000060842 001__ 60842
000060842 005__ 20180320152106.0
000060842 0247_ $$2doi$$a10.1103/PhysRevA.84.033410
000060842 0248_ $$2sideral$$a73946
000060842 037__ $$aART-2011-73946
000060842 041__ $$aeng
000060842 100__ $$0(orcid)0000-0002-9253-7926$$aCastro, A.$$uUniversidad de Zaragoza
000060842 245__ $$aQuantum optimal control theory in the linear response formalism
000060842 260__ $$c2011
000060842 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060842 5203_ $$aQuantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green’s functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.
000060842 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2010-21282-C02-01$$9info:eu-repo/grantAgreement/ES/MICINN/TEC2010-1573$$9info:eu-repo/grantAgreement/ES/MICINN/FIS2009-13364-C02-01$$9info:eu-repo/grantAgreement/EUR/e-I3/ETSF-211956
000060842 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000060842 590__ $$a2.878$$b2011
000060842 591__ $$aOPTICS$$b10 / 78 = 0.128$$c2011$$dQ1$$eT1
000060842 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b10 / 33 = 0.303$$c2011$$dQ2$$eT1
000060842 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000060842 700__ $$aTokatly, I.V.
000060842 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDepartamento de Física de la Materia Condensada$$cFísica de la Materia Condensada
000060842 773__ $$g84, 3 (2011), 033410 [7 pp]$$pPhys. rev., A$$tPHYSICAL REVIEW A$$x1050-2947
000060842 8564_ $$s399839$$uhttps://zaguan.unizar.es/record/60842/files/texto_completo.pdf$$yVersión publicada
000060842 8564_ $$s124549$$uhttps://zaguan.unizar.es/record/60842/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000060842 909CO $$ooai:zaguan.unizar.es:60842$$particulos$$pdriver
000060842 951__ $$a2018-03-20-15:11:44
000060842 980__ $$aARTICLE