000060699 001__ 60699
000060699 005__ 20190709135444.0
000060699 0247_ $$2doi$$a10.1103/PhysRevB.95.064423
000060699 0248_ $$2sideral$$a98156
000060699 037__ $$aART-2017-98156
000060699 041__ $$aeng
000060699 100__ $$aJenkins, M.D.
000060699 245__ $$aCoherent manipulation of three-qubit states in a molecular single-ion magnet
000060699 260__ $$c2017
000060699 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060699 5203_ $$aWe study the quantum spin dynamics of nearly isotropic Gd3+ ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3+ derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2S+1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3+ ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d=8-level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.
000060699 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E98-MOLCHIP$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2014-52758-P$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-64486-R$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2015-70856-P$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-56143-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2015-68204-R
000060699 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000060699 592__ $$a1.604$$b2017
000060699 593__ $$aElectronic, Optical and Magnetic Materials$$c2017$$dQ1
000060699 593__ $$aCondensed Matter Physics$$c2017$$dQ1
000060699 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000060699 700__ $$aDuan, Y.
000060699 700__ $$aDiosdado, B.
000060699 700__ $$aGarcía-Ripoll, J.J.
000060699 700__ $$aGaita-Ariño, A.
000060699 700__ $$aGiménez-Saiz, C.
000060699 700__ $$0(orcid)0000-0003-3449-4929$$aAlonso, P.J.$$uUniversidad de Zaragoza
000060699 700__ $$aCoronado, E.
000060699 700__ $$0(orcid)0000-0001-6284-0521$$aLuis, F.$$uUniversidad de Zaragoza
000060699 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000060699 773__ $$g95, 6 (2017), 064423 [8 pp.]$$pPhys. Rev. B, Condens. matter mater. phys.$$tPhysical Review B. Condensed Matter and Materials Physics$$x1098-0121
000060699 8564_ $$s2689277$$uhttps://zaguan.unizar.es/record/60699/files/texto_completo.pdf$$yVersión publicada
000060699 8564_ $$s134996$$uhttps://zaguan.unizar.es/record/60699/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000060699 909CO $$ooai:zaguan.unizar.es:60699$$particulos$$pdriver
000060699 951__ $$a2019-07-09-11:37:39
000060699 980__ $$aARTICLE