000060707 001__ 60707
000060707 005__ 20210208180158.0
000060707 0247_ $$2doi$$a10.1016/j.advwatres.2015.10.013
000060707 0248_ $$2sideral$$a93196
000060707 037__ $$aART-2016-93196
000060707 041__ $$aeng
000060707 100__ $$0(orcid)0000-0002-2985-1023$$aJuez, C.
000060707 245__ $$aA model based on Hirano-Exner equations for two-dimensional transient flows over heterogeneous erodible beds
000060707 260__ $$c2016
000060707 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060707 5203_ $$aIn order to study the morphological evolution of river beds composed of heterogeneous material, the interaction among the different grain sizes must be taken into account. In this paper, these equations are combined with the two-dimensional shallow water equations to describe the flow field. The resulting system of equations can be solved in two ways: (i) in a coupled way, solving flow and sediment equations simultaneously at a given time-step or (ii) in an uncoupled manner by first solving the flow field and using the magnitudes obtained at each time-step to update the channel morphology (bed and surface composition). The coupled strategy is preferable when dealing with strong and quick interactions between the flow field, the bed evolution and the different particle sizes present on the bed surface. A number of numerical difficulties arise from solving the fully coupled system of equations. These problems are reduced by means of a weakly-coupled strategy to numerically estimate the wave celerities containing the information of the bed and the grain sizes present on the bed. Hence, a two-dimensional numerical scheme able to simulate in a self-stable way the unsteady morphological evolution of channels formed by cohesionless grain size mixtures is presented. The coupling technique is simplified without decreasing the number of waves involved in the numerical scheme but by simplifying their definitions. The numerical results are satisfactorily tested with synthetic cases and against experimental data.
000060707 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CGL2011-28590
000060707 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000060707 590__ $$a3.221$$b2016
000060707 591__ $$aWATER RESOURCES$$b7 / 88 = 0.08$$c2016$$dQ1$$eT1
000060707 592__ $$a2.202$$b2016
000060707 593__ $$aWater Science and Technology$$c2016$$dQ1
000060707 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000060707 700__ $$aFerrer-Boix, C.
000060707 700__ $$0(orcid)0000-0002-1386-5543$$aMurillo, J.$$uUniversidad de Zaragoza
000060707 700__ $$aHassan, M.A.
000060707 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000060707 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000060707 773__ $$g87 (2016), 1-18$$pAdv. water resour.$$tAdvances in Water Resources$$x0309-1708
000060707 8564_ $$s920196$$uhttps://zaguan.unizar.es/record/60707/files/texto_completo.pdf$$yPostprint
000060707 8564_ $$s68175$$uhttps://zaguan.unizar.es/record/60707/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000060707 909CO $$ooai:zaguan.unizar.es:60707$$particulos$$pdriver
000060707 951__ $$a2021-02-08-17:41:54
000060707 980__ $$aARTICLE