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Abstract: This study investigates changes in the relationship between oil prices and the US economy
from a long-term perspective. Although neither of the two series (oil price and GDP growth rates)
presents structural breaks in mean, we identify different volatility periods in both of them, separately.
From a multivariate perspective, we do not observe a significant effect between changes in oil prices
and GDP growth when considering the full period. However, we find a significant relationship in
some subperiods by carrying out a rolling analysis and by investigating the presence of structural
breaks in the multivariate framework. Finally, we obtain evidence, by means of a time-varying VAR,
that the impact of the oil price shock on GDP growth has declined over time. We also observe that
the negative effect is greater at the time of large oil price increases, supporting previous evidence of
nonlinearity in the relationship.
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1. Introduction

The literature on oil and macroeconomic variables is very extensive (see [1,2]). There is an ongoing
debate on the interaction between oil price and macroeconomic performance. However, analyses
of the link between oil price shocks and the business cycle have concentrated almost completely on
relatively short horizons, from the early 1970s on. In particular, two specific periods have received a
great deal of attention: the 1970s in particular and, to a lesser extent, the years since the beginning of
the 21st century. It is well recognized that this interest dates back to the 1970s because the 1970s (and
also the early 1980s) were characterized by serious oil price fluctuations together with unfavorable oil
supply shocks, considered as the reasons behind worldwide macroeconomic volatility and stagflation.
The interest has been rekindled in more recent times, given the possibility of a recurrence of this
scenario. Indeed, some authors have investigated the different effects between these two periods on
the macroeconomic variables see [3,4].1 Two notable exceptions to this relatively short-term perspective
are [7], who investigate the volatility and persistence patterns of oil price shocks based on annual

1 Since the seminal work of [5] for the US economy, a growing number of articles have analyzed the economic consequences
of oil price shocks in industrialized countries. Most of the literature shows that the effect of oil price on the economy was
very important during the 1970s, but has gradually disappeared since then (many studies support this view; the work in [2]
provides a comprehensive review of the literature). The papers [4,6] show that this influence has revived, but with less
intensity, since 2000 and, most important, is manifested on inflation.
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data for 1861–2008,2 and, more recently [8], who analyze the effects of oil prices on output and real
dividends using a quarterly sample beginning in 1946.

The fact that the literature has focused on correctly identifying the source of shocks on oil prices,
almost exclusively during the post-1970s period, is related to the frequent and tumultuous events in
oil price markets at that time. It is also due to the absence of high-frequency data from earlier periods.
However, much can be learned about the relationship between oil prices and macroeconomic conditions
from the less-recent past. We expect that over such a long period there have been important changes in
the demand and supply for oil that could lead to identify some structural breaks. For instance, prior to
the mass production of automobiles, demand for oil focused on kerosene lamps. Regarding oil supply,
the relative importance of Texas Railroad Commission and OPEC in setting world oil prices changed
over this period. In this study, we aim to investigate changes in the behavior of oil prices and their
influence on the US economy, using the longest available oil price series (January 1861–February 2016),
which allows us to offer an alternative view to the literature of the historical role of the macroeconomic
effects of oil.

The contributions of this study, which has some advantages over the previous literature, are
twofold. First, we use data with a broader coverage in the time dimension than the previous studies
(January 1861–February 2016 for oil prices and January 1875–February 2016 for GDP). In particular,
our study is the first one, as far as we know, that captures the relationship between oil price shocks
and the US GDP growth with such a long-term perspective. Second, we provide a comprehensive
methodological framework to analyze the relationship between the two variables. We investigate
the univariate properties of the series, focusing on the presence of structural breaks and volatility.
Then, we adopt a multivariate perspective to delve into the relationship between oil price shocks and
GDP performance in order to identify structural breaks in the multivariate regressions by employing
three complementary tools: a VAR method, a rolling estimation of causality and long-term impacts,
and the Qu and Perron (QP, henceforth) methodology [9]. Once the presence of instabilities in the
series has been established, we propose a time-varying GDP-oil price model to capture the relationship
between the two variables over time, detailing impulse responses during periods of intense shocks in
the oil price markets.

The main findings of the study are as follows. First, although neither of the two series presents
structural breaks in the mean, we identify in both of them, separately, different volatility periods
associated with major events either in the economic performance of the US economy or in the oil
markets. Second, delving deep into the relationship between the two variables through the full period,
we observe that changes in oil prices have no significant effect on GDP growth. Nevertheless, it is
reasonable to think that, with so many significant events in such a long period, both in business
cycle dynamics and in the demand and supply factors of oil prices, the relationship between the
two variables may have not been so stable. This is clear when we carry out a rolling analysis and
investigate the presence of structural breaks in the multivariate framework. In particular, we clearly
identify four different periods: February 1875–April 1912, January 1913–January 1941, February
1941–March 1970, and April 1970–February 2016. Third, we obtain evidence of a changing relationship
over time regarding the time-varying VAR: the impact of an oil price shock on GDP growth has
declined over time. We also observe that the negative effect is greater at the time of large oil price
increases, supporting previous evidence of nonlinearity in the relationship.

The remainder of the paper is organized as follows. Section 2 describes the dataset used in the
analysis. Section 3 investigates the univariate evolution of the series, focusing on the presence of
structural breaks in mean and volatility. Section 4 analyzes the transmission of the effects between oil
price shocks and GDP growth, adopting a multivariate perspective. Section 5 proposes a time-varying

2 The authors find that the real price of oil has historically tended to be both more persistent and more volatile whenever
rapid industrialization in the world economy coincided with uncertainty regarding access to supply.
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VAR model to capture different behaviors in the relationship over time. Finally, Section 6 concludes
the study.

2. Data

We use series beginning in the nineteenth century and running until the present for our analysis
of oil prices and US GDP. Regarding the US GDP, we use real quarterly data from the Bureau of
Economic Analysis (BEA) and the National Bureau of Economic Research (NBER), covering the period
January 1875 to February 2016. In particular, the BEA GDP series from 1947 onward is linked to
a historical dataset beginning in 1875, which is available at the NBER until 1983.3

The long crude oil price series in real terms is taken from the British Petroleum’s Statistical Review
of World Energy [11]. This series has an annual frequency and links three different price series: US
average price (1861–1944), Arabian Light (1945–1983), and Brent (1984–2015). Since our aim is to
analyze the relationship between oil price shocks and GDP, we adopt two strategies to be able to
work with higher-frequency data, which would allow us to better capture the effects of oil prices on
economic growth. First, we use the Chow-Lin interpolation technique [12] to convert the annual series
of oil prices into a quarterly series dataset, using an intercept as high frequency indicator.4 Figure 1
displays both historical series. Second, in the last part of our sample, we work with real quarterly
Brent data from Datastream.5 We have considered three options to link this quarterly series with the
transformed annual data: (i) begin using the quarterly series in 1957, the first year for which Brent
data are available; (ii) delay the use of the quarterly series until the 1970s, when data variability clearly
increases; (iii) maintain the first two consecutive series of the British Petroleum database and link
with the quarterly series in 1984. Figure 2 illustrates the different options, and we observe hardly
any difference among the three (called oilp1, oilp2, and oilp3, respectively). To obtain more reliable
quarterly data, we chose the Brent quarterly series beginning in 1957 (oilp3).6 This series is more
accurate due to its higher frequency and is directly obtained from Datastream. Thus, our final crude oil
price time series consists of the quarterly interpolated British Petroleum historical dataset until 1956,
linked to the quarterly Brent data from 1957 onward, and ranges from January 1861 to February 2016.
Figure 3 displays the growth rates of oil prices and GDP, calculated as the first logarithmic differences,
which we denote as ∆OILPt and ∆GDPt, respectively.

3 The first series is in real 2009 dollars, while the long historical series is in real 1972 dollars, but has been transformed to link
both. The historical series is taken from Appendix B of [10].

4 Chow-Lin interpolation is a regression-based technique to transform low-frequency (annual, in our case) data into
higher-frequency (quarterly, in our case) data. In particular, we apply the average version, which disaggregates the
annual data into the means of four quarters and is the most suitable approach for price data, and select the maximum
likelihood method. We use the Matlab toolbox of [13,14]. This approach gives us the best fit when compared to the
available quarterly data. However, we have tested the accuracy of other disaggregation methods and the results remain
broadly unchanged.

5 Prices are in 2009 US dollars per barrel, and the US GDP deflator data are from the IMF.
6 We have also considered other alternatives: (1) use the British Petroleum dataset, updating the last years with the annual

Brent series and transforming the whole sample into quarterly data through the Chow-Lin procedure; (2) use the historical
British Petroleum series linked to the West Texas Intermediate data or the Producer Price Index for crude petroleum (since
they are available or from 1984 onward) instead of Brent prices. We have decided to disregard these options to obtain a
more homogeneous dataset by using Brent prices. However, comparing the path of the alternative series to the one we use,
we do not observe much difference. Furthermore, we repeated some calculations, obtaining quite similar results.
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Figure 1. Historical oil prices. Notes: The top figure represents the annual BP oil price series, which
are made of three different series: US average price (1861–1944), Arabian Light (1945–1983), and Brent
(1984–2015). The bottom figure displays the same series converted to a quarterly frequency through
the Chow-Lin interpolation technique. Dates are in year.month format.
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Figure 2. Oil prices and GDP. Notes: The top figure represents the US real quarterly GDP obtained from
the BEA and the NBER (January 1875–February 2016). The bottom figure shows three different real
quarterly oil price series: “oilp1” links the BP real quarterly series (transformed using the Chow-Lin
technique) with Brent quarterly data from 1957 on; “oilp2” is composed of the BP real quarterly series
(transformed using the Chow-Lin technique) and Brent quarterly data from 1970 on; “oilp3” puts
together the BP real quarterly series (transformed using the Chow-Lin technique) and Brent quarterly
series from 1984 on. Dates are in year.month format.
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Figure 3. Oil prices and GDP growth rates. Notes: The top figure represents the growth rate of the US
real quarterly GDP obtained from the BEA and the NBER (January 1875–February 2016). The bottom
figure displays the growth rate of “oilp3”, which consists of the quarterly interpolated BP historical
dataset until 1956 linked to the quarterly Brent data from 1957 onward and ranges from January 1861
to February 2016. Dates are in year.month format.

3. Univariate Analysis of the Series

In this section, as a first data exploratory analysis, we examine the univariate evolution of each
of the two series, oil prices and GDP growth rates. In particular, we explore the possible existence of
structural changes in both mean and variance of the series.

3.1. Changes in Mean

In this subsection, we test for the presence of structural breaks in the mean of ∆GDP
and ∆OILP. To this end, we apply the methodology of Bai and Perron [15–17] (BP, henceforth).7

The BP methodology looks for multiple structural breaks, consistently determining the number of
break points over all possible partitions, as well as their location, and it is based on the principle of
global minimizers of the sum of squared residuals. The methodology considers m possible breaks
(m + 1 regimes) in a general linear model of the type:

yt = x′tβ + z′tδj + ut (1)

where the explanatory variables β and δj (j = 1, ..., m + 1) are the corresponding vectors of the
coefficients and Ti, ..., Tm are the break points, which are treated endogenously in the model.

Using this method, [15] proposes three types of tests. The first one, called the supF(k) test,
considers the null hypothesis of no breaks against the alternative of k breaks. The second test,
supF(l + 1/l), considers the existence of l breaks, with l = 0, 1, ..., as H0, against the alternative of l + 1
changes. Finally, the so-called double maximum tests UDmax and WDmax (the third type) test the null
of the absence of structural breaks against the existence of an unknown number of breaks. The strategy

7 We have tested, but not rejected, the hypothesis that both series are I(0), using a battery of standard unit root tests.
The stationarity of the series is a pre-condition for applying the BP method. Detailed results are available upon request.
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suggested by Bai and Perron [16] consists of first beginning with the sequential test supF(l + 1/l).
In case no break is detected, they recommend checking this result with the UDmax and WDmax tests
to determine whether at least one break exists. When this is the case, they recommend continuing
with the sequential application of the supF(l + 1/l) test, with l = 1, ... In addition, information criteria
such as the traditional Schwarz Bayesian information criterion (SBIC) and the modified Liu Wu Zidek
criterion (LWZ)8 are used to select the number of changing points.

This strategy has been followed to explore the existence of structural breaks in a model
representing the mean of the variables, that is, a model with just a constant: z′t = 1 and x′t = 0.
The disturbance term is allowed to present both autocorrelation and heteroskedasticity. A maximum
number of five breaks has been considered in accordance with a sample size of T = 565 for GDP
growth and 621 for oil price growth. Then, according to the length of the series, the selected trimming
is ε = 0.15. A non-parametric correction has been employed to consider these effects. Table 1 shows
the results. According to the different tests, we cannot reject the hypothesis that neither ∆GDP nor
∆OILP presents structural changes in the mean.9 For the whole period, the mean GDP growth is 0.80%
and the mean oil price growth, 0.19%.

Table 1. Multiple structural breaks in mean (Bai-Perron methodology).

∆GDP ∆POIL

supF(k)

k = 1 1.80 0.38
k = 2 1.70 0.94
k = 3 2.20 1.71
k = 4 2.08 1.32
k = 5 1.43 0.70

supF(l + 1/l)
l = 0 1.80 0.38
l = 1 2.44 1.54
l = 2 2.77 0.58
l = 3 1.58 0.82
l = 4 − −

UDmax 2.20 1.71
WDmax 3.56 2.46

T(SBIC) 0 0
T(LWZ) 0 0

T(sequential) 0 0

Notes: Changes are tested by selecting a trimming of ε = 0.15 and a maximum number of five breaks.
Serial correlation and heterogeneity in the errors are allowed. The consistent covariance matrix is constructed
using the Andrews method [20]. Critical values in [15].

3.2. Changes in Volatility

To test for the possibility of structural breaks in the variance of the process, we consider the Inclán
and Tiao (IT) test [21]. This test, which has been extensively used, allows for the detection of changes
in the unconditional variance of a series and belongs to the CUSUM-type family of tests. The test is
defined as follows:

8 See [18].
9 Alternatively, we tried a standard autoregressive model of order 1, with z′t = 1 and x′t = (yt−1), finding similar conclusions.

The results are also robust to considering a higher number of maximum breaks. A paper by [19] also confirms the absence of
structural breaks in the mean of US GDP series.
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IT = supk
∣∣√T/2Dk

∣∣ where
Dk =

Ck
Ct
− k

t with Do = DT = 0
Ck = ∑k

t=1 u2
t

(2)

This test assumes that the disturbance ut in equation yt = µ + ut, being yt = ∆OILPt or ∆GDPt,
is a zero-mean, normally i.i.d. random variable and uses an iterated cumulative sum of squares (ICSS)
procedure to detect the number of breaks. However, [22] shows that the asymptotic distribution of
the IT test is critically dependent on normality. Indeed, the IT test has large size distortions when
the Gaussian innovation assumption is not met in the fourth-order moment, or for heteroskedastic
conditional variance processes, and consequently tends to overestimate the number of breaks.10

To overcome this drawback, they propose a correction that explicitly takes into account both the
fourth-order moment properties of the disturbances and the conditional heteroskedasticity (κ1 and
κ2, respectively).

IT(κ1) = supk
∣∣√T/Bk

∣∣ where

Bk =
Ck− k

T CT√
η̂4−σ̂4

η̂4 = T−1 ∑T
t=1 y4

t , σ̂4 = T−1CT

(3)

IT(κ2) = supk
∣∣√T/Gk

∣∣ where
Gk = v̂−1/2

4 (Ck − k
T CT)

(4)

where v̂4 is a consistent estimator of v4 = limT→∞ E(T−1(∑k
t=1(u

2
t − σ2))2).

The US GDP growth series is not mesokurtic (in fact, its excess kurtosis series is 3.15) and has
a fat right tail. Moreover, the conditional variance of the innovations is not constant over time.11

These properties are even more accentuated for oil price growth series, in which excess kurtosis reaches
20.10 and shows very long tails. Consequently, we use the previous corrections in addition to the
original ICSS algorithm.

Table 2 shows the results of the ICSS(IT), ICSS(κ1), and ICSS(κ2) tests applied to the US GDP
and oil price growth rates. We observe overestimation of break dates when using the original IT test
(and even in the ICSS(κ1) test), which is especially dramatic for oil price growth, considering the
properties of this series. Therefore, we focus on the results of the ICSS(κ2) test, which includes all
corrections. We find three breaks in the variance of GDP growth, chronologically located in April 1917,
February 1946, and January 1984, confirming the findings of [19].12 These break dates approximately
match the end of each of the world wars and the beginning of the Great Moderation. Thus, a secular
reduction in volatility is observed in US GDP growth.

The results of the variance tests applied to the oil price growth rate show only two changes in
variance, in April 1878 and April 1973. Indeed, oil prices are more volatile in the beginning and ending
periods (the last period being significantly more volatile), while a much less volatile period is observed
from 1878 to 1973 (see Figure 3). These break points to are related to a combination of technological

10 The IT approach is extended to more general processes by [23], showing that the correction for non-normality proposed
by [22] is suitable when the test is applied to the unconditional variance of raw data. Furthermore, [24] carry out a Monte
Carlo experiment that highlights the adequacy of this procedure when the mean or other coefficients in the regression do
not change; otherwise, the test has important size distortions, which increase with the magnitude of change in the mean.

11 The US GDP growth rates can be approximated by leptokurtic densities as shown by [25]. This indicates that output
growth changes tend to be quite uneven in the sense that large positive or negative changes seem to be more frequent than
a Gaussian model would predict.

12 The authors offer a thorough analysis of the sources and features of these different volatility periods.
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and geographic factors affecting the oil market by [7],13 along with a booming demand for oil, driven
by the large-scale industrialization of the US and East Asia.14

Table 2. Multiple structural breaks in variance (ICSS methodology).

∆GDP ∆OILP

ICSS(IT)

April 1917 April 1878
February 1946 February 1914
February 1984 March 1921

April 2007 March 1930
February 2009 February 1934

March 1936
April 1944
March 1947
April 1960
April 1970

ICSS(κ1)

March 1929 January 1862
March 1934 January 1963

February 1946 April 1878
January 1984 March 1930

February 1934
April 1973

ICSS(κ2)

April 1917 April 1878
February 1946 April 1973
January 1984

Note: Dates of the detected changes in variance. ICSS(i), i = {IT, κ1, κ2}.

To provide robustness to the previous results, we use an additional test within the parametric
framework, which consists in applying the BP test to the mean of the absolute value of the estimated

residuals
√

π
2 |εt| from one of the following specifications:15

Model 1: yt = µ + εt

Model 2: yt = µ + ρyt−1 + εt

εt = z′tδj + ut

z′t = 1

(5)

where yt represents ∆OILPt or ∆GDPt.
Table 3 roughly confirms the ICSS(κ2) test results. We focus on the results of Model 1. Regarding

the identification of structural breaks in the GDP growth rate, we identify three break points as in the
previous exercise. However, the dates differ, as a structural break in March 1929 coincides with the
1929 Crash as against the one related to the end of the first world war.16 Concerning the oil prices,

13 Construction of the first long-distance pipeline began in 1878, allowing the railroad monopoly over oil transportation to end.
However, US control over excess exploitable reserves ended and OPEC dominance increased in 1969.

14 See also [26] for a historical survey of the oil industry with particular focus on the events related to significant oil
price changes.

15 A paper by [24] shows that, in case changes in the mean of the series are not taken into account, the test suffers from severe
size distortions. However, we have shown that our series do not have structural breaks in the mean. This method has been
used in several studies: [27–29], among others.

16 Notice that these break points are the least significant ones with both approaches. Indeed, the break of March 1929 is not
even identified with Model 2 of the BP methodology.
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we find three break points instead of two. The new break point is located in February 1935, while the
other two are the same previously identified. This methodology to the annual series of oil prices by [7],
finding roughly the same three break points. They link the new break to both a major oil discovery a
few years earlier (the East Texas oil Field) and a worldwide recession.

Table 3. Multiple structural breaks in variance (Bai-Perron methodology).

∆GDP ∆OILP

Model 1

March 1929 April 1878
January 1947 February 1935

February 1984 April 1973

Model 2

March 1946 March 1973
April 1983

Notes: The BP method is applied on the corrected square residuals of yt = µ + εt, Model 1 or yt = µ + ρyt−1 + εt,
Model 2. Changes in the mean are tested selecting a trimming of ε = 0.15. and a maximum number of 10 breaks.
Serial correlation and heterogeneity in the errors are allowed. The consistent covariance matrix is constructed
using the Andrews method [20]. Critical values in [15].

4. Multivariate Analysis of the Series

After studying the univariate evolution of both oil price and GDP growth rates, this section
analyzes the transmission of the effects between them and their direction. To this end, we first use
a standard VAR methodology and, subsequently, consider different methodologies to take into account
the possible instability of the VAR parameters. In particular, we compute a rolling causality test and
cumulative impulse response functions. In addition, we analyze the presence of structural breaks in
our VAR equation.

4.1. VAR Estimation

A simple way to analyze the dynamic relationship between oil price variations and GDP growth
is the use of a standard VAR(p) model. Following [30,31], among many others, we define this model
as follows:

Yt = µ +
p

∑
i=1

ΨiYt−1 + εt, t = 1, 2, ..., T (6)

where Yt = (∆GDPt, ∆OILPt)′ is a 2 × 1 vector composed of observations of the variables,
Ψi (i = 1, ..., p) are 2 × 2 coefficient matrices, εt = (ε1t, ε2t)

′ with εit, (i = 1, 2) is an unobservable
zero mean white noise vector of dimension T, and p is the parameter that determines the VAR
dimension, chosen according to the SBIC criterion.17 The model is specified as follows:[

∆OILPt

∆GDPt

]
=

[
ψ11 ψ12

ψ21 ψ22

] [
∆OILPt−1

∆GDPt−1

]
+

[
ε1t
ε2t

]
(7)

The VAR estimation is reported in Table 4. The results show no significant effect of oil price growth
on GDP growth, which means ∆OILP does not influence—that is, does not Granger-cause—GDP

17 The SBIC criterion selects one lag. Nevertheless, other information criteria, such as the Akaike information criterion (AIC)
and the Hannan-Quinn (HQ) criterion select five lags. Therefore, we use a VAR(1) as the preferred model and estimate,
additionally, a VAR(5) to check the robustness of our results. For simplicity, and to save space, we only present the results
for the VAR(1) and discuss whether some interesting results or significant differences appear with respect to the VAR(5).
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growth. We obtain a similar result in the opposite direction, as the effect of GDP growth on oil price
growth is not significant.

Table 4. Estimation of the VAR system.

Coeff. p-Value

Dependent variable: ∆GDP

Intercept 0.486 0.000
∆GDP 0.392 0.000
∆OILP −0.003 0.649

Dependent variable: ∆OILP

Intercept −0.049 0.932
∆GDP 0.175 0.478
∆OILP 0.132 0.002

Granger causality

∆OILP→ ∆GDP 0.207 0.649
∆GDP→ ∆POIL 0.504 0.478

Note: The null hypothesis for the Granger causality test is that ∆OILP does not cause ∆GDP or vice versa.

Furthermore, the parameter ψ12 is negative and ψ21 is positive. This means that the effect of oil
price growth on output growth is negative, while the effect of GDP growth on oil price is positive.
Although these findings are quite suggestive and support our intuition about the causal effects between
GDP and oil prices, we test them more formally.

The previous framework allows us to test for causality direction. Following [32], a variable
(or group of variables), z1, is found to help predict another variable (or group of variables), z2. Then,
z1 is said to Granger-cause z2. We can test this hypothesis by simply studying whether the Ψ matrices
are triangular, which is a remarkably visual test for a VAR(1). Additionally, a more formal Wald test is
computed, where the null hypothesis is that z1 does not cause z2. More specifically, z1 does not lead to
z2 if E(z2t|z2t−1, z2t−2, ...; z1t−1, z1t−2, ...) = E(z2t|z2t−1, z2t−2, ...).18 The results of the Granger causality
analysis are presented in the last rows of Table 4, confirming the previous findings.19

We also employ impulse-response functions (IRFs) to capture the dynamics of the shocks.
To obtain IRFs, we use a moving average representation of the VAR system, which is defined in
the following expression:

Yt =

[
µ1

µ2

]
+

∞

∑
s=0

[
ψ11 ψ12

ψ21 ψ22

]s [
ε1t−s
ε2t−s

]
(8)

or in matrix notation and in terms of the innovations of the structural model: Yt = µ +
∞
∑

s=0
Φ(s)εt−s.

The coefficients of the succession of matrices Φ(s) represent the impact that a shock in the
structural innovation has on the variables of the VAR system over time. Results of IRF computations
with a horizon of 5 years (20 quarters) are displayed in Figure 4, where confidence intervals at 90%
are computed according to bootstrap-after-bootstrap method of [33]. We conclude that the effects,
which are negative for the response of ∆GDP to an impulse of ∆OILP and positive for the response of
∆OILP to an impulse of ∆GDP, last between 7 and 8 quarters and are not significant at any length.
We also observe a high degree of uncertainty during the time of non-zero IRFs.20

18 We have repeated the analysis with annual data as a robustness check, finding qualitatively the same results.
19 An estimation of a VAR system with five lags does not change this conclusion.
20 As is well-known, the order of variables is relevant for IRF computation, as the Cholesky decomposition requires

triangulation. To test the robustness of the results, we have redone all calculations with the system in the inverse order:
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Figure 4. Impulse-response functions (IRFs) of a VAR(1) for GDP and oil price growth rates. Note:
Confidence intervals at 90% of confidence level have been computed according to [33].

In addition, we compute cumulative impulse-response functions (CIR), defined as

CIR =
∞
∑

h=0
IRF(h), which allow us to identify the same effects in the long run. Thus, considering the

full period (February 1875–February 2016), ∆OILP has a negative effect (−0.0057) on ∆GDP, while
∆GDP has a positive effect (0.3306) on ∆OILP, although neither is significant.21

Summing up, we do not observe any significant effect between changes in oil prices and GDP
growth when considering the full period. Nevertheless, it is reasonable to think that in such a long
period in which significant events have occurred, both in the business cycle dynamics and in the
demand and supply factors of oil prices, the relationship between the two variables may have not
been so stable. In fact, our findings in the previous section already show several structural breaks in
volatility that correspond to important changes in the characteristics of the business cycle and different
periods in the evolution of oil prices. The hypothesis of a changing relationship is explored in the
following subsections.

Yt = (∆OILPt, ∆GDPt)′ and have also calculated the generalized IRF. The findings are the same, which is not surprising,
given the results of casualty.

21 The confidence intervals are (−0.0269, 0.0151) and 0.3306 (−0.4279, 1.1086), respectively. They were computed with the
same bootstrap methodology as for the IRFs.
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4.2. Rolling Sample Analysis

The previous section provides some insights about the direction of the relationship between oil
inflation and the US GDP growth. However, it is possible that this relationship has been modified
across time, as suggested by [4]. Thus, it is advisable to estimate the model for different subsamples in
order to verify whether the parameters change. In this regard, we adopt two alternative strategies:
(i) compute causality test and (ii) calculate CIRs, as a measure of long-run impacts, instead of using
short-run parameters. We consider a rolling estimation with a window of 40 quarters in both cases.

Regarding the causality test, results are displayed in Figure 5, which plots a heat map of p-values
of the Granger causality test. Different colors represent the different significance levels at which we
can reject or accept the Granger causality test. Values in yellow and dark blue mean that we can reject
the null hypothesis of non-causality, whereas values in no colour indicate no causality between the
variables. In general, we scarcely observe periods of significant causality, given the overwhelming
presence of no color in the figure. Focusing on causality from ∆OILP to ∆GDP (left-hand side of
the figure) and with a liberal threshold of the 0.10 significance level, we identify two stable and
long periods where oil prices clearly influence GDP growth: January 1879–April 1894 and January
1981–February 1999. In the rest of the period, we only find isolated dates during mid-20th century (the
1950s) and at the beginning of the period, before April 1879. Results basically hold when considering a
tighter significance level of 5%, although the instability during the 1980s and 1990s increases. To sum
up, the influence of oil price growth on GDP growth is significant only for 14% of the sample at the
10% significance level.

As for the opposite direction of causality, from ∆GDP to ∆OILP (right-hand side of the figure),
the proportion of the sample where the influence is significant is similar at 10% level but reduces
to 9% at the 5% significance level. Periods of causality from GDP growth to oil price variations
are found in February 1911–April 1923, February 1953–February 1971, and February 1988–February
2000.22 We conclude that the relationship between the two variables is relatively weak in the long run.
However, at shorter horizons, the major intensity in the bidirectional relationship is located in the
1980s and 1990s.

With respect to CIRs, Figure 6 displays the results of impulses from ∆GDP to ∆OILP (upper panel)
and from ∆OILP to ∆GDP (lower panel). Focusing on the rolling estimation of CIRs between the
two variables, we observe that the estimated response to an impulse from ∆GDP to ∆OILP remains
close to zero, and non-significant, over the whole sample, except for the estimated impulse response
over the periods 1961–197123 and 1937–1946.24 The estimated impulse from ∆OILP to ∆GDP presents
higher variability. Indeed, from the mid-1960s to the end of the century, it is positive most of the time.
The effect turns negative during the noughties of the 21st century. Nonetheless, the confidence intervals
show no significant effect in the short periods, also identified in the upper panel of the figure.25

22 Since 2005, the causality test is near the 10% threshold limit of significance. This result agrees with that of [34], who document
a positive and significant effect of GDP growth on oil prices since the 2000s.

23 This was an extraordinary growth period in the US economy. The increasing demand for oil caused oil price increases.
24 During this period, the US economy had to face World War II with devastating economic consequences (the first postwar US

recession began at the end of 1948). The demand for petroleum products caused a sharp increase in the price of oil and
although the US increased oil production enormously during World War II, there were shortages in several plants.

25 We have repeated the analysis using annual data, reaching the same conclusions.
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Figure 5. Rolling estimation of causality test. Notes: We estimate the causality test with a rolling window of 40 quarters. The left-hand side of the figure presents
results of Granger causality from ∆OILP to ∆GDP; the right-hand side shows the results of Granger causality from ∆GDP to ∆OILP. Values in dark blue mean that
we can reject the hypothesis of non-causality at 5% significance level and values in yellow mean that we can reject it at 10% significance level, whereas no color
indicates no causality between the variables. Dates are in year.month format.
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Figure 6. Rolling estimation of CIR. Notes: We estimate the CIRs with a rolling window of 40 quarters. Confidence intervals at 90% of confidence level. CIR:
Cumulative Impulse Response Function. Dates are in year.month format.
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4.3. Structural Breaks in the Relationship between Oil Prices and GDP

The univariate analysis of the series offers some evidence of structural breaks in the volatility of
the two series. Additionally, the rolling results of the previous subsection are not conclusive about
the hypothesis of parameter stability. Thus, it seems to be appropriate to consider the existence of
structural breaks in our multivariate specification. To that end, the Qu and Perron (QP) [9] approach
provides a valid technique to find structural breaks,26 as it allows for multiple structural changes that
occur at unknown dates in a general system of equations, which indeed include the one defined in (10).

Following these authors, we assume that we have n equations and T observations, the vector
Yt includes our two endogenous variables (∆GDP and ∆OILP), the parameter q is the number of
regressors, and zt is a set that includes the regressors from all the equations. The selection matrix S
is of dimension np× q with full column rank, where q is the total number of parameters. It involves
elements that take the values 0 and 1, indicating which regressors appear in each equation. The total
number of structural changes in the system is m, and the break dates are denoted by the m vector
T = (T1; ...; Tm), considering that T0 = 1 and Tm+1 = T, with j indexing the regime (j = 1, ..., m + 1).
Then, the model proposed takes the following form:

Yt =
(

I ⊗ z
′
t

)
Sβ j + ut (9)

with ut having mean 0 and covariance matrix ∑j for Tj−1+1 ≤ t ≤ Tj. In our present case,
we should note that zt = (1, ∆GDPt−1, ..., ∆GDPt−p, ∆OILPt−1, ..., ∆OILPt−p), and S = I2q, where
q = 2 + p(2 + 1) and p is the selected number of lags. Again, the number of lags has been chosen by
taking into account the SBIC.

To determine the number of breaks in the system, we first use the UDmaxLRT(M) statistics to
test whether at least one break is present. When the tests reject it, the test Seqt(l + 1|l) is sequentially
applied for l = 1, 2 . . . m until it fails to reject the null hypothesis of no additional structural break.
Additionally, we compute the SupLR) to test l = 1, 2 . . . , m versus l = 0.

According to the critical values derived from the response surface regressions, the tests offer
evidence of three breaks (m = 3) in the system of equations, which satisfies the minimal length
requirement, notice that because of our sample size (T = 562), we have carried out the procedure
with a trimming parameter of 0.2. Results of the application of this procedure are reported in Table 5.
The three break dates are located in April 1912, January 1941, and March 1970. Notice that the first two
breaks are quite close to those identified in the univariate analysis of structural breaks in volatility of
the GDP growth, while the third break is near the last structural volatility break in oil prices. Hence, we
identify four different periods in the relationship between oil price shocks and the US GDP growth.27

For each of the four periods, we repeat the analysis presented in Section 4.1. The number of lags
for each period has been selected according to different information criteria (they appear in brackets
in Table 5).

The first interval covers the period between January 1875 and April 1912. Thus, the imminent
beginning of World War I (WWI, henceforth) marks the end of this period. The sample begins just after
the panic of 1873, when the US was still facing its economic consequences. A few years later, the US
economy had to cope with the aftermath of the 1893 panic, while already in the 20th century, the US
economy faced WWI (1914–1918). Regarding oil prices, this period is characterized by the evolution
of the oil industry along with the exhaustion in production of key oil fields, at a time in which the
demand was strong.

26 This methodology has been used to test the effects of oil price shocks on GDP growth and CPI inflation for the G7 countries
in [4] and for the Spanish economy in [6].

27 For a detailed analysis of the dynamics of US GDP growth over these periods, see [19]. For the case of oil price evolution,
see [7,26].
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Table 5. Structural breaks in the VAR system (Qu and Perron methodology).

WDmax SupLR Seq(l + 1/l) TBi

0 vs. 1 0 vs. 2 0 vs. 3 l = 1 l = 2

979.130 a 979.130 a 1104.231 a 1159.779 a 156.685 a 64.157 a April 1912, January 1941, March 1970

Granger-Wald causality test

February 1875–April 1912 (6) January 1913.1–January 1941 (6) February 1941–March 1970 (5) April 1970–February 2016 (5)

∆OILP→ ∆GDP 0.481 0.339 0.400 0.100

∆GDP→ ∆OILP 0.251 0.272 0.000 0.497

Notes: a means values significant at 1% level. TBi denotes the date of a structural break. The null hypothesis for the Granger causality test is that ∆OILP does not cause ∆GDP or vice
versa. We show p-values for the Granger causality test. For each subperiod, we present in brackets the number of lags selected according to several information criteria.
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The second period starts in January 1913 and ends in the early 1940s. During that time, the US
economy was affected by some of the most influential economic events of the 20th century, such as
the Crash of 1929, with devastating economic effects during the next decade, and WWII (1939–1945).
Concerning the historical oil price shocks, this period was much influenced by the Great Depression,
with an associated decline in oil demand, and the introduction of state regulation of industry and
restrictions on competition. No Granger causality is identified from any of the two variables to the
other in either of the first two subperiods.

The third period runs from February 1941 to March 1970. In terms of the US economy dynamics,
this period is characterized by a post-war economic boom that lasted until the 1970s. Indeed, during
the 1950s, and especially the 1960s, the US experienced its longest, almost uninterrupted period of
economic expansion in history. Oil prices were quite stable during this period. OPEC was established in
1960 with five founding members. Throughout the post-WWII period, exporting countries experienced
an increasing demand for oil, and the volume of oil that Texas producers could produce was no longer
limited, but the power to control crude oil prices shifted from the US to OPEC. During this period of
economic boom, ∆GDP has a significant effect on ∆OILP.

Finally, the last period begins in the early 1970s and ends in February 2016. The 1970s were
characterized by the end of the Bretton Woods system and substantial oil price shocks, economic
growth became stagnant, and inflation grew. In the 1980s, these disequilibria were reversed, and the
US economy witnessed a reduction in the volatility of the business cycle. The last period of the sample
(from 1984 on) is called the Great Moderation. During this period, the US enjoyed long economic
expansions, interrupted only by three recessions, the last one being the Great Recession (2007–2009),
which was followed by a weak recovery. The evolution of oil prices during this period and its effect
on macroeconomic performance have been extensively studied in the literature. The US, as did most
industrialized economies, became heavily dependent on imported crude oil from the Middle East,
and the 1970s were a tumultuous decade in terms of oil market events.28 Other political events that
influenced oil prices took place during the rest of the period.29 During this final period, the effect of
∆OILP on ∆GDP is significant at 10%.

To sum up, the Granger causality between the two variables is significant only in two periods.
∆GDP has a significant effect on ∆OILP, on the one hand, in the February 1941–March 1970
sample, when the US economy experienced a huge economic boom, and, on the other, in the March
1970–February 2016 sample (in the opposite causality direction), when oil price shocks exerted
a significant influence on economic performance.

Figures 7–10 display IRFs in different regimes delimited by structural breaks. We observe that
∆OILP has a negative effect on ∆GDP in all periods except February 1941–March 1970. Regarding the
effect of the ∆GDP shock on ∆OILP, the sign changes, highlighting the positive influence in the last
period. Nevertheless, these effect are non significant for the most part of all sub-periods.

28 The Arab-Israel war in 1973, which followed the long-lasting Arab-Israeli conflict, and the Iranian revolution in 1978–1979
are a few examples.

29 Such as the Iran-Iraq war of 1980–1988, the Persian Gulf War of 1990–1991, the Venezuelan crisis of 2002, the Iraq War of
2003, or the Libyan uprising of 2011.
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Figure 7. IRF of February 1875–April 1912. Note: Confidence intervals at 90% of confidence level.
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Figure 8. IRF of January 1913–January 1941. Note: Confidence intervals at 90% of confidence level.
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Figure 9. IRF of February 1941–March 1970. Note: Confidence intervals at 90% of confidence level.
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Figure 10. IRF of April 1970–February 2016. Note: Confidence intervals at 90% of confidence level.

5. A Time-Varying GDP-Oil Price Model

In previous sections, we find ample evidence of instability and non-linearities in the relationship
between real GDP growth and oil price shocks. In this section, we use a more subtle and sophisticated
econometric tool, a time-varying structural VAR model, to further explore the relationship between
the two variables. Following [35], we consider the model

Yt = µt +
p

∑
i=1

Ψi,tYt−1 + εt, t = 1, 2, ..., T (10)
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where µt is a 2 × 1 vector of time-varying coefficients for the constant term; Ψi,t is a 2 × 2
matrix of time-varying coefficients, and εt contains heteroskedastic unobservable shocks with the
variance-covariance matrix Σt. After a triangular reduction of Σt, we obtain the following model:

yt = In ⊗ [1, y′t−1, ..., y′t−p]Ψt + Φ−1
t Σtut

ΦtΩtΦ′t = ΣtΣ′t
(11)

where Φt is a lower triangular matrix and Σt is a diagonal matrix.
The time-variant nature of the VAR model derives both from the coefficients and the

variance-covariance matrix of the innovations. Its estimation is based on a Markov chain Monte
Carlo algorithm with a Bayesian approach.30

The identification conditions of the model allow us to capture oil price shocks affecting GDP
growth, but these shocks are exogenous to GDP growth, as well as the reaction of oil prices to
GDP growth evolution. Thus, we focus on exogenous oil price shocks, which can be isolated in the
time-varying system and are more relevant considering the previous analysis. Figure 11 presents
the posterior mean of the time-varying standard deviation of oil price shocks. The post-1970s period
exhibits a substantially higher variance of oil price shocks than other periods. Although not our
primary concern, the time-varying standard deviation of GDP growth, too, reveals interesting results.
We can observe a secular decline in volatility and identify several periods delimited by WWII and the
Great Moderation.31
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Figure 11. Posterior means of the standard deviation of residuals.

More interestingly, the time-varying VAR approach allows us to calculate IRFs at different points
of time and assess different responses. The dates are not arbitrary, but capture major shocks behind
the largest movements in oil price markets, which could have exerted an influence on the economic
conditions regarding the relationship between oil prices and GDP growth in those dates. In particular,
we select the oil price downturns of April 2014, April 2008, January 1986, January 1991, and March
2008, ordered from the highest to the lowest decline (−91.1%, −65.1%, −51.4%, −48.0%, and −39.6%,

30 For technical details, see [35]. An adaptation of its Matlab code has been used to compute the estimates.
31 These results confirm those obtained by [19].
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respectively), and the increases that took place in January 1974, March 1990, February 1979, February
2009, and January 1999, from the highest to the lowest value (118.2%, 89.5%, 41.5%, 36.6%, and 35.1%,
respectively). They are displayed in Figure 12. In the following paragraphs, we describe the events
affecting world oil markets during these dates in chronological order.
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Figure 12. The five largest downturns and increases of real quarterly oil price.

The Arab oil-exporting nations’ embargo of 1973 against countries (in particular, the US and many
other developed countries) supporting Israel in the Yom Kippur War, at a time of rising demand and
decreasing OPEC production, caused oil prices to abruptly increase. Specifically, by the first quarter of
1974, the increase reached 118.2%.

From 1974 to 1978, crude oil prices were relatively flat, but the crises in Iran and Iraq in 1979 and
1980 led to a new round of increases. Indeed, the Iranian revolution was the cause of one of the highest
oil price rises, in spite of its relatively short duration. In the second quarter of 1979, the oil price jump
was 41.5%.

In 1986, there was a collapse in crude oil prices, which was due to the fact that the OPEC
cut output significantly to defend its official price in response to declining world oil demand and
increasing production in non-OPEC countries. In the first quarter of the year, the decrease in oil prices
reached 65.1%.

The Persian Gulf War also affected world oil markets. The Iraqi invasion of Kuwait in 1990 caused
a rapid oil price escalation. Indeed, in the third quarter of 1990, oil prices rose by 89.5%. However,
after two months of oil price increases, the United Nations approved the use of force against Iraq and
oil prices began falling. In the first quarter of 1991, oil prices diminished by 48%.



Econometrics 2016, 4, 41 22 of 28

In early 1999, oil prices began to grow, after the downward trend during the previous year, caused
by a decline in consumption in Asian economies and higher OPEC production. This rise in oil prices
was due to the reduction of OPEC production. This organization decided to cut production by about
three million barrels per day, and the increase in oil prices in the first quarter of 1999 was 35.1%.

In 2008, after the Great Recession began,32 falling petroleum demand, at a time when speculation
in the crude oil futures market was exceptionally strong, decreased oil prices. In the third quarter of
2008, this decrease was 39.6%, while in the fourth quarter, the decline deepened to 91.1%. Nevertheless,
an OPEC production cut in early 2009, some tensions in the Gaza Strip, and a rising demand from
Asian countries increased oil prices steadily. In the second quarter of 2009, oil prices peaked at 36.6%.

The oil price decline in 2014 came after a period of stability. This drop was due to several factors.
There was a slowdown in global economic activity. Indeed, the same countries that pushed up the price
of oil in 2008 helped bring oil prices down in 2014. The US and Canada increased their production of oil,
cutting their oil imports sharply, which put further downward pressure on world prices. Furthermore,
Saudi Arabia decided to keep its production stable in order not to sacrifice their market share and
restore the price. The oil price decline in the fourth quarter of 2014 was −91.1%.33

Results of impulse-response analysis over time are displayed in Figures 13 and 14. It should be
noted that at selected dates (either increases or decreases), we introduce a normalized shock in the
model (always positive) to see to what extent the conditions of the economy could have changed over
time. Oil price growth shocks have temporary effects on GDP growth. At the time of large oil price
increases, we observe a GDP decline over the first three quarters, while at the time of large oil price
decreases, the effect on GDP is not so clear. However, confidence intervals are quite large during
the first two years and a half. Figures 15 and 16 compare the magnitude of GDP growth changes in
different periods. We observe that all the oil price increase dates considered have a similar negative
effect on GDP growth, except the one in February 2009. We find the same pattern for the effect of oil
price decreases. The impact of an oil price shock on GDP growth has declined over time, although
there is more dispersion among different episodes in this case. Overall, oil price elasticity with respect
to GDP has declined.34 Finally, Figure 17 compares the average effects at the time of large oil price
increases and decreases. We observe that the negative effect of oil price shocks on GDP growth is
greater at the time of large oil price increases, which confirms previous evidence of nonlinearity in the
relationship [37].

32 The Great Recession has been the worst recession in the US economy since the Great Moderation. For an analysis of the
Great Moderation in the face of the Great Recession, see [29].

33 See [36] for a thorough analysis of this episode.
34 These results would be in line with [3], who find a changing relationship over time, such that the economy is more resilient

to an oil price shock today than in the past.
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Figure 13. IRFs to oil price shocks at the time of the five largest increases of oil prices. Note: Confidence intervals at 90% of confidence level.
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Figure 14. IRFs to oil price shocks at the time of the five largest decreases of oil prices. Note: Confidence intervals at 90% of confidence level.
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Figure 15. IRFs of ∆GDP to ∆OILP shocks at the time of the five largest increases of oil prices.
Note: Confidence intervals at 90% of confidence level.
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Figure 16. IRFs of ∆GDP to ∆OILP shocks at the time of the five largest decreases of oil prices.
Note: Confidence intervals at 90% of confidence level.
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Figure 17. Comparison of the effects of ∆GDP to ∆OILP shocks at the time of the five largest increases
and decreases of oil prices.

6. Conclusions

This study analyzes the relationship between oil prices and GDP from a long-term perspective,
from the last third of the 19th century, when crude oil started to be commercially produced in
Pennsylvania, to the present. Using different econometric tools, we analyze the individual dynamics
of the series, as well as their interaction. The univariate study of the series shows that none of
them presents structural breaks in mean. However, this apparent tranquility hides a considerable,
and divergent, volatility. While real GDP growth has evolved into a secular volatility reduction,
the variability of oil prices has substantially changed over the sample period.

Considering the whole sample, the evidence of the influence between GDP and oil prices
is extremely weak, and not statistically significant, which could be due to the fact that there are
instabilities in the relationship masking it. Indeed, over such a long period there have been important
changes in the demand and supply for oil that could lead to identify some structural breaks. Therefore,
we use several econometric techniques to detect and isolate different episodes, finding three break
dates which are located in 1912, 1941, and 1970. Only this last period has been thoroughly studied in
the literature.

We find that the period of the strongest relationship, characterized by a negative effect of oil price
increases on GDP growth, occurs after the 1970s. However, in this last period, a time-varying model
shows a decline in the impact of oil price shocks on GDP growth since then. Furthermore, we identify
an asymmetric effect between large oil price increases and decreases. We notice that the negative effect
of oil price shocks on GDP growth is greater at the time of large oil price increases. We also observe
that the response of GDP to oil is significant over the periods 1961–1971 and 1937–1946.

Overall, the story of the relationship between GDP and oil prices is relatively turbulent.
Although our findings point to a negative influence from oil price increases on economic growth,
this phenomenon is far from being stable and has gone through different phases over time. Further
research is necessary to fathom this complex relationship.
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