000060664 001__ 60664
000060664 005__ 20200221144317.0
000060664 0247_ $$2doi$$a10.1016/j.measurement.2016.03.059
000060664 0248_ $$2sideral$$a94319
000060664 037__ $$aART-2016-94319
000060664 041__ $$aeng
000060664 100__ $$0(orcid)0000-0002-3945-2595$$aConte, J.$$uUniversidad de Zaragoza
000060664 245__ $$aModelling, kinematic parameter identification and sensitivity analysis of a Laser Tracker having the beam source in the rotating head
000060664 260__ $$c2016
000060664 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060664 5203_ $$aThis paper presents a new kinematic model, a parameter identification procedure and a sensitivity analysis of a laser tracker having the beam source in the rotating head. This model obtains the kinematic parameters by the coordinate transformation between successive reference systems following the Denavit–Hartenberg method. One of the disadvantages of laser tracker systems is that the end-user cannot know when the laser tracker is working in a suitable way or when it needs an error correction. The ASME B89.4.19 Standard provides some ranging tests to evaluate the laser tracker performance but these tests take a lot of time and require specialized equipment. Another problem is that the end-user cannot apply the manufacturer’s model because he cannot measure physical errors. In this paper, first the laser tracker kinematic model has been developed and validated with a generator of synthetic measurements using different meshes with synthetic reflector coordinates and known error parameters. Second, the laser tracker has been calibrated with experimental data using the measurements obtained by a coordinate measuring machine as nominal values for different strategies, increasing considerably the laser tracker accuracy. Finally, a sensitivity analysis of the length measurement system tests is presented to recommend the more suitable positions to perform the calibration procedure.
000060664 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000060664 590__ $$a2.359$$b2016
000060664 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b19 / 85 = 0.224$$c2016$$dQ1$$eT1
000060664 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 58 = 0.259$$c2016$$dQ2$$eT1
000060664 592__ $$a0.726$$b2016
000060664 593__ $$aEducation$$c2016$$dQ1
000060664 593__ $$aInstrumentation$$c2016$$dQ1
000060664 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000060664 593__ $$aStatistics and Probability$$c2016$$dQ2
000060664 593__ $$aCondensed Matter Physics$$c2016$$dQ2
000060664 593__ $$aApplied Mathematics$$c2016$$dQ2
000060664 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000060664 700__ $$0(orcid)0000-0001-7316-0003$$aSantolaria, J.$$uUniversidad de Zaragoza
000060664 700__ $$0(orcid)0000-0003-4360-080X$$aMajarena, A.C.
000060664 700__ $$0(orcid)0000-0002-4917-8550$$aAcero, R.
000060664 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000060664 773__ $$g89 (2016), 261-272$$pMeasurement$$tMEASUREMENT$$x0263-2241
000060664 8564_ $$s1024078$$uhttps://zaguan.unizar.es/record/60664/files/texto_completo.pdf$$yPostprint
000060664 8564_ $$s46231$$uhttps://zaguan.unizar.es/record/60664/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000060664 909CO $$ooai:zaguan.unizar.es:60664$$particulos$$pdriver
000060664 951__ $$a2020-02-21-13:39:22
000060664 980__ $$aARTICLE