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Relativistic global and local divergences in hydrogenic systems:
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Relativistic effects in one-particle densities of hydrogenic systems are quantified by means of global and local
density functionals: the Jensen-Shannon and the Jensen-Fisher divergences, respectively. The Schrödinger and
Dirac radial densities are compared, providing complementary results in position and momentum spaces. While
the electron cloud gets compressed towards the origin in the Dirac case, the momentum density spreads out over
its domain, and the raising of minima in position space does not occur in the momentum space. Regarding the
dependence on the nuclear charge and the state quantum numbers for all divergences here considered, as well as
their mutual interconnection, accurate powerlike laws y ≈ Cxa are found systematically. The parameters {C,a}
defining the respective dependences are extremely sensitive to the closeness of the system to the ground and/or
the circular state. Particularly interesting are the analyses of (i) the plane subtended by the Jensen-Shannon and
Jensen-Fisher divergences, in a given space (position or momentum), and (ii) either of the above two divergences
in the position-momentum plane. These kinds of results show the complementary role of global and local
divergences and that of both conjugate spaces.
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I. INTRODUCTION

The solutions of the Schrödinger equation for an atomic
system with nuclear charge Z provide a description of the
eigenstates in a nonrelativistic framework. In spite of their
relevance, it has not been an easy task to determine those
solutions, requiring the use of sophisticated models and/or
numerical routines. The only exceptions to the above are
the one-electron systems, i.e., hydrogenlike atoms. Solutions
of both ground and excited states are well known in the
aforementioned nonrelativistic framework. Their analytical
expressions allow a straightforward determination of the wave
functions in the conjugate space, as well as the position and
momentum one-particle densities ρ(�r) and γ ( �p), respectively.

These densities play a relevant role within the so-called
“information theory,” allowing an interpretation of many den-
sity functionals in terms of physical and chemical properties
in many-electron systems. In doing this, a variety of tools
and magnitudes have been considered in the literature. Some
density functionals deserve special attention, such as the
Shannon entropy [1] and the Fisher information [2] among
others.

Composite functionals defined, most usually, in terms of (at
least) one of the aforementioned Shannon and Fisher quanti-
ties, have been studied, both theoretically and numerically,
in recent years. They belong to the class of “complexity
measures,” enclosing different definitions in order to quantify
such a subjective concept as complexity (see Ref. [3] and
references therein).

Furthermore, exploring quantitatively the level of similarity
or dissimilarity between two different systems in terms of
their densities appears nowadays as a very interesting field.

*Corresponding author: angulo@ugr.es

For this aim, different measures of “similarity” [4] and
“divergence,’ [5,6] have been introduced and, in some cases,
later generalized.

The study of the relativistic effects on the just mentioned
densities and/or functionals has been the focus of attention of
many researchers, not only for hydrogenlike atoms but also
for many-electron systems. In order to take into account the
relativistic effects, the Dirac-Fock equation must be solved,
including the Schrödinger one as the nonrelativistic limit.
Solving the Dirac equation is a much more difficult task
compared to that for the Schrödinger case. Nevertheless, the
aforementioned analytical expressions for the nonrelativistic
hydrogenic case are also available for the relativistic position
and momentum densities.

Let us mention here some previous works, focused on the
analysis of the relativistic effects on the one-particle densities.
A pioneering attempt to do this was carried out by studying the
charge density ρ(�r) of hydrogenlike systems in their ground
and excited states, in, e.g., Ref. [7], with successful results.
In that work no density functionals were considered, but the
density itself, in position space. Much more recent are the
studies of relativistic effects on density functionals. Among
them, the Fisher information for the charge density of neutral
atoms [8] and the position- and momentum-space densities
of hydrogenlike systems [9], all of them in the ground state,
also provide interesting conclusions. Within Ref. [9] many
other quantities are considered in both conjugated spaces:
the Shannon and Rényi entropies, variance, relative entropy,
and López-Ruiz, Mancini, and Calbet [10] (LMC) or shape
complexity, all of them only for ground-state hydrogen.

Further studies of complexity measures are also well
known within the relativistic framework. Let us mention the
analysis of LMC and Shiner-Davison-Landsberg [11] (SDL)
complexities in position space for neutral atoms [12], and
the comparative study based on LMC and Fisher-Shannon

1050-2947/2014/90(4)/042511(14) 042511-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.042511


ANTOLÍN, ANGULO, MULAS, AND LÓPEZ-ROSA PHYSICAL REVIEW A 90, 042511 (2014)

[13] (FS) complexities provided in Ref. [14] for excited
hydrogen.

Regarding other comparative measures of recent interest,
works on the quantum similarity index (QSI) deserve to
be mentioned. Let us note the study of atomic QSI in
both position and momentum spaces provided in Ref. [15],
where that functional is applied to different systems and/or
states separately for the Schrödinger and the Dirac cases.
Using the same functional, a direct comparison between the
relativistic and nonrelativistic densities for a variety of atoms
was provided in a pioneering work [16], by considering the
functional dependence on the respective charge densities (i.e.,
only in position space).

The main aim of this work is to study the relativistic effects
on hydrogenic systems with nuclear charge Z in arbitrary
states, by means of their one-particle densities in both position
and momentum spaces. For this purpose we compute the
so-called “Jensen-Shannon” (JSD) [5,6] and “Jensen-Fisher”
(JFD) [17] divergences between the Dirac and Schrödinger
densities for a given system and state. The JSD quantifies
differences in the overall dispersion of the distributions, while
the JFD does the same regarding their gradient content and
their relative oscillations.

The paper is structured as follows: In Sec. II, the Jensen-
Shannon and Jensen-Fisher divergences are defined for ar-
bitrary probability distributions, emphasizing their meaning
as comparative measures within an information-theoretical
framework. In Sec. III we describe the distributions considered
in this work, namely, relativistic and nonrelativistic hydrogenic
densities for arbitrary states, in both position and momentum
spaces. Section IV is devoted to the numerical analysis
of divergences among the aforementioned densities, paying
attention to the functional dependence of the JSD and JFD on
the nuclear charge and the state quantum numbers, as well as
to the JSD-JFD mutual relationship and uncertaintylike (i.e.,
position-momentum) interconnections. Conclusions are given
in Sec. V, where some open problems are also proposed.

II. JENSEN-SHANNON AND JENSEN-FISHER
DIVERGENCES

Several measures of information for general probability
densities [i.e., non-negative functions ρ(�r) whose integral over
their domain obeys the normalization constraint

∫
ρ(�r)d�r = 1]

have been considered in the literature. The most commonly
used in information theory is the Shannon entropy S [1,18],

S(ρ) ≡ −
∫

ρ(�r) ln ρ(�r)d�r, (1)

a global measure of the spread or delocalization of a dis-
tribution ρ(�r). The definition and applications of the Fisher
information F appear complementary to the functional S [2]:

F (ρ) ≡
∫

ρ(�r)| �∇ ln ρ(�r)|2d�r, (2)

a spreading measure of ρ(�r) with a locality property because it
is a functional of its gradient. Contrary to the Shannon entropy,
the Fisher information quantifies the pointwise concentration
and the gradient content of the distribution, thus revealing

its irregularities and providing a quantitative estimation of its
oscillatory character.

Information-theoretic properties based on Shannon entropy
and/or Fisher information have been extensively employed
in recent years within a quantum-mechanical framework, in
particular for multielectronic systems. Their use in atomic
and molecular systems has provided a wide variety of results
[19–26], including recent studies on complexity measures.

The relative entropy or Kullback and Leibler (KL) diver-
gence [27]

DKL(ρ1,ρ2) ≡
∫

ρ1(�r) ln
ρ1(�r)

ρ2(�r)
d�r (3)

is the pioneering global measure of differences between
probability distributions. It quantifies the information supplied
by the data for discriminating between the distributions, being
a “directed measure” (therefore not symmetric). Especially
remarkable is its property of non-negativity, and the minimum
null value is reached only for identical distributions ρ1 = ρ2.

The KL relative entropy constitutes an essential tool
within information theory, as shown by its applications
for obtaining minimum cross-entropy estimations and for
determining atomic [28] and molecular [29] properties, among
others. More recent applications include the introduction
of an informational quantum dissimilarity measure to study
the relativistic effects on the electron density [16], or the
employment of KL measures to analyze molecular reaction
paths [30].

A closely related information measure between two or more
distributions, namely, the Jensen-Shannon divergence,

DJS(ρ1,ρ2) ≡ 1

2

[
DKL

(
ρ1,

ρ1 + ρ2

2

)
+ DKL

(
ρ2,

ρ1 + ρ2

2

)]
,

(4)

was also introduced [5,6]. From its definition, the JSD repre-
sents the mean dissimilarity (understood in terms of the KL
measure) of each density with respect to their arithmetic mean.
Notice the symmetry of the JSD (i.e., the invariance under
the exchange of ρ1 and ρ2), and also that the main properties
of the KL divergence are transferred to the JSD: the Jensen-
Shannon divergence is always non-negative, vanishing only if
ρ1 = ρ2. In fact, the JSD is the square of a true metric [31,32]
or, in other words, its square root constitutes a distance in a
rigorous mathematical sense.

Using the above definition together with Eqs. (1) and (3),
the Jensen-Shannon divergence can also be expressed in terms
of the Shannon entropy as

DJS(ρ1,ρ2) = S

(
ρ1 + ρ2

2

)
− 1

2
[S(ρ1) + S(ρ2)], (5)

allowing the JSD divergence to be interpreted also as the
“entropy excess” of the mean density with respect to the
mean entropy of the individual densities. So we observe that
the aforementioned non-negativity of the JSD arises from
the convexity of the Shannon entropy functional S. Different
properties and generalizations of the JSD have been discussed
and employed in past years [33–38]. This divergence has
been widely applied to the analysis and characterization of
symbolic sequences or series, and particularly to the study of
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segmentation of DNA sequences [39]. However, its use in the
framework of quantum information theory [40,41] or in the
study of multielectronic systems [42–44] is very recent.

The JSD measure defined above quantifies how similar
or different two distributions are over their whole domain,
according to its definition in terms of the Shannon entropy.
It would also be of great interest to dispose of divergence
measures displaying a deeper local character, namely, with
values more sensitive to relative strong local changes and/or
their respective oscillatory behaviors. As mentioned before,
the Fisher information F given by Eq. (2) possesses this local
character.

Because of its meaning as a quantifier of pointwise con-
centration, the Fisher-like divergence has also been proposed
for arbitrary distributions [17,42] and applied to quantum-
mechanical systems [42,45]. Recent proposals are inspired
on those based on the Shannon entropy. Such is the case of
the so-called “Fisher divergence” (FD) and the “Jensen-Fisher
divergence” (JFD).

The Fisher divergence is defined in terms of the relative
Fisher information Frel of ρ1 with respect to ρ2 [46]:

Frel(ρ1,ρ2) ≡
∫

ρ1(�r)

∣∣∣∣ �∇ ln
ρ1(�r)

ρ2(�r)

∣∣∣∣
2

d�r. (6)

So Frel is a directed measure of relative information as is the
KL measure. Its symmetrized version provides the Fisher di-
vergence DF(ρ1,ρ2) ≡ Frel(ρ1,ρ2) + Frel(ρ2,ρ1) for arbitrary
distributions whenever the involved integrals converge. Such
is the case of one-particle densities in both position and
momentum spaces, for atomic systems in their ground state,
with successful applications in recent years for neutral and
ionized species [42,43]. Let us notice the non-negativity of
both Frel and the FD, vanishing only for ρ1 = ρ2.

In Ref. [17], the difficulties of the FD in dealing with pairs
of distributions having noncommon zeros were emphasized.
Taking into account the definition in Eq. (6), the existence of
zeros in ρ1 and/or ρ2 causes the integrals in the FD (one at
least) to diverge. As described in the next section, a variety
of the distributions considered in the present work possess a
number of zeros, and therefore the application of the FD is
forbidden for them.

The aforementioned difficulties gave rise to a new proposal
for a Fisher-like divergence in that work: the Jensen-Fisher
divergence [17]. Its definition is inspired by those of the KL
and JSD functionals in the Shannon case:

DJF(ρ1,ρ2) ≡ 1

2

[
Frel

(
ρ1,

ρ1 + ρ2

2

)
+ Frel

(
ρ2,

ρ1 + ρ2

2

)]
,

(7)

in a similar fashion as the expression of DJS in Eq. (4),
replacing DKL by Frel. Two comments are in order: (i)
as for previous comparative measures, the JFD is non-
negative and reaches its minimum null value for ρ1 = ρ2, and
(ii) working with the previous equation and the definition of
Frel, an alternative expression for the JFD is achieved:

DJF(ρ1,ρ2) = 1

2
[F (ρ1) + F (ρ2)] − F

(
ρ1 + ρ2

2

)
, (8)

in a similar fashion to Eq. (5) by replacing the Shannon
functional S by the Fisher functional F . Notice the reverse
order of the terms leading to the JSD and JFD, Eqs. (5) and
(8), respectively, due to the concavity of F as opposed to the
convexity of S.

III. HYDROGENIC DIRAC AND SCHRÖDINGER
DENSITIES

As mentioned in the Introduction, the main aim of this work
is to quantify the relativistic effects in hydrogenic systems. In
doing so, we perform a comparative study of the differences
between the corresponding relativistic and nonrelativistic
densities by computing their Jensen-Shannon and Jensen-
Fisher divergences, in both position and momentum spaces.

Previous comparative studies with similar aims to the
present one can be classified into three different categories:

(1) Comparisons between the relativistic and nonrelativistic
atomic density functions, regarding their shape and structural
patterns [7]. These studies provide, most often, qualitative
rather than quantitative results. Especially remarkable are the
relativistic effects, in position space, of raising the minima and
contraction towards the nucleus of the electron density.

(2) Analyses based on the comparison between relevant
density functionals of the relativistic and nonrelativistic
densities [9,12,14,47,48]. A variety of functionals have been
considered: Shannon and Rényi entropies, Fisher information,
statistical complexities or complexity ratios, among others.
Most usually, the main conclusions of these studies are based
on the assumption that a similarity between the values of a
given functional for a pair of densities is associated with a
similarity between the self densities, which is not necessarily
true.

(3) Direct comparisons between distributions by means
of a double-density functional, as in the present work. A
variety of functionals have been considered in a quantum-
mechanical framework, but not so many in order to quantify
relativistic effects. Recent applications have been considered
for neutral atoms, by means of QSI in position [16,49] and
momentum [49] spaces, and also for some special functions of
mathematical physics [17] by means of the JSD and JFD.

From the above enumeration, let us remark that (i) studies
in momentum space are much more scarce than in the position
space, and (ii) all comparative studies for hydrogenic systems
(to the best of our knowledge) were carried out by using
techniques of the first and second categories above, but not of
the third one. This work tries to fill these gaps for hydrogenic
systems, regarding applications in momentum space and the
employment of divergencelike functionals.

The Dirac wave functions of the stationary states of a
hydrogenic system with nuclear charge Z are described by the
eigensolutions (E,�D) of the Dirac equation of an electron
moving in a Coulomb potential [7,50]. The stationary states
are characterized by the quantum numbers (n,k,mj ), with the
principal quantum number n ∈ N, the Dirac or relativistic
quantum number k = ±1,±2, . . . ,−n, and −j � mj � j

where j = 1
2 , 3

2 , . . . ,n − 1
2 is the total angular momentum

number. In addition, k = ∓(j + 1
2 ) for j = l ± 1

2 , so that k =
−(l + 1) if j = l + 1

2 and k = l if j = l − 1
2 . Consequently,
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for a given l �= 0 there are the two options j = l ± 1
2 , and

conversely (i.e., for a given j , two values of l are allowed).
The energy eigenvalues E are analytically expressed [51–

53] in terms of n and the absolute value |k|, as well as the term
αZ with α = 1/137.035 999 11 the fine-structure constant:

E = M

(
1 + (αZ)2

(n − |k| +
√

k2 − (αZ)2)2

)−1/2

, (9)

where M = m0c
2, with m0 the rest mass of the electron. The

eigenenergies become complex if αZ > 1, an inequality which
imposes the constraint Z � 137 for the allowed values of the
nuclear charge Z [54,55].

The Dirac probability density ρD(�r) = |�D(�r)|2 for an
arbitrary state, using polar coordinates, is separable into a
radial factor and an angular one, as

ρD(�r) = ρD(r)χ (θ ), (10)

with χ (θ ) a linear combination of spherical harmonics
|Yl,mj ±1/2|2,

χ (θ ) = 〈
l,mj − 1

2 ; 1
2 ,+ 1

2

∣∣j,mj

〉2∣∣Yl,mj −1/2

∣∣2

+〈
l,mj + 1

2 ; 1
2 ,− 1

2

∣∣j,mj

〉2∣∣Yl,mj +1/2

∣∣2
, (11)

and ρD(r) expressed in terms of Kummer confluent hyperge-
ometric functions,

ρD(r) = |gnk(r)|2 + |fnk(r)|2, (12)

where g and f are the so-called “large” and “small” radial
components, respectively (see the Appendix). Normalization
to unity of the whole density ρD(�r) translates into the equality∫ ∞

0 (|g|2 + |f |2)r2dr = 1.
A similar separability of the radial and angular parts holds

for the momentum density γD( �p) = |�̃D( �p)|2, with �̃D( �p)
being the three-dimensional Fourier transform of �D(�r). The
factorization γD( �p) = γD(p)χ (θ ) contains the same angular
part χ (θ ) as in position space [see Eq. (11)], the radial one
being

γD(p) = |Gnk(p)|2 + |Fnk(p)|2, (13)

with the respective large (G) and small (F ) components, pro-
vided in the Appendix, verifying the normalization condition∫ ∞

0 (|G|2 + |F |2)p2dp = 1.
The nonrelativistic limit of the Dirac radial part, in both

conjugated spaces, provides the corresponding ones in the
Schrödinger case, keeping the angular part. In fact, the small
component tends to zero, so the Schrödinger probability
density in position space has the separable expression

ρS(�r) = ρS(r)χ (θ ), (14)

with ρS(r) determined by the large component, and similarly in
momentum space. One of the factors in the Schrödinger radial
part is a Laguerre or a Gegenbauer polynomial, in position and
momentum spaces, respectively (see the Appendix). Regard-
ing the energy levels, the expression ES = −�

2Z2/2a2
0n

2 is
well known for the nonrelativistic case [56]. The subscript has
been added in order to avoid confusion with the Dirac energy
E given by Eq. (9).

For the hydrogenic densities (ρS,ρD) and (γS,γD) here con-
sidered, their factorization into a radial and an angular part, all

sharing the angular one for a given state, produces the angular
contribution to cancel out in computing the JSD or JFD. In
other words, the dissimilarity between the whole densities
arises from that of their respective radial parts, a fact which
yields the equalities DJS[ρS(�r),ρD(�r)] = DJS[ρS(r),ρD(r)]
and DJS[γS( �p),γD( �p)] = DJS[γS(p),γD(p)], and similarly for
DJF.

The scaling properties of the Schrödinger eigenfunctions
with the nuclear charge Z, in both conjugate spaces, are
well known. They allow the radial density ρS(Z; r) to be
straightforwardly obtained for a system with nuclear charge
Z in a given state from that of the system with Z = 1
in the same state, namely, from ρS(1; r), and similarly in
momentum space. For the Schrödinger one-particle densities
of three-dimensional hydrogen, these properties read

ρS(Z; r)=Z3ρS(1; Zr) and γS(Z; p) = Z−3γS(1; p/Z).

(15)

The properties in Eq. (15) for ρS and γS translate into the
following regarding the dependences of the Shannon and
Fisher functionals on the nuclear charge Z:

S[ρS(Z; r)] = S[ρS(1; r)] − 3 ln Z,
(16)

F [ρS(Z; r)] = Z2F [ρS(1; r)],

S[γS(Z; p)] = S[γS(1; p)] + 3 ln Z,
(17)

F [γS(Z; p)] = Z−2F [γS(1; p)].

The question now is the following: does ρD(Z; r) verify the
same scaling property as ρS(Z; r), given by Eq. (15)? Of
course, the same question is pertinent regarding γS(Z; p).
Before providing an answer, let us analyze the implications
of assuming that the above equalities are valid for both the
Schrödinger and the Dirac densities, and for their arithmetic
mean as well:

(a) Neither DJS(ρS,ρD) nor DJS(γS,γD) would depend on
the nuclear charge Z (this is a consequence of the cancellation
of the term 3 ln Z when computing the JSD from the three
Shannon terms).

(b) DJF(ρS,ρD) would be proportional to the square Z2 of
the nuclear charge, and to Z−2 in momentum space (these are
consequences of the same proportionalities for the three Fisher
terms appearing in the JFD).

However, this is not the case, because Eq. (15) is not verified
in the Dirac case, as will be discussed in Sec. IV D.

IV. QUANTIFYING RELATIVISTIC EFFECTS:
NUMERICAL ANALYSIS OF HYDROGENIC

DIVERGENCES

It is well known that the relativistic effects are more
apparent when dealing with heavier quantum systems. Such
is the case, for instance, of the hydrogenic cations with
large nuclear charge Z. Most studies on relativistic effects
in one-electron atoms have dealt with the energy spectra,
various expectation values, and the structural properties of
the charge density. Among the last, it is worthmaking the
following observations after comparing the relativistic density
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FIG. 1. (Color online) Schrödinger and Dirac radial densities in
(a) position space, D(r) = r2ρ(r), and (b) momentum space, I (p) =
p2γ (p), for the state (n = 5,l = 0,j = 1/2) of Th89+ (nuclear charge
Z = 90). Atomic units (a.u.) are used.

profiles with the nonrelativistic ones [7]: (i) contraction of
the radial density profile D(r) = r2ρ(r) towards the origin,
and (ii) raising of the minima, i.e., the nonrelativistic radial
density vanishes at their local minima, but the corresponding
values of the relativistic density are nonzero. Both effects are
clearly displayed in Fig. 1(a) for Z = 90 (hydrogenic thorium,
Th89+) in the state characterized by the quantum numbers
n = 5, l = 0, and j = 1/2.

These are the main qualitative descriptions of relativistic
effects on the charge density of the systems here considered,
recently analyzed in a quantitative way by means of the
so-called complexity ratios [14]. However, it appears pertinent
to ask ourselves about the relevance of relativistic effects in
the conjugated space or, in other words, on the momentum-
space radial density profile I (p) = p2γ (p). Considering the
well-known uncertainty principle [57], one would expect that
a contraction (i.e., a higher localization) in one space has to be
accompanied by a spreading in the complementary space. The
function I (p) is displayed in Fig. 1(b) for the aforementioned
system and state, in both the relativistic (Dirac) and nonrel-
ativistic (Schrödinger) cases. Some comments are in order:
(i) as expected, the relativistic density spreads out compared
with the nonrelativistic one, and (ii) in contrast to the nodes
in position space, the nonrelativistic ones in momentum space
are not raised, but are only shifted.

Considering Schrödinger-Dirac divergences as measures
of dissimilarity between the relativistic and nonrelativistic
distributions, one should expect a monotonically increasing
behavior of the divergence as long as the nuclear charge Z

increases. For many-electron systems, other features such as,
e.g., the shell-filling patterns, could also be relevant in the JSD
and JFD as functions of Z, but this is not the case for the
one-electron systems here considered.

Let us denote as Dr
JS(Sch,Dir) and Dr

JF(Sch,Dir) the
Jensen-Shannon and Jensen-Fisher divergences, respectively,
between the Schrödinger (i.e., nonrelativistic) and Dirac (i.e.,
relativistic) position-space densities (ρS and ρD , respectively)
for a given system with nuclear charge Z and the quantum
numbers (n,l,j,mj ) specifying its state. A similar notation will
be employed for the momentum-space distributions γS and γD ,
within the framework just mentioned, by using the superscript
p. Let us notice that mj appears only in the angular part of
the density and, consequently, the only quantum numbers to
be considered in order to determine the JSD and JFD are
(n,l,j ).

It is worth remembering the relationships between the
orbital (l) and total (j ) quantum numbers, namely, j =
l ± 1/2 and l = j ∓ 1/2 as long as both are non-negative.
Corresponding with these (in general) one-to-two intercon-
nections, notations such as (n,l,±) will also be considered.
For illustration, (3,1,+) stands for the state with (n =
3,l = 1,j = 3/2). For fixed n we have a number of (n,l,j )
states given by 2n − 1, because of the n allowed values
l = 0, . . . ,n − 1, and, for each one with the only exception
l = 0, there are two compatible values of j . Relevant particular
cases correspond to (n,0,+) and (n,n − 1,+), known as s

states and circular states, respectively. Regarding circular
states, let us notice that (i) their characterization requires the
additional condition |mj | = j , irrelevant for the present study
on the basis of the radial parts, and (ii) the just mentioned
radial parts are nodeless. In fact (see the Appendix) they
contain a grade-(n − |k|) polynomial factor, so the absence
of nodes arises from the condition n = |k| holding for circular
states.

In spite of the availability of analytical expressions for
all the densities we are dealing with (somewhat simple as
determined by their polynomial, rational, and/or exponential
factors), the same does not hold for their respective JSD and
JFD. These difficulties involve the dependence on both the
nuclear charge and the state quantum numbers.

In this section we determine numerically the aforemen-
tioned JSD and JFD values for a variety of nuclear charges, as
well as by considering different quantum states. The numerical
results are analyzed, in order to get insight into how the
JSD and/or JFD is modified by varying the just mentioned
variables, as well as into a possible relationship between the
two functionals. We consider that the analysis in both position
and momentum spaces is completely justified, having in mind
previous studies on many-electron systems by means of the
JSD, JFD, and other comparative functionals [42,45,49].

Usually, systems with nuclear charges within the range
Z = 1–100 will be considered throughout. The only exception
to the comment above is the quantity D

p

JF (i.e., the Jensen-
Fisher divergence in momentum space), computed for Z =
10–100. The reason for disregarding the lowest values Z =
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TABLE I. Parameters and correlation coefficients of the linear regressions for position-space Jensen-Shannon (Dr
JS) and Jensen-Fisher

(Dr
JF) divergences with a functional dependence CZa on the nuclear charge Z � 100 of hydrogenic systems in the states (n,l,j ).

Position space

Jensen-Shannon Dr
JS Jensen-Fisher Dr

JF

State Power a Coefficient C Correlation Power a Coefficient C Correlation

(4,0,+) 3.95 9.2 × 10−10 0.99993 3.56 5.3 × 10−5 0.997
(4,1,−) 3.98 8.1 × 10−10 0.99998 3.76 1.7 × 10−5 0.997
(4,1,+) 3.84 1.9 × 10−10 0.9998 3.30 3.7 × 10−5 0.998
(4,2,−) 3.93 1.3 × 10−10 0.99994 3.46 9.1 × 10−6 0.997
(4,2,+) 3.77 4.8 × 10−11 0.9996 3.15 1.7 × 10−5 0.9994
(4,3,−) 4.01 1.3 × 10−11 0.9999993 5.98 1.5 × 10−12 0.999998
(4,3,+) 4.01 2.6 × 10−12 0.9999992 6.01 1.9 × 10−13 0.9999993
(3,0,+) 3.91 9.4 × 10−10 0.9998 3.47 1.1 × 10−4 0.997
(3,1,−) 3.98 7.0 × 10−10 0.99993 3.72 2.2 × 10−5 0.996
(3,1,+) 3.75 1.7 × 10−10 0.9995 3.19 6.0 × 10−5 0.9991
(3,2,−) 4.01 5.0 × 10−11 0.999997 5.84 3.2 × 10−11 0.99996
(3,2,+) 4.01 5.9 × 10−12 0.999998 6.02 1.1 × 10−12 0.999998
(2,0,+) 3.80 1.1 × 10−9 0.9992 3.34 3.0 × 10−4 0.997
(2,1,−) 4.04 4.0 × 10−10 0.99991 5.02 4.0 × 10−8 0.9998
(2,1,+) 4.02 1.9 × 10−11 0.99999 6.04 1.4 × 10−11 0.99999
(1,0,+) 4.11 1.1 × 10−10 0.9997 6.17 9.7 × 10−10 0.9998

1–9 is the appearance of numerical instabilities in computing
D

p

JF(Sch,Dir), as given by Eq. (8). For those very light systems,
relativistic effects are less relevant and, consequently, zeros
of both γS and γD as well as those of the arithmetic mean
(γS + γD)/2 are extremely close. At those locations, the
integrands of the three terms appearing in Eq. (8) possess an
almost identical finite limit, so cancellations of terms provide
extremely low values, at times below the numerical accuracy
of the integration procedures. This problem does not appear in
computing either DJS (because of the absence of quotients in
the integrands) or Dr

JF [because of the elevation of the minima
in ρD and, consequently, in the arithmetic mean (ρS + ρD)/2
also].

A. Dependence on the nuclear charge

In order to grasp the dependence of the Schrödinger-Dirac
divergence on the nuclear charge Z, let us analyze the results
for a variety of quantum states, in both position and momentum
spaces.

(1) Ground state (1,0,+). All divergences (i.e., the JSD and
JFD, in r and p spaces) for the ground state are observed to
depend on the nuclear charge Z in a similar fashion, namely,
as CZa . Regarding the values of the parameters C and a (see
Tables I and II), some comments are in order:

(a) Linear regressions provide the functional dependences
Dr

JS ≈ CrZ4.11 and D
p

JS ≈ CpZ3.99, with the respective cor-
relation coefficients 0.999 74 and 0.999 97, and multiplicative
constants Cr = 1.1 × 10−10 and Cp = 4.0 × 10−10.

(b) The momentum space D
p

JS is larger than Dr
JS for any

Z, as highlighted by the value of the quotient Cp/Cr ≈ 3.6.
This value, together with the above-mentioned functional
dependence of the corresponding divergences on Z, causes
their quotient to be in the interval D

p

JS/D
r
JS ∈ [2.1,3.6] for

any Z = 1–100. The reason for obtaining such different
numbers in the r and p spaces is the structural features of

the respective radial density profiles D(r) and I (p). For the
ground state, both functions are unimodal, with the absolute
maximum located, in the nonrelativistic case, at rmax = 1/Z

and pmax = Z/
√

3 (in atomic units, a.u.): for a medium-heavy
system, say Z = 50, the above locations are rmax = 0.02 and
pmax = 28.87. The main differences between Schrödinger and
Dirac densities occur around their absolute maxima, within
an extremely narrow interval in position space, much wider
in the momentum one. For illustration, the Schrödinger and
Dirac D(r) display values above one-half of their global height
within the interval r ∈ [0.007,0.042] (width 0.035 a.u.), and
the same occurs for I (p) within (roughly) p ∈ [14,54] (width
40 a.u.). With these comments in mind, we grasp now why the
ground-state D

p

JS displays higher values than Dr
JS for a given

system.
(c) The corresponding data for the JFD are the following:

Dr
JF ≈ CrZ6.17 and D

p

JF ≈ CpZ1.95, with correlation coeffi-
cients 0.9998 and 0.999 96, respectively, and multiplicative
constants Cr = 9.7 × 10−10 and Cp = 2.0 × 10−9. Now it
happens that much larger values of the JFD are found
in position space, as compared to the corresponding ones
in momentum space. For illustration, Dr

JF/D
p

JF ≈ 104 (Z =
11), 106 (Z = 32), 108 (Z = 94).

Let us notice that the previous JFD quotient increases as
quickly as Z4.22, in contrast to Dr

JS/D
p

JS ≈ 0.275Z0.12, only
slightly sensitive to the value of the nuclear charge Z. For
arbitrary Z we find D

p

JS � 2.092Dr
JS, while D

p

JF � 2.062Dr
JF.

The illustrative values above for the JFD position-momentum
quotient transform into the following for the JSD case:
Dr

JS/D
p

JS ≈ 0.37 (Z = 11), 0.42 (Z = 32), 0.47 (Z = 94).
(2) Excited states in position space. Let us now consider

the simplest wave functions beyond the ground state, namely,
those with values n = 2,3, . . . of the principal quantum
number. From the analysis of Figs. 2(a) (Dr

JS) and 2(b) (Dr
JF),

drawn by using a double-logarithmic scale, some comments
are in order:
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TABLE II. Parameters and correlation coefficients of the linear regressions for momentum-space Jensen-Shannon (Dp

JS) and Jensen-Fisher
(Dp

JF) divergences with a functional dependence CZa on the nuclear charge Z � 100 of hydrogenic systems in the states (n,l,j ).

Momentum space

Jensen-Shannon D
p

JS Jensen-Fisher D
p

JF

State Power a Coefficient C Correlation Power a Coefficient C Correlation

(4,0,+) 4.00 7.5 × 10−10 0.99998 0.015 5.3 × 10−2 0.95
(4,1,−) 4.00 7.3 × 10−10 0.99999 0.011 3.2 × 10−2 0.93
(4,1,+) 3.99 1.1 × 10−10 0.99998 −0.002 1.3 × 10−2 0.72
(4,2,−) 4.00 9.0 × 10−11 0.99998 0.003 4.7 × 10−3 0.91
(4,2,+) 4.00 2.1 × 10−11 0.99999 0.003 2.3 × 10−3 0.89
(4,3,−) 4.01 1.2 × 10−11 0.999998 1.99 3.6 × 10−9 0.999997
(4,3,+) 4.00 3.3 × 10−12 0.9999995 2.00 9.7 × 10−10 0.999998
(3,0,+) 4.01 6.4 × 10−10 0.99999 0.006 1.4 × 10−2 0.89
(3,1,−) 4.02 5.7 × 10−10 0.99998 0.023 4.8 × 10−3 0.94
(3,1,+) 4.00 7.1 × 10−11 0.999993 0.009 1.7 × 10−3 0.90
(3,2,−) 4.02 4.1 × 10−11 0.999993 1.99 5.7 × 10−9 0.999998
(3,2,+) 4.01 8.3 × 10−12 0.999999 2.00 1.1 × 10−9 0.9999995
(2,0,+) 4.02 4.8 × 10−10 0.99998 0.046 1.1 × 10−3 0.92
(2,1,−) 4.08 3.0 × 10−10 0.9999 2.00 1.5 × 10−8 0.999999
(2,1,+) 4.01 3.2 × 10−11 0.999997 1.99 1.3 × 10−9 0.999996
(1,0,+) 3.99 4.0 × 10−10 0.99997 1.95 2.0 × 10−9 0.99996
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FIG. 2. (Color online) Position-space divergences (a) Dr
JS, and (b) Dr

JF between Schrödinger and Dirac hydrogenic systems with nuclear
charge Z � 100 for two different values of the principal quantum number n (top and bottom). Full and empty symbols correspond, respectively,
to j = l + 1/2 and j = l − 1/2. Atomic units (a.u.) are used.
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(a) All curves display an extremely linear shape. Such
linearity, together with the logarithmic scales employed,
translates (as previously observed for the ground state) into
a functional dependence

Dr
JS ≈ CZa, (18)

and similarly for Dr
JF. The above parameters are determined

by the coefficients of the straight line, estimated from a
linear regression. The estimated parameters and the correlation
coefficients are provided in Table I. Let us remark the
following:

(i) We must distinguish two disjoint intervals for the
correlation coefficients of ln Dr

JF versus ln Z: while all those
for l = n − 1 are above 0.9998, they are below 0.9994 if
l < n − 1. These higher or lower linear behaviors are clearly
displayed in Fig. 2(b) through the presence of regions of
curvature for high Z in all curves except for those with
l = n − 1. So linearity increases as long as the states approach
the circular one. This occurs also for Dr

JS, but deviations
from linearity are very slight in all curves: all correlation
coefficients of Dr

JS for n = 1–4, with arbitrary l, are above
the aforementioned threshold 0.9994 [the unique exception is
the state (2,0,+) with 0.992].

(ii) All powers of Z, in the Dr
JS case, are in the narrow

interval [3.75,4.11]: usually the functional dependence Dr
JS ∼

Z4 constitutes an accurate approximation.
(iii) The comment above does not hold in the Dr

JF case.
We distinguish two different intervals: [3.15,3.76] for l =
0, . . . ,n − 2, and [5.84,6.17] for l = n − 1, with the only
exception a = 5.02 for the state (2,1,−). The respective
accurate approximations are Dr

JF ∼ Z3.5 and Dr
JF ∼ Z6, as well

as Dr
JF ∼ Z5 for the aforementioned exception.

(iv) For fixed l � 1, the power of Z decreases or remains
constant in going from j = l − 1/2 to j = l + 1/2, with the
systematic exception l = n − 1 in the Dr

JF case. For any value
of n, the state displaying the highest optimal power is always
the circular one. This comment holds for both Dr

JS (excepting
n = 2) and Dr

JF.
(v) Splitting of curves, as determined by the factor C in

Eq. (18), is more apparent for Dr
JF than for Dr

JS: while the
differences between the values of Dr

JS for s and circular states
are of 2–3 orders of magnitude, those of Dr

JF differ by 7–9
orders of magnitude.

(vi) Summarizing, Dr
JF displays a higher capability than

Dr
JS to (i) distinguish the behaviors for different states, and

(ii) distinguish, in a more remarkable way, the states with
l = n − 1 > 0 (which include the circular one) from the whole
set of states compatible with a given n > 1.

(b) For low enough Z, the position-space Dr
JS curves can be

distinguished from each other as characterized by the quantum
numbers determining the corresponding states. Systematic
patterns to be emphasized are as follows: (i) for each of the
cases j = l ± 1/2, the Dr

JS divergences decrease for increasing
l, (ii) for fixed l, divergences for j = l − 1/2 are above the
corresponding ones for j = l + 1/2, and (iii) for the whole set
of quantum numbers for a given n, curves are ordered from
above to below according to the following criteria: divergences
diminish as j increases and then, once j is fixed, they diminish
for increasing l. This ordering can be observed more clearly
over the vertical axis in the left-hand side.

(c) For high enough Z, the above criterion regarding the
dependence of Dr

JS on j remains. However, curves for different
l but identical j become indistinguishable. This means that,
for a given value of the principal quantum number n, the
initial 2n − 1 curves in the low-Z region intermingle among
themselves as Z increases, giving rise to a final number of
(roughly) n curves in the high-Z region, as observed over the
vertical axis in the right-hand side.

(d) The above behaviors regarding distinguishability of Dr
JS

curves are the opposite for the Dr
JF curves: the “initially”

(i.e., for lowest Z) indistinguishable curves j = l ± 1/2 with
identical l < n − 1 are split off for large enough Z.

(3) Excited states in momentum space. Most of the above
comments on Dr

JS apply also to the Jensen-Shannon divergence
D

p

JS in momentum space [see Fig. 3(a) and Table II], as well
as the pertinent ones to the ground state (1,0,+) in both
conjugated spaces (see Tables I and II):

(a) The linearity is, on average, higher than in position
space. Now, all correlation coefficients are above 0.9999 for
n = 1–4. The maximum linear correlation is always attached
to the circular state.

(b) Powers of Z are within [3.99,4.08], so the estimated
dependence D

p

JS ∼ Z4 is slightly more accurate than that of
Dr

JS.
(c) Trends for fixed l or j are identical to those in position

space, including ordering and mixing of curves for high Z.
The numerical analysis of the momentum-space Jensen-

Fisher divergence D
p

JF provides a variety of results, most
of them very different from those of (i) the corresponding
position-space functional Dr

JF, and (ii) the Jensen-Shannon
divergence D

p

JS in momentum space. The most apparent
features and patterns, as displayed in Fig. 3(b) and Table II,
are described below:

(a) Curves for noncircular states l = 0,1, . . . ,n − 2 appear
only slightly dependent on the nuclear charge Z, i.e., roughly
constant [see Fig. 2(b)]. This fact is emphasized by the
values of the parameters given in Table II, obtained from the
corresponding linear regressions. For those states, (i) most
correlation coefficients range from 0.89 to 0.95, being not
so high as for previously discussed functionals, and (ii) the
exponent of the powerlike dependence Za is in the interval
a ∈ [−0.002,0.046]. These values, so close to the null value,
justify the aforementioned roughly constant behavior.

(b) Once again, states with l = n − 1 (enclosing the circular
one) behave in a completely different manner. Increase of the
D

p

JF divergence with the nuclear charge Z is very apparent in
Fig. 3(b), for both cases n = 3 and n = 4. A more detailed
dependence on Z is obtained from the data in Table II. It is
first observed that extremely high correlation coefficients are
regained, with an accurate functional dependence D

p

JF ∼ Z2

in most cases (the estimated powers range from 1.99 to 2.00,
with the only exception 1.95 for the ground state).

(c) The ordering of curves follows the same patterns as for
previously discussed functionals, but in a much clearer way:
(i) for fixed n, curves are ordered from above to below as the
quantum number l increases from l = 0 to l = n − 1, and (ii)
for arbitrary n and l �= 0, the curve for the state (n,l,−) is
systematically above its partner (n,l,+).

(d) Regarding the multiplicative constant C, two comments
are in order: (i) it is much higher for D

p

JF than for D
p

JS, so
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FIG. 3. (Color online) Momentum-space divergences (a) D
p

JS, and (b) D
p

JF between Schrödinger and Dirac hydrogenic systems with
nuclear charge Z � 100 and principal quantum number n = 2 (top) and n = 4 (bottom). Full and empty symbols correspond, respectively, to
j = l + 1/2 and j = l − 1/2. Atomic units (a.u.) are used.

relativistic effects are more apparent at the local level than
at the global one in momentum space, and (ii) the “soft”
decreasing trend of C in the D

p

JS case, as long as l increases
for fixed n, remains in the D

p

JF case with the exception of a
dramatic fall for l = n − 1. The last fact will be discussed in
more detail in the next section.

So, in spite of the higher rate of increase of D
p

JS with the
nuclear charge Z, as compared to that of D

p

JF, the values of
the latter for any state are above those of the former. This fact
highlights, once again, the relevance of relativistic effects at a
local level in momentum space.

B. Dependence on the quantum numbers

The above patterns regarding the dependence of the
divergences on the quantum numbers for fixed Z are observed
more clearly in Fig. 4. In that figure, each of the r and p

divergences considered in this work is displayed for a unique
system (thorium with Z = 90, for illustration) as a function
of the quantum number l. This is done by means of different
curves within the range 3 � n � 6, each one characterized
by a pair of values (n,j ), constrained by the relationships

n � l + 1 and j = l ± 1/2. Similar comments to those given
below apply also for arbitrary Z.

All curves display a monotonically decreasing behavior,
corroborating previous comments on the ordering of diver-
gences depending on the value of l. However, remarkable
differences between the behaviors of the JSD and JFD in
position or momentum space appear:

(a) While the decreasing rate of JSD is augmented “softly”
up to l = n − 1, the same occurs for the JFD only up to l =
n − 2. Changes in the JFD values are dramatic for the last step,
that is, in passing from l = n − 2 to the boundary value l =
n − 1, and most notably for the circular state. Systematically,
in fact, the decrease in going from l to l + 1 is higher in the
j = l + 1/2 case than in the j = l − 1/2 case.

(b) The figures at the top (Dr
JS and D

p

JS) are almost identical
in the shape and ordering of curves, as well as in their range
of absolute values (observe the numbers throughout the y axis
of each figure).

(c) The comment above does not apply at all to the figures
at the bottom (Dr

JF and D
p

JF): (i) the JFD curves in Fig. 4(b)
appear perfectly ordered and they do not intermingle among
themselves, in contrast with the behavior of the position-space
curves as displayed in Fig. 4(a), and (ii) the ranges of the
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FIG. 4. (Color online) Jensen-Shannon (top) and Jensen-Fisher (bottom) divergences between Schrödinger and Dirac hydrogenic densities
of Th89+ (nuclear charge Z = 90) as functions of the orbital quantum number l for a variety of compatible pairs (n,j ), in (a) position and (b)
momentum spaces. Full and empty symbols correspond, respectively, to j = l + 1/2 and j = l − 1/2. Atomic units (a.u.) are used.

JFD absolute values are extremely different in position and
momentum spaces; the scales of the y axes differ by three
orders of magnitude, and for any state of the hydrogenic system
Z = 90 here considered, the Schrödinger-Dirac Jensen-Fisher
divergence in position space is (roughly) 103–105 times that
in momentum space. So the relativistic contraction effect is
much more clearly revealed by measuring differences in the
content of the gradient of the charge density, as compared to
the corresponding measure regarding the spreading effect on
the momentum density.

(d) The just mentioned position-momentum JFD ratios are
much higher for low values of the principal quantum number
n, and conversely. For illustration, focusing on the D

p

JF curves
for n = 3 [Fig. 4(b), bottom] it is observed that they are located
below the rest of the curves. However, in passing to position
space [Fig. 4(a), bottom] the corresponding curves are seen to
be above many others excepting the extreme point l = n − 1.

From the analysis of Fig. 4, some additional comments
regarding the dependence on the principal quantum number n

are in order. In doing so, let us focus on any fixed l in the lower
shaft, in order to analyze the location of the symbols above
that value. For each of the cases j = l ± 1/2, the divergence
decreases as n decreases, in accordance with the previous

observation of minimal divergences for states with maximal l.
Again, the decrease of divergence is significant for n = l + 1
(enclosing the circular state), but not so much for higher n

values.

C. Interrelation between Jensen-like divergences

We wonder now about an eventual interrelation between
the JSD and JFD measures, i.e., about a possible functional
dependence of one divergence on the other. In order to check
the above assumption, Fig. 5 displays the “divergence planes,”
subtended by the JSD on one axis and the JFD on the
other. This is done in both conjugate spaces, namely, position
[Fig. 5(a)] and momentum [Fig. 5(b)]. In doing so, the numer-
ical pairs (JSD,JFD) have been considered for three different
systems (Z = 1,20,100 in position space; Z = 10,20,100 in
momentum space) and, for each one, the whole set of states
compatible with the value n = 6.

The main comments arising from the analysis of Fig. 5(a)
(position space) are as follows:

(a) As one would expect, heavier systems display higher
Schrödinger-Dirac divergences, at both global and local levels.
This fact is revealed by the location of symbols for Z = 100
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close to the upper right corner. Location at (roughly) the bottom
and left halves occurs for a system as light as Z = 1, while
an intermediate situation is found for the medium-light value
Z = 20.

(b) Systematically, the states l = n − 1 suffer a clear
shift to the left as compared to their partners with

identical Z, and also to the bottom but not so
apparently.

(c) States with l = n − 1, on one hand, and l < n − 1 on
the other, belong roughly to independent straight lines, the first
one above the other and with a lower slope. Linear regressions
provide the following functional dependences:

Dr
JS ≈

{
1.4 × 10−3

(
Dr

FD

)0.668
if l = n − 1 (correlation coefficient 0.9998),

6.7 × 10−5
(
Dr

FD

)1.173
if l < n − 1 (correlation coefficient 0.9973).

(19)

This means that increasing Dr
JF causes Dr

JS to increase also,
but much more along the line with l < n − 1 than along the
line with l = n − 1.

Some of the above comments apply also in momentum
space [Fig. 5(b)], namely, higher divergences for heavier
systems, and shifts to the left (very clear) and to the bottom
(slight) for states with l = n − 1. However, there appear
remarkable differences with respect to the position-space
features. The most apparent one is the absence of the two
previous “correlation lines.” It is observed that a not so accurate

10
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FIG. 5. (Color online) Divergence planes DJF-DJS for all states
with principal quantum number n = 6 of systems with three different
values of the nuclear charge Z, in (a) position and (b) momentum
spaces. Full and empty symbols correspond, respectively, to j =
l + 1/2 and j = l − 1/2. Atomic units (a.u.) are used.

linear correlation (coefficient 0.994) remains for the l = n − 1
states, whose representative points are located in the left half
of the plane. But the unique alignement in position space for
the rest of the states is now split off in momentum space,
depending on the specific Z value under consideration. A
variety of parallel lines are displayed (all them in the right
half of the plane), so that the functional dependence

D
p

JS ≈ Cp(Z)
[
D

p

JF

]a
(20)

is found (correlation coefficients 0.983 to 0.985), similar to
the interconnection in position space given by Eq. (19). The
difference is that the multiplicative parameter Cp(Z) does not
remain constant for arbitrary states and nuclear charges Z, but
increases for increasing Z. This is not the case of the power a,
which is roughly constant (1.12 to 1.15) for arbitrary systems
and states.

In Fig. 6, uncertaintylike relationships are numerically
searched for, in both the Jensen-Shannon [Fig. 6(a)] and
Jensen-Fisher [Fig. 6(b)] cases. A first comparative look at
these figures reveals strong differences between the divergence
uncertainty patterns in the JSD and JFD frameworks.

Regarding the JSD, it is clearly observed [Fig. 6(a)] that the
position and momentum divergences display similar values,
that is, Dr

JS ≈ D
p

JS. A clear exception is displayed, corre-
sponding to the ground state n = 1, in which the momentum
divergence is much higher than the position one; in fact,
D

p

JS ≈ 2Dr
JS. We have not yet been able to justify this result

from a theoretical basis. The Jensen-Fisher uncertainty plane
[Fig. 6(b)] displays extremely different features, as compared
to that for the JSD. Now it is worth noting differences in the
slopes of the lines for states l = n − 1 with respect to the
roughly null ones for the rest of the states. So while the JSD
uncertainty plane has more capability to distinguish the
ground state from the excited ones, the capability of the
JFD uncertainty plane concerns differences between circular
and noncircular states. For the circular ones, the functional
dependence D

p

JF ∼ (Dr
JF)1/3 has been determined numerically.

D. Analysis of scaling transformations

Let us recall the conclusions at the end of Sec. III regarding
the behavior of the Schrödinger-Dirac JSD and JFD, assuming
that the scaling properties given by Eq. (15) hold in both the
relativistic and nonrelativistic cases:

(a) The position- and momentum-space JSDs do not depend
on the nuclear charge Z. Or, in other words, all exponents of
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FIG. 6. (Color online) Position-momentum planes (a) Jensen-
Shannon Dr

JS-Dp

JS, and (b) Dr
JF-Dp

JF for hydrogenic states with
principal quantum numbers n = 1–6 and nuclear charges Z � 100.
Atomic units (a.u.) are used.

Z in the JSD columns of Tables I and II should be expected to
be exactly zero.

(b) The position-space JFD is proportional to the square Z2

of the nuclear charge, and the momentum-space JFD to Z−2.
Or, in other words, all exponents of Z in the JFD column of
Tables I and II should be expected to be exactly +2 and −2,
respectively.

In all the above cases, the correlation coefficients should be
exactly 1.

It is clear that all these conclusions are clearly in contrast
with our numerical results. Why? Because the assumption that
ρD and γD verify the same scaling properties as do ρS and γS

is wrong. Let us see this.
For simplicity, let us consider the position-space ground

state (with n = 1 and k = −1), and only the component
g(Z; r). The comments below apply similarly to the compo-
nent f (Z; r), and to the components F and G in momentum
space, also.

If ρD is to verify Eq. (15), both the large and small
components should verify

g(Z; r)

g(1; Zr)
= Z3/2. (21)

However, the functions in the quotient read

g(Z; r) = 2(λZ)3/2

√
1 + γZ

	(2γZ + 1)
(2λZr)γZ−1e−λZr (22)

and

g(1; Zr) = 2λ3/2

√
1 + γ1

	(2γ1 + 1)
(2λZr)γ1−1e−λZr , (23)

with λ defined in the Appendix, and γZ denoting the parameter
γ =

√
1 − (αZ)2, also in the Appendix, but with an explicit

subscript here, denoting the value of the nuclear charge
considered.

It is clear that, when computing the aforementioned
quotient, the explicit dependence on Z provides the desired
result. But an extra dependence on Z appears, via the parameter
γZ . So the condition in Eq. (15) would be verified only if
γZ = γ1, corresponding to the trivial case Z = 1. Thus the
reason for obtaining our numerical results arises from the fact
that the scaling properties of the nonrelativistic densities are
not verified by the Dirac densities.

V. CONCLUSIONS AND OPEN PROBLEMS

It is not an easy task to check whether or not two densities
share some specific properties by exploring only their plots,
and it is even more difficult to quantify the extent to which they
do it. Concepts such as, e.g., “differences at global and local
levels” are usually unnoticed when comparing the respective
curves.

An alternative to the usual comparative procedures based
on density plots, Jensen-like divergence measures of global
and local character, have been employed in this work. These
functionals have allowed the importance of relativistic effects
for the one-particle densities of hydrogenic atoms to be
quantified, in both position and momentum spaces.

It is worth remarking that using comparative double-density
functionals (such as the JSD and JFD) provides a more
useful technique for the purposes of our paper, compared
to the analysis of functionals of a single density (say C),
but applied independently for each of the relativistic (Dir)
and nonrelativistic (Sch) densities. In this regard, it should be
noted that the equality C(Sch) = C(Dir) does not guarantee
that the densities are identical. However, if either of the JSD or
JFD vanishes, we can affirm the equality of the two densities
(almost everywhere, at least).

The main conclusions arising from the analysis carried out
in the present work are summarized as follows:

(a) The comparative studies in the two conjugated spaces for
the JSD and JFD functionals provide very different results. The
Jensen-Shannon divergence behaves similarly in both spaces,
regarding the dependences on the nuclear charge for arbitrary
states and on the angular quantum number for a given system.
This comment applies to the qualitative behavior and to the
quantitative behavior as well for excited states. This is not the
case of the ground state, with higher JSD values in momentum
than in position space. Some of these results are explained
by considering structural features of the radial densities, such
as, e.g., unimodality and location of maxima to justify the
ground-state results.
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(b) On the contrary, the Jensen-Fisher divergence behaves
in different ways within each of the conjugated spaces. In
the momentum space, the JFD remains roughly constant for
noncircular states when the nuclear charge is varied, but
increases monotonically in the circular case.

(c) A variety of relationships have been obtained for both
the JSD and JFD in position and/or momentum spaces. In
particular, the uncertainty planes subtended by any of these
functionals in position and momentum spaces display clearly
the above-mentioned comments regarding differences between
ground and excited states in the JSD case, and between circular
and noncircular states in the JFD case.

The numerical study here described has given rise to a
variety of open problems, to be considered in future works.
Some of them are worthy of remark:

(a) All four divergence measures considered in this work
(i.e., Shannon and Fisher measures in both conjugated spaces)
display, for arbitrary states, an extremely accurate powerlike
dependence on the nuclear charge of the systems considered.
This fact arises from numerical observations, but justification
on a theoretical basis is still to be found.

(b) The previous comment applies to the justification of the
capability of the global measure to discern the ground state
and the local measure to discern circular states.

(c) Further features of the numerical results here discussed
deserve to be justified on a theoretical basis (e.g., ordering of
the curves j = l ± 1/2, dependence on the quantum number
l for fixed n, and conversely deviation from linearity for
noncircular states, splitting and mixing of curves for low or
large Z, etc.).

Previous results dealt with (i) ground-state hydrogenic
[9] or many-electron [8,12,15] systems, (ii) position-space
measures with no reference to momentum-space ones [8,12],
or (iii) single-density functionals instead of double-density
ones [8,9,12,14]. The results found in this study highlight
the interest of quantifying relativistic effects by measures of
divergence, taking into account local and global functionals
simultaneously, and both conjugated spaces too.
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APPENDIX: EXPLICIT EXPRESSIONS OF DIRAC AND
SCHRÖDINGER RADIAL PARTS

In the equations below, a0 denotes the Bohr radius.
(a) The Schrödinger radial part in position space [56] is

ρS(r) = 	(n − l)

2n	(n + l + 1)

(
2Z

a0n

)2l+3

e−(2Z/a0n)r r2l

×
[
L

(2l+1)
n−l−1

(
2Z

a0n
r

)]2

(A1)

with L
(2l+1)
n−l−1 a Laguerre polynomial.

(b) The Schrödinger radial part in momentum space [56] is

γS(p) = 22l+1n4	2(l + 1)	(n − l)

π	(n + l + 1)(Zm0c)3

× (1 − x)l(1 + x)l+4
[
C

(l+1)
n−l−1(x)

]2
, (A2)

with x ≡ [Z2 − n2(p/m0c)2]/[Z2 + n2(p/m0c)2], and
C

(l+1)
n−l−1 a Gegenbauer polynomial.

(c) The Dirac radial part in position space [7] is ρD(r) =
|gnk(r)|2 + |fnk(r)|2, with

gnk(r)
fnk(r)

}
= ±(2λ)3/2

	(2γ + 1)

√
(M ± E)	(2γ + n′ + 1)

4M
(n′+γ )M

E

( (n′+γ )M
E

− k
)
n′!

(2λr)γ−1

×e−λr

[(
(n′ + γ )M

E
− k

)
F (−n′,2γ + 1; 2λr)

∓n′F (1 − n′,2γ + 1; 2λr)

]
(A3)

where n′ = n − |k| = 0,1,2, . . . (the radial quantum number),
γ =

√
k2 − (αZ)2, λ = 1

�c
(M2 − E2)1/2, and F (a,b; z) de-

notes the Kummer confluent hypergeometric function.
(d) The Dirac radial part in momentum space [58] is

γD(p) = |Gnk(p)|2 + |Fnk(p)|2, with

Gnk(p) = il
√

(1 + ε)	(2γ + n′ + 1)/[n′!N (N − k)]

4λ3/2	(2γ + 1)

×[n′H (n′ − 1,2γ + 1,γ − 1,l,p/λ)

− (N − k)H (n′,2γ + 1,γ − 1,l,p/λ)], (A4)

Fnk(p) = il
√

(1 − ε)	(2γ + n′ + 1)/[n′!N (N − k)]

4λ3/2	(2γ + 1)

× [n′H (n′ − 1,2γ + 1,γ − 1,l + 1,p/λ)

+ (N − k)H (n′,2γ + 1,γ − 1,l + 1,p/λ)],

(A5)

where ε = E/(m0c
2), N = (n′ + γ )/ε, and

H (ν,β,δ,l,σ )

= ν!	(β)

	
(
l + 3

2

)2δ−l+2σ l

ν∑
m=0

(−2)m	(m + l + δ + 3)

m!	(ν − m + 1)	(β + m)

× 2F1

(
m + l + δ + 3

2
,
m + l + δ + 4

2
,l + 3

2
; −σ 2

)
,

(A6)

with 2F1 the Gauss hypergeometric function. This results in
an expression which is not in the form of a terminating series,
but it can be transformed appropriately into a terminating one
[59].
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