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1 Abstract

The combination of time-dependent density-functional theory and the quantum
optimal control formalism is used to optimize the shape of ultra-short laser
pulses in order to achieve the photo-dissociation of the Hydrogen molecule.
The very short duration of the pulses used in this work (a few femtoseconds)
does not allow for significant nuclear movement during its action, and therefore
the dissociation mechanism is sequential: during the pulse irradiation, a large
sudden momentum is communicated — which can be understood in terms of
population of excited, bound or not, dissociative electronic states. The target
is defined in terms of the average opposing force during the action of the pulse,
or equivalently in terms of the final dissociative velocity.

2 Introduction

Recently, the use of time-dependent density functional theory (TDDFT)[1, 2]
was proposed to perform optimizations in electronic systems in combination with
the quantum optimal control theory (QOCT)[3] methodology[4]. This scheme
permits to theoretically study, from first principles, the optimization possibilities
in the time-dependent many-electron manifold. Performing quantum dynamics
for many-electron systems is a notoriously difficult computational task, and the
use of TDDFT allows to reduce this difficulty by working with a simpler non-
interacting system of electrons, whose time-dependent density is nevertheless
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identical to the real one. In Ref. [4] the theoretical basis of the TDDFT+QOCT
combination was established, and exemplified with a relatively simple example:
the charge transfer in a model double quantum dot formed in a two-dimensional
homogeneous electron gas. This work presents the first application of the scheme
to the problem of photo-dissociation with realistic three-dimensional models of
molecules.

Most of the previous applications of QOCT have targeted the nuclear dy-
namics — and in a sense, this work, that attempts to optimize photo-dissociation
events, is also about nuclear dynamics. However, there is a fundamental change
in the approach: in most previous applications the optimization objects are
nuclear wave-packets, moving in one or various adiabatic potential energy sur-
faces. In this manner, the electrons are previously integrated out; in contrast,
the TDDFT+QOCT formalism attempts to directly address and optimize the
electronic motion.

This shift of focus from the nuclear to the electronic degrees of freedom is
motivated by the growth of attosecond physics[5, 6]. The possibility of creat-
ing laser pulses shorter than one femtosecond [7, 8] has given birth to a whole
new area of experimental physics in which the electronic motion can be di-
rectly followed — and controlled — in its natural time-scale. Novel experimental
techniques such as attosecond transient absorption spectroscopy, or attosecond
time-resolved photo-electron spectroscopy allow for this possibility, and TDDFT
should play a fundamental role in the interpretation of these processes [9].

The frontier between femtosecond and attosecond physics is of course blurred,
but some distinctive features are often present. For example, in femto-chemistry,
the nuclear degrees of freedom are usually the main objective, and therefore the
key frequencies are typically in the infrared region. In the attosecond realm,
the frequencies should be increased to the XUV region in order to address the
electronic motion, that is much faster. The capability of controlling a quantum
process with an external field is related to the capability of shaping this field
— the more freedom we have to tailor the laser pulse at will, the more con-
trol we will attain on the system. Extremely versatile laser shapers have been
developed over the last decades [10], and great liberty has been achieved regard-
ing durations, frequencies, or intensities. Outside this experimental attainable
range, theoretical models may substitute experiments and help us understand
how much the quantum systems can be controlled.

In this work, I take a first step in the exploration of the control possibili-
ties of the electronic systems in atoms and molecules with the TDDFT+QOCT
formalism developed in Ref. [4]. For a first step, the Hydrogen molecule is
an appropriate example choice due to its simplicity. The control methodology
addresses the electronic system only, and therefore the optimizations must be
performed with clamped nuclei. This can only model interactions with very
short pulses, so that the heavier nuclei do not have time to move significantly.
Nevertheless, the target functional is chosen to achieve the molecular photo-
dissociation. This apparent contradiction is not such since the dissociation is
assumed to happen through a sequential mechanism: during the pulse irradia-
tion, a large sudden momentum is communicated to the nuclei from the electrons



excited by the laser pulse. Assuming a classical approximation for the nuclei,
the target may then be defined in terms of the forces that act on them during
the action of the pulse — which are density functionals, suitable for a TDDFT
description. If the time-average of these forces are opposite for the two nuclei,
then they will communicate a large opposing momentum that will afterwards
lead to photo-dissociation.

The pulses must afterwards be tested with moving nuclei, in order to check
wether they produce dissociation or not. This can be done by performing sim-
ulations with the excited-states non-adiabatic molecular dynamics formalism
based on TDDFT and the Ehrenfest equations [11, 12, 13, 14, 15, 16].

The optimal control scheme has been implemented in the octopus package[17,
18]. Previous applications include the control of currents in quantum rings [19],
the manipulation of charge in quantum dots [20], or the enhancement of molec-
ular ionization [21]. Furthermore, in a previous work[22] we have already em-
ployed TDDFT in combination with optimization schemes to study optimal
molecular photo-dissociation. However, in that case the optimizations on sys-
tems with interacting electrons described with TDDFT were not performed
with the TDDFT+QOCT formalism, but rather by making use of a gradient-
less optimization algorithm, i.e. one scheme that only necessitates the repeated
computation of the value of the function to be optimized with different control
parameters, which can be obtained by successive forward propagations. The use
of the full power of the optimal control formalism, as it is done in this work, sig-
nificantly improves the optimization efficiency thanks to the extra information
provided by the function gradient.

3 Methodology

The mathematical framework that results of the combination of TDDFT and
QOCT was explained in Refs. [4] and [23]. Here I will display the main equa-
tions, and develop the general framework for the particular targets that have
been used.

In analogy to the “traditional” ground state density-functional theory (DFT) [24],
TDDFT establishes a one-to-one correspondence between densities and external
potentials — only in this case they are both time-dependent objects. This implies
that any system property is, in principle, a functional of the density. Likewise,
TDDFT usually also employs a Kohn-Sham (KS) scheme[25], in which one uti-
lizes a fictitious system of non-interacting electrons that has the same density
of the real system. This strongly reduces the computational complexity, since
non-interacting fermions can be described with a single Slater determinant. This
problem substitution cannot however be performed exactly because the external
potential acting on the non-interacting electrons must be approximated.

If we consider a spin-compensated system of N electrons, we may construct
the KS Slater determinant with N/2 spatial orbitals ¢; (i = 1,...,N/2). Let
v(7,t) be the external potential responsible for the irradiation of the real sys-
tem, driving it from its initial ground state during an interval of time [0, T]. The



“time-dependent Kohn-Sham” (TDKS) equations that characterize the evolu-
tion of the fictitious system are (atomic units will be used hereafter):

i%%(ﬁt) = —%VQ%(FJ)+va[n](F,t)<pi(ﬁt), (1)
PilF0) = PP, )
N/2
n(F,t) =

HYACHLS (3

where {gozgs}fv:/f are the ground state Kohn-Sham orbitals. Eq. (3) provides the
time-dependent density n(7,t) in terms of the KS orbitals. The KS potential
vks 18 a functional of this density, defined as:

ks [ (7, 1) = vo (75 B) 4+ o(7, 1) + vn[n](7, 1) + vxe[n] (7, 1) , (4)

where the Hartree potential vy is given by:

wlil(0) = [ 25 6
and vg (7 R) is the static external potential that characterizes the system in its
ground state; it is determined by the positions of a set of nuclei R = Rl, .. RK
Finally, the “exchange and correlation” potential vy [n] is also a functlonal of
the density. This object is in practice unknown and must be approximated[26].
In this work I will use the local density approximation (LDA) as parameterized
in Ref. [27], by considering its adiabatic extension for time-dependent problems,
which consists of using the same ground state functional for the time-propagated
density at each moment. Unfortunately, this choice has well-known deficiencies,
in particular for the dissociating molecular Hydrogen problem[28], which is in
fact the example shown below. However, during the optimization process itself
the nuclei are kept at their equilibrium positions, and therefore the error that
should appear at long internuclear distances is not present. The dynamics that
follows will however not be very accurate; in future works the use of better
exchange and correlation choices needs to be explored.

The external potential v(7,t), in this case, is the electric field representing a
laser pulse in the dipole approximation and in the length gauge:

v(7t) = e(t)r- 7, (6)

where the unitary vector p’ determines the light polarization. The variation
of its temporal dependence £(t) is our handle on the system, and constitutes
the control mechanism. In general, we may consider its temporal shape to be
determined by M parameters v € RM, and therefore both ¢ and v are in fact
functions of u: (t) = e[u(t), v(7,t) = v[u](7, t).

This is the external potential that drives the real system of interacting elec-
trons, determining its evolution and therefore the time-dependent density, which
becomes in this form a function of the control wu:

u — nfu] (7, t) . (7)



Our goal is to find a set of parameters u that drives the system in a certain
“optimal” manner. This optimal behavior is mathematically defined as the
maximization of a function in the form:

Glu] = Fln[u]], (8)

where F is a functional of the system evolution (in terms of its density). The
precise form of the functional dependence of F on the system evolution depends
on our goal; below we will use one form designed to encourage bond breaking.
Sometimes, the target functional also has an explicit dependence on wu, that is
used to constrain its shape according to physical considerations — e.g. impose
a penalty on too high intensities or frequencies. However, in this work we will
use a parameterization ¢ = £[u] that by definition constrains the pulse to have
an admissible shape.

In principle, one can use a functional of the full system wave function, not
only of its density. However, this definition permits to use TDDFT without
further approximations: since the density of the real and of the KS system are
identical, we may work with the latter. The theory is in this case developed
in terms of a functional F' of the KS orbitals, which can be defined by simply
substituting the density by its expansion in terms of the orbitals:

Glu] = Flplu]] = Fin[ul], (9)
where @[u] represents all the N/2 Kohn-Sham orbitals, and its dependence on
u stresses the fact that they are also determined by the choice of the control
parameters.

The gradient of G can then be computed as[4]:

N/2

T
VGlu] = 22/0 dt Velu] () Im(x; [u) (017 - Blio; [u (1)) (10)

This expression uses an auxiliary set of orbitals {x; [u]};\/:/l2 defined by the fol-
lowing equations of motion:

PG = ST + visn ) O

N/2

+ 3 Kl ()] [u) (7. )

=1

D)

TSl (1)
GhET) = 0. )

These equations are similar to the TDKS equations verified by the ¢ orbitals,
except for the following:



1. There is a new set of operators, Kj;[p[u][t], which are given by:

Kijlplul(t

—@wAuMﬁtnng/d%ﬁxzwuﬂ,wﬁhdnmﬂwka

~—

Ixalul (7, t) =

Jeslul (7, 1),  (13)

"

where fuyc is the so-called kernel of the Kohn-Sham Hamiltonian:

P Svxe[n](7)
Juxclnl("7) = F—5 + @y

(14)

2. These propagating equations for y[u] are inhomogeneous due to the pres-
ence of the last term in the right hand side of Eq. (11), which is the
functional derivative of the target functional with respect to each of the
orbitals.

3. The KS potential vkg appears conjugated; usually this is irrelevant since
one assumes it to be Hermitean. However, in order to deal, albeit ap-
proximately, with the possibility of ionization, one can use an imaginary
potential at the borders of the simulation box, which will absorb the elec-
tronic density reaching those borders. This is used in the examples shown
below.

4. The boundary condition for the differential equations are specified at the
final propagation time (Eq. 12), instead of at the initial time. Note that
this boundary condition is null; the reason for this is that the target
functional that we will use in this work depends on the full evolution
of the system, and has only an infinitesimal contribution from the final
system state.

It remains to specify the form of the target functional. A discussion about
the design of targets for the purpose of photo-dissociation was already given in
Ref. [22]. Here I will use a definition in terms of the time-average of the forces
Fau(t),

T
- /0 AT (1), (15)

acting on the nuclei during the action of the pulse. This is convenient from a
TDDEFT perspective, since the forces are explicit functionals of the density:

Fot) = Faln(t)] = — /d% n(7, 1) Va0 (7 R) (16)
and therefore the averaged forces are likewise density functionals:
— T —
Pun] = — / dt /d% (1) avo (7 R) (17)
0

The target is then defined in terms of a function of these averaged forces,
T = T(Pyi[n],...,Pk[n]) = T(P[n]). This function must be designed with



the physical outcome that needs to be optimized in mind. For example, if the
goal is to photo-dissociate a dimer, the definition may simply be:

T(B[TL]) = Plz[n] — Py, [n] ; (18)

where we assume that the two nuclei are originally positioned in the z axis,
and the laser polarization is likewise in that direction. This is the choice made
for the example shown below, based on a simple intuition: if the nuclei are to
dissociate, the forces exerted on them during a certain period of time must be
opposite to each other.
In general, ~
Fln) = T(Pln]), (19)

and the necessary functional derivatives to be used in the equations of motion
for x are:

0Flg] & oT vo(7 )
W—Z Z 28]3&”(2[”}) (;)Ray @i(T,1). (20)

a=1p=z,y,z

Given the definition in Eq. (15) for ]3(1, and considering classical equations
of motion for the nuclei, it seems natural to consider B, to be the variation of
momentum of nucleus « (or, simply, the momemtum at time 7T if initially it is at
rest). However, let us recall that in the formalism described until now, the po-
sition of the nuclei are constrained to be static, and therefore this identification
would only be an approximation.

This definition of the target functional is entirely based on the nuclear de-
grees of freedom: it does not, for example, prevent or encourage ionization of the
system. In consequence, the dissociation of the system may be accompanied by
a certain degree of electron loss. Note, however, that within this same scheme
the ionization can also be controlled, either to enhance it [21] or to suppress
it [29]. This could be done in this case by adding to the definition of the tar-
get, Eq. 19, a term dependent on the total density charge enclosed in a volume
V' defined in the vicinity of the ions, multiplied by a weight whose sign would
determine whether the ionization is desired or avoided, i.e.:

Fln] = T(P[n]) + w /V &y n(7,T). (21)

In a more ambitious scheme, the final charge state of the fragments could also be
controlled by making this term dependent separately on the charge surrounding
each of these fragments.

In order to perform the optimization, I have used here the standard Broyden-
Fletcher-Goldfarb-Shanno conjugate-gradients algorithm [30], as implemented
in the GSL mathematical library [31]. Once the optimization is performed, it
remains, however, to test whether or not the optimized pulse does actuaclly lead
to photo-dissociation. In order to do that test, the clamped nuclei approxima-
tion needs to be lifted, and the ﬁa vectors acquire their true meaning as nuclear



momenta. The simulation is the performed with the Ehrenfest-TDDFT formal-
ism, that consists of coupling, to the TDKS equations, the classical Hamiltonian
equations of motion for the nuclear degrees of freedom:

d - P
aRa(t) = L (22)
SR = - /d?’rn(m)%vo(ﬁﬂ(t». (23)

4 Results

The former methodology is here applied to the problem of finding the optimal
pulse for the photo-dissociation of the Hydrogen molecule. The scheme has been
implemented in the octopus code [17, 18, 32]. Here I will briefly describe the
numerical parameters chosen for the simulations described below — the reader
may find a detailed description on the numerical scheme in the above referenced
articles.

The Hydrogen molecule initial bond-length is set to 1.44 a.u. The nucleus-
electron interaction is not purely Coulombic, but rather it is softened through
the pseudo-potential method [33]. This is necessary since wave functions, den-
sities, potentials, etc., are represented on a real-space regular cubic mesh. The
grid spacing is chosen to be 0.4 a.u., whereas the shape of the simulation box is
a sphere of radius 13 a.u. This radius is doubled for the final Ehrenfest-TDDFT
runs that test the performance of the optimized pulses in their bond-breaking
task.

The duration of the laser pulses is fixed at &~ 157.a.u. ~ 3.8 fs, which would
correspond, e.g., to 25w cycles of w frequency (in atomic units). The fluence, or
integrated intensity over the duration of the pulse, is defined as:

%:AE&@. (24)

The choice of the search space is determined by this fluence: the search is
performed only in the set of pulses whose fluence equals Fy (a fully unconstrained
search would in this case lead to a problem without an optimum, since it would
allow pulses with unlimited intensities).

This is not, however, the only constraint: the pulse space is limited in fre-
quencies. In order to simultaneously enforce these two constraints, I use here
the procedure already described in Ref. [22]: First, the pulse temporal shape is
expanded in a Fourier series:

2L
e(t) = Z €igi(t) . (25)
i=1
where
cos (%’th) (i=1,...,L)

gi(t) = sin(%ﬂ(i—L)t) (i=L+1,...,2L)



This fixes the maximum possible (cut-off), frequency to Q%L. Note that this
explicitly omits the zero-frequency term, which is a desired restriction, in order
to fulfill the physical condition

T
/ dt £(t) = 0. (27)
0

Another obvious condition that must be fulfilled is £(0) = ¢(T) = 0, which

implies:
> ei=0. (28)

2L—-1

In order to ensure this, we may work with a set of parameters {c»zj}j:1 , in

terms of which the Fourier coefficients are given by:

L-1
& = - Z j, (29)
j=1
g = 051 (Z = 2,,2[1) (30)
It is straightforward to prove that the fluence may then be written as:
Fy=alSa, (31)

where « is the vector of a;; components, and S is a (2L —1) x (2L —1) symmetric
matrix. It may be diagonalized with the help of an orthonormal matrix U:

UTSU = diag(s1,...,520-1),- (32)

If we now define:
L = diag(\/s1, .- ,\/520-1), , (33)

the total fluence is simply written as:

2L—-1

j=

where:
B=LU"a. (35)

Equation (34) tells us that the spaces of pulses with equal fluence are given by
spheres in (-space. Therefore, we may finally define the u control parameters
as the 2L — 2 hyperspherical angles of the sphere whose radius is v/Fp.

The peak intensity of the initial pulse determines the fluence for the search
space. Note, however, that the peak intensity of the optimized pulse will in
general not be the same. I show, in the following, three cases corresponding to
initial peak intensities (a) I = 1.12 10*Wem™?; (b) I = 7.15 10> Wem™?; and
(¢) I = 4.02 10"*Wem™2. The optimization algorithm essentially necessitates



consecutive forward and backward propagations, that are performed by making
use of the self-consistent exponential midpoint rule [34], with a time step of
0.76 as. The procedure needs an average of 20 conjugate-gradient iterations
to achieve a good maximum, which requires around 100 propagations. The
resulting optimal pulses are displayed in Fig. 1, in real time in the left panels,
and in the frequency domain in the right panels. The oscillator strength of the
molecule is also displayed in the right panels, in order to show the dipole allowed
excitations.

In all cases, the effect of the optimization is creating a pulse with a combina-
tion of those frequencies, right below the ionization potential (also shown in the
plots with a vertical line). This shows how the pulses populate a combination
of excited states in addition to coupling the system to the ionization contin-
uum. The fact that this combination results in a maximum proves that it is
more effective producing a dissociative force that a single channel. This is to be
expected, as obviously a linear combination of states contain more optimization
freedom than a single one. Note that one advantage of this scheme is that the
optimization can be performed without prior knowledge of the excitations of
the system.

The effect of these optimized pulses on the system is represented in Fig. 2.
The plots in this figure display the resulting Ehrenfest-TDDFT dynamics: the
internuclear distances on the left side panels, and the relative forces on the
right side ones. The two cases (a) and (b) result in photo-dissociation, whereas
the case (c), performed at a lower fixed fluence, results in an ample oscilla-
tion. In fact, all runs performed at even lower fluences resulted in no dissoci-
ation, whereas all runs performed at higher fluences resulted in faster nuclear
separations; this is the reason to show these three runs corresponding to this
“transition” intensity regime.

Overlayed on these dissociation graphs on the left side of Fig. 2 are the
bound-states electronic population, approximated as the electronic density in-
tegrated over the simulation volume. The system looses aproximately 0.7 elec-
trons in case (a), 0.6 electrons in case (b), and 0.5 electrons in case (c). As
noted before, the dissociation target does not penalize ionization of the system,
and therefore the process is to be understood as a combination of pure dissoci-
ation and dissociative ionization. The relevant role played by ionization could
already be expected when looking at the power spectra of the optimal pulses,
very close to the ionization potential, as shown on the right panels of Fig. 1
(note, however, that in the presence of a strong field the ionization potential is
Stark shifted).

On the right side panels of Fig. 2, one can see the relative forces driving the
internuclear distances. It is clear how this relative force is positive on average
during the action of the pulse (shadowed region), since this is the target of the
optimization procedure. The force is created by the electronic excitation, partly
to bound excited states, and partly to the continuum. This excitation is enough
to photo-dissociate the system in the first two cases. After the pulse, the forces
average to zero in both (a) and (b), correspoding to a constant dissociating
velocity. In case (c), after the rebound of the internuclear distance, the force
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Figure 1: Optimized laser pulses in real time (left panels) and corresponding
power spectra (right panels, thin curves), for three runs (a), (b) and (c) per-
formed at different fixed fluences. The dipole strength function of the Hydrogen
molecule is also displayed in thick lines on the right panels. The vertical line on
the right panels shows the value of the ionization potential.

11



AR(t) (a.u.) AF(t) (a.u.)

\
200 400 600 200 400 600

Time (a.u.) Time (a.u.)

Figure 2: Internuclear distance (left panels) and relative forces (right panels)
for the three runs (a), (b) and (c) performed at different fixed fluences. In
the left panels, the total charge N(t) contained in the simulation region is also
overlayed (thin lines, scale of the y-axis on the right side of each plot). In the
right panels, the relative force computed with clamped nuclei is also displayed
(lighter curves).

The shadowed region marks the time during which the pulse acts on the system.
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Figure 3: Time-dependent total energy of the molecule for the three pulses
obtained with the the three optimization runs (a), (b) and (c) performed at
different fixed fluences.

becomes positive again in order to drive the system towards the equilibrium
position.

In Fig. 3, the total energies of the molecular system for the three pulses
obtained with the the three optimization runs (a), (b) and (c¢) are displayed.
The variation of the total electronic energy defined as the time derivative of the
expectation value of the electronic Hamiltonian can be conveniently computed
within TDDFT as:

GEO = GUOEO®) = F0 [Era@ors, 60

i.e. the product of the time-derivative of the magnitude of the electric field, times
the dipole moment of the system in the polarization direction of the field, p. The
total energy can be computed by integrating in time this term, and adding the
nuclear classical kinetic and potential terms. Notice that the amount of energy
deposited in the system is in all three cases is above the atomization energy
of the system (around 0.13 a.u. in our model), and, as expected, increases
with increasing fluence. In case (c), however, this does not suffice to produce
dissociation, as part of the energy may be used to occupy excited bound states,
or is taken away by the ionizing electrons.

Therefore, when sufficiently high fluences are allowed, the optimization scheme
does its job and achieves the target. This happens despite the specially challeng-
ing choice of system and target: it becomes obvious from the plots that, even
though the pulses have extremely short duration (approximately 3 fs), some
ionic movement already occurs before the end of them. This fast reaction is due
to both the light weight of the Hydrogen atoms, and the fact that the target

13



is precisely chosen to enhance this movement. However, the present methodol-
ogy only considers the electronic subsystem, and therefore the nuclear reaction
necessarily implies a problem for the optimization: this is apparent in the right
panels of Fig. 2, where both the relative atomic force computed with and with-
out clamped nuclei are shown. This force, as computed during the optimization
run, with clamped nuclei (displayed in lighter grey), is very strongly positive in
the last femtosecond of the pulse duration, whereas the same force computed
within the Ehrenfest-TDDFT simulation, is reduced in that time interval. The
use of longer pulses, and the analysis and optimization of processes that involve
nuclear movement, will require the generalization of this scheme to a theory
that includes both electronic and nuclear degrees of freedom. This will be the
subject of a forthcoming publication [35].

5 Conclusions and Prospects

The behavior of a many-electronic system in an external field may be optimized
with respect to a predefined target by modeling it with TDDFT and employing
the methodology of quantum optimal control in order to find the optimal field.
The resulting equations are numerically tractable, as proved in this work in
which the chosen system is a Hydrogen molecule and the target is defined in
terms of the time-average of the forces acting on the nuclei. The computations
were performed on modest, desktop type, computers, which allows to predict
the applicability of these algorithms for larger systems, given the good scaling
properties of TDDFT.

The theory presented in Ref. [4] and applied here addresses electronic-only
systems. It is therefore directly applicable to explore the optimization possibili-
ties in problems that do not involve significant nuclear movement — such as, for
example, the problems already addressed for single or independent electrons:
currents in quantum rings [19], manipulation of charge in quantum dots [20],
and atomic of molecular ionization [21].

It may also be applied, as in this work, to trigger molecular re-arrangements
through the use of ultrafast, few-femtosecond, pulses during which the ions
do not have time for large movements — but whose action on the electronic
system ultimately produces the final outcome. This sequential mechanism has
been demonstrated for the photo-dissociation of the Hydrogen molecule by few-
femtosecond laser pulses. However, the very same examples described here have
also been selected because they show the obvious caveat of the methodology: the
nuclei start to move, and the resulting forces, computed during the molecular
dynamics test runs, do not exactly correspond to the ones that were computed
during the optimization propagations. In order to correct for this problem, the
solution is to design a control theory that dynamically addresses both electronic
and nuclear degrees of freedom. Within the molecular dynamics paradigm, that
treats the nuclear system classically, this control theory must tackle a hybrid
quantum-classical system — for example the Ehrenfest-TDDFT model that was
also used here. This is work in progress and will be presented elsewhere.
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