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Abstract. In a recent paper C. Miguel proved that the diameter of the
commuting graph of the matrix ring Mn(R) is equal to 4 if either n = 3
or n ≥ 5. But the case n = 4 remained open, since the diameter could be
4 or 5. In this work we close the problem showing that also in this case
the diameter is 4.
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1. Introduction

For a ring R, the commuting graph of R, denoted by Γ(R), is a simple
undirected graph whose vertices are all non-central elements of R, and two
distinct vertices a and b are adjacent if and only if ab = ba. The commuting
graph was introduced in [1] and has been extensively studied in recent years
by several authors [2–7,12,13].

In a graph G, a path P is a sequence of distinct vertices (v1, . . . , vk) such
that every two consecutive vertices are adjacent. The number k − 1 is called
the length of P. For two vertices u and v in a graph G, the distance between
u and v, denoted by d(u, v), is the length of the shortest path between u and
v, if such a path exists. Otherwise, we define d(u, v) = ∞. The diameter of a
graph G is defined

diam(G) = sup{d(u, v) : u and v are vertices of G}.
A graph G is called connected if there exists a path between every two distinct
vertices of G, equivalently, diam(G) < ∞.

Most research has been conducted regarding the diameter of commuting
graphs of certain classes of rings [3, 7–10]. Here, we deal with the full matrix
rings over fields. Let F be an arbitrary field. We known that Γ(M2(F)) is never
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connected. It was proved in [4] that Γ(Mn(F)) is connected if and only if every
field extension of F of degree n contains a proper intermediate field. Moreover,
it was shown in [3] that if Γ(Mn(F)) is connected, then 4 ≤ diam(Γ(Mn(F))) ≤ 6
and it is conjectured that diam(Γ(Mn(F))) ≤ 5. Let Q and R be the fields of
rational and real numbers, respectively. We know from [3, 4] that Γ(Mn(Q))
is disconnected for any n ≥ 2 and diam(Γ(Mn(F))) = 4 for every algebraically
closed field F and n ≥ 3. Quite recently, C. Miguel [11] has verified this
conjecture for R, proving the following result.

Theorem 1.1. Let n ≥ 3 be any integer. Then, diam(Γ(Mn(R))) = 4 for
n ̸= 4 and 4 ≤ diam(Γ(M4(R))) ≤ 5.

Unfortunately, this result left open the question wether diam(Γ(M4(R))) is
4 or 5. In this paper we solve this open problem. Namely we will prove the
following result.

Theorem 1.2. The diameter of Γ(M4(R)) is equal to 4.

2. On the diameter of Γ(Mn(R)

Before we proceed, let us introduce some notation. If a, b ∈ R, we define the
matrix Aa,b as

Aa,b :=

(
a b
−b a

)
.

Now, given two matrices X,Y ∈ Mn(R), we define

X ⊕ Y :=

(
X 0
0 Y

)
∈ M2n(R).

Finally, two matrices A,B ∈ Mn(R) are called similar and are written as A ∼ B
if there exists an invertible matrix P such that P−1AP = B.

The proof of Theorem 1.1 in [11] relies on the possible forms of the Jordan
canonical form of a real matrix. In particular, it is proved that the distance
between two matrices A,B ∈ M4(R) is at most 4 unless we are in the situation
where A and B have no real eigenvalues and only one of them is diagonalizable
over C. In other words, the case when

A ∼
(
Aa,b 0
0 Ac,d

)
, B ∼

(
As,t I2
0 As,t

)
.

The following result will provide us the main tool to prove that the distance
between A and B is at most 4 also in the previous setting. It is true for any
division ring D. In what follows, given a matrix A, LA and RA will denote the
left and right multiplication by A, respectively.

Proposition 2.1. Let A,B ∈ Mn(D) matrices such that A2 = A and B2 = 0.
Then, there exists a non-scalar matrix commuting with both A and B.
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Proof. Since A2 = A; i.e., A(I − A) = (I − A)A = 0, then one of nullity A or
nullity (I − A) is at least n/2. Since I − A is also idempotent and a matrix
commutes with A if and only if it commutes with I − A we can assume that
nullity A ≥ n/2. Moreover, since B2 = 0, it follows that nullity B ≥ n/2.

Now, if KerLA ∩KerLB ̸= {0} and KerRA ∩KerRB ̸= {0} we can apply [3,
Lemma 4] and the result follows. Hence, we assume that KerLA∩KerLB = {0},
since in the case KerRA ∩ KerRB = {0} we can consider the transposes of A
and B instead of A and B, respectively. Note that, in these conditions, n = 2r
and the nullities of A and B are equal to r.

Let B1 and B2 be bases for KerLA and KerLB , respectively, and consider
B = B1 ∪ B2 a basis for Dn. Since A is idempotent, it follows that Dn =
KerLA ⊕ ImLA.

We want to find the representation matrix of LA in the basis B. To do so,
if v ∈ B2, we write v = a + a′ with a ∈ KerLA and a′ ∈ ImLA. If a′ = Aa′′

for some a′′ ∈ Dn, then Av = Aa + Aa′ = 0 + A(Aa′′) = Aa′′ = a′ = −a + v.
Since Av = 0 for every v ∈ B1, we get that the representation matrix of LA in
the basis B is of the form (

0 A′

0 Ir

)
,

with A′ ∈ Mr(D).
Now, we want to find the representation matrix of LB in the basis B. Clearly,

Bv = 0 for every v ∈ B2. Let w ∈ B1. Then, Bw = w1 + w2 with w1 ∈ KerLA

and so w2 ∈ KerLB . Hence, 0 = B2w = Bw1 and w1 ∈ KerLA ∩KerLB = {0}.
Thus, the representation matrix of LB in the basis B is of the form

(
0 0
B′ 0

)
,

with B′ ∈ Mr(D).
As a consequence of the previous work we can find a regular matrix P such

that:

PAP−1 =

(
0 A′

0 Ir

)
, PBP−1 =

(
0 0
B′ 0

)
.

Now, if A′B′ ̸= B′A′, then P−1(A′B′ ⊕B′A′)P is a non-scalar matrix com-
muting with A and B. If A′ and B′ commute, we can find a non-scalar matrix
S ∈ Mr(D) commuting with both A′ and B′. Therefore P−1(S⊕S)P commutes
with both A and B and the proof is complete. !

We are now in the condition to prove the main result of the paper.

Theorem 2.2. The diameter of Γ(M4(R)) is four.

Proof. In [11] it was proved that d(A,B) ≤ 4 for every A,B ∈ M4(R), unless

A ∼
(
Aa,b 0
0 Ac,d

)
and B ∼

(
As,t I2
0 As,t

)
,
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for some real numbers a, b, c, d, s, t. Hence, we only focus on this case. Assume
that

A = P−1

(
Aa,b 0
0 Ac,d

)
P and B = Q−1

(
As,t I2
0 As,t

)
Q,

for some invertible matrices P and Q. Let

M = P−1

(
0 0
0 I2

)
P and N = Q−1

(
0 I2
0 0

)
Q.

It is straightforwardly checked that M2 = M , N2 = 0, AM = MA, and
BN = NB. Furthermore, Proposition 2.1 implies that there exists a non-
scalar matrix X that commutes both with M and N .

Thus, we have found a path (A,M,X,N,B) of length 4 connecting A and
B and the result follows. !
Corollary 2.3. For every n ≥ 3, diam(Γ(M4(R))) = 4.
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