ON THE DIAMETER OF THE COMMUTING GRAPH OF THE FULL MATRIX RING OVER THE REAL NUMBERS

J. M. GRAU, A. M. OLLER-MARCÉN* AND C. TASIS

(Communicated by Ebadollah S. Mahmoodian)

Abstract

In a recent paper C. Miguel proved that the diameter of the commuting graph of the matrix ring $\mathrm{M}_{n}(\mathbb{R})$ is equal to 4 if either $n=3$ or $n \geq 5$. But the case $n=4$ remained open, since the diameter could be 4 or 5 . In this work we close the problem showing that also in this case the diameter is 4 . Keywords: Commuting graph, diameter, idempotent matrix. MSC(2010): Primary: 05C50; Secondary: 15A27.

1. Introduction

For a ring R, the commuting graph of R, denoted by $\Gamma(R)$, is a simple undirected graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if $a b=b a$. The commuting graph was introduced in [1] and has been extensively studied in recent years by several authors [2-7,12, 13].

In a graph G, a path \mathcal{P} is a sequence of distinct vertices $\left(v_{1}, \ldots, v_{k}\right)$ such that every two consecutive vertices are adjacent. The number $k-1$ is called the length of \mathcal{P}. For two vertices u and v in a graph G, the distance between u and v, denoted by $d(u, v)$, is the length of the shortest path between u and v, if such a path exists. Otherwise, we define $d(u, v)=\infty$. The diameter of a graph G is defined

$$
\operatorname{diam}(G)=\sup \{d(u, v): u \text { and } v \text { are vertices of } G\}
$$

A graph G is called connected if there exists a path between every two distinct vertices of G, equivalently, $\operatorname{diam}(G)<\infty$.

Most research has been conducted regarding the diameter of commuting graphs of certain classes of rings [3,7-10]. Here, we deal with the full matrix rings over fields. Let \mathbb{F} be an arbitrary field. We known that $\Gamma\left(\mathrm{M}_{2}(\mathbb{F})\right)$ is never

[^0]connected. It was proved in [4] that $\Gamma\left(\mathrm{M}_{n}(\mathbb{F})\right)$ is connected if and only if every field extension of \mathbb{F} of degree n contains a proper intermediate field. Moreover, it was shown in $[3]$ that if $\Gamma\left(\mathrm{M}_{n}(\mathbb{F})\right)$ is connected, then $4 \leq \operatorname{diam}\left(\Gamma\left(\mathrm{M}_{n}(\mathbb{F})\right)\right) \leq 6$ and it is conjectured that $\operatorname{diam}\left(\Gamma\left(\mathrm{M}_{n}(\mathbb{F})\right)\right) \leq 5$. Let \mathbb{Q} and \mathbb{R} be the fields of rational and real numbers, respectively. We know from $[3,4]$ that $\Gamma\left(\mathrm{M}_{n}(\mathbb{Q})\right)$ is disconnected for any $n \geq 2$ and $\operatorname{diam}\left(\Gamma\left(\mathrm{M}_{n}(\mathbb{F})\right)\right)=4$ for every algebraically closed field \mathbb{F} and $n \geq 3$. Quite recently, C. Miguel [11] has verified this conjecture for \mathbb{R}, proving the following result.

Theorem 1.1. Let $n \geq 3$ be any integer. Then, $\operatorname{diam}\left(\Gamma\left(\mathrm{M}_{n}(\mathbb{R})\right)\right)=4$ for $n \neq 4$ and $4 \leq \operatorname{diam}\left(\Gamma\left(\mathrm{M}_{4}(\mathbb{R})\right)\right) \leq 5$.

Unfortunately, this result left open the question wether $\operatorname{diam}\left(\Gamma\left(\mathrm{M}_{4}(\mathbb{R})\right)\right)$ is 4 or 5 . In this paper we solve this open problem. Namely we will prove the following result.

Theorem 1.2. The diameter of $\Gamma\left(\mathrm{M}_{4}(\mathbb{R})\right)$ is equal to 4 .

2. On the diameter of $\Gamma\left(\mathrm{M}_{n}(\mathbb{R})\right.$

Before we proceed, let us introduce some notation. If $a, b \in \mathbb{R}$, we define the matrix $A_{a, b}$ as

$$
A_{a, b}:=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Now, given two matrices $X, Y \in M_{n}(\mathbb{R})$, we define

$$
X \oplus Y:=\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right) \in \mathrm{M}_{2 n}(\mathbb{R})
$$

Finally, two matrices $A, B \in \mathrm{M}_{n}(\mathbb{R})$ are called similar and are written as $A \sim B$ if there exists an invertible matrix P such that $P^{-1} A P=B$.

The proof of Theorem 1.1 in [11] relies on the possible forms of the Jordan canonical form of a real matrix. In particular, it is proved that the distance between two matrices $A, B \in \mathrm{M}_{4}(\mathbb{R})$ is at most 4 unless we are in the situation where A and B have no real eigenvalues and only one of them is diagonalizable over \mathbb{C}. In other words, the case when

$$
A \sim\left(\begin{array}{cc}
A_{a, b} & 0 \\
0 & A_{c, d}
\end{array}\right), \quad B \sim\left(\begin{array}{cc}
A_{s, t} & I_{2} \\
0 & A_{s, t}
\end{array}\right) .
$$

The following result will provide us the main tool to prove that the distance between A and B is at most 4 also in the previous setting. It is true for any division ring D. In what follows, given a matrix A, L_{A} and R_{A} will denote the left and right multiplication by A, respectively.
Proposition 2.1. Let $A, B \in \mathrm{M}_{n}(D)$ matrices such that $A^{2}=A$ and $B^{2}=0$. Then, there exists a non-scalar matrix commuting with both A and B.

Proof. Since $A^{2}=A$; i.e., $A(I-A)=(I-A) A=0$, then one of nullity A or nullity $(I-A)$ is at least $n / 2$. Since $I-A$ is also idempotent and a matrix commutes with A if and only if it commutes with $I-A$ we can assume that nullity $A \geq n / 2$. Moreover, since $B^{2}=0$, it follows that nullity $B \geq n / 2$.

Now, if $\operatorname{Ker} L_{A} \cap \operatorname{Ker} L_{B} \neq\{0\}$ and $\operatorname{Ker} R_{A} \cap \operatorname{Ker} R_{B} \neq\{0\}$ we can apply [3, Lemma 4] and the result follows. Hence, we assume that $\operatorname{Ker} L_{A} \cap \operatorname{Ker} L_{B}=\{0\}$, since in the case $\operatorname{Ker} R_{A} \cap \operatorname{Ker} R_{B}=\{0\}$ we can consider the transposes of A and B instead of A and B, respectively. Note that, in these conditions, $n=2 r$ and the nullities of A and B are equal to r.

Let \mathcal{B}_{1} and \mathcal{B}_{2} be bases for $\operatorname{Ker} L_{A}$ and $\operatorname{Ker} L_{B}$, respectively, and consider $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ a basis for D^{n}. Since A is idempotent, it follows that $D^{n}=$ $\operatorname{Ker} L_{A} \oplus \operatorname{Im} L_{A}$.

We want to find the representation matrix of L_{A} in the basis \mathcal{B}. To do so, if $v \in \mathcal{B}_{2}$, we write $v=a+a^{\prime}$ with $a \in \operatorname{Ker} L_{A}$ and $a^{\prime} \in \operatorname{Im} L_{A}$. If $a^{\prime}=A a^{\prime \prime}$ for some $a^{\prime \prime} \in D^{n}$, then $A v=A a+A a^{\prime}=0+A\left(A a^{\prime \prime}\right)=A a^{\prime \prime}=a^{\prime}=-a+v$. Since $A v=0$ for every $v \in \mathcal{B}_{1}$, we get that the representation matrix of L_{A} in the basis \mathcal{B} is of the form

$$
\left(\begin{array}{cc}
0 & A^{\prime} \\
0 & I_{r}
\end{array}\right)
$$

with $A^{\prime} \in \mathrm{M}_{r}(D)$.
Now, we want to find the representation matrix of L_{B} in the basis \mathcal{B}. Clearly, $B v=0$ for every $v \in \mathcal{B}_{2}$. Let $w \in \mathcal{B}_{1}$. Then, $B w=w_{1}+w_{2}$ with $w_{1} \in \operatorname{Ker} L_{A}$ and so $w_{2} \in \operatorname{Ker} L_{B}$. Hence, $0=B^{2} w=B w_{1}$ and $w_{1} \in \operatorname{Ker} L_{A} \cap \operatorname{Ker} L_{B}=\{0\}$. Thus, the representation matrix of L_{B} in the basis \mathcal{B} is of the form

$$
\left(\begin{array}{cc}
0 & 0 \\
B^{\prime} & 0
\end{array}\right)
$$

with $B^{\prime} \in \mathrm{M}_{r}(D)$.
As a consequence of the previous work we can find a regular matrix P such that:

$$
P A P^{-1}=\left(\begin{array}{cc}
0 & A^{\prime} \\
0 & I_{r}
\end{array}\right), \quad P B P^{-1}=\left(\begin{array}{cc}
0 & 0 \\
B^{\prime} & 0
\end{array}\right)
$$

Now, if $A^{\prime} B^{\prime} \neq B^{\prime} A^{\prime}$, then $P^{-1}\left(A^{\prime} B^{\prime} \oplus B^{\prime} A^{\prime}\right) P$ is a non-scalar matrix commuting with A and B. If A^{\prime} and B^{\prime} commute, we can find a non-scalar matrix $S \in \mathrm{M}_{r}(D)$ commuting with both A^{\prime} and B^{\prime}. Therefore $P^{-1}(S \oplus S) P$ commutes with both A and B and the proof is complete.

We are now in the condition to prove the main result of the paper.
Theorem 2.2. The diameter of $\Gamma\left(\mathrm{M}_{4}(\mathbb{R})\right)$ is four.
Proof. In [11] it was proved that $d(A, B) \leq 4$ for every $A, B \in \mathrm{M}_{4}(\mathbb{R})$, unless

$$
A \sim\left(\begin{array}{cc}
A_{a, b} & 0 \\
0 & A_{c, d}
\end{array}\right) \text { and } B \sim\left(\begin{array}{cc}
A_{s, t} & I_{2} \\
0 & A_{s, t}
\end{array}\right)
$$

for some real numbers a, b, c, d, s, t. Hence, we only focus on this case. Assume that

$$
A=P^{-1}\left(\begin{array}{cc}
A_{a, b} & 0 \\
0 & A_{c, d}
\end{array}\right) P \text { and } B=Q^{-1}\left(\begin{array}{cc}
A_{s, t} & I_{2} \\
0 & A_{s, t}
\end{array}\right) Q
$$

for some invertible matrices P and Q. Let

$$
M=P^{-1}\left(\begin{array}{cc}
0 & 0 \\
0 & I_{2}
\end{array}\right) P \text { and } N=Q^{-1}\left(\begin{array}{cc}
0 & I_{2} \\
0 & 0
\end{array}\right) Q
$$

It is straightforwardly checked that $M^{2}=M, N^{2}=0, A M=M A$, and $B N=N B$. Furthermore, Proposition 2.1 implies that there exists a nonscalar matrix X that commutes both with M and N.

Thus, we have found a path (A, M, X, N, B) of length 4 connecting A and B and the result follows.

Corollary 2.3. For every $n \geq 3$, $\operatorname{diam}\left(\Gamma\left(\mathrm{M}_{4}(\mathbb{R})\right)\right)=4$.

Acknowledgements

We want to thank the anonymous referee for his useful comments that helped to improve the paper, in particular its introduction.

References

[1] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra Appl. 390 (2004) 345-355.
[2] S. Akbari, D. Kiani and F. Ramezani, Commuting graphs of group algebras, Comm. Algebra 38 (2010), no. 9, 3532-3538.
[3] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, On the diameters of commuting graphs, Linear Algebra Appl. 418 (2006), no. 1, 161-176.
[4] S. Akbari, H. Bidkhori and A. Mohammadian, Commuting graphs of matrix algebras, Comm. Algebra 36 (2008), no. 11, 4020-4031.
[5] S. Akbari and P. Raja, Commuting graphs of some subsets in simple rings, Linear Algebra Appl. 416 (2006) 1038-1047.
[6] J. Araujo, M. Kinyon and J. Konieczny, Minimal paths in the commuting graphs of semigroups, European J. Combin. 32 (2011), no. 2, 178-197.
[7] G. Dolinar, B. Kuzma and P. Oblak, On maximal distances in a commuting graph, Electron. J. Linear Algebra 23 (2012) 243-256.
[8] D. Dolžan, D. Kokol Bukovšek and P. Oblak, Diameters of commuting graphs of matrices over semirings, Semigroup Forum 84 (2012), no. 2, 365-373.
[9] D. Dolžan and P. Oblak, Commuting graphs of matrices over semirings, Linear Algebra Appl. 435 (2011), no. 7, 1657-1665.
[10] M. Giudici and A. Pope, The diameters of commuting graphs of linear groups and matrix rings over the integers modulo m, Australas. J. Combin. 48 (2010) 221-230.
[11] C. Miguel, A note on a conjecture about commuting graphs, Linear Algebra Appl. 438 (2013), no. 12, 4750-4756.
[12] A. Mohammadian, On commuting graphs of finite matrix rings, Comm. Algebra 38 (2010), no. 3, 988-994.
[13] G. R. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl. 10 (2011), no. 3, 521-527.
(Jose Maria Grau) Departamento de Matemáticas, Universidad de Oviedo. Avenida Calvo Sotelo s/n, 33007 Oviedo, Spain.

E-mail address: grau@uniovi.es
(Antonio M. Oller-Marcén) Centro Universitario de la Defensa de Zaragoza. Carretera de Huesca s/n, 50090 Zaragoza, Spain.

E-mail address: oller@unizar.es
(Carmen Tasis) Departamento de Matemáticas, Universidad de Oviedo. Avenida Calvo Sotelo s/n, 33007 Oviedo, Spain.

E-mail address: ctasis@uniovi.es

[^0]: Article electronically published on February 22, 2017.
 Received: 9 June 2015, Accepted: 3 November 2015.

 * Corresponding author.

