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Abstract The main contribution of this work is a test to check the independence

between nonhomogeneous Poisson processes. It is developed for the three-process

case, but it can be generalized to any number of processes. Moreover, it can be applied

not only to Poisson processes but to any point process which can be simulated. It

is a Monte Carlo test if the parameters describing the processes are known, and a

parametric bootstrap test in the most usual case of unknown parameters. A simulation

study shows that the size of the test is close to the nominal one. The power is also

analyzed, considering two approaches for generating dependent nonhomogeneous

processes and different levels of dependence, with satisfactory results in all the cases.

This test is a valuable tool in the validation analysis of a common Poisson shock

process. For the bivariate case, this process can be decomposed into three indepen-
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dent Poisson processes, and the independence of the three marginal processes has to

be checked for validating the model. As an application, the modeling of the occur-

rence process of extreme heat events in daily maximum and minimum temperatures

is described.

Keywords Parametric bootstrap · Independence test · Point process · Bivariate

Poisson process · Extreme event

1 Introduction

This work aims to develop a test to check the independence between nonhomo-

geneous point processes, in particular, nonhomogeneous Poisson processes (NH-

PPs). As far as we know, there does not exist a test of independence between one-

dimensional NHPPs. Tests of independence between point processes have been stud-

ied in the framework of marked spatial point processes, see Schlather et al. (2004),

Eckel et al. (2007), Guan and Afshartous (2007) and Comas et al. (2010). There also

exist quite a few functions aiming to quantify the dependence between spatial point

processes, such as the ones suggested by Diggle (1983) and van Lieshout and Bad-

deley (1999), and some of them are also used in time point processes (Doss 1989).

Some of the previous independence tests can be adapted to time point processes, but

little work has been done with nonhomogeneous (NH) processes. Cuzick and Ed-

wards (1990) suggested a test to detect clustering, and Allard et al. (2001) a test

of local independence based on approximate isotropy for NH spatial point processes.

Baddeley et al. (2000) and Marcon and Puech (2009) developed a generalization of

the Ripley’s K function to an inhomogeneous spatial setting.
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The need of developing this test stemmed from a real problem, the modelling

of extreme heat events. A bivariate model is needed in order to model the distribu-

tion of the occurrence of extremes in maximum and minimum daily temperatures,

accounting for the dependence between the two signals. A reasonable model is a bi-

variate nonhomogenoeus common Poisson shock process, which can be described by

three independent NHPPs. The proposed test is necessary to check the independence

between the three marginal processes.

The interest of characterizing extreme heat events in a bivariate framework is

clear. First, because heat waves are known to produce serious impacts on regional

economies, ecosystems and human health. Secondly, because Palecki et al. (2001),

Grintzevitch (2006) and other studies about the effect of extreme heat on mortality

rates found that both maximum and minimum temperatures have an impact on human

health. As a consequence, an increasing number of heat wave definitions include

information on both temperatures, see for example Plummer et al. (1999), or the

definition of Excessive Heat Watch by the U.S. National Weather Service.

Section 2 describes the proposed test to check independence. In Section 3, a sim-

ulation study of the size and the power of this test is carried out. Section 4 shows

an application, the modeling process of the occurrence of the extreme heat events in

Zaragoza (Spain). The most relevant conclusions are summarized in Section 5.
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2 Methodology

2.1 A test to check the independence of several nonhomogeneous Poisson processes

One might think that a way to simplify the problem of testing the independence of NH

processes is to transform them into homogeneous ones as a previous step. However,

it is noteworthy that with conditional intensities λ ∗(t), this is not a feasible approach

since the dependence structure disappears under simultaneous random time transfor-

mations of the type t ′ =
∫ t

0 λ ∗(u)du (Daley and Vere-Jones 2003, prop. 7.4.VI).

Hence, we propose a test to check the independence between one-dimensional

NH point processes, conditionally on their corresponding intensities. Let us denote

(Nx,Ny,Nz) a vector of three point processes with intensities λx(t), λy(t) and λz(t),

where nx, ny and nz points have been observed. If dependence exists, it is reasonable to

assume that it will manifest itself in events occurring close to each other, so we tried to

generalize the crossed nearest neighbor distance ideas to the NH case. These distances

only consider the dependence between the occurrence of points, but dependence can

also manifest in the non occurrence. To account for this aspect, each point is linked to

the time interval until its previous neighbor, which will be called the time interval of

the point. We define the close point relation between two points in two different

processes as follows: a point in a process is close to a point in another process, if the

time interval of the first overlaps the time interval of the second. For example, in the

left plot in Figure 1, txi ty j and in the right one, ty j tzk and ty j tzk+1.
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Then, given the vector process (Nx,Ny,Nz), the set of close points of txi in Nx, the

big point in Figure 1 (left), is defined as,

Sxi
=
{

(ty j, tzk) ∈ Ny ×Nz : txi ty j, ty j  tzk

}

.

In the example in Figure 1, Sxi
= {(ty j, tzk),(ty j, tzk+1)}.

To check if there is a longer dependence in the process, the close point relation

could be broadened by including the previous and/or the following points to the over-

lapping intervals: ty j−1 and ty j+1 in Figure 1 (left) and tzk−1 and tzk+2 in Figure 1

(right). If no relevant difference is observed, it will be concluded that the actual de-

pendence has been properly taken into account. Otherwise, it should be checked if

more points must be added to capture the dependence structure.

If only the points with overlapping time intervals are considered, the close point

relation is symmetric, but if more points are added, it is not. For example, in Figure 1

(left) txi ty j−1 but ty j−1 is not close to txi. In that case, and if there is not an intrinsic

order between the processes, all the permutations resulting from interchanging the

order of the processes should be considered to build the sets of close points.

The underlying idea of the test is to compare, for each point of Nx, the behavior

of its set of close points in the observed vector process (Nx,Ny,Nz), and in simu-

lated processes with the same characteristics (same Nx process and second and third

processes with the same intensities) and mutually independent components. If the

observed behavior is significantly different, the independence will be rejected. The

multivariate character of the points and the nonhomogeneity make it difficult to ob-

tain a statistic with a known probability distribution. However, the distribution can be
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Nx

Ny

Nz

txi

tyj- 1 tyj tyj+ 1

Nx

Ny

Nz

txi

tyj

tzk- 1 tzk tzk+ 1 tzk+ 2

Fig. 1 Definition of the set of close points of a point txi . The dashed lines to ty j−1 and ty j+1 in the left

plot and to tzk−1 and tzk+2 in the right one, mark the previous and the following points of the overlapping

intervals.

obtained using a Monte Carlo approach if the intensities λy(t) and λz(t) are known,

or a parametric bootstrap if they have to be estimated.

The steps of the test are the following:

Step 1. For each point txi in Nx, its set of close points in the observed vector

process (Nx,Ny,Nz), Sxi
, is built and d̄xi, the mean of the distances |ty j − txi|+

|tzk − txi| of the pairs in that set, is calculated as a summary.

Step 2.1. A vector process (Nx,N
∗
y ,N

∗
z ) is generated, where N∗

y and N∗
z are in-

dependent processes with intensities λy(t) and λz(t), also independent of the ob-

served process Nx.

Step 2.2. For each point txi in Nx, its set of close points in the simulated vector

process (Nx,N
∗
y ,N

∗
z ), S∗xi

, is built and d̄x∗i , the mean of the distances |ty∗j − txi|+

|tz∗k − txi|, calculated.

Step 2 is repeated nS times so that, for each txi, a set of one observed and nS

simulated distances is obtained. Under the independence hypothesis, this should be
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a sample of i.i.d. observations and pxi, the sample percentile of d̄xi, an observation

from a uniform distribution.

The final result of this process is a series of nx (the number of points in Nx)

percentiles pxi. These percentiles should be U(0,1) under the null hypothesis, but it

is not guaranteed that they are uncorrelated. The serial correlation comes from the

possible presence of some equal pairs (ty j, tzk) in the sets of close points of nearby

points txi and txl .

Kolmogorov-Smirnov (KS) is a well-tried statistic for testing whether a sample

stems from a given distribution, for example the uniform one. Although the distri-

bution of this statistic in a correlated sample is not known, its empirical distribution

can be obtained from the previously simulated trajectories. To that aim, the uniform

KS statistic for the percentile sample obtained from each simulated vector of inde-

pendent processes (Dnx herein) is calculated, so that a size nS sample of Dnx under

the null hypothesis is obtained. The p-value of the test is calculated from that sample.

As in the standard KS test, the null hypothesis is rejected if d > d1−α , where d is

the observed value of Dnx and d1−α is the 1−α percentile of the statistic distribu-

tion under the null hypothesis. The simulated NHPP trajectories are used to calculate

both the percentiles and the distribution of Dnx , so that the computing time cost is not

noticeably increased.

2.2 Validity of the test

When the parameters (λy and λz in this case) are known, this type of tests are Monte

Carlo tests and they are exact (Dufour 2006). However, in most real problems the in-
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tensities are unknown. In that case, the p-value is obtained by a parametric bootstrap,

where the unknown parameters λy and λz of the bootstrap data generating process

(DGP) are substituted by their estimators.

Most of the results for parametric bootstrap tests are developed for pivotal or

asymptotically pivotal statistics, whose distribution does not depend on the unknown

parameters, see Beran (1988), Davidson and MacKinnon (1999) and Davidson and

MacKinnon (2006b). In our test, the structure of the statistic makes it difficult to

prove if it is pivotal, or to make it pivotal by a scale transformation. On the other

hand, the nuisance parameters λy and λz do not appear in the null hypothesis H0:

processes are independent, unlike most parametric bootstrap tests (Beran 1988) (An-

drews 1997). That makes the study of the test properties simpler.

First, in order to be valid, the bootstrap distribution of the statistic must mimic its

real distribution under the null, even though the data were generated under the alter-

native hypothesis (Andrews 1997). If λy and λz are estimated using the likelihood

function of the marginal processes, with no restrictions, they are estimated under the

null, and the previous condition is guaranteed.

Concerning the bootstrap distribution, Davidson and MacKinnon (2006a) remark

that ’it is desirable to get as good an estimate as possible of the true DGP for the

bootstrap DGP’. This requires a good estimation method which provides consistent

estimators, such as maximum likelihood, and a thorough validation analysis of the

models used to estimate the parameters. Given nx, the distribution Gnx(d,F(λ̂y, λ̂z))

of Dnx , considered as a functional of the distribution of the DGP F(λ̂y, λ̂z), is contin-
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uous. Then, according to Horowitz (2001), if MLE λ̂y and λ̂z are used, it is expected

that Gnx(d,F(λ̂y, λ̂z)) will be close to Gnx(d,F(λy,λz)).

To show empirically the closeness of Gnx(d,F(λ̂y, λ̂z)) and Gnx(d,F(λy,λz)) dis-

tributions, the following simulation study is done. We generate three independent

NHPP Nx, Ny and Nz with given intensities λx(t), λy(t) and λz(t), which play the

role of observed processes. First, applying the test with these intensities, a sample

of size nS of Dnx is obtained and the distribution Gnx(d,F(λy,λz)) calculated from

that sample. Then, using Ny and Nz and adequate covariates, the estimators λ̂y and λ̂z

are calculated, and applying the test with them, the distribution Gnx(d,F(λ̂y, λ̂z)) is

obtained. A KS test is used to check if the distribution of both samples is the same.

Since the simulation study aims to check the behavior of the bootstrap test assuming

that good estimators are used, we only consider the cases where the fitted model sat-

isfies some basic validation analysis and the real intensities are covered by the 95%

confidence intervals estimated from the model. The validation analysis consists of

checking the distribution and the uncorrelation of the uniform residuals of the NHPP,

see section 4.5 for more details.

The simulation study is performed with the intensities,

λx(t) = exp
[

−56− 48cos(2πt)− 23sin(2πt)− 0.02t+ 0.001t2
]

λy(t) = exp
[

−8− 2cos(2πt)+ 3sin(2πt)+ 0.03t+ 0.0002t2
]

λz(t) = exp
[

−10.5− 6cos(2πt)− 3sin(2πt)+ 0.01t+ 0.0003t2
]

which include the most usual features of a real evolution in time: a seasonal term (one

harmonic) and a polynomial trend (quadratic in this case). The qqplot comparing the
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Table 1 Summary of the p-values from the KS test comparing the empirical distributions Gnx (d,F(λ̂y, λ̂z))

and Gnx(d,F(λy,λz))

KS p-value> 0.05 0.25 0.5 0.75 0.95

Proportion 0.950 0.714 0.504 0.302 0.056

samples from the distributions Gnx(d,F(λ̂y, λ̂z)) and Gnx(d,F(λy,λz)) is shown in

Figure 2 and the corresponding KS p-value is 0.26. This analysis is repeated 500

times. The resulting p-values of the KS test comparing both distributions are sum-

marized in Table 1. In most cases high values are obtained, and the equality of the

distributions is rejected, at a α = 0.05 significance level, in approximately 5% of the

cases. Hence, there is no evidence that the distribution of the test statistic changes

when the real parameters are substituted by their ML estimators.

The study about G∞, the asymptotic distribution of the statistic is not relevant in

this test. In each case, the bootstrap distribution of the statistic is calculated for the

given sample size nx with a low time computing cost and, consequently, the approx-

imation provided by G∞ is not needed. As far as we know, there does not exist any

exact or asymptotic test to check the independence of NHPPs, and comparative anal-

yses of the performance and the order of approximation of the proposed test cannot

be carried out.

3 Size and power of the test

This section summarizes the main results from an analysis of the size and the power

of the test. All the experiments are based on 1000 trials, and in each trial the p-value

is calculated with nS = 1000. Given the equality of the distributions Gnx(d,F(λ̂y, λ̂z))
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Fig. 2 QQplot comparing the distributions Gnx(d,F(λ̂y, λ̂z)) and Gnx(d,F(λy,λz))

and Gnx(d,F(λy,λz)) and in order to simplify the analysis, the properties of the test

are studied in its Monte Carlo version.

3.1 Size of the test

Table 2 summarizes, for nominal levels α = 0.05 and 0.10, the rate of rejection under

the null hypothesis, i.e. given three independent processes with different intensities

and observation period T . In the first case, the intensities are the fitted ones in the

application described in section 4, λ̂(1)(t), λ̂(2)(t) and λ̂(12)(t) and T = 8415. The

second and third cases are HPPs with intensities equal to the mean of these fitted

intensities and T = 8415 and T = 4000, respectively. In the last case, three NHPPs

with a linearly increasing intensity function f (t) and T = 8000 are considered. The

estimated sizes are close to the nominal levels for both the homogeneous and the NH
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processes. The size of the test does not seem to be influenced neither by the length T ,

nor by the shape of the intensity function.

3.2 Power of the test

The alternative hypothesis (three dependent processes) is very general, and it is not

possible to systematically study it. Two approaches are considered here, the first one

generates dependent Poisson processes using two queues in tandem. The second gen-

erates dependent point processes, not Poisson, using marks based on a Markov chain.

In both cases, the power of the test is studied according to the degree of the induced

dependence.

Queue approach. Burke’s theorem states that, in a stable stationary system, the out-

put process from any M/M/m queue is a PP with the same rate λ as the input process

(Kleinrock 1975). In a tandem of M/M/1 queues with exponential time service of

rates µ1 and µ2, the input and the output processes of the first queue and the output

of the second queue are three dependent PPs. This approach, considering a constant

input intensity λ = 0.01, is used to generate dependent HPPs.

Table 2 Size of the test for different DGPs and nominal levels.

T λx(t) λy(t) λz(t) α = 0.10 α = 0.05

8415 λ̂(12)(t) λ̂(2)(t) λ̂(1)(t) 0.101 0.046

8415 λ̂ (12) λ̂ (2) λ̂ (1) 0.095 0.052

4000 λ̂ (12) λ̂ (2) λ̂ (1) 0.100 0.052

8000 f (t) f (t) f (t) 0.115 0.049
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There is a relationship between the utilization factors of the two queues, ρ1 and

ρ2 (ρi = λ/µi), and the degree of dependence between the input/output processes.

This relation is not simple since utilization factors near zero lead to high correlations,

whereas a high variability in the correlation is observed with higher factors (lower

than 1).

To study the power according to the degree of dependence, the empirical Pearson

correlation coefficient between the inter-arrival times of each pair of processes is cat-

egorized into four levels, very low (L), low (l), high (h) and very high (H), depending

on which interval the coefficients lie in: [0, 0.25), [0.25, 0.5), [0.50, 0.75) and [0.75,

1]. The different combinations of correlation levels between the first and the second

process and between the second and the third are considered. The power of the test

at levels α = 0.10 and α = 0.05, using processes with nx = 100 points, are shown

in Table 3. The critical value of the Pearson correlation coefficient at a significance

level α = 0.01 for a sample of size 100 is 0.25, so that correlations in level L can

be considered null. The generated trajectories which have not the desired correlation

values are discarded. The values of µ1 and µ2 are selected in order to get discarding

rates as low as possible, column Disc. in the table.

The power for α = 0.10 is higher than 0.70 when very high or high correlations

are observed. The power decreases when two of the three processes are independent

or almost independent (levels Hl, HL and hl). However, the test performance percep-

tibly improves when the sample size increases to nx = 200, see the right columns of

the table. Even in those cases where the estimated power is not very high, the p-value
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Table 3 Power of the test for HPPs with different correlation levels, M/M/1 queue approach

nx = 100 nx = 200

Level ρ1 ρ2 Disc. α = 0.10 α = 0.05 pv0.5 α = 0.10 α = 0.05 pv0.5

HH 0.4 0.4 18% 0.990 0.981 0.000 - - -

Hh 0.4 0.6 40% 0.900 0.824 0.007 - - -

Hl 0.4 0.8 57% 0.600 0.442 0.070 0.895 0.812 0.007

HL 0.4 0.9 58% 0.531 0.381 0.089 0.836 0.720 0.014

hh 0.6 0.6 54% 0.701 0.544 0.042 0.951 0.898 0.003

hl 0.6 0.8 64% 0.359 0.234 0.180 0.622 0.491 0.053

hL 0.6 0.9 77% 0.220 0.122 0.306 0.427 0.306 0.143

ll 0.8 0.8 76% 0.163 0.082 0.460 0.292 0.182 0.236

lL 0.8 0.9 70% 0.114 0.061 0.450 0.172 0.094 0.366

distribution is clearly concentrated on small values, as the median of the p-values

pv0.5 shows.

Generation of NHPPs with the queue approach. The queue approach can also be

used to generate dependent NHPPs applying the result by Keilson and Servi (1994):

the output process from a M(t)/G/1 queue is also a PP with a NH intensity equal

to the convolution λout(t) = λinp(t) ∗ fµ(t), where λinp(t) is the input intensity and

fµ(x) the density function of the service time, in this case an exponential distribution

of rate µ .

In the NH case the correlation between the processes cannot be easily charac-

terized, and the power cannot be studied according to the correlation level. It can be

expected that, as in the homogeneous case, high utilization factors will often generate
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processes which are not under the alternative hypothesis. By this reason, the power

analysis for NH intensities is restricted to the case ρ1 = ρ2 = 0.4 where, in the homo-

geneous case, 99% of the trajectories had a high or very high correlation. We defer

to the Markov chain approach, a more thorough study of the power according to the

dependence in the NH case.

In this experiment, the test performance is analyzed in relation to the shape of

the intensity, including the homogeneous case as a reference. In all the cases the

mean intensity is 0.011 and T = 8415, so that the number of points in each trajectory

is nx ≈ 100. The first NH input intensity is the sum of the fitted rates in the data

application, λo(t) = λ̂(1)(t) + λ̂(2)(t) + λ̂(12)(t), which shows a complex evolution,

see Figure 4. λoR
(t) and λoA

(t) are two transformations of λo(t), which reduce and

amplify, respectively, its variability:

λoR
(t) = (λo(t)−λc)/2+λc

λoA
(t) = 0.01λo(t)(λo(t)< λc)+ 1.14λo(t)(λo(t)> λc)

being λc = λo(t) = 0.011, and 0.01 and 1.14 the most extreme factors that keep pos-

itive the intensity function. A process with input intensity λps, defined by a linearly

increasing function of time, and the homogeneous intensity λc are also considered. In

all the cases ρ̄1 = ρ̄2 = 0.4 and their minimum and maximum utilization values are

shown in Table 4.

The homogeneous case shows the highest rejection rates but, even for the most

complex intensities, the results are satisfactory. The power improves with the sample

size, as the results for a period of length 2T with intensity λo,2T (t), obtained by

concatenating twice λo(t), show.
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Table 4 Rejection rates of the test for NHPPs, M(t)/M/1 queue approach, T=8415

Int. max(ρ1) max(ρ2) min(ρ1) min(ρ2) α = 0.10 α = 0.05 pv0.5

λc 0.4 0.4 0.4 0.4 0.974 0.950 0.001

λo(t) 19.3 4.3 6e-6 9e-3 0.881 0.791 0.009

λoA
(t) 22.1 4.9 6e-8 7e-4 0.823 0.703 0.018

λoR
(t) 9.9 2.4 0.2 0.2 0.957 0.918 0.002

λps(t) 0.8 0.8 1e-4 1e-2 0.848 0.740 0.013

λo,2T (t) 19.3 4.3 6e-6 9e-3 0.996 0.987 0.000

Markov chain approach. In this study, dependent homogeneous and NH point pro-

cesses are generated by marking a PP using a three-state Markov chain. The processes

defined by the marks are not Poisson, since the generated marks are dependent ob-

servations (Isham 1980). However, as previously mentioned, the test can be applied

to any point process which can be simulated. A transition matrix P = (pi j) with three

equal rows leads to three independent point processes, and the more similar the rows

of P, the less dependent the resulting processes. Two different dependence measures

are considered in the power analysis. The first one is the spectral gap SG, which as-

sesses the convergence speed of P to a matrix PI with all the rows equal to (π1,π2,π3),

the stationary distribution of P. SG takes values in [0,1].

The results for four doubly stochastic Markovian matrices (M1 to M4) with an

increasing convergence speed are shown in the upper rows of Table 5. M1 is a matrix

which does not converge, SG = 0, and defines a completely deterministic marking

processes. The aforementioned intensity λo(t) and T = 8415 (nx ≈ 100) are used to

generate the underlying PP. The study is also run using the intensities λc and λo,2T (t)
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(with period length 2T ). The power at significance levels α = 0.05 and α = 0.10 is

summarized in the table, and the effect of SG on the performance of the test is clear.

The power is satisfactory for SG < 0.6. For matrices closer to the independence,

such as M4, the results are poorer but they improve when the sample size increases.

Slightly better results are observed in the homogeneous case.

For matrices with the same convergence speed, we consider a second dependence

measure related to the time until leaving the current state i, which has a Geometric(1−

pii) distribution. We define DI = ∑3
i=1 pii/3, which varies from 0 to 1, being 1/3 the

value for the limit matrix PI . If the test behaves properly, the further DI is from 1/3,

the better the performance of the test should be. The lower part of Table 5 shows the

doubly stochastic matrices M3b and M3c obtained by permuting the probabilities in

M3, which have the same SG as M3 but different DI . DI values far from 1/3 lead to

a better power and, since 1/3 is not centered on the DI sample space, the increase is

not symmetric around that value. The results for the other three permuted matrices of

M3 and for permuted matrices of M2 and M4, not shown here, confirm that the test

performance for matrices with the same SG and DI is equivalent.

4 Data application

In order to jointly model the distribution of the occurrence of extreme heat events in

maximum and minimum temperatures, taking into account the dependence between

the two signals, a bivariate model is needed. The seasonality and a possible time

evolution of the phenomenon require a nonstationary process. We propose a nonho-

mogeneous common Poisson shock process (NHCPSP) which, for the bivariate case,
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Table 5 Power analysis: dependent processes generated by the Markov chain approach, T = 8415

Markov matrix SG DI α λo(t) λc λo,2T (t)

M1 =















0 1 0

0 0 1

1 0 0















0.00
0.05

0.10

1

1

1

1

-

M2 =















0.7 0.2 0.1

0.1 0.7 0.2

0.2 0.1 0.7















0.44
0.05

0.10

0.987

0.994

0.997

1

-

M3 =















0.6 0.3 0.1

0.1 0.6 0.3

0.3 0.1 0.6















0.56 0.6
0.05

0.10

0.751

0.828

0.857

0.919

0.937

0.969

M4 =















0.5 0.2 0.3

0.3 0.5 0.2

0.2 0.3 0.5















0.74
0.05

0.10

0.418

0.526

0.560

0.649

0.634

0.744

M3b =















0.3 0.6 0.1

0.1 0.3 0.6

0.6 0.1 0.3















0.56 0.3
0.05

0.10

0.462

0.623

0.475

0.609

-

M3c =















0.1 0.6 0.3

0.3 0.1 0.6

0.6 0.3 0.1















0.56 0.1
0.05

0.10

0.837

0.918

0.860

0.918

-

can be decomposed into three independent NHPPs. Since a model assumption is the

independence of the three marginal NHPPs, the proposed test is applied in its valida-

tion analysis.
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4.1 Common Poisson shock process

A common Poisson shock process (CPSP), denoted by N, is a multivariate point

process which assumes that there is an underlying PP of shocks N0, that can yield

d different types of events. The counting process of the jth type of events, for j =

1, . . . ,d, is the Poisson component process N j (Lindskog and McNeil 2003).

For the bivariate case, d = 2, events can be divided into 3 types, (1,0),(0,1),(1,1),

depending on the components where the occurrence has been observed. Given two

component processes N1 and N2, see Figure 3, the bivariate process can be decom-

posed into three independent processes: N(1) which includes the events occurring

only in the N1 process, N(2) which includes the events occurring only in N2, and N(12)

which contains the events occurring simultaneously in N1 and N2. N(1), N(2) and N(12)

are the marginal processes with intensities λ(1),λ(2) and λ(12). The distribution of a

CPSP is completely specified by its marginal processes. This decomposition into in-

dependent PPs allows the model to be readily applied for data modeling and easily

generalizable to the NH case, by permitting the marginal intensities to be a function

of time-varying covariates. These covariates also model the dependence induced by

the systematic part of the intensities and, consequently, the independence between

the processes becomes conditional independence, given the covariates.

4.2 Data

The daily maximum and minimum temperature series of Zaragoza (Spain) from May

to September (MJJAS) for the period [1951, 2004], Tx and T n herein, are used for

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20

N1

N2

N0

N(1)

N(2)

N(12)

Fig. 3 Decomposition of the CPSP into three independent marginal Poisson process

illustration. Data are provided by AEMET, the Spanish meteorological office. A thor-

ough exploratory analysis shows a time evolution not seasonally homogeneous, and

a time-varying dependence between the occurrence of both type of extremes. A mea-

sure summarizing the extremal dependence between two variables is the coefficient

χ = limu→1 χ(u), with χ(u) = P(U > u|V > u) and (U,V ) the transformed uniform

marginals (Coles et al. 1999). For T x and T n, χ̂(0.95) = 0.43 and χ̂ = 0.2 while,

under independence, they should be 0.05 and 0, respectively. Under these condi-

tions, two different but dependent models for describing the occurrence of the T x

and T n extremes are required, and the suggested NHCPSP provides an adequate flex-

ible framework.

4.3 Extreme event definition

An extreme heat event (EHE) only in Tx is a run of consecutive days where T x

exceeds its extreme threshold Ux but Tn does not exceed its extreme threshold Un.

An EHE only in T n is defined analogously. A simultaneous EHE is a run where T x

and T n exceed Ux and Un, respectively. In Zaragoza, these thresholds are Ux = 37.0oC

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



21

and Un = 21.2oC, the 95% percentiles in the reference period (months from June to

August in 1971-2000). Tools for selecting adequate threshold can be found in Coles

(2001) and a specific justification for the use of the 95% percentile in temperature

series in Abaurrea et al. (2007).

In the EHE only in Tx or T n, the occurrence point is located at the maximum

temperature time and, in the simultaneous events, at the time where the sum of both

temperatures is maximum. In the Zaragoza temperature series, there are 120 EHEs

only in Tx, 92 only in Tn and 58 simultaneous EHEs.

4.4 Estimation of the model

The estimation of a NHCPSP reduces to the estimation of the three marginal NHPPs,

whose intensities are modeled as parametric functions of time dependent covariates.

An important application of this model is to obtain projections of the occurrence of

EHEs in climate change scenarios. For that reason, we need covariates whose future

21st century values should be available to feed the model. Since General Circulation

Model projections for temperature are reliable, but only at an aggregated time scale

(Abaurrea et al. 2007) the following covariates were considered:

• Temperature terms. Two possible influential factors on EHEs are the current

temperature level (short term temperature) and the decadal temperature trend

(long term temperature). The short term signal is defined as the moving aver-

age in 15 or 31 day intervals around day t, and denoted Txm15, T nm15, Txm31

and Tnm31. The long term covariates, T T x and T T n, are the lowess with a 30%
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window of the daily temperature series. Polynomial terms are also considered to

model possible non linear effects.

• Seasonal terms. The part of annual harmonics corresponding to the five sum-

mer months, defined by the pairs of covariates cos(2kπt) and sin(2kπt) with

t =121/365,..., 273/365 (the time index from 1st of May to 30th of September)

and k = 1,2,...

• Interaction terms. Harmonic and temperature interaction terms allow us to model

changing effects of temperature over the summer.

Parameters are estimated by conditional (on the covariates) maximum likelihood;

the conditional loglikelihood of a NHPP can be found in Coles (2001). A loga-

rithmic link is used to guarantee positive intensities. To keep the notation simple,

the conditional intensity λ (t|X(t)) = exp(x′(t)β) is denoted by λ (t), being X(t) =

(x(1), . . . ,x(t))′ the covariate matrix and x(t) the vector of covariates at time t. It is

worth to recall that efficient estimation based only on the conditional model (ignoring

the information of the marginal process), as we do, can only be carried out if weak

exogeneity holds (Ericsson and Irons 1994, chap. 1). The weak exogeneity of the

covariates in our model has been checked using the definition given by (Engle et al.

1983, p. 282).

Covariate selection is based on likelihood ratio tests with a α = 0.05 significance

level. The final intensities fitted to the three marginal processes are,

log(λ(1)(t)) = −68.9− 47.6cos(2πt)− 22.6sin(2πt)+ 0.08Txm15 + 0.21Tnm15 +

0.25Tnm15 cos(2πt)+ 0.12Tnm15 sin(2πt)+ 0.01TT x

log(λ(2)(t)) = −13.3− 0.35cos(2πt)+ 0.26sin(2πt)+ 0.11Tnm15 − 0.02Txm31
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log(λ(12)(t)) = −32.1− 6.6cos(2πt)− 3.1sin(2πt)+ 0.01Tnm15 + 0.04Txm15 +

0.07TT n

4.5 Validation analysis

The assumptions to be checked are the NHPP behavior of the three marginal pro-

cesses and their mutual independence.

Checking the Poisson character. The usual approach to check a univariate NHPP(λ (t))

is to test whether the process after the time transformation t∗ =
∫ t

0 λ (u)du is a unit

rate HPP. Then, the validation analysis is standard and it is based on the study of the

uncorrelation and the exponentiality of the inter-event distances d∗
i = t∗i − t∗i−1, or the

uniform character of exp(−d∗
i ). A more detailed example of the application of these

validation techniques can be found in Abaurrea et al. (2007). The point process raw

residuals (Baddeley et al. 2005) are also checked.

The validation results, briefly summarized here, do not show any evidence against

the fitted model: the p-values of the uniform KS test are 0.56 for N(1), 0.16 for N(2)

and 0.55 for N(12), and all the Kendall correlation p-values are greater than 0.7. The

empirical and the fitted rates
∫ t2

t1
λ̂ (u)du/(t2− t1), both calculated in moving 5-month

intervals, are plotted in Figure 4. For N(1), its lowess with a 20% window is also

shown (top right plot). The observed evolution is satisfactorily reproduced by the fit-

ted intensity, and a clear increase of the occurrence rate from the late 90’s is observed.
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Concerning the other processes, an increase of the occurrence rate, higher in N(2), is

observed from the 80’s, and it becomes steeper from the 90’s onwards.
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Fig. 4 Empirical and fitted intensities of the marginal processes of the NHCPSP for the extreme heat

events in Zaragoza. The top right plot is the 20% lowess of the signals of N(1)

Checking the independence of the marginal processes. To check the independence

between N(1),N(2) and N(12), the test in Section 2.1 is applied with nS = 1000 simula-

tions. Since the real intensities of the PP are unknown, a parametric bootstrap p-value

is calculated using the MLE λ̂y(t) and λ̂z(t), estimated under the null hypothesis. The

marginal PP have been satisfactorily validated, so that it can be assumed that the in-
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tensities are well estimated. The p-value of the independence test is 0.423 when close

points are defined as points with overlapping intervals, and 0.569 when the previous

and the following points are included in the definition. In both cases, the null hypoth-

esis cannot be rejected at any usual significance level, and the three processes can be

considered independent.

5 Conclusions

A test to check the independence between NH point processes is developed. When

the parameters describing the point processes are known, it is a Monte Carlo test but,

in most real problems, the parameters are unknown and it is a parametric bootstrap

test. The test is developed for the three-process case, but it can be generalized to any

number of processes. It is noteworthy that it can be used to check the independence

of any point process which can be simulated, since the type of process (Poisson for

example) is only used to generate independent trajectories.

The use of a computational algorithm which reuses the generated processes in

two steps of the test (the calculation of the distance percentiles and the distribution of

the test statistic) allows us to keep low the computation time.

A simulation study shows that the size of the test reaches its nominal level and

that its power is satisfactory and improves with the sample size. Two approaches for

generating dependent NH processes are considered: NHPP based on two queues in

tandem and NH point processes resulting from marking a PP using a Markov chain.

Different measures for quantifying the dependence between the NH processes are

suggested.
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This test is a necessary tool in the validation analysis of a common Poisson shock

process for checking the independence of the marginal Poisson processes. It could

also be used in different applications to check the independence between point pro-

cesses characterizing the time evolution of different variables. This type of problems

appear in biomedical sciences, economy and specially in environmental sciences, for

example to represent the occurrence of earthquakes in several regions.

Concerning the temperature application, it is shown that the CPSP is a valuable

model to characterize the occurrence of extreme events in two dependent variables.

It is successfully applied to model the occurrence of EHEs in daily maximum and

minimum temperatures.
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