evaluation

For practical reasons and because the full SLAM state vector
is of varying size, we restrict the error and consistency anal-
yses to the state variables representing the robot (or camera)
poseC, knowing that consistent localization indicates con-
sistent mapping (Huang and Dissanayake, 2007). We sys-
tematically transform mean and covariances matrix of the
pose to a minimal representation (the orientation is trans-
formed to the Euler angles) to avoid singularities in the co-
variance.

5.2.1 RMSE evaluation

We perform a numberN of Monte Carlo runs. At each time
instantk, we evaluate the root mean square error (RMSE) of
each componenti of the camera pose,

ǫi,k =

√

√

√

√

1

N

N
∑

j=1

(Ci,k − Ĉ
j
i,k)

2 , (71)

whereCi,k is thei-th component (x, y, z, roll φ, pitchθ and
yaw ψ) of the true camera pose at timek, and Ĉj

i,k is its
EKF estimate’s mean corresponding to thej-th among the
N Monte Carlo runs.

For visualization purposes, these errors are compared
against the estimated error given by the filter. We take its
average over all the Monte Carlo runs,

σ̄i,k =
1

N

N
∑

j=1

√

P j
ii,k , (72)

whereP j
ii,k is thei-th diagonal component of the estimated

covariances matrix of the camera pose, for runj and at time
k. The RMSE plots in the Results section will show the true
errorǫi,k against the 2-sigma bound given by2σ̄i,k.

5.2.2 Average NEES evaluation

We use the average normalized estimation error squared
(NEES) for evaluating consistency. We follow strictly (Bai-
ley et al, 2006), which is in turn following (Bar-Shalom et al,
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Fig. 13 Linearity indexL of the MISO functionz = h(x, y) = x·sin(y) for different probability regions. We illustrate the projection (thick black)
of the 2-sigma elliptical bound of the probability region (thin black) onto the surfaceS = {(x, y, z) / z = h(x, y)} (mesh). The more elliptic the
projected shape, the more linear is the function and smallerthe indexL. (a) A tiny probability region gives good linearity and a very small index.
(b) A large probability region usually obliges the ellipse to bend over the surface, meaning high non-linearity and resulting in a large index. (c) If
such a large ellipse falls on a planar region of the surface, the index drops to show good linearity. (d) An extreme case of very high non-linearity.

2001, pp. 234–235). After a numberN of Monte Carlo runs,
the averaged NEES value is defined by

ηk ,
1

N

N
∑

j=1

(Ck − Ĉ
j
k)

⊤P
j
k

−1
(Ck − Ĉ

j
k) , (73)

whereCk is the true camera pose at timek and{Ĉj
k,P

j
k}

is its Gaussian estimate corresponding to thej-th amongN
Monte Carlo runs. For 6 DOF andN = 25 runs, the up-
per and lower bounds of the double-sided 95% probability
concentration region are given by:

η = χ2
(25×6)(1 − 0.975)/25 = 7.432

η = χ2
(25×6)(1 − 0.025)/25 = 4.719 .

If ηk < η for some significant amount of time (more than
2.5% of the time), the filter is conservative. Ifηk > η (also
by more that 2.5%), the filter is optimistic and therefore in-
consistent.

6 Simulation results

6.1 Software and SLAM algorithm

We have made available the software used for simulations
(Solà et al, 2009a). It consists in a 6 DOF EKF-SLAM sys-
tem written in MATLAB R©, with simulation and 3D graph-
ics capabilities.

The algorithm is organized as an EKF-SLAM with ac-
tive features search (see Davison et al, 2007, for the active
search), which allows us to optimize information gain with a
limited number of updates per frame. At each frame, we per-
form updates to the 10 most informative landmarks. We also
attempt to initialize one landmark per frame. Unstable and
inconsistent landmarks are deleted from the map to avoid
map overpopulation and corruption. Data association errors
are not simulated and therefore data association is perfect.
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Fig. 14 Simulated 3D environment for benchmarking point parametri-
zations.

6.2 Evaluation of point parametrizations

We benchmark HP, AHP and AMPP using the same simu-
lated scenario, the same software and the same seeds for the
random generator. We start with a description of the simula-
tion conditions, then proceed with the results of the (analyti-
cal) linearity and (statistical) error and consistency analyses.

6.2.1 Simulated scenario

We simulate a robot performing a circular trajectory in an
area of12m×12m populated with 72 landmarks forming
a cloister (Fig. 14). The robot receives noisy control inputs
which are used for the prediction stage of the EKF, fixing
the scale factor. One noisy image per control step is gathered
with a single camera heading forward. Three sets of param-
eters have been used for the tests (see Table 2). In the first
set, the robot makes two turns to the cloister (800 frames
are processed). The second set uses smaller odometry incre-
ments and perturbations, and the trajectory is limited to one
quarter of a turn (200 frames). Set 3 is like Set 2 but with a
different inverse-distance prior.
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Table 2 Simulation parameters

Concept Set 1 Set 2 Set 3

Img. size 640×480 pix

Focal 320 pix,HFOV = 90◦

Pix. noise 1 pix

Pose step (8cm, 0.9◦) (4cm, 0.45◦)

Lin. noise,1σ 0.5cm 0.25cm

Ang. noise,1σ 0.05◦ 0.025◦

ρC prior (ρ̄, σρ) = (0.01, 0.5) m−1 (1.0, 1.0) m−1

29

70

34

HP

29

70

34

AHP, AMPP

Fig. 15 3D view of some landmark 3σ estimates at the end of the
first loop. Inconsistency comes mostly from covariance overestimation
rather than mean errors, as can be seen by the too small ellipses in the
HP case (left). See the accompanying video.

6.2.2 Visual evaluation

We provide the accompanying videopoints.mov show-
ing the three methods running in parallel under the condi-
tions of Set 1.

The differences in behavior are not easily visible in the
3D movies, and we need to zoom in to appreciate incorrect
operation (Fig. 15). We see that HP estimates have too small
covariances, a clear sign of overconfidence, and therefore
inconsistency. This over-estimation, which is in accordance
with (Huang et al, 2008), is attributed exclusively to parame-
trization differences because the information provided tothe
filter for HP is exactly the same for all methods. Of the 25
HP runs, one diverged, and 35 landmarks had to be deleted
due to inconsistent observations (22 of which during the di-
vergent run).

We do not observe any significant difference between
AHP and AMPP. No landmarks were declared inconsistent
in any of the 25 runs of AHP and AMPP.

6.2.3 Linearity measures

The linearity index in section 5.1 has been computed for
each measured landmark and for the three parametrizations
of interest (HP, AHP and AMPP), using the parameters of
Set 1.

Fig. 16 shows the linearity indices of one particular land-
mark in order to illustrate the typical behavior. The chosen
landmark corresponds to the first landmark initialized after
the camera has completed one quarter of a turn (100 frames).
This is to ensure that the camera uncertainty at initialization

5 10 15 20 25 30 35

0

0.01

0.02

0.03

0.04

0.05

L
in
e
a
ri
ty
 i
n
d
e
x
 L
 (
p
ix
)

(t
h
e
 l
o
w
e
r 
th
e
 b
e
tt
e
r)

HP

AHP

AMPP

Fig. 16 Linearity index for the three point parametrizations during the
first 35 frames of a landmark’s life.

time is not null, and therefore that the effect of anchoring can
be observed. The index starts very high (bad linearity) due
to the huge uncertainty region. It decays rapidly and reaches
a minimum at about frame 25. After this point it stabilizes
to very small values (high linearity).

The index of HP is clearly higher than those of AHP
and AMPP, indicating a poorer linearity. The reason, as pre-
viously mentioned, is that setting an anchor propagates the
camera uncertainty only from the anchor to the current loca-
tion, while HP propagates a wider uncertainty with respect
to a world reference frame.

It is worth remarking in this figure the low values of the
proposed index, two or three orders of magnitude less than
typical image noise or EKF innovations (which we recall
have been set to 1 pixel in these simulations). Although it is
true that linearization errors introduce bias in an EKF esti-
mation, especially because they are of systematic origin, our
experiments show that the value for this bias is small enough
to guarantee a good behavior of the EKF filtering for lo-
cal monocular SLAM. The same conclusion can be applied
to line-based EKF-SLAM, as the quantitative results for the
lines index are similar (see the linearity measures for lines
in Fig. 21).

Another aspect that is worth remarking is that the lin-
earity index refers to the source of the estimation error at a
given moment. This error accumulates over time following
two mechanisms. The first one is just linear integration. The
second effect is the effect that heading errors at a given time
have on the position at a later time, due to translation with
inaccurate heading. These accumulated errors are visible as
errors in the camera pose, as illustrated in the next section.

6.2.4 Error and consistency evaluation

Error and consistency evaluations are based on the root
mean square error (RMSE) of the camera pose, and the av-
erage normalized estimation error squared (NEES), both de-
scribed in Section 5. We useN = 25 runs for each ex-
periment, each run with a different seed for the random
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Fig. 17 RMS errorsǫ of the three point parametrizations HP (red), AHP (green) and AMPP (blue), averaged over 25 runs. The 2σ estimated
bounds are plotted in thicker line. AHP and AMPP have the largest estimated bound and the lowest error, leading to the bestresults. See Fig. 18
for the corresponding consistency plots.

generator. The random generator affects several aspects of
the algorithm, namely the process noises and the measure-
ment noises. In parallel, one simulated mobile camera with-
out process noise, gathering noiseless images of the envi-
ronment, is used to generate the “ideal” or “perfect” run
against which the other “noisy” runs are compared for er-
rors. This ideal run is often referred to in the SLAM litera-
ture asground truth.

The RMSE and average NEES plots in Figs. 17 and 18
(please notice the logarithmic vertical scales in the NEES
plots) confirm the results seen for the linearity indices. HP
behaves poorly, and there is no significant difference be-
tween AHP and AMPP, except for a tiny but appreciable
difference in favor of AMPP. Both AHP and AMPP behave
consistently, certainly with a slight tendency to inconsis-
tency, until shortly after the first loop closure. During the
second turn the filter is inconsistent but it does not seem to
degrade too quickly.

It is now clearly visible that HP inconsistency comes
mostly from covariance overestimation: in the RMSE plots
there is a significant decay of the estimated sigma-values,
while the error magnitude is indeed larger but to a smaller
extent. As all methods process the same amount of informa-
tion, it must be concluded that overestimation comes from
the effect that linearization errors have over the Kalman
gains.

We tuned the algorithms with the second set of parame-
ters in order to improve the conditions for linearity: odom-
etry steps and noise are cut in half, reducing the measure-
ments innovation, and the filter is bootstrapped with 10 land-
marks being initialized at the first frame. Here, we focus on
the first quarter of the first loop (1/8 of the first run’s length)
to see the moment when the filters loose consistency. The
results in Fig. 19 show no significant improvement with re-
spect to those of Set 1 (these 200 frames correspond to the
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Fig. 18 Consistency of HP (top plot), AHP (bottom) and AMPP (bot-
tom). Average normalized estimation error squared (NEES) of the 6
DOF vehicle pose[x, y, z, φ, θ, ψ]⊤ over 25 runs for 800 frames (2
turns) and parameters of Set 1. The dotted horizontal band between ab-
scissasη = 4.719 andη = 7.432 mark the95% consistency region: if
the average NEES is greater than the upper limitη for more than2, 5%
of the time, the filter estimate is considered inconsistent.The vertical
line marks the loop closure at frame 308. The framed area corresponds
to the area covered by Fig. 19.

first 100 frames of Set 1, which have been boxed in Fig. 18):
HP is not good, largely inconsistent, and AHP and AMPP
are again the ones that behave consistently. Interestingly,
AHP and AMPP have the same average NEES values as the
ones observed in the previous test, showing an important ro-
bustness against varying operating conditions.

A third test consisted in selecting a different prior for the
unmeasurable inverse-distance. The dashed plots in Fig. 19
show that AMPP and AHP are almost insensitive to large
variations of these parameters, while the contrary must be
said for HP. It seems, even if for AHP and AMPP the differ-
ence is small, that the filter behaves better with landmarks
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Fig. 19 Consistency of HP, AHP and AMPP. Average NEES over 25
runs for 200 frames (1/4 turn) and 10 initializations in the first frame.
Solid: parameters of Set 2 with prior(ρ̄, σρ) = (0.01, 0.5). Dashed:
parameters of Set 3 with an alternative prior(ρ̄, σρ) = (1.0, 1.0).

2m

robot

(a) Circular trajectory. (b) Arc trajectory.

Fig. 20 Simulated 3D environments for benchmarking the 5 line
parametrizations. The robot’s trajectory and the house being recon-
structed are shown. (a) Circular trajectory, camera looking sideways
to the house. (b) Arc trajectory, camera looking forward to the house.

initialized at (or close to) infinity (̄ρC = 0.01m−1) than at
some close distance (ρ̄C = 1m−1).

6.3 Evaluation of line parametrizations

We benchmark PL, APL, HPL, AHPL and AMPPL for lin-
earity, RMS errors and average NEES consistency, in two
different scenarios.

The first scenario (Fig. 20(a)) consists of a robot mak-
ing a turn around a wireframe model of a house. Occlusions
are not simulated and all the house’s edges are visible. 400
frames are processed, and again only the 10 most informa-
tive segments are processed at each frame. The camera is
looking sideways to the house and, the house being always
visible, there is no loop closure. The simulation parameters
are equivalent to the ones we used for points in Set 1.

We provide the accompanying videolines.mov show-
ing the five systems running in parallel. At first sight all
parametrizations seem to work correctly. As we did with
points, we use the analytical and numerical tools to reveal
the differences in performance between parametrizations.

The linearity indices are shown in Fig. 21. All indices
follow essentially the same pattern as we saw for points.
Moreover, their numerical values are similar for points and
lines (compare Figs. 16 and 21), suggesting that the index
can be used for comparing points against lines. Again, unan-
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Fig. 21 Linearity index for the five line parametrizations during the
first 35 frames of a landmark’s life, showing the superior linearity of
anchored point-supported lines. Compare with Fig. 16.
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Fig. 22 Consistency of PL, APL, HPL, AHPL and AMPPL. Aver-
age NEES over 25 runs for 400 frames (one turn around the house).
Plücker-based lines (PL and APL) do not behave consistently, even
when anchored. Lines based on homogeneous points (HPL) neither,
as expected from the HP behavior. Anchored point-supportedlines
(AHPL and AMPPL) behave similarly and close to consistency.

chored parametrizations are the ones showing the poorest
linearity. APL is better than all unanchored ones but not
good enough, probably because the Plücker constraint is
only applied at initialization time and not enforced on subse-
quent updates (see Section 8 for a more detailed discussion).

The average NEES results are shown in Fig. 22 – please
notice the logarithmic vertical scales. We observe that the
only parametrizations that behave consistently are the an-
chored, point-supported lines AHPL and AMPPL.

The RMSE results are shown in Figs. 23 and 24. The
Plücker-based lines behave poorly, especially if not anchored.
Among the point-supported lines, anchored parametriza-
tions exhibit both smaller errors and larger error estimates,
indicating better consistency. We can say that they inherit
the properties of the point parametrizations they are based
on.

The second scenario (Fig. 20(b)) corresponds to a for-
ward motion, a situation that is more challenging for mo-
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Fig. 23 Averaged RMS errorsǫ of the Plücker-based line parametrizations PL and APL against the2σ estimated bounds. Anchoring the Plücker
line helps improving the estimates, but none of these Plücker parametrizations seem to work correctly. See discussionin Section 8 about the
Plücker constraint.
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Fig. 24 Averaged RMS errorsǫ of the three point-based line parametrizations HPL, AHPL and AMPPL against the2σ estimated bounds. Anchor-
ing has produced both a larger2σ bound and a smaller errorǫ. AHPL and AMPPL behave almost exactly.

nocular SLAM as the parallax increase is slow and therefore
the scene observability is weak. The camera looks forward
and the robot performs an arc of a circle towards the house.
The sequence is stopped after 100 frames when the robot is
actually inside the house and no more segments are in the
field of view. In this case we just show the average NEES
results for the anchored parametrizations (Fig. 25), namely
APL, AHPL and AMPPL – the rest are clearly inconsistent.
The results are equivalent to those of the first scenario (com-
pare to the three corresponding plots in Fig. 22), showing an
important robustness in face of large variations of the oper-
ating conditions.
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Fig. 25 Average NEES over 25 runs for 100 frames (frontal trajectory)
for APL, AHPL and AMPPL. Again, only anchored point-supported
lines behave close to consistency.

7 Experimental results

7.1 Robocentric EKF-SLAM with points

An interesting alternative to the algorithm here benchmarked
is robocentric EKF-SLAM (Castellanos et al, 2007; Mar-
zorati et al, 2008; Civera, 2009). Robocentric EKF-SLAM
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(a) RTK-GPS ground truth over an aerial Google Maps view

(b) Image from the sequence

(c) Image from the sequence

Fig. 26 Bovisa urban image sequence data. (a) Ground truth of the 1.6km trajectory. (b, c) Two representative images from the sequence.

performs the composition of the current frame and the local
motion after the landmarks update. This greatly helps reduc-
ing linearization errors, improving accuracy and consistency
(Castellanos et al, 2007; Huang et al, 2008). The transforma-
tion affects the full landmarks map, with the consequence of
making the robot poseT become the origin at every step,
with null covariance, and hence therobocentricterm. Im-
mediately after, at initialization time, we have that the an-
chor to generate isp0 = T ≡ 0, with null covariance. We
could then think of dropping it from the parametrization, ob-
taining ine.g.the AHP case, pure homogeneous points HP.
This combination of HP and robocentric SLAM constitutes
exactly the algorithm proposed by Marzorati et al (2008).

We have run robocentric SLAM using HP, AHP and
AMPP on a sequence of more than 68.000 images taken
during an outdoors run of over 1600 m, covering an area
of some250m×250m (the Bovisa dataset from Rawseeds
(Bonarini et al, 2006; Ceriani et al, 2009)). Figure 26 shows
an aerial view of the covered trajectory, along with two rep-
resentative images of the sequence. The algorithm is set to
visual odometry mode, meaning that landmarks exiting the
field of view are deleted. This way, one single EKF can be
used for the whole run of 1.600 m. Furthermore, the algo-
rithm incorporates a 1-point RANSAC outlier rejection step
(Civera et al, 2009) that discards the negative effect intro-
duced by outlier correspondences. With all these features
we can attribute the outcome differences uniquely to land-

mark parametrization. Three different runs have been made
for each parameterization, each one of them initializing and
measuring different features of the sequence, randomly cho-
sen in order to increase independence between runs.

The results in Fig. 27 show that HP performs much
worse than AHP and AMPP, agreeing with our previous sim-
ulation results. Using HP, the trajectory is off by 167 m in
mean (80% of the area dimensions) with respect to RTK-
GPS (with centimetric accuracy). AMPP derived 20 m, and
AHP only 13 m averaging the three runs. We can draw the
same conclusions as in the previous simulations: anchoring
is the major factor of improvement, and the difference be-
tween modified-polar and homogeneous representations can
be considered negligible.

We observe with this evaluation that the analysis per-
formed in this paper is valid also for this improved EKF-
based estimation algorithm. Known algorithms improving
the degree of linearity with respect to classic EKF-SLAM
aresubmapping, where a map is divided into a set of local
maps, androbocentric, where the map is always referred to
the sensor frame. In both cases the covariance of the local
motion(T − p0) is small and the effect of anchoring must
be smaller than in the standard formulation. We see with the
current experiment that even in these cases anchoring is still
necessary.
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(a) Average error HP: 167m (b) Average error AHP: 13m (c) Average error AMPP: 20m

Fig. 27 Robocentric EKF visual odometry (red) against RTK-GPS (green), over an outdoors run of around 1.600 m and more than 68.000 images.
The figure shows 3 runs for each parameterization. (a) HP exhibits poor performances, and the estimated trajectory is offby 167 m in average. (b)
AHP completes the run successfully with an averaged drift of13m, an order of magnitude less. (c) AMPP, with an averaged drift of 20 m, is only
slightly outperformed by AHP. Notice that these results arein agreement with the simulation results (figs. 17, 18 and 19), where AMPP and AHP
show a very similar performance and clearly outperform HP.

7.2 Classical EKF-SLAM with segments

We have implemented EKF-SLAM with real images for the
line parametrizations PL, APL, HPL, AHPL and AMPPL,
using the segment detector and tracker of Berger and Lacroix
(2010). The scene contains a90◦ dihedral with several seg-
ments on its planes (Fig. 28). The camera, controlled by a
robotic arm, performs a30×30cm square trajectory perpen-
dicularly to its optical axis. The position increments given
by the arm are corrupted and used as odometry inputs to the
system, thus providing the metrics for scale observability.

The videosplucker-based-lines.movandpoint-
supported-lines.mov show the methods PL, APL,
HPL and AHPL running in parallel (the AMPPL video, in-
distinguishable from the AHPL one, is not shown for space
reasons). A selection of snapshots of the AMPPL run is
shown in Fig. 28. It is worth mentioning the enormous size
of the uncertainty ellipsoids (in yellow color in the movies)
shortly after initialization, a consequence of the undelayed
initialization of unobserved DOF. As it happened with sim-
ulations, to the naked eye there are not big differences be-
tween PL and APL, or between HPL and AHPL. However,
Plücker-based lines behave differently from point-supported
lines. The most remarkable difference is the smaller size
of the uncertainty ellipsoids for point-supported lines, due
to the superior representativeness of these parametrizations.
This issue is discussed in more detail in Section 8.

To evaluate the accuracy of the resulting maps we iden-
tify the two planes of the dihedral by optimally fitting them
on the segments endpoints, and compute two different co-
planarity errors. The first one is defined by the standard de-
viation of the distances from the segments midpoints to their

Table 3 Reconstruction accuracy of the segments maps. DTP: distance
to plane; ATP: angle to plane; ABP: angle between planes.

PL APL HPL AHPL AMPPL

DTP (1σ, mm) 7.5 2.7 3.1 1.6 1.5

ATP (1σ, deg) 1.02 0.54 0.58 0.19 0.20

ABP (deg) 88.26 89.89 88.95 90.00 90.00

Table 4 Reconstruction accuracy of the segments maps with all ini-
tializations at the origin.

PL APL AHPL

DTP (1σ, mm) 2.0 2.1 1.5

ATP (1σ, deg) 0.49 0.49 0.20

ABP (deg) 89.34 89.52 90.00

support plane. The second one is defined by the angles be-
tween the segments and their support plane. Finally, we re-
port the angle between the two planes. The results are sum-
marized in Table 3. We observe a progressive improvement
of all of the map accuracy indicators as we adopt point-sup-
ported parametrizations and incorporate anchors. AHPL and
AMPPL, the two parametrizations incorporating both fea-
tures, exhibit an equivalent performance, the best of all, with
coplanarity errors of as low as1.5mm (notice that the seg-
ments are at some120 cm from the camera). Even when an-
chored, the Plücker lines exhibit a poorer performance than
point-supported lines. Refer to Section 8 for a discussion.

To further emphasize the effect of anchoring, we have
repeated PL, APL and AHPL runs with the segment detec-
tor set to initialize lines only at the first frame. This situa-
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(a) Image and 2D segments (b) Lines initialized at 1m distance (c) Final, perspective view

(d) Final, top view (e) Final, front view (f) Final, side view

Fig. 28 Monocular EKF-SLAM with ULI of AMPPL segments. (a) A sample image with the tracked 2D segments. (b) The set of initialized
lines, all at a distance of 1 m from the camera, correspondingto the selected prior, thus defining a spherical distribution. (c) The final map, from
a viewpoint close to the camera (compare with (a)). (d, e, f) Top, front and side views of the final map, showing the correct reconstruction of the
scene, with the dihedral planes at precise right angles. Thegrid in the 3D views has 10 cm steps.

tion is generally unrealistic because it assumes that all the
world is visible from the first sensor location, but when the
hypothesis is valid (as is the case for this experiment) it con-
stitutes for this precise fact the ideal situation, from which
the best possible mapping results have to be expected. It pro-
duces anchors that are exactly zero,p0 ≡ T = 0, and with
null covariance. Results in Table 4 show, when compared
to Table 3, that the effect of anchoring disappears to make
unanchored parametrizations equivalent to anchored ones.
It is worth noticing that only point-supported anchored pa-
rametrizations perform in the general situation similar than
in this ideal one, and therefore that anchoring contributesto
keeping a performance comparable to the best case.

8 Elements of discussion

8.1 Redundancy and constraints in the EKF

There exist recurrent discussions on whether estimators should
employ minimal state parametrizations or not, and the ef-
fects that redundancy and constraints have in EKF estimates.
It is not our aim now to provide a detailed analysis of these
issues here, but this paper has clearly showed that redun-
dancy can be exploited to our benefit. With a little insight
we discover that not all redundancies are the same, neither

the constraints, and that they do not always come together.
Some ideas to situate these concepts follow.

1. Using redundant parametrizations is possible in EKF
because of its Bayesian character. Bayesian estimators
use predictions to generate priors that constrain the re-
dundant DOF that otherwise would make convergence
difficult or even impossible (we think especially on it-
erative optimizers such as BA where prediction is not
present and a good canonical choice of the parametriza-
tions used is crucial for a quick convergence – see for
example (Engels et al, 2006)).

2. Homogeneous vectors are redundant orequivalentunder
proportionality transforms. This equivalence has conti-
nuity in all dimensions of the state space, and thus it im-
poses no constraint to the filter: the new states resulting
from EKF updates are always valid homogeneous vec-
tors.

3. Quaternions are redundant only with respect to symme-
try: a quaternion and its negative are equivalent. They
are also constrained by a unity norm which defines a
unit spheroid inR4. In EKF, this normalization con-
straint can be applied explicitly, viaQ ← Q/‖Q‖, its
JacobianJ and the EKF prediction equations, result-
ing in a projection of the covariance onto the hyper-
planeS = null(J) tangent to the unit spheroid. Sub-
sequent EKF updates, constrained toS, result in quater-
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nions escaping the spheroid and violating the spherical
constraint, and thus renormalization is needed.

4. Anchored landmarks are redundant in the sense that
landmarks with different anchors may be equivalent.
There exists a continuity of solutions, in this case not re-
lated to proportionality, with no constraints. As we have
seen, this redundancy allows us to arbitrarily select the
anchor with the most beneficial effects.

5. Plücker lines are defined in the projective spaceP
5 and

are therefore equivalent under proportionality transfor-
mations. This DOF is not constrained. However, they
contain a second redundant DOF affected by the Plücker
constraintn ⊥ v. The Plücker constraint is more deli-
cate than the normalization constraint in the quaternion
because it can only be applied implicitly, vian⊤v = 0

and the EKF correction equations. The application of the
EKF correction equations means that the covariance is
intersected with(notprojected to, as it was in the quater-
nion) the constraint manifold, with the subsequent risk
of collapse of the covariances matrix. This does have a
noticeable impact on the filter and is further discussed in
the next section.

8.2 The Plücker constraint

We have seen in Section 3.1 that for a pair(n,v) to be
a Plücker line the Plücker constraintn⊤v = 0 is manda-
tory. We have ensured its satisfaction at initialization time
by defining the inverse-distance prior in theβ-plane, but we
have not enforced it further during landmark updates, for
several reasons. One reason is our desire to use a common
algorithm for all parametrizations so that the differencesin
performance can be better interpreted. A second reason is
that we did not find a clean and convincing method for en-
forcing such constraints in the EKF framework. In the lin-
ear case, enforcing implicit equality constraintsHx = 0

can be done by performing a KF update with a synthetic
measurement0 = z = Hx with infinite information. This
has the consequence of producing singular covariances ma-
trices. The directions of the state space being affected by
this singularity become blocked and no more evolution on
them can be expected, creating a lifelong guarantee of the
constraint satisfaction. Unfortunately, in EKF the combina-
tion of uncertainty and non-linearity prevents non-linearim-
plicit equality constraintsh(x) = 0 from being enforced
this straightforwardly. This problem has been treated and
solved by Lemaire and Lacroix (2007) for the Euclidean
Plücker lines (i.e., with normalized director vector) using
the smoothly constrained Kalman Filter (Geeter et al, 1997).
The idea is to apply a number of relaxed constraints over
time, with an EKF update0 = h(x) + n, wheren is a noise
vector with a variance decreasing with time, to make the fil-
ter gradually converge to a state satisfying the equality con-

straint. This method is directly applicable to PL and APL.
However, it requires several tuning parameters (initial co-
variance ofn, rate of decay ofn, at which times and/or un-
der which conditions to apply it, when to stop) and, for this
reason, we do not feel the solution to be satisfactory enough.

These facts might very well be at the base of the poor re-
sults of APL, which otherwise would be expected to perform
similarly to its point-counterpart AHP. According to our ex-
perience, the improvements produced by enforcing the con-
straint with the methods here explained are small, and in any
case not sufficient. This is possibly due to tuning issues, or
is maybe a matter of the method itself: the constraint is only
truly enforced at the end of the process, when the noisen has
converged to zero, and the errors produced during conver-
gence must most possibly have adverse effects. We have not
investigated this hypothesis fully, mainly because there ex-
ist other strong reasons to prefer point-supported lines over
Plücker-based lines, as we discuss in the following section.

8.3 Endpoints management in Plücker-based and
point-supported lines

In addition to an accurate estimation of the infinite lines
supporting the segments, a proper endpoints management is
crucial to produce meaningful maps of segments. The meth-
ods for endpoints management require some information to
be stored out of the map. We limit this to the two abscissas
of the endpoints expressed in a local reference frame of the
line (see Appendix A for details on endpoints management).

Plücker-based lines PL and APL condensate all the in-
formation of the initial observation in the plane normal, via
n = m1×m2, Eq. (27), and all other information on the
endpoints’ initial view is lost. This constitutes an important
drawback: the local line origin (pointq, Fig. 3), where the
abscissas are referenced to, moves with the line’s orienta-
tion, which is initially unobserved and therefore undergoes
large variations during the convergence phase. Fig. 29(a)
shows that not even the cross-correlations in the covariances
matrix are able to account for this information. In other
words, the endpoints cannot be assumed to remain stable
from one frame to the next one. Because choosing an alter-
native local origin for the line with better properties doesnot
seem to be trivial, the only reasonable strategy for managing
endpoints is to reset them at each frame using the current ob-
servation, potentially losing information about the segment
extension observed in previous frames.

On the contrary, anchored point-supported line param-
etrizations AHPL and AMPPL have the ability to respect
the initial view of the two endpoints via the anchorp0 and
the director vectors(m1,m2), as it can be observed in Fig.
29(b). This information is part of the state and is avail-
able even after large updates thanks to the role that cross-
correlations play in the EKF update. This allows us to use
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(a) APL (b) AMPPL

Fig. 29 Endpoints covariance ellipsoids in Plücker-based and point-supported lines, showing the superior representativity of the latter. The snap-
shots are taken 30 frames after initialization, before the end of the convergence phase. In APL, the ellipsoids are “discs” in the plane defined by
the segment and the landmark anchor. In AMPPL, the ellipsoids are “pencils” pointing to the anchor.

more elaborate ways of updating the segments endpoints –
see Appendix A for further reference.

9 Conclusions

This paper was initially conceived as a compendium of land-
mark parametrizations for monocular SLAM. Our very first
aim was to show that all these methods are very intimately
related, as we have exposed amply. As the work evolved,
we realized that the material and insights provided should
also be a good basis for establishing good practices for ap-
proaching a more general problem, that is, the problem of
accurately estimating high-dimensional dynamic systems of
non-linear nature and huge uncertainty levels with the use of
relatively simple analytic tools such as the EKF.

We summarize here the main concepts and results pre-
sented in this work:

1. Undelayed landmark initialization (ULI) is fundamental
in the sense that it is the way we can make use of all
the geometrical information provided by the landmarks:
from the first observation, up to the infinity range, and
independently of the sensor trajectory.

2. Implementing ULI within EKF is difficult because of the
combination of non-linearity and unbounded uncertainty
regions.
– Linearity and Gaussiannity are the two keys to sat-

isfactory EKF operation. Astute transformations and
redundancy in the parametric descriptions of the sys-
tem produce analytic expressions and probability
densities that are well adapted to the estimator in use.

– Inverse-distance behavior of the unmeasurable pa-
rameters is the key that makes undelayed initializa-

tion of landmarks possible when they are perceived
from projective sensors.

– Once ULI is achieved, landmark anchoring has shown
to be the major actor in further improving linearity to
reach satisfactory levels.

– Manipulations on the measurable parameters, such
as the use of rectangular or polar coordinates for the
director vectors, have shown to produce no remark-
able effects. This is because, being these parameters
measured with good accuracy, their degree of uncer-
tainty is small and the functions in which they appear
are regarded by EKF as being linear.

– Therefore, AMPP and AMPPL parametrizations are
preferred over AHP and AHPL because of their lower
computation cost for an equivalent performance.

3. Because of the higher representativeness of anchored
point-supported lines over unanchored and Plücker-based
lines, and because of the absence of constraints to be
guaranteed, the anchored point-supported lines consti-
tute the preferred choice for undelayed monocular EKF-
SLAM. Therefore, AMPPL is the preferred parametri-
zation for infinite straight lines.

4. A great number of parametrizations can be regarded as a
sequence of small modifications of ones with respect to
the others (Fig. 8). We have traversed a family of eight
parametrizations and established quasi-trivial links be-
tween them. We have shown that estimating points and
lines is fundamentally the same problem and admits fun-
damentally the same solutions. Estimating other para-
metric entities such as conic sections, splines or planes
should also be feasible as long as we can take good ad-
vantage of the principles exposed here.

5. Measuring non-linearity for high-dimensional MIMO
functions is an interesting but difficult task, especially
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(b) Point-supported lines HL, AHL and AMPPL.

Fig. 30 Segment endpoints in the local ordinate frame of Plücker-
based and point-supported lines.

if we want the measure to be useful for comparing pa-
rametrizations of different dimensionality.
– We defined a linearity index that incorporates the lo-

cal knowledge of the uncertainty region, which is
well suited for EKF usage.

– The index is expressed in the measurement space,
which is common to all parametrizations and allows
us to compare them with each other.

6. Visual inspection, linearity analysis, RMS errors and av-
erage NEES consistency, all give a coherent picture of
the performance of each parametrization.

7. Using more evolved algorithms such as robocentric EKF-
SLAM has not altered the relative performances of the
parametrizations. This is because the superiority of some
parameterizations over others comes from the severe lin-
earity constraints that the EKF imposes, and hence the
conclusions drawn in this paper could be extended to
any EKF-based visual SLAM algorithm. It would be in-
teresting to see if this also applies to iterative optimizers
such as SBA, and in such case if the improvements (e.g.
fewer optimizer iterations) are sufficient to compensate
for the extra amount of computational power (e.g.more
operations per iteration) that would be required.

A Segment endpoints management

The segment’s endpoints in 3D space are maintained out of thefilter
via two abscissas(t1, t2) defined in the local 1D reference frame of the
line.

– In Plücker-based lines (Fig. 30(a)) the local frame is defined by a
single axis with the origin at the pointq = p0 + (v×n)/‖v‖2,

s

C

L

(a) Keep initial

s

C

L

(b) Reset to current

s

C

L

(c) Lengthen segment

Fig. 31 The three general strategies for updating 3D segment end-
points. (a) Endpoints are defined at initialization time andnever up-
dated. (b) Endpoints are systematically updated accordingto the cur-
rent observation. (c) Endpoints are updated only if this lengthens the
3D segment.

the closest to the anchor, and the director vectoru = v/‖v‖2
providing the unit length (we make the norm ofu proportional to
distance to improve its projective behavior). Each endpoint pi is
specified by an abscissati such that

pi = q+ tiv/‖v‖2 = p0 +
v×n+ tiv

‖v‖2 . (74)

– In point-supported lines (Fig. 30(b)) the endpoints are defined with
respect to the support pointsqi = p0+mi/ρi. The origin is atq1

and the unit length is defined byq2 −q1, leading to the endpoints

pi = (1− ti)q1 + tiq2 = p0 + (1 − ti)
m1

ρ1
+ ti

m2

ρ2
. (75)

The initial abscissas are defined trivially with(t1, t2) = (0, 1).

Before updating, we need to back-project the currently observed
endpoints onto the 3D line. This is done by triangulating the3D line
with the optical rays of the two currently observed 2D endpoints. To
avoid aberrant results it is advised to update each abscissaonly if the
triangulation angle between the ray and the line is greater than a cer-
tain value (we use15◦). The result is a couple of candidate abscissas
(t′

1
, t′

2
) that are assigned to(t1, t2) depending on the the following

rules:

– During convergence the abscissas are either not updated (Fig.
31(a), used for AHPL and AMPPL), thus reflecting the initial ob-
servation, or systematically updated (Fig. 31(b), used forPL, APL
and HPL), simply reflecting the last observation.

– Once the line has converged, an extending-only policy is ap-
plied (Fig. 31(c)): the abscissa is updated only if this lengthens
the 3D segment. It is to note that a converged line is ready for
reparametrization to any minimal (or at least more economical)
form.
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