Trabajo Fin de Grado

Infraestructura de personalizacion y
monitorizacion de crawlers basada en Docker

Docker based crawler customization and
monitoring infraestructure

Autor

Ihigo Alonso Ruiz

Director

Francisco Javier Lopez Pellicer

Grado en Ingenieria informatica
Departamento de Informatica e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura

2016

Infraestructura de personalizacion

Yy monitorizacion de crawlers

basada en Docker

vas Universidad

idi Zaragoza

Infraestructura de personalizaciéon y
monitorizacion de crawlers basada en Docker

Resumen

Algunos proyectos requieren la creacién de arafias web o crawlers para obtener datos
concretos de la web. Estas arafas suelen ser construidas enfocadas para un uso concreto
y su configuracién es bastante compleja y costosa en lo que en tiempo se refiere. El
objetivo de este Trabajo de Fin de Grado es el desarrollo de un sistema de creacién,
personalizacidn, y monitorizacion de crawlers basado en contenedores virtuales Docker
definidos mediante un pequefio lenguaje de configuracién o DSL (Domain Specific
Language) sencillo y de un sistema de persistencia de datos para la informacion
recolectada por los crawlers.

El sistema estd desarrollado para poder ser utilizado para uso individual, o colectivo.
Puede ser gestionado a través de linea de comandos, dando posibilidad a un uso mas
rapido a usuarios mas expertos, o via web, donde el sistema serd gestionara la
posibilidad de ser usado por varios usuarios a través de una interfaz usable y sencilla.

Las funcionalidades que ofrece sobre los crawlers incluyen desde su creacion,
configuracion, monitorizacién de su estado, control del mismo e incluso un buscador e
indexador propio para tratar la informacidn recogida de forma personalizada
acomodandose a las necesidades de cada sistema.

A pesar de que un sistema de crawling completo pueda ser muy costoso de crear, gracias
a Docker y su reutilizacion de partes de sistemas ya construidos, la creacidén es casi
inmediata, aparte de otras muchas ventajas que ofrece como su portabilidad y ligereza
(tamafio en memoria) respecto a las maquinas virtuales convencionales.

Asi pues, a través de un desarrollo incremental guiado por pequefas iteraciones, y
dirigido por pruebas (inspirado en la conocida aproximacion TDD - Testing Driven
Development) se ha ido construyendo un sistema en constante evolucién, unificando
varias tecnologias para conseguir como resultado un sistema potente que posibilita la
construccion casi inmediata de instancias de sistemas de crawling.

Escuela de
Ingenieria y Arquitectura

Universidad Zaragoza

(Este documento debe acompafiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. Ifigo Alonso Ruiz

con n2 de DNI 73013097B en aplicacion de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la
Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)
Grado

, (Titulo del Trabajo)

Infraestructura de personalizacidn y monitorizacidn de crawlers basada en
Docker

’

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 3 de mayo de 2016

Agradecimientos

Quiero agradecer el esfuerzo de muchos profesores que intentan de verdad que sus
alumnos aprendan, que van mas alla de un simple empleo y se implican en ellos, que
van mas alla de ensefiar la materia y ensefan valores morales, dan apoyo, dnimo y
mantienen una relacidon alumno-profesor mas cercana.

Quiero agradecer a aquellos profesores que hacen que te intereses por su asignatura,
gue los alumnos no solemos agradecer estos detalles y son estos profesores los que
hacen que los alumnos tengan mucha mds motivacion por lo que hacen y que vayan mas
alla del trabajo de clase.

Agradecer a estos profesores como entidad de profesor y como personas, porque la
universidad es algo diferente gracias a ellos. Quisiera nombrar a alguno, que no son
todos, porque tan solo he recibido clase de unos pocos profesores, ojald poco a poco y
con mucho esfuerzo, haya mds profesores de este tipo. También agradecer a los
profesores que se esfuerzan porque una comunidad asi sea posible:

Francisco Javier Lopez Pellicer, Javier Campos, José Manuel Colom, Diego
Gutiérrez Pérez, Francisco Javier Fabra, Enrique Torres, Luis Manuel Ramos,
Juan Domingo Tardds, José Luis Briz...

Agradecer como no, a Francisco Javier Lopez Pellicer la gran ayuda que ha sido en este
trabajo sacrificando mas tiempo del que suele ser normal en este tipo de proyectos para
gue el resultado del mismo sea de un nivel alto.

También cémo no, quiero dar las gracias a mi madre y a mi padre, que son los que me
han financiado la carrera y mis dos grandes pilares de apoyo, y que, sin ellos, yo no seria
para nada lo que soy ahora mismo y nunca podré agradecérselo lo suficiente. Y gracias
a todas las personas que son verdaderos amigos, gracias.

Contenido

R Vo e Yo [W Tl o o ISP 8
1.1 Objetivo y alcance del ProyeCto.......cuuvcuiiiiiciiiieciee et 8
AV T Y Tl o T IO PSR 9
I O T4 1<) 4 o TR PP OPPPPPR 9
1.4 Tecnologias y sistemas relacionados.ccveeiiciiieiiriee e 10
VT o Yo [o] lo o F- VA £ To]] (ot 1 P PRPR 11

o 1Y 1= o Yo o] [} 4 T- TSR 11
1.5.2 Herramientas Utilizadas.........coccuiiiieciiie ettt e e 11

2. ArqUIitectura del SISTEMAcii e e et e e e et ee e e e rate e e e e arae e e e nres 12
T Yol T o o T=Te [l 1Y =T oo TSR 14

I D= T e N L=l Y A= o T TSR 15
T = T 1 =T U 15

T O = 10 =T ol) R 16
I B Y -1 [T =T Lo RS 17
I 0 0o T3 = o Vo [Y-SR 18
I Y N 0o Yo i T={ U = Yol [] o SRR 20
I B (Yo [Yo Lo TRV o TH Y of- o [o] PP 20

I A £ T8 0 = IRV« F PR 21
3.2.1 INtegracion de BULIEr......coocuiiii ittt 22
I A=Y o VT oY U UUPRN 22
3 N 11 1= o TP 23

3.3 Evolucidn y decisiones de diSEM0.......ccuucuiiiiiiciiieiiiiee ettt e e e e ssaan e e 23

O N Tol g Te] [o = F= T T Y- - ISP 26
5. Problemas @NCONTIradoscoiveiiiiiiniieeiie ettt et sttt e st st st e s e e e sabeesnees 29
5.1 Problemas previamente CONOCIOScccuviiiiiiiieiiiiiie ettt 29

I A o Te] o] =T g T =T o 1= - o [o 13PN 29

6. Validacion y pruebas del SIStEMa........ueieeciiiie e e e 31

(=T U1 =T Lo LSRR 32

T 0] o Vol [V o] o 1T 33
0 o T Y o 3 01 U YRR 33
IV F | LoT =Tl ToT g W o =] fYo Yo V- | TR RR 34

9. Trabajo y esfuerzo realizado y gestion del proyecto.......cccoeeeeecieeeccciiee e 35

O =71 o [ToT = = 1 - PR OROSRTRORTTR 38

AN BXOS e 40
Anexo A. Butler en detalle. GUIAS Y ESQUEMAS.ccccuiieeiiiiieee et e et e eeciree e e e eare e e e e 40

[y X<y i{or= Tl To T W L= I B 1 PR 41
GV E: e [T V- o (o TP 44
ANEX0 B. SiSTEMA WED ..o et e e e e aaees 50
GV e [T V- o (o TR 50
F AN o) e T ORI To F= Yol T T o PR 55
ANEXO D. INAEXACION ..vviiiiiiiieeciiee ettt e e e re e e e st e e e e s aba e e e e abaeeeenbaeeeennseeeeennsees 57
ANeXo E. INStalacion DOCKET.........ciiiciiiiicciiie ettt e e e e e e e bae e e e eabae e e eaaees 58

Indice Figuras

Figura 1. Diagrama del sistema COMPIETO......cvviieireiceeee st s 13
Figura 2. Reparto de horas por mes del proyecto........cccceceeeeeceeceeceieiececcecce et et 35
Figura 3. Reparto de horas por tarea del proyecto........coecevveireeceseseee e 36
Figura 4. NUmero de commits realizados en el proyecto.......cccceeeeeceeceeveeetieieceeceecee e e e 36
Figura 5. Cantidad de cddigo subido a GitHub durante el proyecto........ccccovveevrerveeereniennnn. 37
Figura 6. Diagrama de actividad del validador y constructor de Butler.........ccccceuevereeeenen.ne. 40
Figura 7. Inicializacion d@ BULIET.......ccce vttt et es e s e s e en s 45
Figura 8. Ejecucion de comandos de BULIET..........c.eouvevieiececeee ettt et et 49
Figura 9. REGISTrO & UN USUAIIO.c.cccie vttt st sttt e e bbbt eae e saees 50
Figura 10. Creacion de UN ProYECTO. ... ieie e ettt et stesteete e sr e v etaes e e et sbeeteetearesee s 51
Figura 11. Creacién de una imagen del proyecto ‘@aaad’......cccceeeveeeeveeveereee s 52
Figura 12. Contenedor ‘0Ne’ €JECULANAOSE.cccecuecueieeeeerectee ettt st e e e 53
Figura 13. Contenedor ‘one’ en estado PAUSAO.......ccvueveeriirecieeeireeireree et 53
Figura 14. Ejemplo de test de BULIEN.....cueeeeeeee ettt ettt st st 56
Figura 15. Diagrama de secuencia de |a indeXacion.........cuvveveeieeecesevencerceeeireresree et 57
Tabla 1. Horas trabajadas en cada mes separadas por tarea.........cceeveeerereeireereeeseneieneee s 37

1. Introduccién

Existe muchisima informacién en internet, y esta informacién ademas de crecer a una
velocidad desorbitada (se duplica en menos de afio y medio), es cambiante. Para poder
buscar o encontrar informacién, se necesita algiin mecanismo de recoleccion de datos
y de busqueda sobre ellos, al primer mecanismo, se le llama crawler o arana web, al
segundo, motor de busqueda. Los crawlers recolectan informacién por toda la web,
pero, existen muchos métodos y algoritmos para la recoleccién de esta informacién, ya
sea porque se quiere optimizar el tiempo, se quiere recolectar solo la informacion mas
importante (segun unos criterios) o porque solo se quiere buscar un tipo de informacién
(focused crawler).

El sistema que se ha desarrollado pretende simplificar el proceso de creacién de estos
crawlers dando cabida a todo tipo de ellos y dejando la personalizacion de este al
usuario, pero simplificando muy significativamente el proceso de creacién del mismo y
habilitando un mecanismo de control y monitorizacién sobre ellos.

1.1 Objetivo y alcance del proyecto

El objetivo de este proyecto es realizar un sistema que permita crear crawlers
personalizados de una forma rdpida y sencilla para reducir costes monetarios y
temporales en esta tarea, realizando una infraestructura que sea capaz y soporte la
monitorizacién de una gran cantidad de crawlers. El proyecto se ha enfocado a un
desarrollo incremental y modular, asi poder tener moddulos separados con
funcionalidades utiles (como un Shell, un DSL) que puedan ser utilizadas por si solas.

El alcance del proyecto se establece a través de unos objetivos minimos que el sistema
deberia cumplir a la finalizacion del proyecto, que son los siguientes:

e Un DSL (Lenguaje especifico del domino) con su correspondiente libreria (guia
de uso y ejemplos) que permita especificar, de manera sencilla, un trabajo de
crawler.

e Un sistema validador para el DSL.

e Una aplicacion (un Shell propio) que permita gestionar desde linea de comandos
dicho DSL vy realizar un conjunto de acciones sobre los sistemas de crawling
creados:

o Creacion y personalizaciéon de crawlers
o Operaciones de control y monitorizacién sobre el crawler

e Un sistema web, tanto backend como frontend que permita el manejo de este
sistema a nivel de usuario.

1.2 Motivacion

La motivacidn de este proyecto, es en parte la situacién actual del mercado que se
explicard en 1.3 Contexto, realizar un sistema de cédigo abierto que facilite la tarea de
creacion de crawlers personalizados reduciendo significativamente el coste temporal y
monetario.

Al tener este sistema ya no solo es que puedas tener un sistema de personalizacién de
crawlers de una forma rapida y muy facil, sino que tomando como base este proyecto,
se puede crear infinidad de ellos enfocados a otro tipo de sistemas que no sean el
crawling.

Pero mas alla del ambito empresarial y/o utilidad, la mayor motivaciéon de este proyecto
es también personal. Como alumno de la especialidad de computacion, tenia curiosidad
por los sistemas webs, poder realizar uno completo por mi mismo aprendiendo varias
tecnologias y frameworks en el proceso, aunque llevase mas tiempo de la cuenta para
realizarlo. Una motivacion de aprendizaje, un reto para mi mismo y por el hecho de
experimentar, y hacer un sistema mds enfocado a software, dado que en mi
especializacidon no he podido indagar en ese aspecto.

1.3 Contexto

Hoy en dia no existen muchos sistemas de creacidn y personalizacién de crawlers, dado
gue es un tema complejo de manejar. Existen compafias que controlan el dmbito de los
crawlers o buscadores web, pero todas ellas tienen debilidades, ya sea porque no se
centran en informacion especifica, no permiten personalizaciones detalladas u otros
defectos que permiten existan necesidades a abordar. Dentro de los sistemas existentes
gue predominan en la construccidon de sistemas de crawlers personalizados, mas en
relacion a lo que se enfoca este proyecto, son, por ejemplo, 80Legs, DataMiner,
ScrapingHub, etc... [W19]

Cuando las empresas necesitan este tipo de sistemas, o se ven forzados a crear un
crawler desde cero, o a buscar otro método para la recogida de esta informacion, como
los que se acaban de nombrar, pero estos ofrecen poca variedad en la personalizacion
y ademas no son baratos.

Asi, un sistema de cddigo abierto como este, sencillo de utilizar, que gestiona los
recursos de forma eficiente y rapido de instalarse en cualquier sistema, seria utilizado
por muchisimos usuarios, sobretodo empresas guiadas mas en la busqueda de
informacién concreta a través de los focused crawlers.

1.4 Tecnologias y sistemas relacionados.

El sistema creard los crawlers utilizando Docker. Docker es una tecnologia nueva, pero
muy potente, asi pues, ahora mismo, muchas empresas estdn apostando por ella,
subiendo sus sistemas encapsulados en contenedores Docker a [W11] (plataforma de
repositorios Docker), y los sistemas de crawling no se quedan atras, por ejemplo, [W9],
tiene tanto una imagen Docker subida al Dockerhub, como el fichero Dockerfile y las
instrucciones para los usuarios que quieren personalizar Nutch (el sistema de crawler
que este proyecto soporta por defecto) con Docker.

Relacionado con sistemas mads alld de la encapsulacion de Nutch no existe nada
actualmente, asi que ademas de a través de tutoriales, los ejemplos Utiles sobre los que
poder aprender o extraer algo interesante son estas encapsulaciones de sistemas en
Docker que bdsicamente son la puesta en marcha de un sistema operativo y la descarga
del sistema a utilizar, su configuracidn e instalacion a través de comandos de la API de
Docker.

En referencia a proyectos de Nutch, se pudo extraer el set-up del mismo en proyectos
Docker, pero tuvo que modificarse respecto a funcionalidades internas de Nutch
(scripts) y extraer ciertas herramientas como Solr y HDFS para las primeras versiones.
Sobretodo estos proyectos sirvieron para tener una base minima sobre la que mds tarde,
poder construir el sistema de personalizaciéon, el cual modifica propiedades y
configuraciones de Nutch y de Docker.

También se utilizé la documentacién oficial de Nutch para saber su funcionamiento, sus
posibilidades de configuracién qué hay que editar si se quieren ciertos cambios en el
sistema.

En la parte de Docker, todo lo que se encontrd sirvid para probar sobre ellos o tomarlos
como fuente de inspiracion y aprendizaje, y se tuvo que realizar el sistema de Docker y
el sistema de crawling casi desde cero, pues no habia nada que encajase con lo que se
buscaba. Docker, al ser una totalmente nueva, y parte de la base del sistema, se tuvo
gue invertir tiempo en conocer el funcionamiento basico y util para el proyecto y ver
gué posibilidades daba a parte de la funcionalidad base.

Por el lado de la realizacion de un Shell propio, se investigd sobre sistemas que
acelerasen el proceso de creacion de este, y Spring Framework, tiene un proyecto
llamado Spring Shell que permite con cierta facilidad la creacion de comandos en una
Shell propia.

De la parte del sistema web, hay infinita variedad de ejemplos de sistemas web de
codigo abierto. Para este sistema, se ha utilizado la documentacién de los frameworks
utilizados para la misma y tutoriales existentes de estos frameworks como de Angular)S
o SpringMVC.

10

1.5 Metodologia y técnicas

La metodologia realizada, se ha enfocado hacia un desarrollo incremental para facilitar
su desarrollo e ir definiendo y concretando aspectos en cada iteracidn.

1.5.1 Metodologia

Respecto la realizacién del sistema, se ha seguido un desarrollo incremental,
evolucionando el sistema de un sistema simple, aumentando su potencia vy
funcionalidad a medida que se iban afiadiendo médulos. Para asegurar el continuo
funcionamiento del sistema, se siguid un desarrollo guiado por TDD. El desarrollo guiado
por pruebas, también llamado TDD, es una técnica de desarrollo basada en establecer
unas pruebas que el sistema debe de pasar satisfactoriamente, a continuacion,
implementar el software para que pase la pruebas, y una vez esto ocurre, refactorizar el
codigo y mejorarlo para mejorar la calidad del mismo.

El desarrollo se ha realizado mediante pequeiias iteraciones, de unas dos o tres semanas
con tareas a realizar en cada una de ellas, y la coordinacion entre director y alumno se
ha realizado a través de una entre cada una de estas iteraciones y a través de dos
portales/aplicaciones web: Github para el seguimiento de las tareas y Slack para una
comunicacion mds inmediata.

1.5.2 Herramientas utilizadas

Las herramientas utilizadas en este proyecto han sido bastantes, debido sobre todo al
hecho de que una de las motivaciones del proyecto era aprender nuevas tecnologias.

e Parte del DSL y Shell: Java como lenguaje, Lucene para la indexacidn y motor de
busqueda, Nutch como sistema de crawling principal, Spring Shell para el Shell
propio, Junit para test y gradle para manejo de dependencias.

e Para el sistema web: Bootstrap como framework CSS, Angular]S como
framework JavaScript, Spring MVC como framework para backend y gradle para
manejo de dependencias.

Se ha utilizado también Github como sistema de control de tareas vy
milestones/iteraciones y Slack como medio de comunicacidon del proyecto.

11

2. Arquitectura del sistema

El sistema desarrollado esta formado por dos grandes mddulos: Butler y el sistema web.

La base del sistema es Butler, el cual contiene la mayor parte de la l6gica de negocio y
la innovacién del proyecto, pero se apoya en el sistema web el cual hace que su manejo
esté al alcance de cualquier usuario y termina de estructurar el sistema centralizando y
uniendo todos los sistemas que lo rodean.

El sistema final queda dividido en 5 grandes partes que se pueden apreciar en la figura
1.

e Web Services. Construidos modularmente y construidos para poder realizar un
sistema con varios servidores explicados en 3.2.2 Servidor

e Base de datos. El ya nombrado sistema de ficheros con una base de datos
relacional para tener accesible la informacién de control de cada usuario
explicado en 3.2.2 Servidor.

e La base de datos esta desacoplada del servidor, es decir, a esta accede tanto
Butler (al sistema de ficheros) como los servicios web (tanto al sistema de
ficheros como a la base de datos relacional) y pueden acceder tantos sistemas
como se quieran. Para esto, la base de datos, cuanto mas accesible y robusta sea,
mejor.

e Elcliente. El cliente web, tan solo interacciona con los servicios web. La parte del
cliente explicada en 3.2.3 Cliente.

e Butler. Encapsula la funcionalidad del sistema explicado en detalle en 3.1 Butler.

e Contenedores Docker. Donde se alojan los sistemas de crawling. Estos ahora
mismo, se ejecutan en el mismo servidor donde se alojan los servicios web, pero
ya se ha explicado la forma inmediata de poder tener ejecutdndose los
contenedores en varias maquinas externas. explicado en 4. Tecnologias usadas.

A continuacién, se muestra un diagrama de la arquitectura del sistema final.

12

@ sjgjdwa) ggar

s

«N QP WasAS JaimelD

sJauUBuOD JaxooQg
«JUBWUOIIAUS LONIaXE»

@ Ja|josuon Jasn

@ Jajuon U

@ Jajjanuon uoneinByuon

@ J3||0juoD) Jaueuon

@ Jajjonuoyy abew|

@ Jajpluon 1alold

(8

sI8||0uoD 158y

sig|jonuo)
«S20IMBT gy

wayshg a4
«BsEgEIR»

aseqeleq Dadr
«asegeleq:

abeio)s Bjeq UEBN

€JUBWUOIIALUG UO[NIaXa»

suauodwoy

@ grienbuy

260

@ ssau|sng

@ saje|dwa

pusjuoi4
«]UBWIUGIIAUS UONoaXe s

@ suojjeiado Jayoeq

@ Jojeplen

(&8

laping @ su|Bug suson

@ sa|l4 paxepu|

suofjelado weysis
«SPUBLUWIOD »

sulbug yoieeg
«SPUBLLLLOD»

Japng
whieaqr»

Figura 1. Diagrama del sistema completo

13

2.1 Decisiones de disefio

Las decisiones de disefio arquitecturales se han ido realizando seguin se avanzaba en el
proyecto.

Lo primero que se tuvo era Butler, un médulo con la mayoria de la funcionalidad de todo
el sistema, el core del proyecto. A partir de aqui es cuando se necesitaba realizar un
disefio que explotase su potencial buscando la escalabilidad.

Solo con Butler, el sistema se basaba para el uso de tan solo un usuario y en un
ordenador, para poder aumentar el uso del sistema se pensd en la utilidad de un sistema
web para dar cabida a diferentes usuarios.

El sistema web debia ser escalable y modular, y se debia encontrar un sistema de
ficheros y base de datos que soportase las necesidades del sistema, lo cual hizo que este
modulo fuera externo a el sistema web y asi pudiera haber varios servidores conectados
al mismo sistema de datos.

La parte del cliente se realiz6 como una aplicacidon one-page, pero el requisito mas
importante respecto al disefio era que el estado estuviera contenido en el cliente, para
poder realizar un disefio RESTful.

Del sistema, lo Unico que faltaba por definir era casi, lo mas importante, cdmo y dénde
se va a ejecutar los contenedores Docker. Estos contenedores son los que consumen
recursos y lo que mejor se ha de administrar.

La primera versidn del sistema en este aspecto, que es la que estd implementada es que
se ejecuten todos los contenedores en la maquina donde se esté ejecutando el servidor,
pero la implementacidn futura y final en este aspecto seria tener almacenadas todas las
maquinas accesibles para utilizar y ejecutar via ssh la ejecucidén de los contenedores
Docker, ya sea por una distribucién equitativa de consumo de recursos entre todas las
maquinas o a eleccidn del usuario.

14

3. Disefio del sistema

El sistema se compone en dos grandes mddulos a alto nivel. Butler que es la esencia del
proyecto y el sistema web que lo integra. En este apartado se explica qué es, como estd
construido y como funciona cada uno de ellos, asi como la evolucién del sistema vy las
decisiones de disefio realizadas.

3.1 Butler

Butler es el sistema que integra toda la funcionalidad relacionada con la creacién y
personalizacion de los sistemas de crawling.

Es un sistema construido con una metodologia modular, compuesto por varias partes,
cada cual se encarga de una funcién especifica y cuya funcionalidad puede ser
aumentada facilmente.

Lo primero de todo es explicar y responder unas preguntas simples e introductorias al
sistema.

éQué es Butler?

Butler es una aplicacién de Shell (linea de comandos) que contiene comandos propios y
especificos.

¢Qué hace o puede hacer exactamente Butler?

Butler facilita la creacién y personalizacién de sistemas de crawling y su posterior control
ofreciendo un amplio abanico de operaciones al usuario.

Butler también alerta de cualquier fallo posible de la aplicacidn o de las tecnologias que
usa, tanto previa ejecucion gracias a los test integrados que contiene como en ejecucién
gracias a la continua comprobacién de que las operaciones a realizar sean posibles,
incluso que las aplicaciones externas que usa, como Docker, estén disponibles

éComo?

A través de un DSL propio, un pequefio lenguaje, que, a través de un fichero de
configuracion sencillo, en formato yalm, permite especificar las caracteristicas de todo
el sistema, desde el sistema operativo de la maquina donde va a correr el sistema de
crawling, como qué sistema de crawling quieres (ej. Nutch) hasta especificaciones del
crawler, como sin ir mas lejos, la/s semilla/s.

15

3.1.1 Butler DSL

Un DSL (Domain Specific Language), es un pequefio lenguaje creado para un sistema o
ambito especifico (Especificacion del DSL y explicacién en el Anexo A).

Butler hace uso del DSL para poder especificar de una forma facil, sencilla y rapida las
caracteristicas del sistema de crawling que se desea crear a través de un fichero de
configuracion, dado que sino, para realizar esto, el usuario tendria que editar a mano,
ficheros de configuracion especificos de cada sistema o realizar los cambios costosos
pertinentes.

Un sistema de crawling, normalmente tiene muchas propiedades o caracteristicas que
el usuario puede cambiar. Por dar un nimero de ejemplo redondo, pongamos que
pueden ser mil.

Para una primera version del DSL se han escogido las propiedades mas importantes y
utiles enfocadas a un uso tanto empresarial como individual. Asi, estos son los aspectos
que se pueden especificar sobre su configuracién que se aplicaran desde el momento
en el que se empiece a ejecutar.

e Configuraciones minimas obligatorias

o Elnombrey la versidon del sistema de crawling.
o Las semillas que servirdn como base al sistema.

o El nimero de rondas o iteraciones que el sistema permanecerd en
ejecucion.

o Silaextraccion de informacion del crawler se debe realizar en cada ronda
o tan solo al terminar su ejecucion.

o Eltipo de informacién a extraer.
e Configuraciones opcionales
o Tipo o modo de cola.
o Informacién respecto a timeouts o tiempos de delay.
o Restricciones sobre la informacién a recoger.

Para que este sistema sea realmente configurable, se permite anadir funcionalidades o
comportamientos propios al usuario. Esto es posible dejando la posibilidad de afiadir al
sistema plugins para que sean ejecutados en el sistema de crawling.

16

Estas especificaciones, sirven para todos los sistemas de crawling compatibles con
Butler, es decir, el usuario especifica con el DSL las caracteristicas que desea, y Butler,
por debajo, dependiendo si se ha especificado Nutch o Heritrix, implementa los cambios
pertinentes.

También se debe especificar obligatoriamente el sistema operativo y su versidn sobre la
gue se quiera que el sistema se ejecute.

Para que todo esto funcione, el sistema tiene templates por defecto, tanto de Docker
como cada uno de los sistemas de crawling para poderlos modificar segun las
especificaciones del usuario y poder construir un crawler a medida.

El sistema tiene un adaptador, el cual va construyendo poco a poco los ficheros
necesarios. Este adaptador funciona como un coordinador, el cual llama a los
constructores necesarios con la informaciéon necesaria y los coordina para que no
existan problemas.

De este modo, para afiadir un nuevo sistema de crawling a Butler, tan solo habria que
implementar el constructor propio para ese sistema.

3.1.2 Validador

Para realizar un sistema con control de fallos, para completar el DSL se necesita como
minimo un validador, que ademas de, por su puesto, validar si un fichero de
configuracion es sintacticamente y semanticamente correcto, ayudar al usuario qué
error es el que estd haciendo que exista el problema y decirle dénde estd, es decir,
feedback al usuario para que pueda entender y comprender por qué da error y corregirlo
lo mas rapido posible.

Para ver mas en detalle la estructura del validador y constructor del validador y el
constructor, ver el Anexo A y la figura 2.

El validador tiene una estructura también modular. Existe un pequefio validador por
cada campo que se puede especificar en el DSL, y cada uno realiza las comprobaciones
pertinentes, como, por ejemplo, si es obligatorio si esta presente o validar que el tipo o
valor de dato introducido sea correcto.

También es el encargado de asegurar que los plugins que recibe el sistema tengan un
formato correcto y que no le falten ficheros o especificaciones a este.

Cada uno de estos validadores, es encapsulado por otros que validan un conjunto de
especificaciones de un mismo conjunto, en el caso de esta versién de Butler dos, uno

17

para el sistema de Docker y otro para el sistema de crawling, y otro un nivel superior
gue encapsula a estos dos.

Los ficheros de configuracién estan en formato ya/m. Para mapear la informacién que
contienen, utilizar una libreria externa. [W13]

Una vez validado, se pasard a la construccién de los ficheros de salida necesarios para el
crawler. La arquitectura del constructor es similar a la del validador, con la diferencia
de, que respecto al sistema de crawling, utiliza el patrén de disefio Adapter, para poder
variar su ejecucién segun el sistema que se escoja.

3.1.3 Comandos

La funcionalidad de Butler se centra en los comandos del Shell. El Shell se ha construido
a partir del proyecto de Spring Shell, de Spring, el cual ofrece un sistema Shell,
configurable (Guia de uso y especificacion en el Anexo A).

Existen dos tipos de configuraciones:

e Configuraciones de la consola, las cuales se basan tanto en el aspecto del Shell
al ejecutarse como en el modo de ejecutarse. Las configuraciones de este tipo,
se ha realizado lo basico, aunque no trivial.

e Configuraciones de comandos: Estas configuraciones son las referentes a la
creacién de cada comando, los argumentos que tiene cada uno y sus
caracteristicas. Spring Shell facilita esta labor a través de las anotaciones de java
entre otras cosas.

Para abarcar una amplia funcionalidad, se han implementado varios comandos, cada
uno enfocado a realizar una sola accién respecto al sistema, se podrian dividir en tres
grupos:

e Comandos de creacion

o Crear una configuracién. Es decir, dada unas especificaciones, un fichero
de configuracion de acuerdo con el DSL creado, un comando que cree
todos los ficheros necesarios para el sistema.

o Creacion de la imagen Docker. Esto, seria el equivalente, para quien no
esté familiarizado con Docker, a la puesta a punto del sistema operativo
y descargar/instalacién de todas las herramientas que se necesita para
montar un sistema de crawling. Aunque pueda sonar muy costoso,
Docker puede realizarlo en tan solo un segundo.

18

e Comandos de eliminacién o parada

©)

o

Parada del sistema de crawling. Se necesita un comando para poder
llegar a parar el crawler por si fuera necesario.

Parada del contenedor Docker. El contenedor Docker es similar a una
maquina virtual, asi pues, es Gtil tener un comando que de opcién a parar
el contendor

Pausa del contenedor Docker. Pausar el contendor es algo mds suave que
parar, es mas recomendable, asi como parar el contendor es un simil de
apagar, el simil de pausar seria congelar la ejecucion.

Eliminacion del contenedor Docker. Un comando de eliminacion es
necesario tanto por no ocupar recursos de memoria.

Eliminacién de la imagen Docker.

e Comandos de funcionalidad del crawler

o

Arranque del contendor. Este comando coge la imagen de Docker, e
instancia un contenedor con el contenido de esta imageny lo arranca, asi
se tendrd un contendor virtual para cada crawler.

Arrancar el crawler. Como su nombre indica, arranca el sistema de
crawling.

Obtener el estado del crawler. Sirve para saber si el crawler ha terminado
ya, si esta en ejecuciéon, o en cambio ni siquiera ha empezado a
ejecutarse.

Obtener el estado del contenedor. Obtiene el estado del contenedor de
Docker, el cual puede estar en ejecucidn, pausado o parado.

Obtener informacion sobre el crawler. Sirve para saber por ejemplo
cuantos links se llevan visitados o cuantas iteraciones se han ejecutado.

Indexar el contenido del crawler. Indexa el contenido recogido por el
crawler para poder ser utilizado posteriormente de una forma eficiente,
se verd mas en detalle en 3.1.5 Indexador y buscador.

Buscar sobre el contenido del crawler. Realiza busquedas en el contenido
indexado.

19

3.1.4 Configuracion

Para un desarrollo mas rapido y eficiente, todo proyecto debe tener una buena
configurabilidad.

En este proyecto hay dos partes desde las que se puede configurar el sistema

e Ficheros de configuracién. En estos se especifican las rutas donde estan los
recursos. En el caso de este sistema, los recursos son los templates por defecto
que se utilizan para configurar los sistemas de crawling y de Docker y todo
recurso necesario para las pruebas de validacion del sistema.

e Beans. Las beans son usadas por Spring, son simplemente objetos (referentes a
lenguaje de programacion) que definen una estructura o comportamiento de
este. Asi, se pueden definir objetos de un tipo/clase, que se tomaran por defecto
al ser instanciados previa declaraciéon de una anotacién especifica de java.[W8]
Butler utiliza este sistema para configurar, desde la Shell y sus propiedades,
hasta los validadores nombrados en 3.1.2 Validador.

3.1.5 Indexador y buscador

Una vez se ha recopilado la informacion, esta, ha de pasar un proceso para que las
busquedas y el manejo de ella sea eficiente en el tiempo.

Este procesado se llama indexacidn, y existen herramientas que ayudan a no tener que
implementar todo el proceso desde cero. En este sistema, se ha utilizado Lucene. [W17]

Se han creado dos indices, uno para el contenido descargado por cada URI y otro para
el nombre de la URI.

Debido al enfoque de este sistema, el analizador de Lucene que se ha escogido ha sido
el EnglishAnalyzer, el cual realiza todo el procesamiento (Stopwords, tokenizacion,
normalizacion, lematizacion, stemming...) en inglés.

Para las busquedas sobre este indice, también se utiliza Lucene, pero antes, se realiza
un pre-procesado, como puede ser, por ejemplo, limpieza de signos ortograficos.

La indexacion se puede realizar tanto dentro de cada contendor Docker como a peticién
del usuario guardando el indice en donde el sistema, Butler, esté ejecutandose.

Asi, debe haber una coordinacién minima, entre estos dos posibles lugares a la hora de
realizar la busqueda. El encargado de solucionar esto es Butler, que, al realizar la
busqueda, sabe cudl de los dos indices esta mads actualizado y realiza la busqueda sobre
este, eliminando el otro indice por estar desactualizado.

20

Desde los contenedores Docker, para que la indexacién automatizada se realice con la
misma metodologia que a peticién del usuario, una de las acciones que realiza el
contendor en su set up, es la descarga interna de Butler para utilizar el mismo cédigo
gue Butler y asi no duplicar tampoco cdédigo.

Butler tiene entonces, un sistema propio de indexacidn y busqueda, el cual te permite,
desde la Shell, entre otras cosas, saber el nUmero de resultados encontrados o poder
pedir un niumero limitado de resultados.

Para mas detalle en el sistema, ir al Anexo D.

3.2 Sistema web

Para que el sistema pueda ser utilizado a través de un sistema mas accesible por todo el
mundo, la mejor solucién es llevarlo a la web, y ha si ha sido.

A pesar de que no es el sistema principal ni protagonista del proyecto, ha llevado el
mismo tiempo de implementacion que Butler debido a las nuevas tecnologias que se
han tenido que aprender para su realizacion y que ha tenido que integrarse Butler en el
sistema, pero gracias a este sistema web, se ha dotado de potencia y usabilidad al
sistema.

El sistema estd compuesto por varios elementos
e Butler
e Parte del cliente
e Parte del servidor
e Sistema de datos (Base de datos y de ficheros)
e Contenedores Docker en ejecucion

El sistema esta pensado para que el sistema de datos esté compuesto por una Base de
datos relacional y otra que no lo sea o un sistema de ficheros.

Los contenedores Docker en esta primera versidn se ejecutan en la maquina donde se
aloja el servidor, pero el sistema esta pensado para poder ser ejecutados en maquinas
externas, y, por ultimo, el servidor, ahora mismo es uUnico, pero, perfectamente podria
estar compuesto de varios nodos compartiendo la misma base de datos, dada el
modularidad del sistema y por una apuesta por REST para mantener el estado fuera de
la parte del servidor.

21

3.2.1 Integracion de Butler

Butler es una aplicacion Shell, pero para transformarlo en un sistema web, se ha tenido
gue pensar tanto en la mejor forma de hacerlo como en la estructura del sistema que
se iba a montar.

La mejor solucidn encontrada, fue crear un archivo formato jar, que encapsulase a Butler
y que permitiera ejecutar los comandos de Butler a través de la ejecucidn de Butler. Asi,
el servidor podria operar sobre Butler de una forma sencilla, y, el servidor forma parte
del mismo proyecto que Butler, asi al compilar a través de gradle todo el sistema, el
servidor tendra siempre la ultima versién de Butler.

Para comodidad del usuario se amoldé los pardmetros de Butler a una estructura mas
enfocada al sistema web, estructurando por proyectos.

3.2.2 Servidor

El servidor es la parte del sistema donde se centraliza toda la informacién, ademas de
ser el lugar donde los contenedores Docker van a ejecutarse. Ademas de integrar la
funcionalidad de Butler, el servidor ofrece alguna mas.

Principalmente se compone de dos partes:

e Web services. Para los servicios web, el servidor hace uso del Spring MCV para
aligerar el desarrollo y apostando por un enfoque a servicios REST. Estos
servicios, en el proyecto se dividen en varios controladores, uno por cada
entidad necesaria, es decir, hay un controlador para usuarios, otro para
proyectos, otro para los contenedores etc., y cada uno de estos controladores
contiene los servicios necesarios minimizando las dependencias. Esto se hace
para, ademas de mejorar la calidad del cédigo, poder tener de forma casi
inmediata varios servidores distribuidos.

e Base de datos. Para guardar toda la informacion que se va generando se utiliza
una base de datos de tipo relacional.

e File system. También se tiene un FS (File System) donde se almacenan todos los
ficheros de configuracion que se van generando para la construccion de las
imagenes y contenedores Docker y los sistemas de crawling. Se estructuran por
usuarioy proyecto. Este FS, pasara a ser un HDFS (Haddop Distributed File Sytem.
Un sistema de archivos distribuido y escalable de Apache) en las futuras
versiones del sistema.

22

3.2.3 Cliente
La parte del cliente esta desarrollada enfocada hacia una one-page website.

El uso de Angular)S facilita la estructuracién de cédigo, agiliza el desarrollo y mejora la
experiencia del usuario, y esto, unido a Bootstrap, framework de CSS, aportan lo
necesario para tener un disefio y UX que agrade a casi cualquier usuario y que pueda ser
usado desde cualquier tipo de plataforma.

El desarrollo one-page es similar al convencional, usando las directivas de AngularJs, tan
solo hay que indicar donde se quiere insertar el cddigo de diferentes templates, y esto
unido al data-binding que ofrece, dependiendo del estado de la aplicacion (la cual estd
en el cliente, ya que se ofrecen servicios REST), se puede mostrar unos contenidos u
otros al usuario de una forma muy sencilla.

El data-binding ademas ofrece una muy buena UX y ofrece mas posibilidades para poder
crear contenido de alta calidad.

La Unica contra que tiene AngularlS, es la pronunciada curva de aprendizaje, y llegar a
dominar este framework, aunque sea a un nivel basico, no es tan trivial como otros.

3.3 Evolucidn y decisiones de disefio

Durante la realizacién del proyecto, el sistema ha ido tomando forma, evolucionando
poco a poco desde una aplicaciédn muy sencilla. Lo Unico que tiene que ver con el
resultado final es la idea de partida.

A través de una continua evaluacién de posibilidades, decisiones de disefio, mejoras y
aprendizaje de nuevas herramientas, el sistema ha ido tomando forma hasta el
resultado final.

Al principio, la idea del proyecto era clara, lo que se queria hacer, pero no exactamente
el como.

Se queria realizar un proyecto lo mas profesional posible y enfocado al uso de
tecnologias, pero al principio, antes de usar Spring Shell, Butler empezé siendo un
conjunto de scripts escritos en bash. Cada uno tenia una funcionalidad bdasica usando
Docker y alin son parte del proyecto, aunque no tienen toda la funcionalidad que tiene
Butler, si que se pueden crear crawlers muy bdsicos y extraer la informacion.

En la fase de documentacién sobre Docker y ejemplos existentes con Nutch, se iban
evaluando y buscando librerias para leer ficheros yalm, y de librerias o proyectos para
pasar de la version de scripts a una integrada con un futuro sistema de validacién y

23

construccion del crawler en java ya que para un sistema como el que se queria construir,
se necesitaba una base sdélida y segura.

Spring Shell no fue la Unica opcidn, una vez descartado el uso de scripts, se encontraron
varias librerias que permitian realizar comandos en java, pero, al ser un proyecto de
Spring, la integracion con otras herramientas seria mas sencilla.

Sobre esta etapa de documentacién, se tuvo que cambiar de direccidon en lo que la
construccion de los sistemas de crawlers se refiere. Se intentaba construir un sistema
de crawling dentro de Docker el cual incluia su propio HDFS (Hadoop Distribued File
System) y el motor de busqueda de Solr, pero, tras pensar bien sobre la arquitectura
gue se queria y evaluar diferentes opciones, la elegida fue encaminar todo a una
centralizacidn de la informacidn recogida por los crawlers hacia un futuro servidor que
se encargara del control y acceso a cada uno de la informacién de cada contenedor.

Una el proyecto iba tomando forma y se veia mas claro las herramientas a utilizar, se
cred el sistema de validacién siguiendo un patrén de disefio Singleton [W14] [W15], vy
se especifico las configuraciones minimas se pretendian soportar en la primera versién
del DSL (Mirar de arriba abajo todas las posibles configuraciones que ofrece Nutch vy
escoger las mds importantes).

Cuando se tuvo por fin la especificacidn y desarrollo del DSL completo, (que mds tarde
aun se incremento algo mds dado que es un desarrollo incremental), era momento para
empezar a desarrollar Butler con Spring Shell, y evaluar nuevas posibilidades
relacionadas con el disefio como ¢{Qué comandos se necesitan? (apartado 3.1.4) ¢éEs
viable y légico tener Solr o HDFS dentro de los contenedores Docker? (No, apartado 1.3)
éSe necesita un patrén de disefio Adapter en el Validador? (Si, y ademas un coordinador,
apartado 3.1.2).

Una vez convertida toda la aplicacién en una aplicacién SpringBoot, se necesité empezar
a poner un poco de orden, se integrd un sistema de logger por toda la aplicacidn, se
documentd todo hasta ahora en varias wikis y se paré la implementacién una iteracion
para dejar paso a una busqueda y limpieza de errores.

Una vez se tuvo Butler completo (mds tarde, segln se iban necesitando mas comandos,
se iban afladiendo), se empezé a crear el sistema web desde cero, un reto personal para
aprender. Las herramientas elegidas para esta tarea fueron Spring MVC, AngularJS 'y
Bootstrap, las dos primeras explicadas en 4. Tecnologias usadas.

Esta opcidn se empezo a desarrollar previo descarta de Spring remote Shell, dado que a
pesar de que hubiera aumentado las posibilidades y potencia de la Shell ya
implementada, no era lo que se buscaba exactamente, y un sistema web, permite el
acceso desde cualquier lado que tenga acceso a internet y distribuir el sistema.

24

A pesar no ser la base del sistema, el desarrollo web y la integracién de Butler en él llevo
casi el mismo tiempo que la implementacién de Butler mismo.

El desarrollo de la parte del servidor y la del cliente fue simultaneo. Se iba desarrollando
funcionalidad a funcionalidad, integrando Butler en el servidor, con una primera version
simple en ambas partes, y en el momento en el que todo el funcionamiento era perfecto,
se pasd a mejorar la estructura implementada en la parte del servidor simplificando el
cddigo, y en la parte del cliente, enfocdndose mas a mejorar el disefio y la usabilidad.

Referente a las decisiones de disefio en esta parte, fueron bastante simples. El servidor
es en enlace de todos los demas elementos y centraliza la informacién del sistema. La
necesidad de existencia de usuarios era obvia, y las funcionalidades a ofrecer eran las
contenidas en Butler con ciertos matices. Se decidid que el disefio fuera REST y lo mas
simple y modular posible.

25

4. Tecnologias usadas

La motivacion principal de este proyecto, era la de aprender algunas de las tecnologias
gue estdn en auge ahora mismo en diferentes campos del software, y asi crear un
sistema compacto y potente que combina vardis tecnologias para una desarrollar y
madurar la faceta del aprendizaje y adaptacion a tecnologias nuevas.

La tecnologia sobre la cual gira el proyecto es Docker. [W1]

Docker es un proyecto (de software libre) que permite automatizar el despliegue de
aplicaciones dentro de contenedores virtuales.

Estos contenedores de Docker se podrian definir como madquinas virtuales ligeras y
portables, un proceso que encapsula la aplicacién que queremos ejecutar y sus
dependencias.El que sean muy ligeros es debido a su arquitectura, diferente al de las
maquinas virtuales corrientes, un contenedor Docker no contiene todo un sistema
completo, sino Unicamente aquellas librerias, archivos y configuraciones necesarias para
desplegar las funcionalidades que contenga.

El contenedor puede ser desplegado en cualquier otro sistema (que soporte esta
tecnologia), con lo que se ahorra el tener que instalar en este nuevo entorno todas
aquellas aplicaciones que normalmente usemos.

En el caso de los desarrolladores, el uso de Docker hace que puedan centrarse en
desarrollar su cddigo sin preocuparse de si dicho cddigo funcionara en la maquina en la
gue se ejecutara.Ademas, Docker da facilidades para controlar los cambios que se hagan
en los contenedores a través de una APl/comandos de mas alto nivel que facilitan la
gestion de estos.

La idea es crear una imagen base, sobre la que realizar cambios para configurarla. Una
vez hecho los cambios, mediante la APl de Docker, se crea la imagen a usar. Esta
imagen contiene Unicamente las diferencias que hemos anadido con respecto a la base.
Docker se encarga de darnos la base que comparten las imagenes y de acoplar los
diferentes cambios de cada imagen que hemos creado.

En conclusion, Docker es una herramienta que puede empaquetar una aplicacion y sus
dependencias en un contenedor virtual muy ligero, fiable, facil de gestionar y desplegar,
portable y flexible. [W3]

Dentro de Docker (el proyecto) existen varios de ellos que ayudan a convertir las
aplicaciones que usan Docker en sistemas autosuficientes, escalables y muy potentes
como Docker Compose, Docker Engine, Docker Machine, Docker Registry, Docker Swarm,
Kinematic, Docker Hub, Docker Cloud y Docker Datacenter.

26

Para Butler, Docker es la clave de su potencia y escalabilidad.

Docker le confiere a Butler el poder ser ejecutado en cualquier sitio, el poder desplegar
los crawlers donde sea y coordinarlos facilmente gracias a su API.

Gracias al uso de las cachés de Docker y el funcionamiento de las imagenes que se
construyen sobre una imagen base, en el momento en el que Butler crea el primer
sistema de crawling, con el sistema operativo, la descarga e instalacion de las
herramientas necesarias para que todo funcione, todas las siguientes veces, este
proceso no se tiene que realizar, y la construccién del sistema es casi instantanea,
teniendo que escribir en la imagen tan solo las diferencias de la personalizacién de este,
en el peor caso siendo, la copia de varios plugins al sistema de crawling nuevo.

Con estas capacidades de Docker y la funcionalidad de Butler, se puede llegar a crear un
grupo de crawlers bastante amplio funcionando en muy poco tiempo.

Recordando que el uso de recursos se minimiza y reduce de una forma drastica por la
estructura interna de Docker, estos sistemas de crawling abarcardn muchos menos
recursos de lo normal.

Para la futura versién de Butler que permita distribuir los contendores en diferentes
maquinas, tan solo habria que tener instalado Docker en estas maquinas y tener acceso
a ellas, y el funcionamiento seria idéntico, tan solo usando ssh.

Una vez creados los contenedores Docker, el manejo de estos es trivial, existiendo
comandos de borrado, ejecucién, estado, y otras funcionalidades desde la APl de
Docker.

Referentes a otras tecnologias usadas en el sistema, se podria hablar de Spring MVC,
Spring Shell, AngularlS, Lucene y Nutch.

e Spring MVC. Es un framework que agrupa varios proyectos que facilitan el
desarrollo de aplicaciones web en Java en el lado del servidor. Ofrece infinidad
de herramientas relacionadas, por ejemplo, con el mapeo de las peticiones
entrantes o como otras relacionadas con las bases de datos. Te permite integrar
bases de datos internas a tu aplicacién, con funciones bdsicas predeterminadas
para realizacién de consultas y una APl que te ofrece realizar queries a mas alto
nivel y sin necesidad de crear tu la conexion con la base de datos. Como este tipo
de herramientas ofrece muchas otras como colas de mensajeria, herramientas
para conexiones seguras, etc. [W7]

e Spring Shell. Uno de los proyectos de Spring y ya nombrado anteriormente,
ofrece un proyecto que incluye una Shell propia y facilita la creacién de nuevos
comandos haciendo muy sencillo integrar una aplicacion Java en linea de
comandos. A grandes rasgos, el desarrollador solo se tiene que preocupar de,

27

por cada comando que quiere insertar, especificar el nombre del comando, los
argumentos que quiere que tenga, y el tipo y obligatoriedad de cada uno de ellos.
A pesar de ser una nueva tecnologia que se ha aprendido en el proyecto, no ha
sido mucha complicacién, puesto que debido al ser bastante intuitiva y estar en
Java, ha facilitado mucho el desarrollo. [W4]

AngularlS. Es un framework para JavaScript mantenido por Google, lo cual da
bastante seguridad al programador de que algo bueno tiene que tener. AngularJs
se basa en la utilizacion de directivas propias, en el data-binding y en la idea de
los controladores. Es uno de los mas dificiles de aprender, pero una vez tienes
las bases se pueden hacer maravillas de una forma muy organizada, estructurada
y rapida. En resumen, se podria decir que hace uso del ambito (referente a
lenguajes de programacion) para compartir el maximo de informacion entre lo
gue esta dentro de un mismo controlador, y conectar esa informacién en tiempo
real (data-binding). Con sus caracteristicas, hacer una aplicacién one-page es
bastante sencillo, y, asi pues, este proyecto se aprovecha de ello. [W5]

Lucene. Es una libreria de Apache enfocada a motores de busquedas. Para su
utilizacién no hace falta ser un experto en recuperacién de informacién ya que
te proporciona clases que indexan y recuperan informacion a alto nivel, teniendo
que especificar Unicamente el tipo que quieres que sea, si un modelo
probabilista, si booleano, si vectorial, o combinaciones existentes entre ellos
(como la que viene por defecto).

Nutch. Es un sistema de crawling desarrollado por Apache. En este proyecto es
el Unico soportado por el momento para la personalizacién del crawler. Lo que
es la construccidon basica viene hecha con varios plugins y funcionalidades que
permiten poder ejecutar un crawler basico y poder obtener informacién de él.
Existen ficheros de configuracidon cono nutch-site.xml para poder sobrescribir las
funcionalidades por defecto. [W6]

28

5. Problemas encontrados

Durante la realizacién del proyecto, se han encontrado algunos problemas los cuales se
han solucionado ya sea buscando otros caminos o echando mas horas, los retos estan
para superarlos.

5.1 Problemas previamente conocidos

Desconocimiento de tecnologias usadas y desarrollo en un continuo
aprendizaje (previo aprendizaje de lo basico), sobretodo desconocimiento de
Docker y AngularlS. Para solucionar esto, antes de aprender la tecnologia me
documenté de ella y escogi los aspectos necesarios para la realizacion del
proyecto, asi aprender solo la base y los aspectos mas avanzados que necesitaba
el proyecto, asi como la realizacion de tutoriales.

Falta de costumbre en el desarrollo de aplicaciones web, sobretodo en la parte
de cliente.

El amoldarme a seguir patrones de disefio, a los cuales en la rama de
computacion no se les da tanta importancia.

El disefio del sistema completo, el integrar todas las partes del sistema de la
mejor forma posible explotando y aprovechando cada tecnologia al maximo.

Falta de costumbre de implementacion de sistemas tan grandes en
comparacion con lo que he hecho hasta ahora, en estos casos el desarrollo
incremental es una muy buena opcion. Para poder superar estos problemas, me
he apoyado en el director del proyecto para que me aconsejase y me guiase en
aspectos como los patrones de disefio, asi como en las decisiones mas
importantes, las cuales segln avanzaba el proyecto, y me iba sintiendo mas
cémodo iba necesitando menos ayuda.

5.2 Problemas inesperados

Encontrar una forma de poder ejecutar los comandos de Butler, sin iniciar la
Shell, no fue nada trivial dado que Spring Shell no estd pensado para esto.
Investigué si habia algo parecido hecho por internet pero no habia nada ya que
Spring Shell no estad hecho para esto, asi que la integracion de Butler se realizd
tal cual se explica en 3.2.1 Integracion de Butler.

Funcionalidades puntuales web, como upload/download de ficheros. Debido a
la falta de costumbre del desarrollo web, no habia tenido problemas que suelen
surgir aunque sean faciles y cuando los haces una vez ya no tienes problemas
con ellos de nuevo. Estos problemas que suelen ser tonterias, quitan bastante

29

tiempo hasta que consigues solucionarlo a base de probar distintas formas de
realizarlo.

Encontrar las herramientas idoneas para este proyecto entre todas las
existentes. Investigando a través de internet, buscando diferentes herramientas
para realizar una misma funciéon y comprando las ventajas, inconvenientes,
como se acoplaria cada una al sistema, y qué ofrece cada una.

Amoldar Nutch a sin Solr ni Hadoop con Lucene respecto a las necesidades del
sistema. Debido a que el sistema de ficheros final es Unico, uno para todos los
sistemas de crawler, en las primeras versiones, se descarté de Solr y realizar a
través del sistema web y Lucene un buscador propio. A demds como las primeras
versiones no se tiene Hadoop, se tuvo que realizar un indexador y buscador con
Lucene que se amoldase a las especificaciones del sistema. Realizado como se
explica en 3.1.5 Indexador y buscador, se abordd este problema con guias de
Lucene y la experiencia previa sobre esta tecnologia.

30

6. Validacidn y pruebas del sistema

Para que el sistema sea lo mas estable y sin errores posibles, tanto en versiones finales
como durante su desarrollo, se han de seguir unas pautas y metodologias que ayuden a
gue esto sea posible.

Durante el desarrollo del cddigo, se debe intentar que existan las menos dependencias
posibles, para que cuando se cambie algo en un mdodulo no afecte a los demas.

Para esto, es aconsejable un previo analisis del sistema y un buen disefio, ademds de
seguir patrones de disefio que ayuden a esto.

También seguir un desarrollo guiado por TDD es muy aconsejable, teniendo pruebas de
que ciertas partes de tu proyecto funcionan bien en todo momento.

En Butler, por ejemplo, existen varios test que se pueden ejecutar en todo momento y
gue se ejecutan cada vez que se compila el proyecto y ejecuta desde gradle.

Se ha utilizado JUnit para la realizacién de estas pruebas. [W18]

Algun ejemplo podria ser que el validador confirme que un fichero de configuracién
correctamente formado confirma que lo es y que se generen los ficheros necesarios, o
gue otros mal formados, devuelva el fallo del fallo concreto.

Para tener una versién estable, se han de hacer mas comprobaciones y sobretodo mas
exhaustivas probando todas las casuisticas.

Para esto lo mejor es ir testeando poco a poco durante el desarrollo a través de test
unitarios, tanto de caja negra como de caja blanca. Una vez se tenga el sistema final, se
deberia considerar una iteracién de una semana probando el sistema a fondo con todas
las posibilidades posibles. Es muy importante que la persona que lo haga no sea el
desarrollador porque, inconscientemente, este va a hacer que el sistema falle lo menos
posible.

En este proyecto se ha realizado sobre todo mayor inciso en este tema en Butler, dado
gue es el nucleo del proyecto. Y ademas se ha anadido mucho feedback frente al usuario
cuando existan incongruencias o errores en los comandos que estd realizando para
avisar qué pasa, por qué y darle un consejo.

Ejemplo: intentar arrancar un contenedor cuya imagen no existe. Se avisa al usuario e la
situacion y se le sugiere crear la imagen previa.

31

7. Resultados

El resultado obtenido es un pequeiio sistema basico en comparacidn con lo que podria
llegar a ser en un futuro, dado que en el desarrollo incremental hay funcionalidades que
se han dejado para posteriores iteraciones para poder llegar a todo lo que abarca el
sistema y tener minimo una versién funcional de todo el conjunto del sistema.

Como resultado tenemos un sistema que permite crear de forma personalizada,
monitorizar crawlers y buscar sobre toda la informacidn recolectada.

Hablando un poco en términos numéricos, se podria hablar de varios aspectos.

Coste de tiempo de realizacidn de tareas sin contar el tiempo que tarda el usuario en
meter los datos:

Creacion de un proyecto: 1.5 segundos
Creacion de una imagen de Docker con todo el sistema de crawling + OS: 2.5 segundos

Creacion de un contenedor de Docker con el crawler preparado para ejecutarse: 1.5
segundos

Respecto al motor de busqueda creado, la busqueda de una query frente a todo el
contenido es instantanea previa indexacion.

Este tiempo se veria disminuido en 1.5 segundos, si Butler, en vez de ejecutarse desde
un jar en el servidor, no fuera una aplicacién Spring Shell y el cédigo fuente estuviera en
el servidor, asi la ejecucion seria instantanea, pero no se tendria la versidn Shell.

Las pruebas se han realizado en un ordenador Intel i7. Procesador de 4 nuicleos de 1.7
Ghz, tarjeta grafica GTX 550.

La rapidez de ejecucidon del crawler ya depende de muchos factores: potencia del
computador donde se esté ejecutando, dependiendo de las paginas que se visiten y su
politica frente a los crawlers (Robot.txt), si se han anadido plugins, depende de la
eficiencia de estos.

Pero realmente lo valioso de este proyecto, es el sistema de Butler y Docker juntos. Su
utilidad, estructura, modularidad y la potencia que tiene y sobre todo que puede tener
con un poco de trabajo punto 8.1 Trabajo futuro.

Aqui se puede ver un ejemplo del resultado final del sistema:

https://www.youtube.com/watch?v=L644A6\WNCvI

32

https://www.youtube.com/watch?v=L644A6WNCvI

8. Conclusiones

En este proyecto se ha conseguido unificar la potencia y flexibilidad de Docker con un
sistema que necesita de esta potencia, y que para segun qué tipo de empresas
especializadas en sistemas de la informacién puede ser clave para ahorrar muchisimo
tiempo o no depender de empresas externas gracias a ser un proyecto de software libre.

El proceso costoso de crear crawlers personalizados, se ve solucionado a través de
Butler, un sistema que permite, tanto via web como via linea de comandos, crear y
personalizar tus propios crawlers y poder monitorizar su estado y con un motor de
busqueda propio sobre la informacién recolectada.

A través de un proceso sencillo con un DSL propio, el usuario puede crear casi
instantdneamente sus crawlers incluso pudiéndoles inyectar cédigo propio (los plugins),
haciéndole posible poder obtener informacidn que otros motores de busquedas de
otras empresas conocidas como Google, no llegan.

A pesar de haber obtenido un resultado mas que gratificante, este proyecto, para poder
tener un nivel competitivo y de utilidad real, necesita ser mejorado en algunos campos
punto 8.1 Trabajo futuro.

La duracién del proyecto y el reparto del tiempo en diferentes tareas aparece en el
Anexo F.

8.1 Trabajo futuro

Se ha construido un sistema basico, pero la idea inicial y sobre la que se ha construido
era un sistema mas grande, que dado el peso de este trabajo no era viable realizar, pero
si que se ha logrado tener un sistema final potente y util, y el cual, seria muy facil de
evolucionar a algo mds grande tal como ha sido disefiado.

Las ideas que se queria haber podido tener tiempo para implementar en el sistema para
dotarle de una gran capacidad son:

e Mayor configurabilidad en Butler. Aumentar el DSL para que soporte mas
opciones en la configuracion.

e Aumentar el nimero de sistemas de crawling y S.0O. que se pueden seleccionar,
ahora mismo tan solo se puede elegir Nutch y Ubuntu.

e Cambiar la estructura del sistema a un sistema distribuido tal como se ha
mencionado en 4. Tecnologias usadas., haciendo que los contenedores de
Docker se ejecuten en maquinas externas.

e Integrar un sistema HDFS en el servidor central sustituyendo al FS actual.

33

e Integrar en el servidor central Solr (esto no sé si seria viable) una vez integrado
el HDFS.

e Aumentar opcionalidades de monitorizacién, realizarlas mads a tiempo real con
sockets o colas de mensajes.

e Afadir nuevas funcionalidades como, por ejemplo, un recomendador de
configuraciones, o un sistema de busqueda general sobre toda la informacién
recogida de todos (previa aceptacion del usuario).

8.2 Valoracién personal

Una vez explicadas las conclusiones y el trabajo futuro, la valoracién personal del
proyecto, es totalmente positiva.

Se han cumplido todos los objetivos que se propusieron en un principio sin excepcion.

He aprendido a realizar proyectos de mayor envergadura a los trabajos de universidad,
utilizando un desarrollo incremental y el uso de pequefias iteraciones en el desarrollo.

He aprendido muchas tecnologias nuevas para mi y para las que no eran nuevas, he
mejorado mi experiencia respecto a ellas, ya que era minima porque no suelo hacer
desarrollo web ni utilizar patrones de disefio.

He mejorado mucho el hecho de enfrentarme a nuevas tecnologias y adaptarme mas
rapido a ellas.

Sobretodo personalmente, he descubierto, respecto al desarrollo web, hacia donde van
mas mis preferencias, que era también uno de mis objetivos personales para este
proyecto.

El estudio previo sobre trabajos anteriores. Probar sobre sistemas ya implementados,
trastear sobre ellos para intentar sacar el maximo de cada uno de ellos para aportar a
mi proyecto, tampoco lo habia hecho tan a fondo y la verdad es que se aprende mucho.

34

9. Trabajo y esfuerzo realizado y gestion del proyecto

El tiempo invertido en este proyecto asciende a 323 horas en total repartidas en varias
tareas.

Para mostrar la evolucién temporal del proyecto y la inversion del tiempo en este se van
a mostrar imdagenes que representen este hecho, ya que esta informacion se transmite
mejor visualmente.

Reparto de horas cada mes
110

100

91

g0

Horas

Febrero Marzo Albril Mayo Junio
Mes

Figura 2: Reparto de horas por mes del proyecto

35

Reparto del tiempo en cada tarea
Gestion

19

Realizacidn pruebas
37

Documentacién del proyecto
96

Dezarrollo Web
61

Investigacién y documentacidn previa
35

Dezarrollo Butler
75

Figura 3: Reparto de horas por tarea del proyecto

Imagenes de GitHub referentes a los commits y a la evoluciéon del cédigo del proyecto.

L
24 02114 03/08 03r27 0417 0508

Figura 4: Numero de commits realizados en el proyecto

36

Figura 5: Cantidad de cddigo subido a GitHub durante el proyecto

Horas Tarea/Mes Febrero Marzo Abril Mayo Junio
Investigacion previa 27 5 3 0 0
Gestion del proyecto 8 3 5 2 1
Desarrollo de Butler 16 55 4 0 0
Desarrollo del sistema web 0 0 50 11 0
Realizacion de pruebas 3 11 8 15 0
Documentacion 4 7 4 63 18

Tabla 1: Horas trabajadas en cada mes separadas por tarea

37

10. Bibliografia

Los libros o paginas webs que se han utilizado para documentar el Proyecto (son citados
en este documento) o de guia, inspiracién y aprendizaje para la construccién del
proyecto son los siguientes:

[L1] Felix Bachmann, Len Bass, Paul C. Clements, David Garlan, James Ivers, Reed Little,
Paulo Merson, Robert Nord, Judith A. Stafford. (2010). Documenting Software
Architectures: Views and Beyond, Second Edition: Addison-Wesley Professional.

[L2] Artur Ejsmont. (2015). Web Scalability for Startup Engineers: Mc Graw Hill
Education.

[W1] Docker (2016). Docker docs. Recuperado de https://docs.docker.com

[W2] Kirk Knoerdnschild (2015). Patterns of modular architecture. Recuperado de
https://dzone.com/refcardz/patterns-modular-architecture

[W3] ifiigo Alonso (2015). Docker desplegando aplicaciones. Recuperado de
http://101breakpoints.com/docker-desplegando-aplicaciones

[W4] Spring (2014). Spring Shell documentation. Recuperado de
http://docs.spring.io/spring-shell/docs/current/reference/htmlsingle
http://docs.spring.io/autorepo/docs/spring-shell/1.2.0.M1/reference/html/dev-
shell.html

[W5] Google (2016). Angularls documentation. Recuperado de
https://docs.angularjs.org/api

[We] Apache (2015). Nutch documentation. Recuperado de
http://nutch.apache.org/apidocs/apidocs-1.9/index.html

https://wiki.apache.org/nutch/NutchTutorial

[W7] Spring (2016). Spring Guides. Recuperado de https://spring.io/guides

[W8] Spring (2015). Creating and using Bean definitions. Recuperado de
http://docs.spring.io/spring-javaconfig/docs/1.0.0.m3/reference/html/creating-bean-
definitions.html

[W9] Apache (2015). DockerFile for Nutch 2.x. Recuperado de
https://issues.apache.org/jira/browse/NUTCH-190

[W10] Apache (2014). The Hadoop Distributed File System. Recuperado de
https://developer.yahoo.com/hadoop/tutorial/module2.html

38

https://docs.docker.com/
https://dzone.com/refcardz/patterns-modular-architecture
http://101breakpoints.com/docker-desplegando-aplicaciones
http://docs.spring.io/spring-shell/docs/current/reference/htmlsingle
http://docs.spring.io/autorepo/docs/spring-shell/1.2.0.M1/reference/html/dev-shell.html
http://docs.spring.io/autorepo/docs/spring-shell/1.2.0.M1/reference/html/dev-shell.html
https://docs.angularjs.org/api
http://nutch.apache.org/apidocs/apidocs-1.9/index.html
https://wiki.apache.org/nutch/NutchTutorial
https://spring.io/guides
http://docs.spring.io/spring-javaconfig/docs/1.0.0.m3/reference/html/creating-bean-definitions.html
http://docs.spring.io/spring-javaconfig/docs/1.0.0.m3/reference/html/creating-bean-definitions.html
https://issues.apache.org/jira/browse/NUTCH-190
https://developer.yahoo.com/hadoop/tutorial/module2.html

[W11] Docker (2015). Docker hub. Recuperado de https://hub.docker.com

[W12] Github (2016), Github. Recuperado de https://github.com

[W13] Nathan Sweet (2016), Yalm for java. Recuperado de
http://yamlbeans.sourceforge.net

[W14] David Geary (2003), simply singleton. Recuperado de
http://www.javaworld.com/article/2073352/core-java/simply-singleton.html

[W15] Cecilio Alvarez (2014), Ejemplo de java singleton: Patrones classloaders.
Recuperado de http://www.arquitecturajava.com/ejemplo-de-java-singleton-patrones-
classloaders

[W16] James Sugrue (2010), Adapter pattern tutorial with java. Recuperado de
https://dzone.com/articles/design-patterns-uncovered-0

[W17] Apache (2016), Lucene documentation. Recuperado de
https://lucene.apache.org/core/documentation.html

[W18] Alvin Reyes (2016), Junit integration test example. Recuperado de
https://examples.javacodegeeks.com/core-java/junit/junit-integration-test-example

[W19] Quora (2016). What are the best web crawling services? Recuperado de
https://www.quora.com/What-are-the-best-web-crawling-services

39

https://hub.docker.com/
https://github.com/
http://yamlbeans.sourceforge.net/
http://www.javaworld.com/article/2073352/core-java/simply-singleton.html
http://www.arquitecturajava.com/ejemplo-de-java-singleton-patrones-classloaders
http://www.arquitecturajava.com/ejemplo-de-java-singleton-patrones-classloaders
https://dzone.com/articles/design-patterns-uncovered-0
https://lucene.apache.org/core/documentation.html
https://examples.javacodegeeks.com/core-java/junit/junit-integration-test-example
https://www.quora.com/What-are-the-best-web-crawling-services

Anexos

Anexo A. Butler en detalle. Guias y esquemas.
Butler esta compuesto de tres grandes partes.
e El validador de ficheros de configuracidn
e El constructor de los ficheros finales
e Comandos para el uso de estos ficheros y manejo de los sistemas de crawling.

Dejando los comandos aparte, ya que son mayoritariamente operaciones de Docker y
Nutch encapsuladas junto con légica de negocio, la parte del validador y el constructor,
se puede apreciar muy bien con un diagrama de actividad.

DSL Creator System

Yalm D

Configuration
File
Novald Configuration validator E
—————— —> Docker E Crawler E
Validator Validator
Builder E
_______ s Docker E Crawler E
Builder Builder
Default templates D
(BulsBoser) (BuldCaver] | || oocierte [N crawer [
Configuration
Files

Customized Templates D

Final D _______ _>

Configuration
Files Dockerfile D Crawler D

Configuration
Files

Figura 6: Diagrama de actividad del validador y constructor de Butler.

40

Se puede apreciar perfectamente cual es el funcionamiento del sistema y a qué
elementos del sistema esta asociado cada paso.

1. Dado un fichero de configuracién de tipo yalm, el sistema valida la construccion
de este segun a la especificacidon del DSL que se verd en el siguiente punto del
anexo. Estos validadores son los validadores que se han nombrado en 3.1.2
Validador.

2. Si el fichero es vdlido, el siguiente paso es la construccidon de los ficheros de
configuracion de salida necesarios para el sistema de crawling a realizar, también
existen dos modulos, uno se encarga de la parte de Docker y otro de la parte del
Crawler (con un patrén Adapter para diferentes sistemas de crawling).

3. Estos moddulos utilizan templates por defecto integrados en el sistema a partir
de los cuales se formaran los ficheros de salida finales.

4. El mdédulo que construye los ficheros de Docker necesarios, forma el Dockerfile,
y el mdédulo del crawler forma los ficheros de configuracidon necesarios para
realizar las configuraciones especificadas en el DSL respecto al sistema de
crawling seleccionado.

El validador, como ya se ha explicado en 3.1.2 Validador, tiene un validador para cada
caracteristica de configuracién. Cada uno de ellos implementa un interfaz validator para
estandarizar los métodos a implementar y una mayor organizacién.

Se puede configurar el validador de Butler a través de las Beans de Java. Ahora mismo
se utiliza un solo validador que esta formado por dos validadores, uno que valida la parte
de Docker y otro que valida la parte del sistema crawling (y que ambos estan formados
por mas validadores).

Especificacion del DSL
Para crear el sistema de crawling se ha de especificar ciertos aspectos del sistema.

En lo que se refiere al contenedor Docker, se ha de especificar el sistema operativo sobre
el que va a correr el sistema de crawling. Del OS se debe especificar el nombre y la
version de esta forma:

#Docker container Operating System
dockerOS:
name: ubuntu

version: 14.04

41

Respecto al sistema de crawling, se deben especificar aspectos sobre qué sistema es y
sobre su configuracidon que se aplicara en el momento en el que este se empiece a
ejecutar.

e Configuraciones minimas obligatorias
o Elnombrey la versidn del sistema de crawling.
o Las semillas que servirdn como base al sistema.

o El nimero de rondas o iteraciones que el sistema permanecerd en
ejecucion.

o Silaextraccion de informacion del crawler se debe realizar en cada ronda
o tan solo al terminar su ejecucion.

o Eltipo de informacidn a extraer.
Especificacién a nivel de fichero:
dockerOS:

name: Es el nombre del sistema de operativo, debe ser compatible con el sistema
de crawling elegido. Hasta ahora tan solo se permite algunos sistemas Linux
como Ubuntu

version: Version del sistema de operativo, se puede elegir cualquiera disponible.
crawlSystem:

name: Es el nombre del sistema de crawling, hasta ahora tan solo se puede elegir
nutch.

version: Version del sistema de crawling, se puede elegir cualquiera disponible.

Seeds: Semillas url para el crawler. Cada una se separa por un salto de linea
previo -,

Rounds: Numero de iteraciones que va a realizar el crawler, el nivel de
profundidad hasta el cual va a llegar.

Extraction: Si la indexacion interna va a ser en cada iteracion o unicamente a la
finalizacion del crawler. Posibles valores [rounds | finish]

infoCrawled: El formato de la informacion que le crawler va a extraer. Posibles
valores [text | html].

42

gueueMode: Determina la organizacion de colas del crawler. Por defecto tendrad
el valor ‘byHost’. Posibles valores [byHost | byDomain | bylP]

e Configuraciones opcionales
o Tipo o modo de cola.
o Informacion respecto a timeouts o tiempos de delay.
o Restricciones sobre la informacion a recoger.
crawlISystem:

maxFileLength: Longitud mdxima de los ficheros a descargar. Valor por defecto
65536 bytes.

maxCrawl|Delay: el tiempo mdximo que el crawler espera para hacer fetch a la url
siguiente. Si se toma un valor menor al permitido por la pdgina por el fichero
robot.txt, la url no se fetcheard. Si el valor es *-1’, nunca se saltard ninguna pdgina
y esperard lo que diga el robot.txt

Timeouts:
Parser: timeout en sequndos madximo para parsear un documento.

fetchTimes: el nUmero de veces que el crawler reintentara hacer el fetch
de una url que falle.

network: timeout de la red en milisequndos mdximo a esperar.

Los plugins no seran especificados en el fichero de configuracién. Estos irdn en una
carpeta llamada ‘plugins’ al mismo nivel que el fichero de configuracién realizado.

Esta carpeta debe tener dentro, una carpeta por cada plugin que se quiera afiadir. Dichas
carpetas tendran el nombre del plugin y su contenido deberd ser los ficheros jars del
mismo y el fichero plugin.xml con su especificacion. Estos plugins deben ser plugins pre-
compilados.

En el caso de que haya algin problema en la validacién de cualquier fichero de
configuracion, se indicard el primer error encontrado especificando el tipo de error.

Un ejemplo simple de lo que seria un fichero de configuracion seria este:

dockerOS:

name: ubuntu

43

version: 14.04
crawlSystem:
name: nutch
version: 1.9
seeds:
- https://eina.unizar.es/
- http://www.unizar.es/
rounds: 2
extraction: round
infoCrawled: text

queueMode: byHost
Guia de usuario
Requisitos para instalar y ejecutar Butler:
e Tener instalado Java 8

e Tener instalado Docker y en ejecucion. En un apartado de los Anexos mas
adelante se mostrara cdmo realizar la instalacion.

Una vez se cumplan estos requisitos, para descargar Butler tan solo hay que
descargarselo del repositorio de GitHub https://github.com/Shathe/101CrawlersWeb

La descarga se puede hacer tanto clonando el repositorio desde linea de comandos o
aplicaciéon de Git o desde la pagina web descargandolo como Zip.

Para ejecutarlo, tan solo hay que ejecutar el script que esta en el nivel superior del
proyecto llamado butler.sh, el cual compila el proyecto, realiza los test que asegura que
el proyecto funciona y ejecuta el sistema.

Utilizando el fichero de configuracién de ejemplo del apartado anterior, se va a mostrar
como seria una ejecucion de todos los comandos en su orden natural.

Para no complicar a los usuarios en su primera toma de contacto con Butler, en este
proyecto ya hay un fichero de configuracion creado (el mismo con el que se va a realizar
el ejemplo), llamado conf_tutorial.yml.

Una vez ejecutemos el script butler.sh se nos abrira en la consola Butler y nos permitira
ver los comandos disponibles a realizar a través del tabulador:

44

https://github.com/Shathe/101CrawlersWeb

iell=config --file conf_tutorial.yml --idProject

shell=build --idProject 5 --imageName nueva

Figura 7: Inicializacion de Butler.

Ahora vamos a realizar paso a paso, todos los comandos que ofrece Butler:
1. Ejecutar la configuracion:

config --file conf tutorial.yml --idProject 5

Salida esperada:

configurated successfully

En este paso el sistema validara el fichero de configuracién. En el caso de que exista
algun error indicara donde y cual. En caso de que todo sea correcto, creara los ficheros
necesarios.

2. Ejecutar su construccion:

build --idProject 5 --imageName nueva
Salida esperada:

Image built successfully

En este paso, el sistema creard la imagen de Docker especificada por el usuario con el
sistema de crawling y sus configuraciones que se hayan especificado.

3. Ejecutar el arranque de docker:

start --containerName container --idProject 5 --imageName
nueva

Salida esperada:

Container started

45

Ahora mismo el contenedor de Docker estd en marcha. Solo esta en marcha el sistema
operativo en el contenedor, el siguiente paso es poner el crawler en marcha. En caso de
gue el contenedor haya sido pausado o parado, este comando servird también para
reanudarlo.

4. Ejecutar el arranque del crawler:

run --containerName container --idProject 5 --imageName
nueva

Salida esperada:
Crawler started

Ahora mismo el crawler estd en marcha y se ejecutard las rondas que haya sido
configurado o hasta que ya no tenga enlaces. Ahora ya solo hay que esperar a recopilar
la informacién.

5. Ahora tengo que esperar (o no) a que termine el crawler de ejecutarse, ¢{Como lo
puedo saber?

Vamos a ejecutar un comando para saber informacion sobre el crawler

info --containerName container --idProject 5 --imageName
nueva

Salida esperada:
Running
o el estado del contenedor

status --containerName container --idProject 5 --imageName
nueva

Salida esperada:
Running

Ahora vamos a esperar unos minutos a que termine [5/10 minutos después] y
ejecutamos:

finished --containerName container --idProject 5 —--imageName
nueva

Las dos posibles salidas son:

The crawler hasn't finised yet

46

Si no ha acabado, como nada mads ejecutarlo. O, por el contrario, si en mi caso, he
esperado unos diez minutos

Yes, the crawler has finished

Si quieres saber algo mas sobre la informacion del crawler, también puedes probar con
esto:

runningStatus --containerName container --idProject 5 --
imageName nueva

Salida esperada:
Fetched links: 2, unfetched links: 170, rounds: %

Esto significa que el crawler lleva 1 de 2 rondas realizadas, que ha recopilado
informacién de 2 links y que, en la siguiente ronda, valorara extraer informacién de 170
links.

6.Extraer la informacion:

Lo primero de todo, hay que tener en cuenta que antes de poder buscar, hay que indexar
la informacién. Como hemos elegido "extraction: round" se ird actualizando el indice
solo, pero, de todas formas, podemos hacerlo manualmente.

index --containerName container --idProject 5 --imageName
nueva

Salida esperada:
Indexed correctly
Y ahora para realizar una busqueda tan solo tenemos que hacer esto:

search -—query 'unizar universidad’ --containerName
container --idProject 5 --imageName nueva —--top 5

Salida esperada:

58 total matching documents
http://paper.li/CatedrasUnizar/1361728396
https://twitter.com/unizar
https://twitter.com/EINAunizar

http://paper.li/OTRI Unizar/1374046234

47

http://www.unizar.es/
Results shown

Los resultados estan ordenados de mayor a menos importancia respecto a nuestra
busqueda. Podemos especificar incluso el maximo de resultados que queremos ver en
la consola. Si no lo hacemos, nos devolverd todos los resultados. Ademas, el sistema
creard un documento con todos los resultados.

Comandos utiles pero prescindibles:
Si en algiin momento quiero parar la ejecucion del crawler tan solo tengo que ejecutar:

stopCrawl --containerName container --idProject 5 -—-
imageName nueva

Salida esperada:
Crawl stopped correctly

Si quiero parar el contenedor porque, por ejemplo, quiero pararlo para eliminarlo, tan
solo tengo que ejecutar:

stopContainer --containerName container --idProject 5 --
imageName nueva

Salida esperada:
Container stopped correctly

Esto sirve para poder eliminarlo, cuando el crawler haya terminado y ya no se necesite
gastar recursos de procesador y memoria RAM.

Si quiero pausar el contenedor porque, por ejemplo, no quiero que avance de momento
0 no quiero gastar recursos, ejecuto:

pauseContainer --containerName container --idProject 5 --
imageName nueva

Salida esperada:
Container paused correctly
Si quiero borrar el contenedor tan solo tengo que ejecutar:

deleteContainer --containerName container --idProject 5 --
imageName nueva

48

Salida esperada:

Container deleted correctly

Y si en cambio lo que quiero borrar es la imagen tan solo tengo que ejecutar:
deleteImage --idProject 5 --imageName nueva

Salida esperada:

Image deleted correctly

Los comandos de borrar suelen ser utiles cuando el crawler ha terminado y se quiere de
dejar usar recursos de disco (almacenamiento).

Si existe algun error al ejecutar los comandos, se avisara por pantalla de qué error es.

Visualmente, algunas de estas ejecuciones quedarian asi:

finished --containerName container --idProject 5 --imageName nueva

ex --containerName container --idProject 5 --imageName nueva

'unizar universidad' --containerName container --idProject 5 --imageMName nueva --top 1

WWW .

WWW .

WWW .

WWW . E

WWW. uni [iones-y-empr

/ 'unizar universidad' --containerName container --idProject 5 --imageName nueva --top 1

Figura 8: Ejecucion de comandos de Butler.

Donde se puede apreciarlos comandos ejecutados, como la indexacién y busqueda de
algunas queries, una vez sabemos que el crawler ha terminado su ejecucion.

49

Anexo B. Sistema web
Guia de usuario

Para utilizar el sistema web, se ha de crear un usuario propio para poder acceder tan
solo a los crawlers creados por cada persona.

Login Register

4 | molomogolion

@ inigol22zgz@gmail.com

By clicking Register, you accept the Terms and you confirm that you have read our Data
Policy, including the use of cookies.

REGISTER NOW

Figura 9: Registro de un usuario.

Una vez se ha creado un usuario y se ha iniciado sesion (Log in), es momento de crear
un proyecto, para hacer esto, hay que darle al botdn de ‘new project’ y se mostrara una
nueva pantalla para rellenar los datos necesarios para la creacion del proyecto.

Informacidén minima necesaria:
o Nombre del proyecto

e Fichero de configuracion que siga la especificacion explicada en el anexo
especificacion del DSL

50

ﬁ 101Crawlers My projects Who we are Contact us inigo ~

My projects
Name Edit Delete
Project one n

© 2016 101Crawlers, Inc. - Privacy - Terms

Figura 10: Creacion de un proyecto.

Tras introducir el nombre y seleccionar el fichero correspondiente al DSL, el fichero se
tiene que subir al servidor, asi que, para poder subir el fichero de configuracidn, se ha
de pulsar a 'upload DSL file'

Una vez subido el fichero, se puede dar a guardar el proyecto. Cuando se le dé, se
validara el fichero y si es correcto, el proyecto se creard, sino es asi, se notificara del
error y no se creara.

Informacién opcional:
e Plugins

Los plugins se deben de adjuntar con todos sus ficheros de golpe y ya compilados, es
decir, el fichero plugin.xml y los jars. Para poder anadir un plugin, tan solo hay que darle
un nombre (el nombre del plugin que viene en el plugin.xml) y adjuntar los ficheros. Al
darle a Upload plugin, se subira el plugin al servidor.

Se pueden afadir un ndmero ilimitado de plugins, pero sus ficheros como maximo
pueden ocupar 10 megas.

Si en cualquier momento se quiere resetear las configuraciones/plugins subidos, tan
solo se debe clicar el botdn 'reset upload'.

Una vez creado el proyecto, se puede editar el proyecto, borrar el proyecto, o entrar
dentro para crear imagenes y contenedores.

Una vez creado el proyecto, hay que clicarlo para poder manejarlo. El siguiente paso es
la creacion de una imagen del proyecto actualmente (una imagen de Docker con la

51

configuracion actual), ya que se puede editar la configuracién del proyecto y poder tener
imagenes en un mismo proyecto con diferente configuracion.

Lo primero de todo, una imagen, es una forma de organizacidn del proyecto. Dada la
ultima configuracion del proyecto, se toma una imagen de esta configuracion, para
poder crear instancias (contendores) mds adelante, y asi poder tener en un mismo
proyecto, diferentes configuraciones, guardadas en diferentes imagenes.

% 101Crawlers My projects Who we are Contact us inigo ~

Images of aaaa

Name Edit Delete

image one n

© 2016 101Crawlers, Inc. - Privacy - Terms

o}

Figura 11: Creacion de una imagen del proyecto ‘aaaa’.

Al crear unaimagen tan solo se le tiene que especificar el nombre. El proceso de creacién
de esta imagen puede tardar desde un segundo hasta varios minutos. Esto es debido a
gue crear una imagen es equivalente a Descargar el sistema operativo, configurarlo,
descargar todo el software necesario para el sistema de crawling.

Puede llegar a tardar muy poco debido a la caché de Docker. Todo lo que se ha creado
alguna vez para alguna imagen, se reutilizard para las demas, es decir, si yo creo una
imagen con la misma configuracidn que otra que ya ha sido creada, tardard tan uno
segundos en tener montado todo el sistema de la imagen.

También se pueden borrar o editar.

Para cada imagen, se crean contenedores Docker, para poder ejecutar esa imagen en el
momento que se quiera y las veces que se quiera.

Los contenedores son instancias de imdagenes, teniendo un contenedor, es como tener
una maquina virtual, un ordenador funcionando teniendo el sistema de crawling dentro.

52

Para crearlo, previamente se ha debido de introducirse en una imagen. asi tan solo hay
que especificar el nombre tras darle a crear nuevo proyecto.

También se pueden borrar o editar.

Una vez lo creas, y clicas en el para introducirte dentro, tardara en cargar un segundo o
dos el estado actual del contenedor y mostrara esta pantalla con multiples
funcionalidades.

% 101Crawlers My projects Who we are Contact us

container one container status: Running. Crawler status: Running
Rounds: 1/2 Fetched links: 2 Unfetched links: 158

Download all information & | Download all results & | statusS | Stop @ | PauseM | SearchQ | Index

© 2016 101Crawlers, Inc. - Privacy - Terms

Figura 12: Contenedor ‘one’ ejecutdndose.

ﬁ 101Crawlers My projects Who we are Contact us

container one container status: Paused. Crawler status: | don't known (container stopped/paused)
Rounds: Unknwon Fetched links: Unknwon Unfetched links: Unknwon

Download all information & | Download all results & | status | Restart®» | Search@ | Index I

© 2016 101Crawlers, Inc. - Privacy - Terms

Figura 13: Contenedor ‘one’ en estado pausado.

53

Se pueden apreciar en ambas imagenes varias posibles operaciones segun su estado:

e Index: Indexa todo lo que se ha ido recogiendo de informacidn, esta opcidn estd
introducida debido a que en el DSL se especifica cuadno se quiere indexar, pero
se da la opcidn de realizarlo manualmente por si el usuario quiere asegurarse o
ha cambiado de opinién respecto a cuando realizarla

e Search: Puedes buscar cualquier contenido en la informacién que el sistema ha
recogido tan solo introduciendo la busqueda y clicando a este botén. Tan solo
muestra los 20 primeros resultados

e Pause/Stop: Pausa o para el sistema para no consumir recursos. Se recomienda
tan solo pausarlo

e Restart: Solo visible si se ha pausado o parado previamente, vuelve a iniciar en
el estado anterior el sistema

e Download all results: Descarga en un fichero con TODOS los resultados de la
query

e Download all: Descarga TODA la informacion recogida por el crawler

En la pantalla del contenedor, se muestra el estado del mismo en todo momento, asi
como el estado del crawler.

La diferencia entre ellos es que el contendor, es como el ordenador, donde se esta
ejecutando el crawler, en cambio, el crawler es el programa que recoge toda la
informacién.

En esta direccion web https://www.youtube.com/watch?v=L644A6WNCv!| reside un
ejemplo de uso.

54

https://www.youtube.com/watch?v=L644A6WNCvI

Anexo C. Validacion
La validacion del sistema es un elemento imprescindible.

Se ha comentado en 4. Tecnologias usadas., las validaciones realizadas en este sistema,
pero en este Anexo se va a centrar la atencion a los test (con JUnit) de caja negra, y al
desarrollo realizado por TDD.

En la version actual del software, hay tres elementos que se estan controlando a través
de los test en Butler.

e Funcionalidades relacionadas con los comandos
e La correcta indexacién del motor de busqueda
e El correcto funcionamiento del Shell

Todo este cddigo esta organizado en un paquete llamado test para mantener el cédigo
organizado segun sus funcionalidades.

Para la realizacion de este tipo de tests se han utilizado caracteristicas de java y Spring
para facilitar tanto el desarrollo como la configuracion de estos.

e Beans. Objetos que se auto-instancian dada una configuracién/instanciacion por
defecto previa. Se puede especificar para estas configuraciones los aspectos que
se deben dar para que en algunos casos se instancien unas configuraciones y en
otras ocasiones otras.

Asi, por ejemplo, con una previa anotacidn java de @autowired se instancian
validadores los ficheros de configuracidén que se necesiten para los tests. [W8]

e Anotaciones de java. Como las anotaciones de @ActiveProfile, @Value para que
dependiendo del perfil de ejecucion algunas variables tomen unos valores u
otros, asi se pueden tener varaibles de configuracién como rutas, por ejemplo.
También para definir con que se va a ejecutar los tests, definir que un método
es un test etc...

Un ejemplo del cddigo seria este:

55

.":E =
* Test the configuration builder and validation
*f
@RunWith({SpringJUnit4ClassRunner.class)
@springapplicationConfiguration(Application.class)
@ActiveProfiles("test")
public class CoordinatorTest {

@Autowired
private ApplicationContext ctx;

@Autowired
privete ConfigurationValidator configurationvalidator;

@Autowired
private CrawlValidator crawlValidator;

@Value("${butler.base}/")
privete 5tring baseDir;

@autowired
public Operations operations;

/** Detects if a well formed configuration file, pass the validation */
@Test
public woid detectEverythingIsOK() throws URISyntaxException {
CrawlConfiguration config;
config = readConfiguration("conf.yml");
assertlotNull("YamlConfigRunner debe devolwver ung configuracidn v no null®, config);
System.out.println(config.toString());

ValidationResult result = configurationValidator.validate(config);

assertTrue("DefaultValidator debe devolver gue esta bien", result.isOk());
assertEquals("DefaultValidator dbe dar OK", Validator.Status.OK, result.getFirstErrorCode());

Figura 14: Ejemplo de test de Butler

56

Anexo D. Indexacion

El proceso de indexacidn es muy necesario para que un motor de busqueda sea
eficiente. Butler utiliza Lucene como herramienta para realizar este proceso.

A grandes rasgos el proceso se ha explicado en 3.1.5 Indexador y buscador. Se ha
hablado de la coordinacidn entre el contenedor Docker y Butler para mantener la
uniformidad y consistencia de la informacién ya que existe un proceso automatizado
que indexa dentro del contendor Docker y debe utilizar el mismo cédigo metodologia
gue en Butler, que es el otro elemento donde se puede dar esta indexacidn a peticion
del usuario.

Para aclarar el proceso, se muestra a continuacién un diagrama de secuencia.

Usuario contenedor Docker

|

|

|

|
1 getContent() =

Indexar()
< ——————— content |
preprocesado()
Ind
ndexar() DprjonaIJ
<______In_dgx3d_095 —————— preprocesado()
alt ErmrJ
FE— Emor, noindexado_ _ _ _ _ Indexar()
Buscar{guery)
— getTimelLastindex()
date
RS L ——
optional
container index is more recent
getLastindex()
Index
e ——
preprocesado(guery)
buscarEnindice{guery)
results
<R
alt ErmrJ
Error al buscar
e — T

Figura 15: Diagrama de secuencia de una indexacion

57

Anexo E. Instalaciéon Docker
Para la instalacién y uso de Butler es necesaria la previa instalacion de Docker.

La instalacién es bastante sencilla y Docker tiene una muy buena documentacidon. Aqui
se muestran los links necesarios.

Aqui se muestra una guia de instalacion completa y configurando partes de Docker, si
no, también estdn los links para una instalacién rapida en linux, Mac, Windows.

Se recomienda la instalacién completa, puesto que indica como configurarlo con mayor
detalle y, por ejemplo, para dar permisos suficientes Unicamente para Docker (Si no,
puede haber algunos problemas con Butler).

Docker es una tecnologia nueva, y durante la realizacion de este proyecto, se ha visto
qgue Docker, a veces, si se tiene funcionando mucho tiempo, puede quedarse colgado
(rara vez, pero ha ocurrido a veces) dando este mensaje la mayor parte de las veces
(otras veces simplemente no habia mensaje):

docker: An error occurred trying to connect: Post

http://%2Fvar%2Frun%2Fdocker.sock/v1.22/containers/create: read unix @-
>/var/run/docker.sock: read: connection reset by peer.

Para solucionar este problema (o algun otro relacionado con el mal funcionamiento de
Docker), tan solo hay que ejecutar:

sudo service docker stop
sudo rm /var/lib/docker/network/files/Local -kv.db

sudo service docker start

También puede dar este mensaje, el cual simplemente te avisa de que no esta instalado
correctamente o estd mal configurado (aunque sea tan solo por falta de permisos
suficientes):

‘Cannot connect to the Docker daemon. Is 'docker daemon' running on this host?'

Existe la posibilidad de que aparezca este mensaje también, pero no es un problema,
tan solo es un aviso, pero no impide el funcionamiento de Docker

WARNING: Error loading config file:/home/user/.docker/config.json - stat
/home/user/.docker/config.json: permission denied

Para solucionar esto se puede crear un fichero con un objeto Json vacio (‘{} como Unico
contenido del fichero) para que el mensaje no vuelva a aparecer.

58

https://docs.docker.com/engine/installation/
https://docs.docker.com/linux/
https://docs.docker.com/mac/
https://docs.docker.com/windows/

