000060855 001__ 60855
000060855 005__ 20210121114504.0
000060855 0247_ $$2doi$$a10.1140/epjb/e2015-50889-7
000060855 0248_ $$2sideral$$a91224
000060855 037__ $$aART-2015-91224
000060855 041__ $$aeng
000060855 100__ $$0(orcid)0000-0002-9253-7926$$aCastro, A.$$uUniversidad de Zaragoza
000060855 245__ $$aEnhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme
000060855 260__ $$c2015
000060855 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060855 5203_ $$aHigh harmonic generation (HHG) provides a flexible framework for the development of coherent light sources in the extreme-ultraviolet and soft X-ray regimes. However it suffers from low conversion efficiencies as the control of the HHG spectral and temporal characteristics requires manipulating electron trajectories on attosecond time scale. The phase matching mechanism has been employed to selectively enhance specific quantum paths leading to HHG. A few important fundamental questions remain open, among those how much of the enhancement can be achieved by the single-emitter and what is the role of correlations (or the electronic structure) in the selectivity and control of HHG generation. Here we address those questions by examining computationally the possibility of optimizing the HHG spectrum of isolated hydrogen and helium atoms by shaping the slowly varying envelope of a 800 nm, 200-cycles long laser pulse. The spectra are computed with a fully quantum mechanical description, by explicitly computing the time-dependent dipole moment of the systems using a time-dependent density-functional approach (or the single-electron Schrödinger equation for the case of H), on top of a one-dimensional model. The sought optimization corresponds to the selective enhancement of single harmonics, which we find to be significant. This selectivity is entirely due to the single atom response, and not to any propagation or phase-matching effect. Moreover, we see that the electronic correlation plays a role in the determining the degree of optimization that can be obtained.
000060855 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-1-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C2-2-P$$9info:eu-repo/grantAgreement/EC/FP7/280879/EU/Time dynamics and ContROl in naNOStructures for magnetic recording and energy applications/CRONOS$$9info:eu-repo/grantAgreement/EC/FP7/267374/EU/Dynamical processes in open quantum systems: pushing the frontiers of theoretical spectroscopy/DYNAMO
000060855 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000060855 590__ $$a1.223$$b2015
000060855 591__ $$aPHYSICS, CONDENSED MATTER$$b47 / 67 = 0.701$$c2015$$dQ3$$eT3
000060855 592__ $$a0.514$$b2015
000060855 593__ $$aElectronic, Optical and Magnetic Materials$$c2015$$dQ2
000060855 593__ $$aCondensed Matter Physics$$c2015$$dQ2
000060855 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000060855 700__ $$aRubio, A.
000060855 700__ $$aGross, E.K.U.
000060855 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000060855 773__ $$g88, 191 (2015), [9 pp.]$$pEur. phys. j., B Cond. matter phys.$$tEuropean Physical Journal B$$x1434-6028
000060855 8564_ $$s835804$$uhttps://zaguan.unizar.es/record/60855/files/texto_completo.pdf$$yPostprint
000060855 8564_ $$s40736$$uhttps://zaguan.unizar.es/record/60855/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000060855 909CO $$ooai:zaguan.unizar.es:60855$$particulos$$pdriver
000060855 951__ $$a2021-01-21-10:53:00
000060855 980__ $$aARTICLE