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Introduction

The main goal of this thesis is to shed some light on the problem of classifica-
tion of fine gradings on some simple Lie algebras. (Note that the classification
of equivalence classes of fine gradings is already known for simple Lie alge-
bras over an algebraically closed field of characteristic zero, but the problem
is still open for the case of positive characteristic.) The objects that we con-
sider in this work are the exceptional simple Jordan pairs and triple systems,
and a 56-dimensional exceptional simple structurable algebra referred to as
the Brown algebra. Gradings on these structures can be used to construct
gradings on the simple exceptional Lie algebras of types E6, E7 and E8, via
the Kantor construction.

In this work, by grading we usually mean group grading. The base field
is assumed to be algebraically closed of characteristic different from 2.

Simple Lie algebras over the field of complex numbers C were classified
by W. Killing and E. Cartan in 1894, and Cartan decompositions (i.e., grad-
ings by the associated root system) were used in the proof. After much work
on some particular gradings, a systematic study of gradings was initiated by
Patera and Zassenhaus in the context of Lie algebras (see [PZ89]), as a gener-
alization of Cartan decompositions. Since then, gradings have been studied
by many authors, and are an important tool for a better understanding of
algebras and other structures.

It is well-known that, if the base field is algebraically closed of charac-
teristic 0, fine gradings by abelian groups are in bijective correspondence
with maximal abelian diagonalizable subgroups of the automorphism group
and, in that correspondence, equivalence classes of gradings correspond to
conjugation classes of subgroups. Note that the same correspondence holds
for any characteristic if we consider the automorphism group-scheme instead
of the automorphism group. Therefore, the problem of classification of fine
gradings by abelian groups on an algebra (and other algebraic structures)
can be reformulated as an equivalent problem in group theory.

This work is organized as follows:

iii



In Chapter 1 we recall the basic definitions of the algebraic structures
that we study in this work. We also recall some well-known results of classi-
fications of fine gradings on Cayley and Albert algebras, which constitute an
extremely important tool to construct gradings in other structures, as shown
in further sections. This chapter has no original results of the author.

The basic definitions of gradings (by abelian groups) on Jordan systems
are given in Chapter 2, and hereinafter some general results are proven. We
recall the definition of the exceptional simple Jordan pairs and triple systems,
i.e., the bi-Cayley and Albert pairs and triple systems. Some results related to
the orbits and automorphism groups of the bi-Cayley pair and triple system
are given too.

In Chapters 3 and 4 we obtain classifications of the equivalence classes
of fine gradings (by abelian groups) on the exceptional simple Jordan pairs
and triple systems (over an algebraically closed field of characteristic not 2).
The associated Weyl group is determined for each grading. We also study
the induced fine gradings on e6 and e7 via the TKK-construction.

Finally, in Chapter 5 we give a construction of a Z3
4-grading on the Brown

algebra. We then compute the Weyl group of this grading and study how
this grading can be used to construct some very special fine gradings on e6,
e7 and e8.



Introducción

El objetivo principal de esta tesis es arrojar algo de luz sobre el problema
de clasificación de las graduaciones finas en algunas álgebras de Lie simples.
(Recalquemos que ya se conoce la clasificación de las clases de equivalencia
de graduaciones finas para álgebras de Lie simples sobre un cuerpo algebrai-
camente cerrado de caracteŕıstica cero, pero el problema sigue abierto en el
caso de caracteŕıstica positiva). Los objetos de estudio en este trabajo son
los pares y sistemas triples de Jordan simples excepcionales, y un álgebra
estructurable simple excepcional de dimensión 56 conocida como álgebra de
Brown. Las graduaciones en estas estructuras pueden ser usadas para cons-
truir graduaciones en las álgebras de Lie simples excepcionales de los tipos
E6, E7 y E8, mediante la construcción de Kantor.

En este trabajo, por graduación normalmente nos referimos a graduacio-
nes de grupo. Asumiremos que el cuerpo base es algebraicamente cerrado de
caracteŕıstica diferente de 2.

Las álgebras de Lie simples sobre el cuerpo C de los números complejos
fueron clasificadas por W. Killing y E. Cartan en 1894, y en la demostra-
ción se utilizaron descomposiciones de Cartan (es decir, graduaciones por el
sistema de ráıces asociado). El estudio sistemático de graduaciones fue ini-
ciado por Patera y Zassenhaus en el contexto de álgebras de Lie ([PZ89]),
como una generalización de las descomposiciones de Cartan. Desde entonces,
muchos autores han estudiado las graduaciones, y éstas son una herramienta
importante para entender mejor las álgebras y otras estructuras.

Es bien conocido que, en el caso de que el cuerpo base sea algebraicamen-
te cerrado de caracteŕıstica cero, las graduaciones finas de grupo abeliano
se corresponden biyectivamente con los subgrupos abelianos diagonalizables
maximales del grupo de automorfismos, y en esa correspondencia, las clases
de equivalencia de graduaciones se corresponden con clases de conjugación
de subgrupos. Notemos que se tiene la misma correspondencia para cual-
quier caracteŕıstica si consideramos el esquema-grupo de automorfismos en
lugar del grupo de automorfismos. Por tanto, el problema de clasificación de
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graduaciones finas de grupo abeliano en un álgebra (y en otras estructuras)
puede ser reformulado como un problema equivalente en teoŕıa de grupos.

Este trabajo está organizado de la siguiente manera:

En el Caṕıtulo 1 recordamos las definiciones básicas sobre las estructuras
algebraicas que estudiamos en este trabajo. También recordamos algunos re-
sultados bien conocidos sobre clasificaciones de graduaciones finas en álgebras
de Cayley y de Albert, que son una herramienta extremadamente importante
para construir graduaciones en otras estructuras, como se muestra en seccio-
nes posteriores. Este caṕıtulo no contiene resultados originales del autor.

Las definiciones básicas sobre graduaciones (de grupo abeliano) en sis-
temas de Jordan son explicadas en el Caṕıtulo 2, y posteriormente se de-
muestran algunos resultados generales. Recordamos las definiciones de los
pares y sistemas triples de Jordan simples excepcionales, es decir, los pares y
sistemas triples bi-Cayley y Albert. Se obtienen también algunos resultados
relacionados con las órbitas y grupos de automorfismos del par y sistema
triple bi-Cayley.

En los Caṕıtulos 3 y 4 obtenemos clasificaciones de las clases de equivalen-
cia de graduaciones finas (de grupo abeliano) en los pares y sistemas triples
de Jordan simples excepcionales (sobre un cuerpo algebraicamente cerrado
de caracteŕıstica diferente de 2). Determinamos el grupo de Weyl asociado
a cada graduación. También estudiamos cuáles son las graduaciones finas
inducidas en e6 y e7 mediante la construcción TKK.

Finalmente, en el Caṕıtulo 5 damos una construcción de una Z3
4-graduación

en el álgebra de Brown. Después calculamos el grupo de Weyl de esta gra-
duación y estudiamos cómo se puede utilizar esta graduación para construir
algunas graduaciones finas en e6, e7 y e8.



Chapter 1

Preliminaries

We always assume, unless otherwise stated, that the ground field F is alge-
braically closed of characteristic different from 2. Recall that an algebra over
F, or F-algebra, is a vector space over F with a bilinear multiplication.

In this chapter many known results and definitions needed later will be
recalled.

1.1 Gradings on algebras

For details on the results in this section the reader may consult [EK13, Chap-
ter 1].

Let A be an algebra (not necessarily associative) over a field F and let G
be a group (written multiplicatively).

Definition 1.1.1. A G-grading on A is a vector space decomposition

Γ : A =
⊕
g∈G

Ag

such that AgAh ⊆ Agh for all g, h ∈ G. If such a decomposition is fixed,
A is referred to as a G-graded algebra. The nonzero elements x ∈ Ag are said
to be homogeneous of degree g, and one writes degΓ x = g or just deg x = g
if the grading is clear from the context. The support of Γ is the set

Supp Γ := {g ∈ G | Ag 6= 0}.

An involution σ of A is an antiautomorphism of order 2 of A. If (A, σ) is
an algebra with involution, then we will always assume σ(Ag) = Ag for all
g ∈ G.

1



2 CHAPTER 1. PRELIMINARIES

There is a more general concept of grading: a decomposition Γ : A =⊕
s∈S As into nonzero subspaces indexed by a set S and having the property

that, for any s1, s2 ∈ S with As1As2 6= 0, there exists (a unique) s3 ∈ S such
thatAs1As2 ⊆ As3 ; this will be called a set grading. For such a decomposition
Γ, there may or may not exist a group G containing S that makes Γ a G-
grading. If such a group exists, Γ is said to be a group grading. However,
G is usually not unique even if we require that it should be generated by
S. The universal grading group, U(Γ), is the group generated by S and the
defining relations s1s2 = s3 for all s1, s2, s3 ∈ S such that 0 6= As1As2 ⊆ As3
(see [EK13, Chapter 1] for details).

Suppose that a group grading Γ on A admits a realization as a G0-grading
for some group G0. Then G0 is isomorphic to the universal group of Γ if
and only if for any other realization of Γ as a G-grading there is a unique
homomorphism G0 → G that restricts to the identity on Supp Γ.

It is known that if Γ is a group grading on a simple Lie algebra, then
Supp Γ always generates an abelian subgroup. In other words, the univer-
sal grading group is abelian. Here we will deal exclusively with abelian
groups, and we will sometimes write them additively. Gradings by abelian
groups often arise as eigenspace decompositions with respect to a family of
commuting diagonalizable automorphisms. If F is algebraically closed and
char F = 0 then all abelian group gradings on finite-dimensional algebras can
be obtained in this way.

Definition 1.1.2. Let Γ : A =
⊕

g∈GAg and Γ′ : B =
⊕

h∈H Bh be two
group gradings, with supports S and T , respectively.

• We say that Γ and Γ′ are equivalent if there exists an isomorphism of
algebras ϕ : A → B and a bijection α : S → T such that ϕ(As) = Bα(s)

for all s ∈ S. If G and H are universal grading groups then α extends
to an isomorphism G→ H.

• In the case G = H, the G-gradings Γ and Γ′ are isomorphic if A and B
are isomorphic as G-graded algebras, i.e., if there exists an isomorphism
of algebras ϕ : A → B such that ϕ(Ag) = Bg for all g ∈ G.

Definition 1.1.3. Given a grading Γ on A,

• the automorphism group, Aut(Γ), is the group of self-equivalences of Γ.

• Each ϕ ∈ Aut(Γ) determines a permutation of the support, which
extends to an automorphism of the universal grading group G. Thus
we obtain a group homomorphism Aut(Γ) → Aut(G). The kernel of
this homomorphism is called the stabilizer, Stab(Γ). In other words,
Stab(Γ) consists of the automorphisms of the G-graded algebra A.
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• The quotient group, Aut(Γ)/ Stab(Γ), can be regarded as a subgroup
of Aut(G) and is called the Weyl group, W(Γ).

Definition 1.1.4. If Γ : A =
⊕

g∈GAg and Γ′ : A =
⊕

h∈H A′h are two
gradings on the same algebra, with supports S and T , respectively, then we
will say that Γ′ is a refinement of Γ (or Γ is a coarsening of Γ′) if for any t ∈ T
there exists (a unique) s ∈ S such that A′t ⊆ As. If, moreover, A′t 6= As for
at least one t ∈ T , then the refinement is said to be proper. Finally, Γ is said
to be fine if it does not admit any proper refinements.

Definition 1.1.5. If Γ is a grading on a finite-dimensional algebra A, a
sequence of natural numbers (n1, n2, . . . ) is called the type of the grading Γ
if there are exactly ni homogeneous components of dimension i, for i ∈ N.
Note that dimA =

∑
i i · ni.

1.2 Lie algebras

Recall that a Lie algebra is a vector space g over F with a product [·, ·] : g×
g→ g, (x, y) 7→ [x, y], satisfying the identities

[x, x] = 0 (anticommutativity),

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity),

for any x, y, z ∈ g. We assume that the reader is familiar with Lie algebras
(the reader may consult [H78]). Recall that any finite dimensional simple Lie
algebra over an algebraically closed field F of characteristic 0 is isomorphic
to a unique algebra of the following list: an = sln+1(F) with n ≥ 1, bn =
so2n+1(F) with n ≥ 2, cn = sp2n(F) with n ≥ 3, dn = so2n(F) with n ≥ 4,
e6, e7, e8, f4, g2. The Lie algebras of types An, Bn, Cn and Dn are called
classical, and the ones of types E6, E7, E8, F4 and G2 are called exceptional.

We also recall that (semi)simple Lie algebras over an algebraically closed
field of characteristic 0 were classified using gradings by root systems, which
are called Cartan gradings. If g is a semisimple Lie algebra, its Cartan grading
is unique up to automorphisms of the algebra and has the form

g = h⊕
⊕
α∈Φ

gα,

where h is a Cartan subalgebra of g and Φ is the associated root system.
Note that these gradings satisfy [gα, gβ] ⊆ gα+β. The Cartan grading of g
is a particular case of group grading and its universal group is Zr, where r
is the rank of g. Also, recall that the extended Weyl group of g, denoted
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by W̃(g), which is isomorphic to the Weyl group of its Cartan grading, is
isomorphic to the semidirect product of W(g) (the Weyl group of the root
system of g) and the automorphism group of the Dynkin diagram of the root
system of g.

1.3 Affine group schemes

For the basic definitions and facts on affine group schemes the reader may
consult [W79]. A nice introduction to affine group schemes, including the re-
lation between gradings on algebras and their automorphism group schemes,
can be found in [EK13, Section 1.4 and Appendix A] (note that these results
also hold for Jordan pairs, and we will use them in subsequent sections with-
out further mention). Recall that a G-grading on an algebra A is produced
by a morphism ηΓ : GD → Aut(A).

Let Set and Grp denote the categories of sets and groups, respectively.
Let F be a field and AlgF the category of commutative associative unital
F-algebras.

Let F and G be functors from AlgF to Set. Recall that a natural map
θ : F→ G is a family of maps θR : F(R)→ G(R), whereR denotes an object
of AlgF, such that for any R,S ∈ AlgF and any homomorphism ϕ : R → S,
the following diagram commutes:

F(R) G(R)

F(S) G(S)

θR

F(ϕ) G(ϕ)

θS

Definition 1.3.1.

• An affine scheme is a functor F : AlgF → Set that is representable, i.e.,
there is an object A in AlgF such that F is naturally isomorphic to
HomAlgF(A,−), that is, for each object R in AlgF there is a bijection
from F(R) to Alg(A,R) that preserves morphisms. In that case, the
object A representing F is unique up to isomorphism, and is called a
representing object of F.

• An affine group scheme over F is a functor G : AlgF → Grp such that
its composition with the forgetful functor Grp → Set is representable.
Recall that the representing object of an affine group scheme G is
a commutative Hopf algebra, and conversely, each commutative Hopf
algebra is the representing object of an affine group scheme.
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Example 1.3.2. Let U denote a (not necessarily associative) algebra over
F of finite dimension. For any R in AlgF, the tensor product U ⊗ R is an
R-algebra, so we can define

Aut(U)(R) := AutR(U ⊗R).

Then, Aut(U) is an affine group scheme, which is called the automorphism
group scheme of the algebra U .

We recall now the relation between gradings on algebras by abelian groups
and the associated automorphism group schemes. Fix a grading U =

⊕
g∈G Ug

by an abelian group G on the algebra U (that is, UgUh ⊆ Ugh for all g, h ∈ G).
Let FG denote the group algebra of G, which is also a Hopf algebra with the
comultiplication ∆(g) = g ⊗ g for g ∈ G. Then, the map

ρ : U −→ U ⊗ FG
ug 7−→ ug ⊗ g

where ug ∈ Ug, is an algebra homomorphism and it endows U with the
structure of a right comodule for FG. We can define a morphism of affine
group schemes

θ : HomAlgF(FG,−)→ Aut(U)

determined by

θR(f)(u⊗ 1) = (id⊗ f)ρ(u)

for each R ∈ AlgF, f ∈ HomAlgF(FG,R), u ∈ U . Conversely, given a mor-
phism θ : HomAlgF(FG,−)→ Aut(U) we can define a G-grading

U =
⊕
g∈G

Ug

where

Ug = {x ∈ U | θFG(id)(x⊗ 1) = x⊗ g}.

Hence, there is a correspondence between abelian group gradings on U and
the associated morphisms of the automorphism group scheme.

In particular, the classifications (up to equivalence and up to isomor-
phism) of gradings on U by abelian groups are determined by Aut(U). Also,
two algebras with isomorphic automorphism group schemes must have the
same classifications of gradings, in certain sense (note that this correspon-
dence preserves universal groups, Weyl groups, etc).
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1.4 Gradings on Cayley algebras

We assume that the reader is familiar with Hurwitz algebras (for the basic
facts about Hurwitz algebras the reader may consult [ZSSS82, Chap. 2] or
[KMRT98, Chap. 8]). A classification of gradings on Hurwitz algebras was
given in [Eld98]. The reader may consult [EK13, Chapter 4]. We will now
recall the basic definitions.

Definition 1.4.1. A composition algebra is an algebra C (not necessarily
associative) with a quadratic form n : C → F, called the norm, which is non-
degenerate (i.e., n(x, y) = 0 for all y ∈ C implies x = 0) and multiplicative.
The dimension of any composition algebra is restricted to 1, 2, 4 or 8. Unital
composition algebras are called Hurwitz algebras. The 4-dimensional Hur-
witz algebras are the quaternion algebras, and the 8-dimensional Hurwitz
algebras are called Cayley algebras or octonion algebras. Since our field F
is algebraically closed, there is only one Cayley algebra up to isomorphism,
which will be denoted by C.

Recall that the polar form of the norm is given by

n(x, y) = n(x+ y)− n(x)− n(y). (1.4.1)

Any element of a Hurwitz algebra satisfies the quadratic equation

x2 − n(x, 1)x+ n(x)1 = 0, (1.4.2)

which can be written as xx̄ = x̄x = n(x)1, where

x̄ = n(x, 1)1− x (1.4.3)

is called the conjugate of x. The trace is the linear form tr : C → F given
by tr(x) = n(x, 1). The map x 7→ x̄ is an involution, called the standard
involution, that satisfies

n(x̄, ȳ) = n(x, y), n(xy, z) = n(y, x̄z) = n(x, zȳ) (1.4.4)

for any x, y, z ∈ C.

Also, recall that if C is a Hurwitz algebra, then C with the new product
x ∗ y := x̄ȳ and the same norm is called the associated para-Hurwitz algebra,
which will be denoted by C̄. Para-Hurwitz algebras of dimension bigger than
1 are nonunital composition algebras. They are also well-known examples of
symmetric composition algebras. The para-Hurwitz algebra C̄ is called the
para-Cayley algebra.



1.4. GRADINGS ON CAYLEY ALGEBRAS 7

Recall that, since char F 6= 2, there are two fine gradings up to equivalence
on C, which are a Z2-grading (Cartan grading) and a Z3

2-grading. We will
recall them now. (In case that char F = 2, the Cartan grading is the only
fine grading up to equivalence on C. But we always assume that char F 6= 2.)

A split Hurwitz algebra is a Hurwitz algebra C with a nonzero isotropic
element: 0 6= x ∈ C such that n(x) = 0. Note that any Hurwitz algebra
of dimension ≥ 2 over an algebraically closed field is split. Let C be a split
Cayley algebra and let a be a nonzero isotropic element. In that case, since
n is nondegenerate, we can take b ∈ C such that n(a, b̄) = 1. Let e1 := ab.
We have n(e1) = 0 and n(e1, 1) = 1, so e2

1 = e1. Let e2 := ē1 = 1 − e1,
so n(e2) = 0, e2

2 = e2, e1e2 = 0 = e2e1 and n(e1, e2) = n(e1, 1) = 1. Then
K = Fe1 ⊕ Fe2 is a Hurwitz subalgebra of C. For any x ∈ K⊥, xe1 + xe1 =
n(xe1, 1)1 = n(x, ē1)1 = n(x, e2)1 = 0. Hence xe1 = −ē1x̄ = e2x, and
we get xe1 = e2x, xe2 = e1x. Also, x = 1x = e1x + e2x, and e2(e1x) =
(1− e1)(e1x) = ((1− e1)e1)x = 0 = e1(e2x). Therefore, K⊥ = U ⊕ V , with

U = {x ∈ C | e1x = x = xe2, e2x = 0 = xe1} = (e1C)e2,

V = {x ∈ C | e2x = x = xe1, e1x = 0 = xe2} = (e2C)e1.

For any u ∈ U , n(u) = n(e1u) = n(e1)n(u) = 0, so U and V are isotropic
subspaces of C. Since n is nondegenerate, U and V are paired by n and
dimU = dimV = 3. Take u1, u2 ∈ U and v ∈ V . Then,

n(u1u2, K) ⊆n(u1, Ku2) ⊆ n(U,U) = 0,

n(u1u2, v) = n(u1u2, e2v) = −n(e2u2, u1v) + n(u1, e2)n(u2, v) = 0.

Hence U2 is orthogonal to K and V , so U2 ⊆ V . Also V 2 ⊆ U . Besides,

n(U,UV ) ⊆ n(U2, V ) ⊆ n(V, V ) = 0,

n(UV, V ) ⊆ n(U, V 2) ⊆ n(U,U) = 0,

so UV + V U ⊆ K. Moreover, n(UV, e1) ⊆ n(U, e1V ) = 0, so that UV ⊆
Fe1 and V U ⊆ Fe2. More precisely, for u ∈ U and v ∈ V , n(uv, e2) =
−n(u, e2v) = −n(u, v), so that uv = −n(u, v)e1, and vu = −n(u, v)e2. Then,
the decomposition C = K ⊕U ⊕ V defines a Z3-grading on C where C0̄ = K,
C1̄ = U , C2̄ = V .

For linearly independent elements u1, u2 ∈ U , take v ∈ V with n(u1, v) 6=
0 = n(u2, v). Then (u1u2)v = −(u1v)u2 = n(u1, v)u2 6= 0, and so U2 6= 0.
Moreover, the trilinear map

U × U × U → F, (x, y, z) 7→ n(xy, z),
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is alternating (for any x ∈ U , n(x) = 0 = n(x, 1), so x2 = 0 and hence
n(x2, z) = 0; and n(xy, y) = −n(x, y2) = 0 too). Take a basis {u1, u2, u3} of
U with n(u1u2, u3) = 1 (this is always possible because n(U2, U) 6= 0 since n
is nondegenerate). Then {v1 = u2u3, v2 = u3u1, v3 = u1u2} is the dual basis
in V relative to n. We will say that {e1, e2, u1, u2, u3, v1, v2, v3} is a Cartan
basis of the split Cayley algebra C, and its multiplication table is:

e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0
e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 −v2 −e1 0 0
u2 0 u2 −v3 0 v1 0 −e1 0
u3 0 u3 v2 −v1 0 0 0 −e1

v1 v1 0 −e2 0 0 0 u3 −u2

v2 v2 0 0 −e2 0 −u3 0 u1

v3 v3 0 0 0 −e2 u2 −u1 0

Other authors may refer to a Cartan basis as a canonical basis or a good
basis. The decomposition C = Fe1⊕Fe2⊕U ⊕ V , with U = span{u1, u2, u3}
and V = span{v1, v2, v3}, is the Peirce decomposition associated to the
idempotents e1 and e2. Note that the elements of the Cartan basis are
isotropic for the norm, and paired as follows: n(e1, e2) = 1 = n(ui, vi),
n(ei, uj) = n(ei, vj) = n(uj, vk) = 0 for any i = 1, 2 and j 6= k = 1, 2, 3, and
n(ui, uj) = n(vi, vj) = 0 for any i, j = 1, 2, 3. On the split quaternion algebra,
we have the Cartan basis given by {e1, e2, u1, v1}, with the multiplication as
in the table above. On the 2-dimensional split Hurwitz algebra, the Cartan
basis is given by the orthogonal idempotents {e1, e2}.

The Cartan basis determines a fine Z2-grading on C, that is given by

deg(e1) = 0 = deg(e2), deg(u1) = (1, 0) = − deg(v1),

deg(u2) = (0, 1) = − deg(v2), deg(v3) = (1, 1) = − deg(u3),
(1.4.5)

which is called the Cartan grading on C (see [EK12a]). The Cartan grading on
C restricts to a fine Z-grading on the quaternion algebraQ = span{e1, e2, u1, v1},
that we call the Cartan grading on Q.

We will now recall the Cayley-Dickson doubling process for Hurwitz al-
gebras. Let Q be a Hurwitz algebra with norm n and involution x 7→ x̄,
and fix 0 6= α ∈ F. Then, we define a new algebra as the vector space
C = CD(Q,α) := Q⊕Qu (the direct sum of two copies of Q) with multipli-
cation

(a+ bu)(c+ du) = (ac+ αd̄b) + (da+ bc̄)u, (1.4.6)
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and quadratic form
n(a+ bu) = n(a)− αn(y). (1.4.7)

Then, C is a Hurwitz algebra if and only if Q is associative. The decompo-
sition C = C0̄ ⊕ C1̄ with C0̄ = Q and C1̄ = Qu is actually a Z2-grading.

A fine Z3
2-grading on C can be obtained by applying three times the

Cayley-Dickson doubling process (see [Eld98] for the construction), because
C = CD(CD(CD(F,−1),−1),−1). (This grading only exists if char F 6=
2.) Any homogeneous orthonormal basis {xi}8

i=1 of C associated to the Z3
2-

grading will be called a Cayley-Dickson basis of C, and we will usually assume
that x1 = 1. Note that, if {xi}8

i=1 and {yi}8
i=1 are Cayley-Dickson bases, then

there exist some ϕ ∈ AutC, signs si ∈ {±1} and permutation σ of the indices
such that ϕ(xi) = siyσ(i).

1.5 Gradings on Albert algebras

We assume that the reader is familiar with the exceptional Jordan algebra,
usually called the Albert algebra (see [Jac68]). A classification of gradings on
the Albert algebra over an algebraically closed field of characteristic different
from 2 was obtained in [EK12a]. The reader may consult [EK13, Chapter 5].
We will now recall the basic definitions.

Definition 1.5.1. A Jordan algebra is a commutative algebra satisfying the
identity (x2y)x = x2(yx). A Jordan algebra is called special if it is a subalge-
bra of A(+), where A(+) denotes an associative algebra A with the symmetric
product XY = 1

2
(X · Y + Y · X). A Jordan algebra which is not special is

called exceptional.

Note that the algebras A(+), where A is an associative algebra, are Jordan
algebras. In particular, if (A, )̄ is an associative algebra with involution, then
the subspace of symmetric elements H(A, )̄ is a Jordan subalgebra of A(+).

If V is a vector space over F endowed with a symmetric bilinear form
b : V × V → F, then the vector space J (V, b) := F1⊕ V , with multiplication
given by 1 ◦ x = x = x ◦ 1 and u ◦ v = b(u, v)1 for any x ∈ J (V, b) and
u, v ∈ V , is a Jordan algebra called the Jordan algebra of the bilinear form b.

We now recall the classification of the finite-dimensional simple Jordan
algebras over an algebraically closed field F with char F 6= 2 (see [Jac68,
Ch. V]). Each of them is isomorphic to one and only one algebra of the
following list:

(1) Mn(F)(+), n = 1 or n ≥ 3,
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(2) H(Mn(F), t), where t is the matrix transpose, n ≥ 3,

(3) H(M2n(F), ts), where ts is the symplectic involution X 7→ S−1(X t)S,
S =

(
0 In
−In 0

)
, n ≥ 3,

(4) J (Fn, bn), with bn the standard scalar product of Fn, n ≥ 2,

(5) the Albert algebra A.

The only exceptional simple Jordan algebra is the Albert algebra A, which
is defined as the algebra of hermitian 3× 3-matrices over C, that is

A = H3(C, −) =


 α1 ā3 a2

a3 α2 ā1

ā2 a1 α3

 | αi ∈ F, ai ∈ C


=FE1 ⊕ FE2 ⊕ FE3 ⊕ ι1(C)⊕ ι2(C)⊕ ι3(C),

where

E1 =

 1 0 0
0 0 0
0 0 0

 , E2 =

 0 0 0
0 1 0
0 0 0

 , E3 =

 0 0 0
0 0 0
0 0 1

 ,

ι1(a) = 2

 0 0 0
0 0 ā
0 a 0

 , ι2(a) = 2

 0 0 a
0 0 0
ā 0 0

 , ι3(a) = 2

 0 ā 0
a 0 0
0 0 0

 ,

for all a ∈ C, with multiplication XY = 1
2
(X ·Y +Y ·X), where X ·Y denotes

the usual product of matrices. Then, the Ei’s are orthogonal idempotents
with

∑
Ei = 1, and

Eiιi(a) = 0, Ei+1ιi(a) =
1

2
ιi(a) = Ei+2ιi(a),

ιi(a)ιi+1(b) = ιi+2(āb̄), ιi(a)ιi(b) = 2n(a, b)(Ei+1 + Ei+2),
(1.5.1)

where the subindices are taken modulo 3.

Any element X =
∑3

i=1(αiEi + ιi(ai)) of the Albert algebra satisfies the
degree 3 equation

X3 − T (X)X2 + S(X)X −N(X)1 = 0, (1.5.2)
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where the linear form T (called the trace), the quadratic form S, and the
cubic form N (called the norm) are given by:

T (X) = α1 + α2 + α3,

S(X) =
1

2
(T (X)2 − T (X2)) =

3∑
i=1

(αi+1αi+2 − 4n(ai)),

N(X) = α1α2α3 + 8n(a1, ā2ā3)− 4
3∑
i=1

αin(ai).

(1.5.3)

The Albert algebra A has a Freudenthal adjoint given by

x# := x2 − T (x)x+ S(x)1,

with linearization

x× y := (x+ y)# − x# − y#.

There are four fine gradings up to equivalence on A, with universal groups:
Z4 (the Cartan grading), Z5

2, Z × Z3
2 and Z3

3 (the last one does not occur if
char F = 3). We recall the construction of these gradings now.

Let B1 = {ei, uj, vj | i = 1, 2, j = 1, 2, 3} be a Cartan basis of C. We
will call the basis {Ei, ιi(x) | x ∈ B1, i = 1, 2, 3} a Cartan basis of A. The
Z4-grading on A is defined using this basis as follows:

degEi = 0, deg ιi(e1) = ai = − deg ιi(e2),

deg ιi(ui) = gi = − deg ιi(vi),

deg ιi(ui+1) = ai+2 + gi+1 = − deg ιi(vi+1),

deg ιi(ui+2) = −ai+1 + gi+2 = − deg ιi(vi+2),

(1.5.4)

for i = 1, 2, 3 mod 3, and where

a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (−1,−1, 0, 0),

g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1), g3 = (0, 0,−1,−1).

Let now B2 = {xi}8
i=1 be a Cayley-Dickson basis of C with degree map

degC. The Z5
2-grading on A is constructed by imposing that the elements of

the basis {Ei, ιi(x) | x ∈ B2, i = 1, 2, 3} are homogeneous with:

degEi = 0, deg ι1(x) = (1̄, 0̄, degC x),

deg ι2(x) = (0̄, 1̄, degC x), deg ι3(x) = (1̄, 1̄, degC x).
(1.5.5)
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Take i ∈ F with i2 = −1. The Z× Z3
2-grading on A is constructed using

the following elements of A:

E = E1, Ẽ = 1− E = E2 + E3, S± = E3 − E2 ±
i

2
ι1(1),

ν(a) = iι1(a), ν±(x) = ι2(x)± iι3(x̄),
(1.5.6)

for any a ∈ C0 = {y ∈ C | tr(y) = 0} and x ∈ C, where the product is:

EẼ = 0, ES± = 0, Eν(a) = 0, Eν±(x) =
1

2
ν±(x),

ẼS± = S±, Ẽν(a) = ν(a), Ẽν±(x) =
1

2
ν±(x),

S±S± = 0, S+S− = 2Ẽ, S±ν(a) = 0,

S±ν∓(x) = ν±(x), S±ν±(x) = 0,

ν(a)ν(b) = −2n(a, b)Ẽ, ν(a)ν±(x) = ±ν±(xa),

ν±(x)ν±(y) = 2n(x, y)S±, ν+(x)ν−(y) = 2n(x, y)(2E + Ẽ)− ν(x̄y − ȳx),
(1.5.7)

for any x, y ∈ C and a, b ∈ C0.

Fix a Cayley-Dickson basis B2 of C, with degree map degC. The degree
map of the Z× Z3

2-grading is given by:

degS± = (±2, 0̄, 0̄, 0̄), deg ν±(x) = (±1, degC x),

degE = 0 = deg Ẽ, deg ν(a) = (0, degC a),
(1.5.8)

for homogeneous x ∈ C and a ∈ C0.

Finally, we recall the construction of the Z3
3-grading on A. Let ω be a

cubic root of 1 in F. Consider the order 3 automorphism τ of C given by
ei 7→ ei for i = 1, 2 and uj 7→ uj+1, vj 7→ vj+1 for j = 1, 2, 3. Write ι̃i(x) =
ιi(τ

i(x)) for i = 1, 2, 3, and x ∈ C. Then, the Z3
3-grading is determined by

the homogeneous generators

X1 =
3∑
i=1

ι̃i(e1), X2 =
3∑
i=1

ι̃i(u1), X3 =
3∑
i=1

ω−iEi,

with degrees

degX1 = (1̄, 0̄, 0̄), degX2 = (0̄, 1̄, 0̄), degX3 = (0̄, 0̄, 1̄). (1.5.9)
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1.6 Jordan pairs and triple systems

We will now recall from [L75] some basic definitions about Jordan pairs and
Jordan triple systems.

The index σ will always take the values + and −, and will be omitted
when there is no ambiguity.

Let V+ and V− be vector spaces over F, and let Qσ : Vσ → Hom(V−σ,Vσ)
be quadratic maps. Define trilinear maps, Vσ × V−σ × Vσ → Vσ, (x, y, z) 7→
{x, y, z}σ, and bilinear maps, Dσ : Vσ × V−σ → End(Vσ), by the formulas

{x, y, z}σ = Dσ(x, y)z := Qσ(x, z)y (1.6.1)

where Qσ(x, z) = Qσ(x+ z)−Qσ(x)−Qσ(z). Note that {x, y, z} = {z, y, x}
and {x, y, x} = 2Q(x)y.

We will write xσ to emphasize that x is an element of Vσ. Alternatively,
we may write (x, y) ∈ V to mean x ∈ V+ and y ∈ V−. The map Qσ(x) is
also denoted by Qσ

x.

Definition 1.6.1. A (quadratic) Jordan pair is a pair V = (V+,V−) of vector
spaces and a pair (Q+, Q−) of quadratic maps Qσ : Vσ → Hom(V−σ,Vσ) such
that the following identities hold in all scalar extensions:

(QJP1) Dσ(x, y)Qσ(x) = Qσ(x)D−σ(y, x),

(QJP2) Dσ(Qσ(x)y, y) = Dσ(x,Q−σ(y)x),

(QJP3) Qσ(Qσ(x)y) = Qσ(x)Q−σ(y)Qσ(x).

Definition 1.6.2. A (linear) Jordan pair is a pair V = (V+,V−) of vector
spaces with trilinear products Vσ × V−σ × Vσ → Vσ, (x, y, z) 7→ {x, y, z}σ,
satisfying the following identities:

(LJP1) {x, y, z}σ = {z, y, x}σ,

(LJP2) [Dσ(x, y), Dσ(u, v)] = Dσ(Dσ(x, y)u, v)−Dσ(u,D−σ(y, x)v),

where Dσ(x, y)z = {x, y, z}σ.

Note that, under the assumption char F 6= 2, the definitions of quadratic
and linear Jordan pairs are equivalent.

A pairW = (W+,W−) of subspaces of a Jordan pair V is called a subpair
(respectively an ideal) if Qσ(Wσ)W−σ ⊆ Wσ (respectively Qσ(Wσ)V−σ +
Qσ(Vσ)W−σ + {Vσ,V−σ,Wσ} ⊆ Wσ). We say that V is simple if its only
ideals are the trivial ones and the maps Qσ are nonzero.
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A homomorphism h : V → W of Jordan pairs is a pair h = (h+, h−)
of F-linear maps hσ : Vσ → Wσ such that hσ(Qσ(x)y) = Qσ(hσ(x))h−σ(y)
for all x ∈ Vσ, y ∈ V−σ. By linearization, this implies hσ({x, y, z}) =
{hσ(x), h−σ(y), hσ(z)} for all x ∈ Vσ, y ∈ V−σ. Isomorphisms and automor-
phisms are defined in the obvious way. The ideals are precisely the kernels
of homomorphisms.

A derivation is a pair ∆ = (∆+,∆−) ∈ End(V+) × End(V−) such that
∆σ(Qσ(x)y) = {∆σ(x), y, x} + Qσ(x)∆−σ(y) for all x ∈ Vσ, y ∈ V−σ. For
(x, y) ∈ V , the pair ν(x, y) := (D(x, y),−D(y, x)) ∈ gl(V+) ⊕ gl(V−) is a
derivation, which is usually called the inner derivation defined by (x, y). It
is well-known that Innder (V) := span{ν(x, y) | (x, y) ∈ V} is an ideal of
Der(V).

Definition 1.6.3. A (quadratic) Jordan triple system is a vector space T
with a quadratic map P : T → End(T ) such that the following identities
hold in all scalar extensions:

(QJT1) L(x, y)P (x) = P (x)L(y, x),

(QJT2) L(P (x)y, y) = L(x, P (y)x),

(QJT3) P (P (x)y) = P (x)P (y)P (x),

where L(x, y)z = P (x, z)y and P (x, z) = P (x+ z)− P (x)− P (z).

Definition 1.6.4. A (linear) Jordan triple system is a vector space T with
a trilinear product T × T × T → T , (x, y, z) 7→ {x, y, z}, satisfying the
following identities:

(LJT1) {x, y, z} = {z, y, x},

(LJT2) [D(x, y), D(u, v)] = D(D(x, y)u, v)−D(u,D(y, x)v),

where D(x, y)z = {x, y, z}.

Note that, under the assumption char F 6= 2, the definitions of quadratic
and linear Jordan triple systems are equivalent. In a quadratic Jordan triple
system, the triple product is given by {x, y, z} = L(x, y)z.

A homomorphism of Jordan triple systems is an F-linear map f : T → T ′
such that f(P (x)y) = P (f(x))f(y) for all x, y ∈ T . The rest of basic con-
cepts, including isomorphisms and automorphisms, are defined in the obvious
way. Recall that a linear Jordan algebra J has an associated Jordan triple
system T with quadratic product P (x) = Ux := 2L2

x − Lx2 , and similarly,
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a Jordan triple system T has an associated Jordan pair V = (T , T ) with
quadratic products Qσ = P .

Finite-dimensional simple Jordan pairs were classified by Ottmar Loos
(see [L75]) as follows:

I) (Mp,q(F),Mp,q(F)), p× q matrices over F,

II) (An(F), An(F)), alternating n× n matrices over F,

III) (Hn(F),Hn(F)), symmetric n× n matrices over F,

IV) (Fn,Fn),

V) the bi-Cayley pair,

VI) the Albert pair.

In the first three cases the products are given by Q(x)y = xt · y · x. In the
fourth case, the products are given by Q(x)y = q(x, y)x − q(x)y, where q is
the standard quadratic form on Fn. We will describe the last two cases in
subsequent sections, where we classify their fine gradings.

1.7 Peirce decompositions and orbits of Jor-

dan pairs

We will now recall some well-known definitions related to Jordan pairs (for
more details, see [L75], [L91a], [L91b], [ALM05]).

An element x ∈ Vσ is called invertible if Qσ(x) is invertible, and in this
case, x−1 := Qσ(x)−1x is said to be the inverse of x. The set of invertible
elements of Vσ is denoted by (Vσ)×. A Jordan pair V is called a division pair
if V 6= 0 and every nonzero element is invertible. The pair V is said to be
local if the noninvertible elements of V form a proper ideal, say N ; in this
case, V/N is a division pair.

For a fixed y ∈ V−σ, the vector space Vσ with the operators

x2 = x(2,y) := Qσ(x)y, Ux = U (y)
x := Qσ(x)Q−σ(y), (1.7.1)

becomes a Jordan algebra, which is denoted by Vσy . An element (x, y) ∈ V is
called quasi-invertible if x is quasi-invertible in the Jordan algebra Vσy , i.e.,
if 1 − x is invertible in the unital Jordan algebra F1 + Vσy obtained from
Vσy by adjoining a unit element. In that case, (1 − x)−1 = 1 + z for some
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z ∈ Vσ, and xy := z is called the quasi-inverse of (x, y). An element x ∈ Vσ
is called properly quasi-invertible if (x, y) is quasi-invertible for all y ∈ V−σ.
The (Jacobson) radical of V is Rad V := (Rad V+,Rad V−), where Rad Vσ
is the set of properly quasi-invertible elements of Vσ. It is well-known that
Rad V is an ideal of V . We say that V is semisimple if Rad V = 0, and V is
quasi-invertible or radical if V = Rad V . Of course, finite-dimensional simple
Jordan pairs are semisimple, and finite-dimensional semisimple Jordan pairs
are a direct sum of simple Jordan pairs.

An element x ∈ Vσ is called von Neumann regular (or vNr, for short)
if there exists y ∈ V−σ such that Q(x)y = x. A Jordan pair is called von
Neumann regular if V+ and V− consist of vNr elements. A pair e = (x, y) ∈ V
is called idempotent if Q(x)y = x and Q(y)x = y. Recall from [L75, Lemma
5.2] that if x ∈ V+ is vNr and Q(x)y = x, then (x,Q(y)x) is an idempotent;
therefore, every vNr element can be completed to an idempotent. An element
x ∈ Vσ is called trivial if Q(x) = 0. A Jordan pair V is called nondegenerate
if it contains no nonzero trivial elements.

Given a Jordan pair V , a subspace I ⊆ Vσ is called an inner ideal if
Qσ(I)(V−σ) ⊆ I. Given an element x ∈ Vσ, the principal inner ideal gener-
ated by x is defined by [x] := Q(x)V−σ. The inner ideal generated by x ∈ Vσ
is defined by (x) := Fx+ [x].

Theorem 1.7.1 ([L75, Th. 10.17]). The following conditions on a Jordan
pair V with dcc on principal inner ideals are equivalent:

i) V is von Neumann regular;

ii) V is semisimple;

iii) V is nondegenerate.

For any x ∈ Vσ and y ∈ V−σ, the Bergmann operator is defined by

B(x, y) = idVσ −D(x, y) +Q(x)Q(y).

In case (x, y) ∈ V is quasi-invertible, the map

β(x, y) := (B(x, y), B(y, x)−1)

is an automorphism, called the inner automorphism defined by (x, y). The
inner automorphism group, Inn(V), is the group generated by the inner au-
tomorphisms.

Recall ([L75, Th. 5.4]) that given an idempotent e = (e+, e−) of V , the
linear operators

Eσ
2 = Q(eσ)Q(e−σ), Eσ

1 = D(eσ, e−σ)− 2Eσ
2 , Eσ

0 = B(eσ, e−σ), (1.7.2)
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are orthogonal idempotents of End(Vσ) whose sum is the identity, and we
have the so-called Peirce decomposition: Vσ = Vσ2 ⊕ Vσ1 ⊕ Vσ0 , where Vσi =
Vσi (e) := Eσ

i (Vσ). Moreover, this decomposition satisfies

Q(Vσi )V−σj ⊆ Vσ2i−j, {Vσi ,V−σj ,Vσk } ⊆ Vσi−j+k, (1.7.3)

for any i, j, k ∈ {0, 1, 2} (note that we use the convention Vσi = 0 for i /∈
{0, 1, 2}). In particular, Vi = (V+

i ,V−i ) is a subpair of V for i = 0, 1, 2.
We recall a few more definitions related to idempotents. Two nonzero

idempotents e and f are called orthogonal if f ∈ V0(e); this is actually a
symmetric relation. An orthogonal system of idempotents is an ordered set
of pairwise orthogonal idempotents; it is usually denoted by (e1, . . . , er) in
case it is finite, and there is an associated Peirce decomposition (but we will
not use this more general version). An orthogonal system of idempotents is
called maximal if it is not properly contained in a larger orthogonal system
of idempotents. It is known that a finite sum of pairwise orthogonal idem-
potents is again an idempotent. A nonzero idempotent e is called primitive
if it cannot be written as the sum of two nonzero orthogonal idempotents.
We say that e is a local idempotent (respectively a division idempotent) if
V2(e) is a local pair (respectively a division pair). In general, division idem-
potents are local, and local idempotents are primitive. If V is semisimple,
then the local idempotents are exactly the division idempotents. A frame is
a maximal set among orthogonal systems of local idempotents. Two frames
of a simple finite-dimensional Jordan pair have always the same number of
idempotents; that number of idempotents is called the rank of V (see [L75,
Def. 15.18]), and we have:

Theorem 1.7.2 ([L75, Th. 17.1]). Let V be a simple finite-dimensional Jor-
dan pair over an algebraically closed field F. Let (c1, . . . , cr) and (e1, . . . , er)
be frames of V. Then there exists an inner automorphism g of V such that
g(ci) = ei for i = 1, . . . , r.

Let V be a semisimple Jordan pair and x ∈ Vσ. The rank of x, rk(x),
is defined as the supremum of the lenghts of all finite chains [x0] ⊆ [x1] ⊆
· · · ⊆ [xn] of principal inner ideals [xi] = Q(xi)V−σ where each xi belongs to
the inner ideal (x) = Fx+ [x] generated by x, and the length of the chain is
the number of strict inclusions (for more details, see [L91a]). Hence, given a
chain of length n = rk(x), we have x0 = 0 and [xn] = [x].

Two elements x, z ∈ Vσ are called orthogonal (x ⊥ z) if they are part
of orthogonal idempotents, i.e., x = eσ and z = cσ for some orthogonal
idempotents e and c. For any x, z ∈ Vσ, rk(x + z) ≤ rk(x) + rk(z); and in
case that x and z have finite rank, the equality holds if and only if x ⊥ z
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([L91a, Th. 3]). Recall from [L91b] that the capacity of a Jordan pair V ,
κ(V), is the infimum of the cardinalities of all finite sets of orthogonal division
idempotents whose Peirce-0-space is zero (if there are no such idempotents,
the capacity is +∞).

Recall that if e = (x, y) is an idempotent, then rk(x) = rk(y) ([L91a, Cor.
1 of Th. 3]), and this common value will be called the rank of e. In general,
if rk(x) < ∞, then rk(x) = κ(V2(e)) ([L91a, Proposition 3]); hence, x has
rank 1 if and only if V2(e) is a division pair (i.e., the division idempotents
are exactly the rank 1 idempotents), and since F is algebraically closed, this
is equivalent to the condition im Qx = Fx (see [L75, Lemma 15.5]).

An element x ∈ Vσ is called diagonalizable if there exist orthogonal di-
vision idempotents d1, . . . , dt such that x = dσ1 + · · · + dσt , and it is called
defective if Qyx = 0 for all rank one elements y ∈ V−σ. The only element
which is both diagonalizable and defective is 0. If V is simple, every ele-
ment is either diagonalizable or defective ([L91a, Cor. 1]). The defect of V
is Def(V) := (Def(V+),Def(V−)), where Def(Vσ) denotes the set of defective
elements of Vσ. For the definition of the generic trace of V , which is a bilinear
map V+ × V− → F usually denoted by m1 or t, see [L75, Def. 16.2].

Lemma 1.7.3 ([ALM05, 1.2.b]). Let V be a semisimple finite-dimensional
Jordan pair over an algebraically closed field F. The defect is the kernel of
the generic trace t in the sense that

x ∈ Def(V+)⇔ t(x,V−) = 0,

y ∈ Def(V−)⇔ t(V+, y) = 0.

Recall that we only consider the case with char F 6= 2, and in this case
the defect of a semisimple Jordan pair is always zero (see [L91a, Theorem 2]).

Proposition 1.7.4 ([ALM05, 1.9.(a)]). Let V be a simple finite-dimensional
Jordan pair of rank r over an algebraically closed field and such that Def(V) =
0, and let σ ∈ {±}. Then the automorphism group AutV and the inner
automorphism group InnV have the same orbits on Vσ, and these orbits are
described as follows: two elements x, y ∈ Vσ belong to the same orbit if and
only if rk(x) = rk(y). Hence there are r + 1 orbits, corresponding to the
possible values 0, . . . , r of the rank function.

Proposition 1.7.5 ([ALM05, 1.10.(a)]). Let V be a simple finite-dimensional
Jordan pair containing invertible elements over an algebraically closed field
and satisfying Def(V) = 0. Then AutV acts transitively on (Vσ)×.

Remark 1.7.6. Given a finite-dimensional semisimple Jordan pair V , each
idempotent e of rank r decomposes as a sum of r orthogonal idempotents of
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rank 1 (see [L91a, Cor. 2 of Th. 1]). By (1.7.3), we also have Vσ2 (e) = im Qeσ ,
so the rank of e in V coincides with the rank of e in V2(e).

Furthermore, if V is simple, all sets consisting of n orthogonal idempotents
e1, . . . , en of fixed ranks r1, . . . , rn, respectively, are in the same orbit under
the automorphism group. Indeed, first note that the Peirce subpaces V2(ei)
are semisimple Jordan pairs (because the vNr property is inherited by these
subpairs and by Theorem 1.7.1); hence the idempotent ei decomposes as
sum of ri orthogonal idempotents ei,1, . . . , ei,ri of rank 1 in the corresponding
Peirce subspace V2(ei), and it suffices to apply Theorem 1.7.2. In particular,
idempotents of rank r are in the same orbit.

1.8 Structurable algebras

Let (A, )̄ be an algebra with involution over a field F, i.e., a 7→ ā is an
F-linear involutive antiautomorphism of A. We will use the notation

H(A, )̄ = {a ∈ A | ā = a} and K(A, )̄ = {a ∈ A | ā = −a}.

Then A = H(A, )̄⊕K(A, )̄. The dimension of the subspace K(A, )̄ will be
referred to as the skew-dimension of (A, )̄.

Definition 1.8.1. Suppose char F 6= 2, 3. A unital F-algebra with involution
(A, )̄ is said to be structurable if

[Vx,y, Vz,w] = VVx,yz,w − Vz,Vy,xw for all x, y, z ∈ A, (1.8.1)

where Vx,y(z) = {x, y, z} := (xȳ)z + (zȳ)x− (zx̄)y.

In the case char F 6= 2, 3, it is shown in [All78] that identity (1.8.1) implies
that (A, )̄ is skew-alternative, i.e.,

(z − z̄, x, y) = −(x, z − z̄, y) = (x, y, z − z̄) for all x, y, z ∈ A,

where (a, b, c) := (ab)c−a(bc). In the case char F = 2 or 3, skew-alternativity
is taken as an additional axiom.

Denote by Z(A) the associative center ofA (i.e., the set of elements z ∈ A
satisfying xz = zx and (z, x, y) = (x, z, y) = (x, y, z) = 0 for all x, y ∈ A).
The center of (A, )̄ is defined by Z(A, )̄ = Z(A) ∩ H(A, )̄. A structurable
algebra A is said to be central if Z(A, )̄ = F1.

Theorem 1.8.2 (Allison, Smirnov). If char F 6= 2, 3, 5, then any central
simple structurable F-algebra belongs to one of the of the following six (non-
disjoint) classes:
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(1) central simple associative algebras with involution,

(2) central simple Jordan algebras (with identity involution),

(3) structurable algebras constructed from a non-degenerate Hermitian form
over a central simple associative algebra with involution,

(4) forms of the tensor product of two Hurwitz algebras,

(5) simple structurable algebras of skew-dimension 1 (forms of structurable
matrix algebras),

(6) an exceptional 35-dimensional case (Kantor-Smirnov algebra), which
can be constructed from an octonion algebra.

The classification was given by Allison in the case of characteristic 0
(see [All78]), but case (6) was overlooked. Later, Smirnov completed the
classification and gave the generalization for char F 6= 2, 3, 5 (see [Smi92]).

1.9 Structurable matrix algebras

Assume char F 6= 2, 3. Let J and J ′ be vector spaces over F and consider a
triple (T,N,N ′) where N and N ′ are symmetric trilinear forms on J and J ′,
respectively, and T : J × J ′ → F is a nondegenerate bilinear form. For any
x, y ∈ J , x′, y′ ∈ J ′, define x× y ∈ J ′ and x′ × y′ ∈ J by

T (z, x× y) = N(x, y, z) and T (x′ × y′, z′) = N ′(x′, y′, z′)

for all z ∈ J , z′ ∈ J ′. For any x ∈ J and x′ ∈ J ′, define N(x) = 1
6
N(x, x, x),

N ′(x′) = 1
6
N ′(x′, x′, x′), x# = 1

2
x × x and x′# = 1

2
x′ × x′. If the triple

(T,N,N ′) satisfies the identities

(x#)# = N(x)x and (x′#)# = N ′(x′)x′

for all x ∈ J , x′ ∈ J ′, then the algebra

A =

{(
α x
x′ β

)
| α, β ∈ F, x ∈ J, x′ ∈ J ′

}
,

with multiplication(
α x
x′ β

)(
γ y
y′ δ

)
=

(
αγ + T (x, y′) αy + δx+ x′ × y′

γx′ + βy′ + x× y T (y, x′) + βδ

)
, (1.9.1)



1.10. CAYLEY–DICKSON DOUBLING PROCESS 21

and involution (
α x
x′ β

)
−7→
(
β x
x′ α

)
, (1.9.2)

is a central simple structurable algebra of skew-dimension 1, where the space
of skew elements is spanned by s0 = ( 1 0

0 −1 ). These are called structurable
matrix algebras in [AF84], where it is shown (see Proposition 4.5) that, con-
versely, if (A, )̄ is a simple structurable algebra with K(A, )̄ = Fs0 6= 0,
then s2

0 = µ1 with µ ∈ F×, and (A, )̄ is isomorphic to a structurable matrix
algebra if and only if µ is a square in F.

The triples (T,N,N ′), as above, that satisfy N 6= 0 (equivalently, N ′ 6= 0)
are called admissible triples in [All78], where it is noted that the correspond-
ing structurable algebras possess a nondegenerate symmetric bilinear form

〈a, b〉 = tr(ab̄), where tr

(
α x
x′ β

)
:= α + β, (1.9.3)

which is invariant in the sense that 〈ā, b̄〉 = 〈a, b〉 and 〈ca, b〉 = 〈a, c̄b〉 for all
a, b, c. The main source of admissible triples are Jordan algebras: if J is a
separable Jordan algebra of degree 3 with generic norm N and generic trace
T , then (ζT, ζN, ζ2N) is an admissible triple (with J ′ = J) for any nonzero
ζ ∈ F. Note that the map x 7→ λx and x′ 7→ λ2x′ is an isomorphism from
(λ3T, λ3N, λ6N) to (T,N,N), so over algebraically closed fields, we can get
rid of ζ.

1.10 Cayley–Dickson doubling process for al-

gebras with involution

Let (B, )̄ be a unital F-algebra with involution, and let φ : B × B → F be
a symmetric bilinear form such that φ(1, 1) 6= 0 and φ(b, 1) = φ(b̄, 1) for all
b ∈ B. Denote φ(b) = φ(b, 1) and define θ : B → B by

bθ = −b+
2φ(b)

φ(1)
1. (1.10.1)

Then θ is a linear map that commutes with the involution and satisfies θ2 = id
and φ(bθ1, b

θ
2) = φ(b1, b2) for all b1, b2 ∈ B. Given 0 6= µ ∈ F, define a new

algebra with involution
CD(B, µ) := B ⊕ B

where multiplication is given by

(b1, b2)(c1, c2) = (b1c1 + µ(b2c
θ
2)θ, bθ1c2 + (bθ2c

θ
1)θ) (1.10.2)
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and involution is given by

(b1, b2) = (b̄1,−(b̄2)θ). (1.10.3)

Note that b ∈ B can be identified with (b, 0), that (0, b) = vb for v := (0, 1),
and v2 = µ1. Thus (b1, b2) = b1 + vb2 and CD(B, µ) = B ⊕ vB. Moreover,
the symmetric bilinear form φ can be extended to B ⊕ vB by setting

φ(b1 + vb2, c1 + vc2) = φ(b1, c1)− µφ(b2, c2);

the extended φ satisfies φ(1, 1) 6= 0 and φ(a, 1) = φ(ā, 1) for all a ∈ CD(B, µ).

This construction was introduced in [AF84] and called the (generalized)
Cayley–Dickson process because it reduces to the classical doubling process
for a Hurwitz algebra B if φ is the polar form of the norm and hence bθ = b̄
for all b ∈ B.

It is shown in [AF84] assuming char F 6= 2, 3 (see [AF84, Theorem 6.6],
where a slightly more general situation is considered) that if B is a separable
Jordan algebra of degree 4, the involution is trivial and φ is the generic trace
form, then CD(B, µ) is a simple structurable algebra of skew-dimension 1. In
fact, if µ is a square in F then such CD(B, µ) is isomorphic to the structurable
matrix algebra corresponding to a certain admissible triple defined on the
space B0 ⊆ B of elements with generic trace 0 ([AF84, Proposition 6.5]).

So let B be a separable Jordan algebra of degree 4 and letA = CD(B, µ) as
above. We state some basic properties of A for future use: B is a subalgebra
of A, there is an element v ∈ B such that A = B⊕ vB, and the involution of
A is given by a+ vb = a − vbθ where θ : B → B is a linear map defined by
1θ = 1 and bθ = −b for all b ∈ B0. The operators Lv and Rv of left and right
multiplication by v, respectively, satisfy the relations L2

v = R2
v = µid and

LvRv = RvLv = µθ where we extended θ to an operator on A by the rule
(a+ vb)θ = aθ + vbθ. The multiplication of A is determined by the formulas

a(vb) = v(aθb), (va)b = v(aθbθ)θ, (va)(vb) = µ(abθ)θ, (1.10.4)

for all a, b ∈ A. (This is equivalent to (1.10.2) if a, b ∈ B, but a straight-
worward computation shows that the formulas continue to hold if we allow
a and b to range over A.)

Since K(A, )̄ = Fv and v2 = µ1, all automorphisms of (A, )̄ send v to ±v
and all derivations of (A, )̄ annihilate v. Every automorphism (or derivation)
ϕ of B extends to A in the natural way: a + vb 7→ ϕ(a) + vϕ(b). We will
denote this extended map by the same symbol. Similarly, any G-grading
B =

⊕
g∈G Bg gives rise to a G-grading on A, namely, A =

⊕
g∈G(Bg ⊕ vBg).
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1.11 Kantor systems and Kantor construc-

tion

We will now recall the TKK construction of a Jordan pair (the Kantor con-
struction of a Jordan pair) and the notation that we will use for it. Let V be
a Jordan pair. Recall that the inner derivations are defined by

ν(x, y) := (D(x, y),−D(y, x)) ∈ gl(V+)⊕ gl(V−), (1.11.1)

where (x, y) ∈ V . Consider the 3-graded Lie algebra

L = TKK(V) = L−1 ⊕ L0 ⊕ L1 (1.11.2)

defined by the TKK construction, due to Tits, Kantor and Koecher (see
[CS11] and references therein). That is,

L−1 = V−, L1 = V+, L0 = span{ν(x, y) | (x, y) ∈ V},

and the multiplication is given by

[a+X + b, c+Y + d] := (Xc−Y a) + ([X, Y ] + ν(a, d)− ν(c, b)) + (Xd−Y b)
(1.11.3)

for each X, Y ∈ L0, a, c ∈ L1, b, d ∈ L−1. This 3-grading will be called the
TKK-grading. The TKK construction of a Jordan algebra J is defined as the
TKK construction of its associated Jordan pair (J, J).

Definition 1.11.1. A Kantor pair (or generalized Jordan pair of second
order [F94, AF99]) is a pair of vector spaces V = (V+,V−) and a pair of
trilinear products Vσ×V−σ×Vσ → Vσ, denoted by {x, y, z}σ, satisfying the
identities:

[V σ
x,y, V

σ
z,w] = V σ

V σx,yz,w
− V σ

z,V −σy,x w
, (1.11.4)

Kσ
Kσ
x,yz,w

= Kσ
x,yV

−σ
z,w + V σ

w,zK
σ
x,y, (1.11.5)

where V σ
x,yz = Uσ

x,z(y) := {x, y, z}σ, Uσ
x := Uσ

x,x and Kσ
x,yz = Kσ(x, y)z :=

{x, z, y}σ − {y, z, x}σ. The map V σ
x,y is also denoted by Dσ

x,y or Dσ(x, y)
(because (V +

x,y,−V −y,x) is a derivation of the Kantor pair).

The superindex σ will always take the values + and−, and will be omitted
when there is no ambiguity.
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Definition 1.11.2. A Kantor triple system (or generalized Jordan triple sys-
tem of second order [K72, K73]) is a vector space T with a trilinear product
T × T × T → T , denoted by {x, y, z}, which satisfies:

[Vx,y, Vz,w] = VVx,yz,w − Vz,Vy,xw, (1.11.6)

KKx,yz,w = Kx,yVz,w + Vw,zKx,y, (1.11.7)

where Vx,yz = Ux,z(y) := {x, y, z}, Ux := Ux,x and Kx,yz := {x, z, y} −
{y, z, x}.

Given a structurable algebra A, we can define its associated Kantor triple
system as the vector space A endowed with the triple product {x, y, z} of
A. Similarly, with two copies of a Kantor triple system T and two copies of
its triple product we can define the associated Kantor pair V = (T , T ). In
particular, a structurable algebra A with its triple product defines a Kantor
pair (A,A). Note that Jordan pairs (respectively, Jordan triple systems) are
a particular case of Kantor pairs (respectively, Kantor triple systems), those
where Kx,y = 0 for all x, y.

We will now recall from [AF99, §3–4] the 5-graded Lie algebra obtained
with the Kantor construction from a Kantor pair. The Kantor construction is
a generalization of the Tits-Kantor-Koecher (TKK) construction from Jordan
pairs. Consider the vector space

K(V) := K(V)−2 ⊕ K(V)−1 ⊕ K(V)0 ⊕ K(V)1 ⊕ K(V)2, (1.11.8)

where

K(V)−2 =

(
0 K(V−,V−)
0 0

)
, K(V)−1 =

(
V−
0

)
,

K(V)0 =

{(
D(x−, x+) 0

0 −D(x+, x−)

)
| xσ ∈ Vσ

}
,

K(V)1 =

(
0
V+

)
, K(V)2 =

(
0 0

K(V+,V+) 0

)
.

The vector space

S(V) :=K(V)−2 ⊕ K(V)0 ⊕ K(V)2

= span

{(
D(x−, x+) K(y−, z−)
K(y+, z+) −D(x+, x−)

)
| xσ, yσ, zσ ∈ Vσ

}
is a subalgebra of the Lie algebra

End

(
V−
V+

)
=

(
End(V−) Hom(V+,V−)

Hom(V−,V+) End(V+)

)
,
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with the commutator product. Define an anti-commutative product on K(V)
by means of

[A,B] = AB −BA, [A,

(
x−

x+

)
] = A

(
x−

x+

)
,

[

(
x−

x+

)
,

(
y−

y+

)
] =

(
D(x−, y+)−D(y−, x+) K(x−, y−)

K(x+, y+) −D(y+, x−) +D(x+, y−)

)
.

Then, K(V) becomes a Lie algebra, called the Kantor Lie algebra of V . The
5-grading is a Z-grading which is called the standard grading of K(V). We
will also refer to it as the main grading of K(V). The subspaces K(V)1 and
K(V)−1 are usually identified with V+ and V−, respectively. The Kantor
construction of a structurable algebra or Kantor triple system is defined as
the Kantor construction of the associated Kantor pair.

Let A be a structurable algebra and let V = (V+,V−) = (A,A) be the as-
sociated Kantor pair. Recall that ν(x−, x+) := (Dx−,x+ ,−Dx+,x−) is a deriva-
tion called inner derivation associated to (x−, x+) ∈ V− × V+. The inner
structure algebra ofA is the Lie algebra innstr(A) = span{ν(x, y) | x, y ∈ A}.
Let Lx denote the left multiplication by x ∈ A and write S = S(A). Then,
the map S → LS , s 7→ Ls, is a linear monomorphism, so we can identify S
with LS . Also, note that the map A×A → S given by ψ(x, y) := xȳ− yx̄ is
an epimorphism (because ψ(s, 1) = 2s for s ∈ S). By [AF84, (1.3)], we have
the identity Lψ(x,y) = Ux,y−Uy,x = K(x, y) for all x, y ∈ A. As a consequence
of this, in the Kantor construction of V we can identify the subspaces K(V)2

and K(V)−2 with LS , or also with S. Hence, the main grading of K(A) can
be written as follows:

K(A) = S− ⊕A− ⊕ innstr(A)⊕A+ ⊕ S+. (1.11.9)

This construction can be used to induce gradings on the Lie algebra con-
structed from a structurable algebra or Kantor pair, as we will see in subse-
quent sections.



Chapter 2

Gradings on Jordan systems

In this chapter we extend the natural definitions of gradings on algebras
to the setting of Jordan pairs and triple systems. Some general results of
gradings on (semi)simple Jordan pairs and triple systems are proven; some
of the main results are Theorem 2.1.21, that relates gradings on a Jordan pair
and on the Lie algebra obtained by the Tits-Kantor-Koecher construction,
and Theorem 2.1.24, that proves that the nonzero homogeneous components
of the fine gradings on finite-dimensional semisimple Jordan pairs are always
one-dimensional.

Later on, we recall the definitions of Jordan pairs and triple systems of
types bi-Cayley and Albert.

We also give an explicit description of generators of the automorphism
groups of bi-Cayley systems (see Theorem 2.2.27, which is one of our main
results in this chapter), and also of the orbits for the actions of these groups
on the corresponding Jordan systems; note that these automorphism groups
and the orbits of their actions are well-known, but our contribution here
is the explicit description of these groups and their generators, and some
characterization of the orbits.

2.1 Generalities about gradings

In this section, the definitions in Section 1.1 will be extended to Jordan pairs
and triple systems.

26
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2.1.1 Gradings on Jordan pairs and triple systems

Definition 2.1.1. Let V = (V+,V−) be a Jordan pair and let S be a set.
Given two decompositions of vector spaces

Γσ : Vσ =
⊕
s∈S

Vσs ,

we will say that Γ = (Γ+,Γ−) is an S-grading on V if for any s1, s2, s3 ∈ S
there is s ∈ S such that {Vσs1 ,V

−σ
s2
,Vσs3} ⊆ V

σ
s for all σ ∈ {+,−}. In this

case, we also say that Γ is a set grading on V . The set

Supp Γ = Supp Γ+ ∪ Supp Γ−

is called the support of the grading, where Supp Γσ := {s ∈ S | Vσs 6= 0}.
The vector space V+

s ⊕ V−s is called the homogeneous component of degree
s. If 0 6= x ∈ Vσs , we say that x is homogeneous of degree s, and we write
deg(x) = s.

Definition 2.1.2. Let Γσ : Vσ =
⊕

s∈S Vσs and Γ̃σ : Vσ =
⊕

t∈T Vσt be two

set gradings on a Jordan pair V . We say that Γ is a refinement of Γ̃, or that
Γ̃ is a coarsening of Γ, if for any s ∈ S there is t ∈ T such that Vσs ⊆ Vσt
for σ ∈ {+,−}. The refinement is said to be proper if some containment
Vσs ⊆ Vσt is strict. A set grading with no proper refinement is called a fine
grading.

Let G be an abelian group. Given two decompositions

Γσ : Vσ =
⊕
g∈G

Vσg ,

we will say that Γ = (Γ+,Γ−) is a G-grading on V if

{Vσg ,V−σh ,Vσk } ⊆ Vσg+h+k

for any g, h, k ∈ G and σ ∈ {+,−}. A set grading by a set S on V will be
called realizable as a group grading, or a group grading, if S is contained in
some abelian group G such that the subspaces Vσg := Vσs for g = s ∈ S and
Vσg := 0 for g /∈ S define a G-grading. By a grading we will mean a group
grading. In particular, a grading is called fine if it has no proper refinements
in the class of group gradings. We will not consider gradings by nonabelian
groups.
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Definition 2.1.3. Let Γ be a set grading on V . The universal group of
Γ, which is denoted by U(Γ), is defined as the abelian group generated by
Supp Γ with the relations s1 + s2 + s3 = s when 0 6= {Vσs1 ,V

−σ
s2
,Vσs3} ⊆ V

σ
s for

some σ ∈ {+,−}. Note that this defines a group grading Γ′ by U(Γ), which
is a coarsening of Γ, and it is clear that Γ and Γ′ have the same homogeneous
components if and only if Γ is realizable as a group grading.

Suppose that a group grading Γ on V admits a realization as a G0-grading
for some abelian group G0. Then G0 is isomorphic to the universal group of
Γ if and only if for any other realization of Γ as a G-grading there is a unique
homomorphism G0 → G that restricts to the identity on Supp Γ.

Definition 2.1.4. Given a G-grading Γ on V and a group homomorphism
α : G → H, we define the induced H-grading αΓ determined by setting
Vσh :=

⊕
g∈α−1(h) Vσg . Then αΓ is a coarsening of Γ. In case Γ is given

by its universal group, i.e., G = U(Γ), then any coarsening of Γ (in the class
of group gradings) is of the form αΓ for some homomorphism α : U(Γ)→ H.

Example 2.1.5. Consider the Jordan pair V = (F,F) associated to the
Jordan algebra J = F, i.e., with products Ux(y) = x2y for x, y ∈ F. Then,
the trivial grading on V has universal group Z2 and support {1̄}. On the
other hand, for a nonzero Jordan pair with zero product, the trivial grading
has universal group Z and support {1}.

Definition 2.1.6. Let Γσ1 : Vσ =
⊕

s∈S Vσs and Γσ2 : Wσ =
⊕

t∈T Wσ
t be

graded Jordan pairs. An isomorphism of Jordan pairs ϕ = (ϕ+, ϕ−) : V → W
is said to be an equivalence of graded Jordan pairs if, for each s ∈ S, there
is (a unique) t ∈ T such that ϕσ(Vσs ) =Wσ

t for all σ ∈ {+,−}. In that case,
Γ1 and Γ2 are said to be equivalent.

Definition 2.1.7. Given a G-grading Γ on V , the automorphism group of Γ,
Aut(Γ), is the group of self-equivalences of Γ. The stabilizer of Γ, Stab(Γ),
is the group of G-automorphisms of Γ, i.e., the group of automorphisms of
V that fix the homogeneous components. The diagonal group of Γ, Diag(Γ),
is the subgroup of Stab(Γ) consisting of the automorphisms that act by mul-
tiplication by a nonzero scalar on each homogeneous component. The Weyl
group of Γ is the quotient group W(Γ) = Aut(Γ)/ Stab(Γ), which can be
regarded as a subgroup of Sym(Supp Γ) and also of Aut(U(Γ)).

Proposition 2.1.8. Let Γ be a fine grading on a Jordan pair V and let G be
its universal group. Then, there is a group homomorphism π : G → Z such
that π(g) = σ1 if Vσg 6= 0 for some σ ∈ {+,−}. In particular, Supp Γ+ and
Supp Γ− are disjoint.
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Proof. Define a G × Z-grading Γ′ on V by means of Vσ(g,σ1) := Vσg and
Vσ(g,−σ1) := 0. Then, Γ′ is a refinement of Γ. But Γ is fine, so Γ′ and Γ have

the same homogeneous components. Since G = U(Γ), there is a (unique)
homomorphism φ : G → G × Z such that Vσφ(g) = Vσg for all g ∈ G and

σ ∈ {+,−}. Therefore, φ has the form φ(g) = (g, π(g)) for some homomor-
phism π : G → Z. By definition of Γ′, π satisfies π(g) = σ1 if Vσg 6= 0. In
particular, Supp Γ+ = π−1(1) and Supp Γ− = π−1(−1) are disjoint.

Definition 2.1.9. Let T be a Jordan triple system and S a set. Consider
a decomposition Γ : T =

⊕
s∈S Ts. We call Γ an S-grading if, for any

s1, s2, s3 ∈ S, there is s ∈ S such that {Ts1 , Ts2 , Ts3} ⊆ Ts.
Let G be an abelian group and consider a decomposition Γ : T =⊕
g∈G Tg. We say that Γ is a G-grading if {Tg, Th, Tk} ⊆ Tg+h+k for any

g, h, k ∈ G. A set grading is said to be realizable as a group grading, or
a group grading, if S is contained in some abelian group G such that the
subspaces Tg := Ts for g = s ∈ S and Tg := 0 for g /∈ S define a G-grading.

The rest of definitions about gradings on Jordan triple systems are anal-
ogous to those given for graded Jordan pairs.

Definition 2.1.10. Given a graded algebra A, a bilinear form b : A×A→ F
will be called homogeneous of degree 0, or simply homogeneous, if we have
g + h = 0 whenever b(Ag, Ah) 6= 0. (Analogous definition for a bilinear form
on a graded Jordan triple system.) Similarly, given a graded Jordan pair
V , a bilinear form b : V+ × V− → F will be called homogeneous if we have
g + h = 0 whenever b(V+

g ,V−h ) 6= 0.

Let J be a Jordan algebra. Consider its associated Jordan pair V = (J, J)
and Jordan triple system T = J . Then, any G-grading Γ on J is a G-grading
on T . In the same way, any G-grading Γ on T (or on J) induces a G-grading

on V , given by (Γ,Γ). We say that a G-grading Γ̃ on V is a G-grading

on J (respectively on T ) when Γ̃ equals (Γ,Γ) for some G-grading Γ on J
(respectively on T ). If ϕ = (ϕ+, ϕ−) ∈ Aut(V), denote ϕ̂ := (ϕ−, ϕ+) ∈
Aut(V). Notice that ϕ̂1ϕ2 = ϕ̂1ϕ̂2 and 1̂V = 1V , so ̂ ∈ Aut(Aut(V)).

Moreover, ̂̂ϕ = ϕ and Aut(T ) = {ϕ ∈ Aut(V) | ϕ̂ = ϕ}. We can consider,
with natural identifications, that Aut(J) ≤ Aut(T ) ≤ Aut(V).

Let ΓJ be a G-grading on a Jordan algebra J and ΓT the same G-grading
on the Jordan triple system T = J . Since Aut(J) ≤ Aut(T ), we have
Aut(ΓJ) ≤ Aut(ΓT ) and Stab(ΓJ) ≤ Stab(ΓT ). Thus,

W(ΓJ) = Aut(ΓJ)/ Stab(ΓJ) = Aut(ΓJ)/(Stab(ΓT ) ∩ Aut(ΓJ))
∼= (Aut(ΓJ) · Stab(ΓT ))/ Stab(ΓT ) ≤ Aut(ΓT )/ Stab(ΓT ) =W(ΓT ).
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In the same manner, if ΓT is G-grading on a Jordan triple system T and
ΓV = (ΓT ,ΓT ) is the induced G-grading on the associated Jordan pair V , we
have natural identifications: Aut(ΓT ) ≤ Aut(ΓV), Stab(ΓT ) ≤ Stab(ΓV) and
W(ΓT ) ≤ W(ΓV).

Let Γ be a G-grading on a Jordan pair V with degree deg. Fix g ∈ G.
For any homogeneous elements x+ ∈ V+ and y− ∈ V−, set

degg(x
+) := deg(x+) + g, degg(y

−) := deg(y−)− g. (2.1.1)

This defines a new G-grading, which will be denoted by Γ[g] and called the
g-shift of Γ. Note that, although Γ and Γ[g] may fail to be equivalent (because
the shift may collapse or split a homogeneous subspace of V+ with another
of V−), the intersection of their homogeneous components with Vσ coincide
for each σ. It is clear that (Γ[g])[h] = Γ[g+h]. Similarly, if Γ is a G-grading on
a Jordan triple system T and g ∈ G has order 2, we can define the g-shift
Γ[g] with the new degree

degg(x) := deg(x) + g. (2.1.2)

The following result is a generalization of [N85, Theorem 3.7(a), Eq. (1)]
to the case of affine group schemes and char F 6= 2.

Theorem 2.1.11. Let J be a finite-dimensional central simple Jordan F-
algebra with associated Jordan triple system T . There is an isomorphism of
affine group schemes Aut(T ) ' Aut(J)× µ2.

Proof. Recall that the product of T is given by

{x, y, z} := x(yz) + z(xy)− (xz)y.

Denote by T − the Lie triple system associated to J , that is, T − = J with
the product

[x, y, z] := {x, y, z} − {y, x, z}.

Then we have that [x, y, z] = −2((xz)y−x(zy)) = −2(x, z, y). The center of
T − is defined by

Z(T −) := {x ∈ J | [x, J, J ] = 0} = {x ∈ J | (x, J, J) = 0}.

From the identities (x, y, z) = −(z, y, x) and (x, y, z)+(y, z, x)+(z, x, y) = 0
we obtain that Z(T −) = {x ∈ J | (x, J, J) = (J, x, J) = (J, J, x) = 0} =
Z(J) = F1. In consequence, for each associative commutative unital F-
algebra R we have Z((T −)R) = R1. Note that for each ϕ ∈ AutR(TR)
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we also have ϕ ∈ AutR((T −)R), and hence ϕ(R1) = R1. In particular,
ϕ(1) = r1 for some r ∈ R. Since ϕ is bijective, there is some s ∈ R such that
1 = ϕ(s1) = sϕ(1) = sr1, which shows that r ∈ R×. On the other hand,
we have r1 = ϕ(1) = ϕ({1, 1, 1}) = {ϕ(1), ϕ(1), ϕ(1)} = r31 with r ∈ R×,
which implies that r2 = 1, that is r ∈ µ2(R).

Recall that the automorphisms of a Jordan algebra J are exactly the
automorphisms of the associated Jordan triple system TJ that fix the unit 1
of J . Indeed, if f ∈ Aut(TJ) with f(1) = 1, then, since {x, 1, z} = 2xz for
all x, z ∈ J , we have 2f(xz) = f(2xz) = f({x, 1, z}) = {f(x), f(1), f(z)} =
{f(x), 1, f(z)} = 2f(x)f(z), hence f(xz) = f(x)f(z) and f ∈ Aut(J).

Note that the map δr : x 7→ rx is an order 2 automorphism of TR and
δrϕ(1) = 1, so that δrϕ ∈ AutR(JR). Hence ϕ = δrψ = ψδr with ψ ∈
AutR(JR). We conclude that AutR(TR) ∼= AutR(JR)×µ2(R) for each R.

Corollary 2.1.12. Let J be a finite-dimensional central simple Jordan F-
algebra with associated Jordan triple system T . Then, the map that sends a
G-grading on J to the same G-grading on T gives a bijective correspondence
from the equivalence classes of gradings on J to the equivalence classes of
gradings on T .

Proof. Consequence of Theorem 2.1.11 (note that the elements of µ2(R) are
identified with automorphisms of TR of the form r1 with r ∈ R× and r2 = 1)
and the fact that the automorphism group scheme determines the equivalence
classes of gradings.

Remark 2.1.13. Note that fine gradings on T correspond to maximal quasitori
of Aut(T ), which are the direct product of a maximal quasitorus of Aut(J)
and µ2.

Corollary 2.1.14. Let J be a finite-dimensional central simple Jordan F-
algebra with associated Jordan triple system T . Let ΓJ be a G-grading on J
and ΓT the same G-grading on T . Then W(ΓT ) =W(ΓJ).

Proof. From Theorem 2.1.11 we know that Aut(T ) ∼= Aut(J)×{±1}. Hence
Aut(ΓT ) ∼= Aut(ΓJ)× {±1} and the result follows.

Proposition 2.1.15. Let J be a Jordan F-algebra with unity 1, and let T
be its associated Jordan triple system. Let Γ be a G-grading on T . If J
is central simple, then 1 is homogeneous. Moreover, if G = U(Γ) and 1 is
homogeneous, then deg(1) has order 2.

Proof. We know that 1 is invariant under Aut(J). Hence, if J is central
simple, F1 is invariant under Aut(T ) = Aut(J) × µ2, and also under GD
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for any G-grading (where GD acts via the morphism ηΓ : GD → Aut(T )
producing the grading). In consequence, 1 is homogeneous.

Suppose now that G = U(Γ) and that 1 is homogeneous. Note that the
trivial grading on T has universal group Z2 and support {1̄}. SinceG = U(Γ),
the trivial grading is induced from Γ by some epimorphism ϕ : U(Γ) → Z2.
Since ϕ sends all elements of the support to 1̄, deg(1) has at least order 2.
On the other hand, U1(1) = 1 implies that 2 deg(1) = 0, and we can conclude
that deg(1) has order 2.

Remark 2.1.16. Given a unital Jordan algebra J with associated Jordan triple
system T and a grading Γ on T , it is not true in general that 1 is homoge-
neous. For example, take J = T = F× F and consider the Z2

2-grading on T
given by T(1̄,0̄) = F× 0 and T(0̄,1̄) = 0× F.

Proposition 2.1.17. Let J be a Jordan F-algebra with unity 1, and G an
abelian group. Consider the associated Jordan pair V = (J, J). If Γ is a set
grading on V such that 1+ (or 1−) is homogeneous, then the restriction of Γ to
J = V+ induces a set grading on J . If Γ is a G-grading on V such that 1+ (or
1−) is homogeneous, then the restriction of the shift Γ[g], with g = − deg(1+),
to J = V+ induces a G-grading ΓJ on J . Moreover, if G = U(Γ) then the
universal group U(ΓJ) is isomorphic to the subgroup of U(Γ) generated by
Supp Γ[g], and if in addition Γ is fine we also have that U(Γ) is isomorphic
to U(ΓJ)× Z.

Proof. Let Γ be a set grading on V with 1+ homogeneous. Since U1+(y−) =
y+ for any y, the homogeneous components of V+ and V− coincide. But from
{x, 1, z} = 2xz with char F 6= 2, it follows that Γ induces a set grading on
J = V+, where Js = V+

s .
Assume that Γ is also a G-grading. From U1+(1−) = 1+, we get deg(1+)+

deg(1−) = 0. Take g := − deg(1+) = deg(1−). The grading Γ[g] satisfies
degg(1

+) = 0 = degg(1
−). But since U1+(x−) = x+, we have degg(x

+) =
degg(x

−). From {x, 1, z} = 2xz we obtain degg(x) + degg(z) = degg(xz), so

Γ[g] induces a G-grading on J = V+.
Suppose now that G = U(Γ) and set H = 〈Supp Γ[g]〉. Note that Γ[g] can

be regarded as a U(Γ)-grading and also as an H-grading; and similarly ΓJ
can be regarded as a U(ΓJ)-grading and as an H-grading. By the universal
property of the universal group, the H-grading ΓJ is induced from the U(ΓJ)-
grading ΓJ by an epimorphism ϕ1 : U(ΓJ)→ H that restricts to the identity
in the support. On the other hand, the U(ΓJ)-grading ΓJ induces a U(ΓJ)-
grading (ΓJ ,ΓJ) on V that is a coarsening of Γ, and therefore (ΓJ ,ΓJ) is
induced from Γ by some epimorphism ϕ : U(Γ) → U(ΓJ). Let ϕ2 : H →
U(ΓJ) be the restriction of ϕ to H. Note that g ∈ kerϕ, which implies that
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the U(ΓJ)-grading (ΓJ ,ΓJ) is induced from the H-grading Γ[g] by ϕ2, and
also that ϕ2 is an epimorphism which is the identity in the support. Since
each epimorphism ϕi is the identity in the support, both compositions ϕ1ϕ2

and ϕ2ϕ1 must be the identity and hence U(ΓJ) = H.
Assume now that Γ is fine and denote by ΓH the grading Γ[g] regarded

as an H-grading. Note that U(Γ) = 〈Supp Γ[g], g〉 = 〈Supp ΓH , g〉 = 〈H, g〉.
Consider H as a subgroup of H × 〈g0〉 ∼= H × Z, where the element g0

has infinite order. The H-grading ΓH can be regarded as an H × 〈g0〉-
grading, and in consequence the shift (ΓH)[g0] defines an H × 〈g0〉-grading
where deg(1+) = g0. Since the H × 〈g0〉-grading (ΓH)[g0] is a coarsening of
the U(Γ)-grading Γ (because Γ is fine), by the universal property there is an
epimorphism U(Γ) = 〈H, g〉 → H × 〈g0〉 that sends −g 7→ g0 and fixes the
elements of H. In consequence, H ∩ 〈g〉 = 0, 〈g〉 ∼= Z, and we can conclude
that U(Γ) = 〈H, g〉 ∼= H × Z = U(ΓJ)× Z.

Proposition 2.1.18. Let J be a Jordan F-algebra with unity 1, and G an
abelian group. Consider the associated Jordan triple system T . If Γ is a set
grading on T such that 1 is homogeneous, then Γ induces a set grading on
J . If Γ is a G-grading on T such that 1 is homogeneous, then the shift Γ[g]

with g = deg(1) induces a G-grading ΓJ on J . Moreover, if G = U(Γ) then
U(ΓJ) is isomorphic to the subgroup of U(Γ) generated by Supp Γ[g], and if
in addition Γ is fine we also have that U(Γ) is isomorphic to U(ΓJ)× Z2.

Proof. Let Γ is a set grading on T with 1 homogeneous; since {x, 1, z} = 2xz
with char F 6= 2 it follows that Γ induces a set grading on J . Assume
from now on that Γ is a G-grading on T with 1 homogeneous of degree g.
Proposition 2.1.15 shows that g has order 1 or 2. Hence the shift Γ[g] defines
a G-grading on T with degree degg(x) = deg(x) + g, where degg(1) = 0. Set

H = 〈Supp Γ[g]〉. The rest of the proof follows using the same arguments
of the proof of Proposition 2.1.17, but using T instead of the Jordan pair
V = (J, J).

2.1.2 Gradings induced by the TKK construction

Definition 2.1.19. Let V be a Jordan pair and consider the associated 3-
graded Lie algebra L = TKK(V) = L−1 ⊕ L0 ⊕ L1 defined by the TKK
construction (see Section 1.11). A G-grading on L will be called TKK-
compatible if L1 and L−1 are G-graded subspaces (and, therefore, so is L0 =
[L1, L−1]). In this case, we denote Lng = Ln∩Lg for n ∈ {−1, 0, 1} and g ∈ G.

Consider a finite-dimensional Jordan pair V with associated Lie algebra
L = TKK(V). Let Γ be a G-grading on V . Then E = gl(V+)⊕ gl(V−) is G-
graded. For each homogeneous x ∈ V+

g and y ∈ V−h , we have [x, y] = ν(x, y) ∈
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L0
g+h because the triple product of V is a graded map. Hence, the subspace

L0 ⊆ E is also G-graded. Since the triple product of V is a graded map,
we can extend Γ to a TKK-compatible G-grading EG(Γ) : L =

⊕
g∈G Lg,

where L1
g = V+

g , L−1
g = V−g and L0

g = span{ν(x, y) | deg(x+) + deg(y−) =

g}. Conversely, since char F 6= 2, any TKK-compatible G-grading Γ̃ on L

restricts to a G-grading RG(Γ̃) on V , because {x+, y−, z+} = [[x+, y−], z+].

Definition 2.1.20. Denote by GradG(V) the set of G-gradings on V , and by
TKKGradG(L) the set of TKK-compatible G-gradings on L. We will call

EG : GradG(V) −→ TKKGradG(L)

the extension map and

RG : TKKGradG(L) −→ GradG(V)

the restriction map.

Theorem 2.1.21. Let V be a Jordan pair with associated Lie algebra L =
TKK(V), and let G be an abelian group. Then, the maps EG and RG are
inverses of each other. Coarsenings are preserved by the correspondence, i.e.,
given a Gi-grading Γi on V with extended Gi-grading Γ̃i = EGi(Γi) on L, for
i = 1, 2, and a homomorphism α : G1 → G2, then Γ2 = αΓ1 if and only
if Γ̃2 = αΓ̃1. If G = U(Γ), then G = U(EG(Γ)). Moreover, Γ is fine and
G = U(Γ) if and only if EG(Γ) is fine and G = U(EG(Γ)).

Proof. By construction, EG and RG are inverses of each other.
Assume that Γ2 = αΓ1 for some homomorphism α : G1 → G2. Then,

Vσg ⊆ Vσα(g) for any σ = ± and g ∈ G1. Thus, Lσ1
g ⊆ Lσ1

α(g), which implies that

L0
g =

∑
g1+g2=g

[L1
g1
, L−1

g2
] ⊆

∑
g1+g2=g

[L1
α(g1), L

−1
α(g2)] ⊆ L0

α(g).

Hence, Γ̃1 refines Γ̃2 and Γ̃2 = αΓ̃1. Conversely, if Γ̃2 = αΓ̃1, by restriction
we obtain Γ2 = αΓ1. We have proved that coarsenings are preserved.

Consider Γ̃ = EG(Γ) with G = U(Γ). Note that U(Γ) and U(Γ̃) are

generated by Supp Γ. Since the U(Γ̃)-grading Γ̃ restricts to Γ as a U(Γ̃)-

grading, there is a unique homomorphism G = U(Γ) → U(Γ̃) that is the

identity in Supp Γ; conversely, Γ extends to Γ̃ as a G-grading, so there is
a unique homomorphism U(Γ̃) → G that is the identity in Supp Γ̃ (and in

Supp Γ); therefore the compositions U(Γ̃)→ G→ U(Γ̃) and G→ U(Γ̃)→ G

are the identity map, and G = U(Γ̃).
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Suppose again that Γ̃ = EG(Γ). Now, note that Γ is a fine G-grading
on V with G = U(Γ) if and only if Γ satisfies the following property: if
Γ = αΓ0 for some G0-grading Γ0, where G0 is generated by Supp Γ0, and
α : G0 → G is an epimorphism, then α is an isomorphism. The same is true
for TKK-compatible gradings. Since the coarsenings are preserved in the
correspondence, so does this property, and therefore, Γ is fine and G = U(Γ)

if and only if Γ̃ is fine and G = U(Γ̃).

Remark 2.1.22. The fact that Γ̃ = EG(Γ) with G = U(Γ̃), in general, does
not imply that G = U(Γ). We will show this now.

First, take a G-grading ΓV on a Jordan pair V such that there are nonzero
elements in Supp L0 for Γ̃V = EG(ΓV), and assume that G = U(ΓV) (it is

not hard to find examples satisfying this). By Theorem 2.1.21, G = U(Γ̃V).
Now, consider the Jordan pair W = V ⊕ V ′ given by two copies of V . There
is a G × G-grading Γ on W , where Wσ

(g,0) = Vσg , Wσ
(0,g) = V ′σg . Besides,

U(Γ) = G × G, so by Theorem 2.1.21, we have U(Γ̃) = G × G too, where

Γ̃ = EG×G(Γ). It suffices to find a proper coarsening Γ̃1 of Γ̃ such that
the restricted grading on W has the same homogeneous components as Γ.
Actually, if G1 = U(Γ̃1), then Γ̃1 = EG1RG1(Γ̃1) = EG1(Γ) (where Γ is

regarded as a G1-grading) would be a proper coarsening of Γ̃ = EU(Γ)(Γ),
and therefore G1 � U(Γ).

Consider the G × Z-grading Γ1 on W given by Wσ
(g,0) = Vσg , Wσ

(g,σ1) =
V ′σg . Then, Γ1 and Γ have the same homogeneous components. The ex-

tension Γ̃1 = EG×Z(Γ1) is a proper coarsening of Γ̃, because Γ̃1 satisfies

Supp L0 ∩ Supp L′0 = Supp L0 6= {0} (where L′ = TKK(V ′)) and for Γ̃ we
had Supp L0 ∩ Supp L′0 = {0}. This proves the claim of the Remark.

Any automorphism ϕ = (ϕ+, ϕ−) of V extends in a unique way to an au-
tomorphism ϕ̃ of L (that leaves L−1 and L1 invariant, so L0 is invariant too).
Indeed, it must satisfy ϕ̃(ν(x+, y−)) = ϕ̃([x+, y−]) = [ϕ+(x+), ϕ−(y−)] =
ν(ϕ+(x+), ϕ−(y−)) = ϕν(x+, y−)ϕ−1, and this formula indeed defines an au-
tomorphism ϕ̃ of L. Then, we can identify AutV with a subgroup of AutL,
and so we have Aut Γ ≤ Aut Γ̃ and Stab Γ ≤ Stab Γ̃. We can also identify
W(Γ) ≤ W(Γ̃). Indeed,

W(Γ) = Aut Γ/ Stab Γ = Aut Γ/(Stab Γ̃ ∩ Aut Γ)

∼= (Aut Γ · Stab Γ̃)/ Stab Γ̃ ≤ Aut Γ̃/ Stab Γ̃ =W(Γ̃).

But although W(Γ) ≤ W(Γ̃), these Weyl groups do not coincide in gen-
eral, at least for the bi-Cayley and Albert Jordan pairs. Actually, we will
see that their gradings are, up to equivalence, of the form Γ = (Γ+,Γ−),
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where Γ+ and Γ− have the same homogeneous components, and hence there
is an order 2 automorphism of L that interchanges V+ ↔ V− and belongs to
Aut Γ̃ \ Aut Γ, so W(Γ) <W(Γ̃).

2.1.3 Some facts about gradings on semisimple Jordan
pairs

Remark 2.1.23. Notice that, as a consequence of Equation (1.7.3), the Peirce
spaces associated to an idempotent e define a Z-grading Γ where the subspace
Vσi has degree σ(i+ 1), and Supp Γ = {±1,±2,±3}. If a Jordan pair V has
a G-grading Γ, an idempotent e = (e+, e−) of V will be called homogeneous
if eσ is homogeneous in Vσ for each σ. In that case, we have deg(e+) +
deg(e−) = 0, which implies that the projections Eσ

i = Eσ
i (e) are homogeneous

maps of degree 0, and therefore the Peirce spaces Vσi = Eσ
i (Vσ) are graded.

If in addition the graded Jordan pair V is semisimple, then any nonzero
homogeneous element x = eσ ∈ Vσg can be completed to a homogeneous
idempotent e = (e+, e−) ∈ V ; indeed, we can take a homogeneous element
y ∈ V−σ−g such that Qxy = x (because V is vNr and the quadratic products
are graded maps), and in consequence e = (e+, e−) with e−σ := Qyx is a
homogeneous idempotent.

Since homogeneous elements are completed to homogeneous idempotents
and these produce graded Peirce subspaces, it follows that we can always
choose a maximal orthogonal system of idempotents whose elements happen
to be homogeneous.

Theorem 2.1.24. Let V be a finite-dimensional semisimple Jordan pair and
Γ a G-grading on V. Then:

1) If g ∈ Supp Γσ, the subpair (Vσg ,V−σ−g ) is semisimple.

2) For any subgroup H ≤ G with H ∩ Supp Γ 6= ∅, the subpair given by
VσH :=

⊕
h∈H Vσh is semisimple.

3) If Γ is fine, the homogeneous components are 1-dimensional.

Proof. 1) Take 0 6= x ∈ Vσg . By Remark 2.1.23, x can be completed to an
idempotent of W = (Vσg ,V−σ−g ), so x is vNr in W . Hence, W is vNr too, and
by Theorem 1.7.1, W is semisimple.

2) Consider the epimorphism α : G → Ḡ = G/H and the induced Ḡ-
grading Γ̄ = αΓ. Then, VH coincides with the Ḡ-graded subpair (Vσ0̄ ,V

−σ
0̄

),
that is semisimple by 1).

3) Let Γ be fine and assume by contradiction that dimVσg > 1, where
we can assume without loss of generality that σ = +. Then, the subpair
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W = (V+
g ,V−−g) is semisimple by 1). By Theorem 1.7.1, W is nondegenerate,

so we can consider the rank function. We can take an element x ∈ W+ of rank
1 inW (but not necessarily in V), and complete it to an idempotent e = (x, y)
of W . As in Remark 2.1.23, the Peirce spaces of the Peirce decomposition
associated to e are the homogeneous components of a Z-grading on V , which
is compatible with Γ because the Peirce spaces are graded with respect to
Γ. Thus, combining the Z-grading with Γ we get a G × Z-grading that
refines Γ, given by Vσ(g,i) = Vσg ∩ Vσi . Since rkW(x) = 1 and F = F̄, we

have Fx = Q(x)W− =: W+
2 (e). But then, V+

g ∩ V+
2 (e) = V+

g ∩ Q(x)V− =
V+
g ∩Q(x)V−−g = V+

g ∩Q(x)W− = W+
2 (e) = Fx $ V+

g and the refinement is
proper, which contradicts that Γ is fine.

The next Corollary is a nice application of the above results to the study
of gradings on Jordan algebras.

Corollary 2.1.25. Let J be a finite-dimensional semisimple Jordan algebra
and Γ a fine G-grading on J with dim J0 = 1. Then, all the homogeneous
components of Γ have dimension 1.

Proof. Assume by contradiction that some homogeneous component has di-
mension bigger than 1. Consider the Jordan pair V = (J, J) and let Γ̃ =

(Γ,Γ) be the induced G-grading on V . Since some component of Γ̃ has di-

mension bigger than 1, we can refine Γ̃ to a fine grading Γ̃′ on V , which will
have all components of dimension 1. Then, by Proposition 2.1.17, the shift
Γ̃′[g] for g = − deg(1+) restricts to a group grading on J , which is a proper
refinement of Γ, a contradiction.

Some examples of homogeneous bilinear forms are given by trace forms:
this is the case of gradings on Hurwitz algebras, matrix algebras, and the
Albert algebra. Other well-known example is the Killing form of a graded
semisimple Lie algebra. The generic trace plays the same role for graded
Jordan pairs and graded triple systems.

Remark 2.1.26. Assume that we have a graded finite-dimensional simple Jor-
dan pair V where the generic trace form t is homogeneous. If t is nondegen-
erate, Vσg and V−σ−g are dual relative to t and have the same dimension. For
any homogeneous element x ∈ Vσg , define tx : V−σ → F, y 7→ t(x, y). Since
the trace form is homogeneous, the subspace ker(tx) is graded too; we will
use this fact in some proofs later on. Also, recall that the generic minimal
polynomial m(T,X, Y ) of a Jordan pair V is Aut(V)-invariant (see [L75,
16.7]), and in consequence the generic trace form t is invariant too, i.e.,
t(ϕ+(x), ϕ−(y)) = t(x, y) for all ϕ ∈ AutR VR, x ∈ V+

R , y ∈ V−R and R an
associative commutative unital F-algebra.
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Proposition 2.1.27. Let V be a finite-dimensional simple Jordan pair. Then,
the generic trace of V is homogeneous for any grading on V.

Proof. Suppose that V is G-graded. We know by [L75, Proposition 16.7]
that the minimal polynomial is invariant by the automorphism group scheme
Aut(V). Hence the generic trace t is Aut(V)-invariant, i.e., for any associa-
tive commutative unital F-algebra R and for any (ϕ+, ϕ−) ∈ AutR(VR) we
have t(ϕ+(v+), ϕ−(v−)) = t(v+, v−) for all (v+, v−) ∈ VR = V ⊗R. In partic-
ular, if we take the group algebra R = FG we can consider the automorphism
ϕ of VR given by ϕσ(vσg ⊗ 1) = vσg ⊗ g for each σ = ± and each homogeneous
element vσg ∈ Vσg . In order to avoid confusion, the binary operation in G will
be denoted multiplicatively here. Now, fix homogeneous elements v+

g ∈ V+
g

and v−h ∈ V
−
h . On the one hand, we know that

t(ϕ+(v+
g ⊗ 1), ϕ−(v−h ⊗ 1)) = t(v+

g ⊗ 1, v−h ⊗ 1) = t(v+
g , v

−
h )⊗ 1

by AutR(VR)-invariance. On the other hand,

t(ϕ+(v+
g ⊗ 1), ϕ−(v−h ⊗ 1)) = t(v+

g ⊗ g, v−h ⊗ h) = t(v+
g , v

−
h )⊗ gh

by definition of ϕ. Therefore, t(v+
g , v

−
h ) ⊗ 1 = t(v+

g , v
−
h ) ⊗ gh. We conclude

that gh = 1 whenever t(v+
g , v

−
h ) 6= 0.

2.2 Exceptional Jordan pairs and triple sys-

tems

In this section we first recall the definitions of the well-known Jordan pairs
and triple systems of types bi-Cayley and Albert (see [L75] for the definition
of the mentioned Jordan pairs). We also give examples of automorphisms
of these Jordan systems and prove some results related to the orbits of bi-
Cayley systems; this will be used in subsequent chapters to classify gradings
up to equivalence. Furthermore, we give an explicit description of the auto-
morphism groups of bi-Cayley systems.

2.2.1 Jordan pairs and triple systems of types bi-Cayley
and Albert

Definition 2.2.1. The Albert pair is the Jordan pair associated to the Albert
algebra, that is, VA := (A,A) with the products Qσ

x(y) = Ux(y) := 2L2
x(y)−

Lx2(y). Its associated Jordan triple system TA := A, with the product Qx =
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Ux, will be called the Albert triple system. It is well-known (see [McC70,
Theorem 1] and [McC69, Theorem 1]) that the U -operator can be written as

Ux(y) = T (x, y)x− x# × y.
Let C be the Cayley algebra. We will write for short the vector spaces

B := C⊕ C, Cσ1 := (C⊕ 0)σ and Cσ2 := (0⊕ C)σ.

Let n be the norm of C. The quadratic form q : B → F, q((x1, x2)) :=
n(x1)+n(x2), will be called the norm of B. The nondegenerate bilinear form
defined by t : B × B → F, t(x, y) = n(x1, y1) + n(x2, y2) for x = (x1, x2),
y = (y1, y2) ∈ B (i.e., t is the linearization of q) will be called the trace of B.

Denote by V12
A the Jordan subpair (VA)1(e) of the Peirce decomposition

VA = (VA)0(e)⊕ (VA)1(e)⊕ (VA)2(e) relative to the idempotent e = (E3, E3)
(notation as in Section 1.5); that is, (V12

A )+ = (V12
A )− := ι1(C)⊕ ι2(C). Iden-

tifying ι1(C) ⊕ ι2(C) ≡ C ⊕ C = B, the trace t of B is also defined as a map
(V12
A )+ × (V12

A )− → F.

Proposition 2.2.2. The quadratic and triple products of V12
A are given by:

Ux(y) = 4t(x, y)x−4n(x1)ι1(y1)−4n(x2)ι2(y2)−4ι1
(
ȳ2(x2x1)

)
−4ι2

(
(x2x1)ȳ1

)
,

and

{x, y, z} = Ux,z(y) = 4t(x, y)z + 4t(z, y)x− 4n(x1, z1)ι1(y1)− 4n(x2, z2)ι2(y2)

− 4ι1
(
ȳ2(x2z1 + z2x1)

)
− 4ι2

(
(x2z1 + z2x1)ȳ1

)
,

for all x = ι1(x1) + ι2(x2), y = ι1(y1) + ι2(y2) ∈ ι1(C)⊕ ι2(C).

Proof. Take x, y ∈ ι1(C)⊕ ι2(C). Then,

xy =
(
ι1(x1) + ι2(x2)

)(
ι1(y1) + ι2(y2)

)
=2n(x1, y1)(E2 + E3) + 2n(x2, y2)(E3 + E1) + ι3(x̄1ȳ2 + ȳ1x̄2),

L2
x(y) =2n(x1, y1)ι1(x1) + n(x2, y2)ι1(x1) + ι2

(
(y2x1)x̄1 + (x2y1)x̄1

)
+ n(x1, y1)ι2(x2) + 2n(x2, y2)ι2(x2) + ι1

(
x̄2(y2x1) + x̄2(x2y1)

)
=2t(x, y)x+ n(x1)ι2(y2) + n(x2)ι1(y1)− ι1

(
ȳ2(x2x1)

)
− ι2

(
(x2x1)ȳ1

)
,

so we get

x2 =4n(x1)(E2 + E3) + 4n(x2)(E3 + E1) + 2ι3(x̄1x̄2),

Lx2(y) =4n(x1)ι1(y1) + 2n(x2)ι1(y1) + 2ι2
(
(x2x1)ȳ1

)
+ 2n(x1)ι2(y2) + 4n(x2)ι2(y2) + 2ι1

(
ȳ2(x2x1)

)
=
(
4n(x1) + 2n(x2)

)
ι1(y1) +

(
2n(x1) + 4n(x2)

)
ι2(y2)

+ 2ι2
(
(x2x1)ȳ1

)
+ 2ι1

(
ȳ2(x2x1)

)
.
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Then, by substituting Ux(y) := 2L2
x(y)−Lx2(y) we obtain the first expression,

and its linearization is the second one.

Definition 2.2.3. Define the bi-Cayley pair as the Jordan pair VB := (B,B)
with products:

Qσ
x(y) =Qx(y)

=t(x, y)x−
(
n(x1)y1 + ȳ2(x2x1), n(x2)y2 + (x2x1)ȳ1

)
=
(
x1ȳ1x1 + x̄2(y2x1), x2ȳ2x2 + (x2y1)x̄1

)
,

{x, y, z}σ ={x, y, z} = Qx,z(y)

=t(x, y)z + t(z, y)x

−
(
n(x1, z1)y1 + ȳ2(x2z1 + z2x1), n(x2, z2)y2 + (x2z1 + z2x1)ȳ1

)
=
(
x1(ȳ1z1) + z1(ȳ1x1) + x̄2(y2z1) + z̄2(y2x1),

(x2ȳ2)z2 + (z2ȳ2)x2 + (x2y1)z̄1 + (z2y1)x̄1

)
.

(2.2.1)

Since the products of VB and V12
A are proportional, it is clear that VB is

a Jordan pair and the map V12
A → VB, ι1(x1) + ι2(x2) 7→ (2x1, 2x2) is an

isomorphism of Jordan pairs if char F 6= 2. We also define the bi-Cayley
triple system as the Jordan triple system TB := B associated to the bi-Cayley
pair VB, so its quadratic and triple products are defined as for VB.

The above definition is not the one in [L75], which is given below:

Definition 2.2.4. ConsiderM1×2 := (M1×2(C),M1×2(Cop)), which is known
to be a simple Jordan pair (see [L75]). The quadratic products are given by
Qx(y) = x(y∗x), where y∗ denotes y trasposed with coefficients in the oppo-
site algebra. Considering elements in C, we can write:

Q+
x (y) =x(yx) =

(
x1y1x1 + x2(y2x1), x1(y1x2) + x2y2x2

)
,

Q−y (x) =(yx)y =
(
y1x1y1 + (y1x2)y2, (y2x1)y1 + y2x2y2

)
,

(2.2.2)

where we have omitted some parentheses using the alternativity of C.

Although the following result is probably known, the author does not
know of a reference, so we include the proof.

Proposition 2.2.5. The Jordan pairs VB and M1×2 are isomorphic.
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Proof. There is an isomorphism ϕ = (ϕ+, ϕ−) : VB →M1×2 given by:

ϕ+ : (x1, x2) 7→ (x̄2, x1), ϕ− : (y1, y2) 7→ (y2, ȳ1).

Indeed,

ϕ+(Qxy) =ϕ+
(
x1ȳ1x1 + x̄2(y2x1), (x2ȳ2)x2 + (x2y1)x̄1

)
=
(
x̄2y2x̄2 + x1(ȳ1x̄2), x1ȳ1x1 + x̄2(y2x1)

)
,

Q+
ϕ+(x)

(
ϕ−(y)

)
=Q+

(x̄2,x1)(y2, ȳ1) =
(
x̄2y2x̄2 + x1(ȳ1x̄2), x̄2(y2x1) + x1ȳ1x1

)
,

ϕ−(Qyx) =ϕ−
(
y1x̄1y1 + ȳ2(x2y1), (y2x̄2)y2 + (y2x1)ȳ1

)
=
(
y2x̄2y2 + (y2x1)ȳ1, ȳ1x1ȳ1 + (ȳ1x̄2)y2

)
,

Q−ϕ−(y)

(
ϕ+(x)

)
=Q−(y2,ȳ1)(x̄2, x1) =

(
y2x̄2y2 + (y2x1)ȳ1, (ȳ1x̄2)y2 + ȳ1x1ȳ1

)
,

so we get ϕ+(Qxy) = Q+
ϕ+(x)

(
ϕ−(y)

)
and ϕ−(Qyx) = Q−ϕ−(y)

(
ϕ+(x)

)
.

The generic trace form of VA is given by T (x, y) := T (xy) where T is the
trace form of A ([L75, 17.10]), and the generic trace form ofM1×2 is given by
t(xy∗) = tr(x1y1 +x2y2) ([L75, 17.9]), where tr denotes the trace of C. Thus,
applying the isomorphism in Proposition 2.2.5, we get that the generic trace
of VB is the bilinear form t = n ⊥ n, that is, t(x+, y−) = n(x1, y1) +n(x2, y2)
for x = (x1, x2), y = (y1, y2) ∈ B. (Note that t = 1

4
T |VB .) Also, we will refer

to t, respectively to T , as the trace of TB, respectively of TA.

Lemma 2.2.6. For any grading on the Jordan pairs and triple systems of
types bi-Cayley or Albert, the trace is homogeneous.

Proof. Consequence of Proposition 2.1.27 and the fact that gradings on a
triple system extend to gradings on the associated Jordan pair.

2.2.2 Some automorphisms

In order to study the gradings on the Jordan pairs and triple systems un-
der consideration, we will need to use some automorphisms defined in this
section.

Notation 2.2.7. Recall that for any automorphism ϕ = (ϕ+, ϕ−) of VB or
VA, the pair (ϕ−, ϕ+) is also an automorphism, which we denote by ϕ̂.

Denote by τ̄12 the order 2 automorphism of A (and therefore of TA and
VA) given by E1 ↔ E2, E3 7→ E3, ι1(x)↔ ι2(x̄), ι3(x) 7→ ι3(x̄). Similarly, we
define τ̄23 and τ̄13.
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Identifying B with ι1(C) ⊕ ι2(C), the automorphism τ̄12 of A restricts to
one of TB (and therefore of VB), denoted also by τ̄12, and given by:

τ̄12 : B → B, (x1, x2) 7→ (x̄2, x̄1).

Take λ1, λ2, λ3 ∈ F× and µi := λ−1
i λi+1λi+2. Define cλ1,λ2,λ3 by

ιi(x)+ 7→ ιi(λix)+, ιi(x)− 7→ ιi(λ
−1
i x)−,

E+
i 7→ µiE

+
i , E−i 7→ µ−1

i E−i .
(2.2.3)

One checks that cλ1,λ2,λ3 is an automorphism of VA (these were considered
before, for example in [Gar01, 1.6]). If λ ∈ F×, denote cλ := cλ,λ,λ.

The automorphisms cλ1,λ2,λ3 restrict to VB. For λ, µ ∈ F× define cλ,µ ∈
AutVB given by:

c+
λ,µ : (x1, x2) 7→ (λx1, µx2), c−λ,µ : (y1, y2) 7→ (λ−1y1, µ

−1y2).

We also write cλ := cλ,λ (which is consistent with notation introduced in the
previous paragraph).

Proposition 2.2.8. For each a ∈ C, there is an automorphism ϕa of VB
given by:

ϕ+
a : (x1, x2) 7→ (x1 − x̄2a, x2), ϕ−a : (y1, y2) 7→ (y1, aȳ1 + y2),

for any x1, x2, y1, y2 ∈ C.

Proof. It suffices to check that ϕa is the inner automorphism β((a, 0), (0, 1)).
(Notice that ϕa is the exponential of the derivation da = −ν((a, 0), (0, 1)),
which is nilpotent of order 2 and given by d+

a (x1, x2) = (−x̄2a, 0), d−a (y1, y2) =
(0, aȳ1).)

Remark 2.2.9. Since ϕaϕb = ϕa+b for any a, b ∈ C, these automorphisms
generate an abelian subgroup of AutVB isomorphic to (C,+). The same is
true for ϕ̂a := (ϕ−a , ϕ

+
a ), a ∈ C. Note that, since B = C⊕ C, we can write

ϕ+
a =

(
1 −rā
0 1

)
, ϕ−a =

(
1 0
lā 1

)
,

where la, ra denote the left and right multiplications by a in the para-Cayley
algebra C̄. This matrix notation is useful to make computations with these
automorphisms.
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Proposition 2.2.10. Let λ ∈ F and a ∈ C be such that n(a)+λ2 = 1. There
is an automorphism φ1(a, λ) of A given by:

x =
3∑
i=1

(
αiEi + ιi(xi)

)
7→ α1E1 +

(
α2λ

2 + α3n(a) + 2λn(ā, x1)
)
E2

+
(
α2n(a) + α3λ

2 − 2λn(ā, x1)
)
E3

+ ι1

(
x1 +

(1

2
α3λ−

1

2
α2λ− n(ā, x1)

)
ā
)

+ ι2(λx2 − x̄3a) + ι3(λx3 + ax̄2).

Proof. Straightforward.

Proposition 2.2.11. Let a ∈ C and λ ∈ F be such that n(a)+λ2 = 1. There
is an automorphism of TB given by:

ϕa,λ : (x1, x2) 7→ (λx1 − x̄2a, ax̄1 + λx2).

Moreover, ϕa,λ ∈ O+(B, q).

Proof. Note that, if we identify B with ι2(C) ⊕ ι3(C) ⊆ A, then ϕa,λ is the
restriction of φ1(a, λ) to B, so it is an automorphism. We will give a different
proof now. In case n(a) = 0, λ = ±1, define ϕ := λϕ̂λaϕλa ∈ AutVB, and in
case n(a) 6= 0, define ϕ := ϕ̂µaϕaϕ̂µa ∈ AutVB with µ = 1−λ

n(a)
. In both cases,

it is checked that ϕa,λ = ϕ ∈ Aut TB ≤ O(B, q). Since det(ϕ±a ) = 1 = det(ϕ̂±a )
for any a ∈ C, we also have det(ϕa,λ) = 1, and so ϕa,λ ∈ O+(B, q).

Remark 2.2.12. In TB we have Qx(x) = q(x)x for any x ∈ B and, as a
consequence, Aut TB ≤ O(B, q). Since B = C⊕ C, we can write

ϕa,λ =

(
λ −rā
lā λ

)
,

where la, ra are the left and right multiplications by a in the para-Cayley
algebra C̄.

Definition 2.2.13. (See, for instance, [Jac89, Chapter 4].) Let V be a
finite-dimensional vector space and q : V → F a nondegenerate quadratic
form. Recall that the map τ(a) = a, a ∈ V , is extended to an involution
of the Clifford algebra Cl(V, q), called the standard involution. The map
α(a) = −a, a ∈ V , extended to an automorphism of Cl(V, q), produces the
standard Z2-grading Cl(V, q) = Cl(V, q)0̄ ⊕ Cl(V, q)1̄. The Clifford group of
Cl(V, q) is defined as Γ = Γ(V, q) := {x ∈ Cl(V, q)× | x · V · x−1 ⊆ V }. Here
· denotes the product of Cl(V, q). The subgroup Γ+ := Γ ∩ Cl(V, q)0̄ is called
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the even Clifford group. The spin group is defined by Spin(V, q) := {x ∈
Γ+ | x · τ(x) = 1}. Note that Spin(V, q) is generated by the elements of the
form x · y where x, y ∈ V and q(x)q(y) = 1.

For each u ∈ Spin(V, q), define the map χu : V → V , x 7→ u · x · u−1.
It is well-known that χu belongs to the special orthogonal group O+(V, q),
and O′(V, q) := {χu | u ∈ Spin(V, q)} is called the reduced orthogonal
group. Moreover, O′(V, q) E O+(V, q) and O+(V, q)/O′(V, q) ∼= F×/(F×)2

(see [Jac89, 4.8]), where (F×)2 is the multiplicative group of squares of F×.
Here F is assumed to be algebraically closed, so we have O+(V, q) = O′(V, q).
A triple (f1, f2, f3) ∈ O(C, n)3 is said to be related if f1(x̄ȳ) = f2(x) f3(y)
for any x, y ∈ C. Note that if (f1, f2, f3) is a related triple, then (f2, f3, f1)
is also a related triple. Related triples have the property that fi ∈ O′(C, n),
and there is a group isomorphism

Spin(C, n) −→ {related triples in O(C, n)3}, u 7→ (χu, ρ
+
u , ρ

−
u ),

for certain associated maps ρ+
u and ρ−u (see e.g. [Eld00] for more details).

Remark 2.2.14. Note that, if (f1, f2, f3) ∈ O(C, n)3 is a related triple, then
it is easy to check that (f1, f2) is an automorphism of the bi-Cayley triple
system. It is well-known that the map A → A, Ei 7→ Ei, ιi(x) 7→ ιi(fi(x))
for i = 1, 2, 3, is an automorphism of the Albert algebra (see e.g. [EK13,
Corollary 5.6]).

Lemma 2.2.15. For any x1, x2 ∈ C of norm 1, there is a related triple
(f1, f2, f3) in O(C, n)3 such that fi(xi) = 1 for i = 1, 2. Besides, for any
f1 ∈ O+(C, n), there are f2, f3 ∈ O+(C, n) such that (f1, f2, f3) is a related
triple in O(C, n)3.

Proof. The first statement was proved in [EK13, Lemma 5.25]. For the sec-
ond part, since χ : Spin(C, n) → O′(C, n) = O+(C, n) is onto, we can write
f1 = χu for some u ∈ Spin(C, n), and (χu, ρ

+
u , ρ

−
u ) is a related triple.

Consider Cl(C, n) with the the Z2-grading given by deg(x) = 1̄ for each
x ∈ C, and the standard involution defined by setting x 7→ x for x ∈ C.
Consider End(C⊕C) with the Z2-grading that has degree 0̄ on the endomor-
phisms that preserve the two copies of C and degree 1̄ on the endomorphisms
that swap these two copies, and the involution given by the adjoint relative
to the quadratic form n ⊥ n on C⊕ C.

The next result is a slight modification of [KMRT98, Proposition (35.1)]:
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Proposition 2.2.16. Denote by lx, rx the left and right multiplications in
the para-Cayley algebra C̄ = (C, ∗). Then, the map

Φ: C→ End(C⊕ C), x 7→
(

0 rx̄
lx̄ 0

)
,

defines an isomorphism of superalgebras Φ: Cl(C, n)→ End(C⊕ C) that pre-
serves the involution.

Proof. Since Φ(x)2 = n(x)id for x ∈ C, it follows that Φ extends to a homo-
morphism of superalgebras. But since Cl(C, n) is simple and has the same
dimension as End(C⊕ C), we have that Φ is an isomorphism. From l∗x = rx,
we deduce that Φ is an isomorphism of algebras with involution.

Remark 2.2.17. Given a ∈ C with n(a) = 1, we have

Φ(a) =

(
0 rā
lā 0

)
=

(
0 −rā
lā 0

)(
1 0
0 −1

)
= ϕa,0c1,−1 ∈ Aut TB,

and in particular, RT := Φ(Spin(C, n)) ≤ Aut TB.
For any u ∈ Spin(C, n), Φ(u) =

(
α 0
0 β

)
if and only if (χ̄u, α, β) is a related

triple (see [EK13, Theorem 5.5]), with χ̄u(a) = χu(ā), so

RT = Φ(Spin(C, n)) =
{(α 0

0 β

)
: α, β ∈ O(C, n)

and there is γ ∈ O(C, n) such that (γ, α, β) is a related triple
}
,

and this explains our notation RT. The subgroup RT ∼= Spin(C, n) is gener-
ated by the elements of the form

Φ(a)Φ(b) =

(
rālb̄ 0
0 lārb̄

)
= ϕa,0c1,−1ϕb,0c1,−1 = ϕa,0ϕ−b,0,

with n(a) = n(b) = 1. Note that the group AutC embeds in RT because for
any automorphism f of C, (f, f, f) is a related triple.

Remark 2.2.18. Consider the subgroup GV = 〈ϕa, ϕ̂a, cλ | a ∈ C, λ ∈ F×〉 of
AutVB and the subgroup GT = 〈ϕa,λ | a ∈ C, λ ∈ F, n(a)+λ2 = 1〉 of Aut TB.
(We will prove later that GV = AutVB and GT = Aut TB.) It follows from
the proof of Proposition 2.2.11 that GT ≤ GV . The group RT of related
triples is contained in the subgroup generated by the automorphisms ϕa,0
with n(a) = 1, so we have RT ≤ GT . Also, (−id, id,−id) is a related triple,
so c1,−1 = (id,−id) ∈ RT ≤ GT and hence τ̄12 = ϕ1,0c1,−1 ∈ GT .
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We claim that cλ,µ ∈ GV for any λ, µ ∈ F×. For any λ ∈ F× and a ∈ C

such that λn(a) = 1, we have cλ,1 = c−
√
λϕ
√
λa,0ϕaϕ̂λaϕa ∈ GV . But since cµ

belongs to GV for any µ ∈ F×, we deduce that cλ,µ = cλµ−1,1cµ ∈ GV for any
λ, µ ∈ F×.

Remark 2.2.19. Let J be a unital Jordan algebra with associated Jordan
pair V = (J, J). Let Str(J) denote the structure group of J , i.e., the group
consisting of all the autotopies, that is, the elements g ∈ GL(J) such that
Ug(x) = gUxg

# for some g# ∈ GL(J) and all x ∈ J . The structure group func-
tor Str(J) is defined by Str(J)(R) = StrR(JR). There is an isomorphism of
group schemes Aut(V)→ Str(J), which is given by AutR(VR)→ StrR(JR),
(ϕ+, ϕ−) 7→ ϕ+ for each associative commutative unital F-algebra R (see
[L79, Proposition 2.6] and [L75, Proposition 1.8] for more details).

Let M(A) and M1(A) be the groups of similarities and isometries for the
norm of A (notation as in [Jac68, Chap.IX]). By [Jac68, Chap.V, Th.4], A
is reduced, so by [Jac68, Chap.IX, Ex.2], a linear map A → A is a norm
similarity if and only if it is an isotopy; that is, M(A) = Str(A). Also, if we
identify 〈cλ | λ ∈ F×〉 ∼= F×, we have M(A) = F× ·M1(A).

For each norm similarity ϕ of A, denote ϕ† := (ϕ−1)∗, where ∗ denotes the
adjoint relative to the trace form T of A. Since the trace is invariant under
automorphisms, it follows that the automorphisms of VA are exactly the pairs
(ϕ, ϕ†) where ϕ is a norm similarity of A. We know from [Gar01, Lemma 1.7]
that, if ϕ = (ϕ+, ϕ−) is an automorphism of VA where the norm similarity
ϕσ has multiplier λσ then λ+λ− = 1; also ϕσ(x#) = λσϕ

−σ(x)#. Moreover,
we have ϕσ(x−1) = ϕ−σ(x)−1 for each x ∈ A× (because Uϕ−σ(x)ϕ

σ(x−1) =
ϕ−σ(Uxx

−1) = ϕ−σ(x) for each x ∈ A×).

2.2.3 Orbits of the automorphism groups of bi-Cayley
systems

The trace forms of the bi-Cayley and Albert pairs are nondegenerate, so by
Proposition 1.7.4, there are exactly three orbits in Bσ for the bi-Cayley pair,
and four orbits in Aσ for the Albert pair, all of them determined by the rank
function.

Notation 2.2.20. Recall that the norm of the vector space B is the quadratic
form q = n ⊥ n : B → F, given by q(x) = n(x1) + n(x2) for x = (x1, x2) ∈ B.
For i = 0, 1, 2, denote by Oi the subset of B of elements of rank i for the
bi-Cayley pair. For each λ ∈ F, set O2(λ) := {x ∈ O2 | q(x) = λ}. Thus

O2 =
⋃̇
λ∈FO2(λ).
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Lemma 2.2.21. The different orbits for the action of Aut TB on B are exactly
O0 = {0}, O1 and O2(λ) with λ ∈ F. Moreover, for 0 6= x = (x1, x2) ∈ B we
have x ∈ O1 if and only if x2x1 = 0 and n(x1) = n(x2) = 0. The orbits are
the same if we consider the action of the subgroup GT = 〈ϕa,λ | a ∈ C, λ ∈
F, n(a) + λ2 = 1〉.

Proof. Recall that Oi, for i = 0, 1, 2, are the orbits of the bi-Cayley pair.
Also, note that Aut TB ≤ O(B, q). Hence, the sets O0, O1, and O2(λ) for
λ ∈ F, are disjoint unions of orbits of the bi-Cayley triple system.

First, we will check thatO2(λ) is an orbit for each λ 6= 0. Take x ∈ O2(λ2)
with λ 6= 0. We claim that x belongs to the orbit of (λ1, 0). By applying τ̄12

if necessary, we can assume that n(x1) 6= 0. Since q(x) = λ2 6= 0, n(x1) 6=
−n(x2) and we can take µ ∈ F× such that µ−2 = 1 + n(x2)

n(x1)
. The element a =

−µn(x1)−1x2x1 satisfies n(a) +µ2 = 1, so we can consider the automorphism

ϕa,µ (see Proposition 2.2.11). Then, ϕa,µ(x) = (µ(1 − n(x2)
n(x1)

)x1, 0), and by

Lemma 2.2.15, this element is in the orbit of (λ1, 0). Hence, O2(λ2) is an
orbit for each λ 6= 0. Since F is algebraically closed, O2(λ) is an orbit too.

Second, given 0 6= x ∈ B we claim that x ∈ O1 if and only if x2x1 = 0 and
n(x1) = n(x2) = 0. Indeed, x ∈ O1 means that QxB = Fx, i.e., (n(x1)y1 +
ȳ2(x2x1), n(x2)y2 + (x2x1)ȳ1) = t(x, y)x − Qx(y) must belong to Fx for any
y ∈ B, which is equivalent to saying that x2x1 = 0 and n(x1) = n(x2) = 0.

Third, we will prove that O1 is an orbit. Take x = (x1, x2) ∈ O1. We
know that n(x1) = n(x2) = 0 and x2x1 = 0. Then, using τ̄12 if necessary,
we can assume that x1 6= 0 and n(x1) = 0, and by Lemma 2.2.15 we can
also assume that x1 = e1 is a nontrivial idempotent. Take e2 := 1 − e1,
and consider the Peirce decomposition of C associated to the idempotents
ei as always. Since x2x1 = 0, we have x2 = λe2 + u with λ ∈ F, u ∈ U
(see Subsection 1.4). Thus, x = (e1, λe2 + u). But taking a = −λe2 − u
and µ = 1 we have n(a) + µ2 = 1, so ϕa,1 is an automorphism. Therefore,
ϕa,1(x) = (e1 + (λe1 + ū)(λe2 + u), λe2 + u − (λe2 + u)e2) = (e1, 0). This
proves that O1 is an orbit.

Finally, we claim that O2(0) is an orbit. Take x ∈ O2(0), and fix i ∈ F
with i2 = −1. It suffices to prove that x is in the orbit of (1, i1). But we will
prove first that if n(x1) = n(x2) = 0, then there is an automorphism ϕ of TB
such that the two components of ϕ(x) are nonisotropic. Indeed, since x /∈ O1

and n(x1) = n(x2) = 0, we must have x2x1 6= 0, and hence x1, x2 6= 0. If
n(x1, x̄2) 6= 0, it suffices to take µ = 1√

2
and apply ϕ = ϕµ1,µ to x to obtain

an element with nonisotropic components. Otherwise, n(x1, x̄2) = 0 = n(xi)
and by Lemma 2.2.15, we can assume that x1 = e1 is a nontrivial idempotent.
Consider the idempotents e1, e2 := 1 − e1 with their Peirce decomposition
C = Fe1 ⊕ Fe2 ⊕U ⊕ V , so we have x2 = γe2 + u+ v for some γ ∈ F, u ∈ U ,
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v ∈ V . Since x2x1 6= 0, we have v 6= 0. Take u1 ∈ U with vu1 = e2, so
we obtain ϕu1,1(x) = (1 − γu1 + uu1, γe2 + u + u1 + v), which has the first
component nonisotropic. In conclusion, there is an automorphism ϕ of TB
such that ϕ(x) has both components nonisotropic. By Lemma 2.2.15, we
can assume that x = (λ1, iλ1), for certain 0 6= λ ∈ F. Take a ∈ C with
tr(a) = 0 and n(a) = λ2−1

2λ2
, and µ ∈ F such that n(a) + µ2 = 1. Then,

y := ϕa,µ(x) = (λµ1 − λia, λa + λµi1), and we have n(y1) = λ2n(µ1 −
ia) = λ2(µ2 − n(a)) = λ2(1 − 2n(a)) = 1; since ϕa,µ ∈ O(B, q), we obtain
n(y2) = −1. By Lemma 2.2.15 again, we can assume that x = (1, i1), and
therefore O2(0) is an orbit.

We have a similar result for the orbits of the bi-Cayley pair:

Lemma 2.2.22. The orbits of B+ under the action of the group AutVB
coincide with the orbits under the action of GV = 〈ϕa, ϕ̂a, cλ | a ∈ C, λ ∈ F×〉.

Proof. First, recall that AutVB has 3 orbits on B+, determined by the rank
function, that can take values 0, 1 and 2 (see Proposition 1.7.4). From now
on, consider the action of GV on B+. We have to prove that the orbits under
the action of GV are O0, O1 and O2. Clearly, O0 = {0} is an orbit of this
action. Recall from Remark 2.2.18 that GV contains the subgroup of related
triples and τ̄12. By Lemma 2.2.15, two nonzero elements of C1 = C ⊕ 0 of
the same norm are in the same orbit under the action of GV (because GV
contains the subgroup of related triples). Using automorphisms of type cλ
and the fact that F = F̄, we also deduce that two nonisotropic elements of C1

belong to the same orbit; a representative element of this orbit is (1, 0). Note
that dim im Qx is an invariant of the orbit of each element x ∈ B. Given
0 6= z ∈ C with n(z) = 0, we have dim im Q0 = 0, dim im Q(z,0) = 1 and
dim im Q(1,0) = 8; consequently, there are exactly 3 orbits on C1. It suffices to
prove that each element of B belongs to an orbit of C1. Fix x = (x1, x2) ∈ B
with x1, x2 6= 0; we claim that there is an automorphism ϕ in GV such that
ϕ+(x) ∈ C1.

Assume that n(xi) 6= 0 for some i = 1, 2. We can apply τ̄12 if necessary to
assume that n(x1) 6= 0. Then, take a = −n(x1)−1x2x1, so we have ϕ̂+

a (x) =
(x1, 0) ∈ C1.

Now, consider the case with n(x1) = 0 = n(x2). In the case that
n(x1, x̄2) 6= 0, take a = 1, so we get that ϕ+

a (x) has a nonisotropic com-
ponent, which is the case that we have considered above. Otherwise, we are
in the case that n(xi) = 0 = n(x1, x̄2). By Lemma 2.2.15, without loss of
generality we can assume that e1 := x1 is a nontrivial idempotent of C. Con-
sider the associated Peirce decomposition C = Fe1⊕ Fe2⊕U ⊕ V associated
to the idempotents e1 and e2 = 1 − e1. Since n(e2, x2) = n(x̄1, x2) = 0, we
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have x2 = λe2 + u + v for certain elements λ ∈ F, u ∈ U , v ∈ V . There are
two cases now:
• In case v 6= 0, we can take u1 ∈ U such that vu1 = e2, so ϕ+

u1
(x) =

(e1− (λē2 + ū+ v̄)u1, x2) = (1− λu1 + uu1, x2), where the first component is
nonisotropic (it has norm 1), which is the case considered above.
• In case v = 0, we have that ϕ̂+

−λ1(x) = ϕ−−λ1(x) = (e1, u), and we can
assume that x = (e1, u). But if u 6= 0, there is v ∈ V such that uv = −e1, so
τ̄12ϕ

+
v (x) = τ̄12(e1 − ūv, u) = τ̄12(0, u) = (−u, 0) ∈ C1, and we are done.

2.2.4 Automorphism groups of bi-Cayley systems

In this subsection, we will give an explicit description of the automorphism
groups of the bi-Cayley pair and triple system.

Theorem 2.2.23. The group AutVB is generated by the automorphisms of
the form ϕa, ϕ̂a and cλ (with a ∈ C, λ ∈ F×).

Proof. Take ϕ ∈ AutVB and call GV = 〈ϕa, ϕ̂a, cλ | a ∈ C, λ ∈ F×〉. We have
to prove that ϕ ∈ GV . Recall from Remark 2.2.18 that related triples and
automorphisms of type cλ,µ belong to GV .

By Lemma 2.2.22, there is some element ϕ′ of GV such that ϕ′ϕ(1, 0)+ =
(1, 0)+. Thus, without loss of generality (changing ϕ with ϕ′ϕ) we can assume
that ϕ(1, 0)+ = (1, 0)+. Since the image of the idempotent ((1, 0)+, (1, 0)−) is
an idempotent of the form ((1, 0)+, (a, b)−), it must be (1, 0)+ = Q(1,0)+(a, b)− =
(ā, 0)+, hence a = 1. The composition ϕ−bϕ fixes (1, 0)±, so we can assume
(changing ϕ with ϕ−bϕ) that the same holds for ϕ. In consequence, the
subspaces Cσ1 = im Q(1,0)σ and Cσ2 = kerQ(1,0)−σ must be ϕ-invariant. Write
ϕ(0, 1)+ = (0, a)+ with a ∈ C. Since the element ϕ(0, 1)+ has rank 2, we
have n(a) 6= 0, and composing with an automorphism of type c1,λ if neces-
sary we can also assume that n(a) = 1. Then, by Lemma 2.2.15, composing
with a related triple we can assume that ϕ fixes (1, 0)+ and (0, 1)+. Note
that the subspaces Cσi are still ϕ-invariant and we can write ϕσ = φσ1 × φσ2
with φσi ∈ GL(Cσi ). Then, since (1, 0)+ = ϕ(1, 0)+ = ϕ(Q(1,0)+(1, 0)−) =

Q(1,0)+(φ−1 (1), 0) = (φ−1 (1), 0)+, we have φ−1 (1) = 1, and similarly φ−2 (1) = 1.
Therefore, ϕ fixes the elements (1, 0)± and (0, 1)±.

Denote C0 = {a ∈ C | tr(a) = 0}. Since the trace t of VB is invariant
by automorphisms and (1, 0)± are fixed by ϕ, we obtain that the subspaces
(C0 ⊕ 0)± are ϕ-invariant (note that tr(a) = t((a, 0), (1, 0))), and the same
holds for (0 ⊕ C0)±. For each z ∈ C0, we have Q(1,0)+(z, 0)− = (−z, 0)+,
which implies that (−φ+

1 (z), 0)+ = ϕQ(1,0)+(z, 0)− = Q(1,0)+(φ−1 (z), 0)− =

(φ−1 (z), 0)+ = (−φ−1 (z), 0)+. Hence φ+
1 = φ−1 and, in the same manner, φ+

2 =
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φ−2 . With abuse of notation, we can omit the index σ and write ϕ = φ1×φ2.
On the other hand, for each z ∈ C0 we have {(1, 0)+, (0, 1)−, (0, z)+} =
(−z, 0)+, from where we get that (−φ1(z), 0)+ = ϕ{(1, 0)+, (0, 1)−, (0, z)+} =
{(1, 0)+, (0, 1)−, (0, φ2(z))+} = (−φ2(z), 0)+. Thus, φ1 = φ2 and, with more
abuse of notation we can omit the subindex i = 1, 2 and write ϕ = φ × φ,
where φ ∈ GL(C). Moreover, applying ϕ to the equality {(0, 1), (0, x), (y, 0)} =
(xy, 0) we obtain φ(xy) = φ(x)φ(y), which shows that φ ∈ AutC. Since
AutC ≤ RT ≤ GV (with the obvious identifications), we have ϕ ∈ GV and
we are done.

Theorem 2.2.24. The group Aut TB is generated by the automorphisms of
the form ϕa,λ (with a ∈ C and λ ∈ F such that n(a) + λ2 = 1).

Proof. Take ϕ ∈ Aut TB and call GT = 〈ϕa,λ | a ∈ C, λ ∈ F, n(a) + λ2 = 1〉.
We have to prove that ϕ ∈ GT . By Lemma 2.2.21, there is some element ϕ′

of GT such that ϕ′ϕ(1, 0) = (1, 0). Thus, without loss of generality (changing
ϕ with ϕ′ϕ) we can assume that ϕ(1, 0) = (1, 0). Now, the subspaces C1 =
im Q(1,0) and C2 = kerQ(1,0) must be ϕ-invariant. Write ϕ(0, 1) = (0, a) with
a ∈ C. We know from Remark 2.2.12 that Aut TB ≤ O(B, q), so we have
n(a) = q(0, a) = q(0, 1) = 1. Then, by Lemma 2.2.15, composing with a
related triple we can assume without loss of generality that ϕ fixes (1, 0) and
(0, 1). Since the subspaces Ci are ϕ-invariant, we can write ϕ = φ1×φ2 with
φi ∈ GL(Ci). With the same arguments as in the proof of Theorem 2.2.23
we deduce that φ1 = φ2 ∈ AutC, and therefore ϕ belongs to GT .

We introduce now some notation that will be used in the following results
of this section:

Notation 2.2.25. We extend the norm n on C to a ten-dimensional vector
space

W = C ⊥ (Fe⊕ Ff)

with n(e) = n(f) = 0 and n(e, f) = 1. Fix i ∈ F with i2 = −1 and note that
the elements x = e + f and y = i(e − f) are orthogonal of norm 1. Then,
e = (x− iy)/2, f = (x+ iy)/2. Also, denote

V = C ⊥ Fx ⊆ W.

Lemma 2.2.26. With notation as above, we have

Spin(W,n) = 〈1 + a · e, 1 + a · f | a ∈ C〉

and
Spin(V, n) = 〈λ1 + a · x | λ ∈ F, a ∈ C, n(a) + λ2 = 1〉.



2.2. EXCEPTIONAL JORDAN PAIRS AND TRIPLE SYSTEMS 51

Proof. First, note that e · f + f · e = 1, hence e · f · e = e and f · e · f = f
in the Clifford algebra Cl(W,n). Besides, x · x = 1. For each a ∈ C, it is
easily checked that (1 + a · e) · τ(1 + a · e) = (1 + a · e) · (1 + e · a) = 1, and
also (1 + a · e) · W · (1 + e · a) ⊆ W , so 1 + a · e, 1 + a · f ∈ Spin(W,n).
Then GW := 〈1 + a · e, 1 + a · f | a ∈ C〉 ≤ Spin(W,n). Similarly, GV :=
〈λ1 + a · x | λ ∈ F, a ∈ C, n(a) + λ2 = 1〉 ≤ Spin(V, n).

Now, note that Spin(V, n) is generated by elements of the form (λ1x +
a1) · (λ2x+ a2) = (λ11 + a1 · x) · (λ21− a2 · x) with λi ∈ F, ai ∈ C such that
λ2
i + n(ai) = 1. Therefore, Spin(V, n) = GV .

Since (a1 + λ1e + µ1f) · (a2 + λ2e + µ2f) = (a1 + λ1e + µ1f) · x · (−a2 +
µ2e+ λ2f) · x, it is clear that Spin(W,n) is generated by the elements of the
form g = (a + λe + µf) · x with a ∈ C, λ, µ ∈ F and n(a) + λµ = 1, so it
suffices to prove that these generators belong to GW .
• Case λ = µ. The generator has the form g = (a + λx) · x = λ1 + a · x

(i.e., a generator of GV ). If n(a) 6= 0 we can write λ1 + a · x = (1 + νa · f) ·
(1 + a · e) · (1 + νa · f) ∈ GW with ν = 1−λ

n(a)
= 1

1+λ
(because n(a) + λ2 = 1.

This implies in particular that −1 ∈ GW , because if a ∈ C satisfies n(a) = 1
and we take λ = 0, then −1 = (a · x) · (a · x) = (0 + a · x) · (0 + a · x) ∈ GW .
On the other hand, if n(a) = 0, then λ ∈ {±1} and we can write λ1 + a ·x =
λ1 · (1 + νa · f) · (1 + λa · e) · (1 + νa · f) ∈ GW with ν = λ/2.
• Case λ 6= µ. The generator has the form g = (a+λe+µf) ·x. Without

loss of generality, we can assume that µ 6= 0 (the case λ 6= 0 is similar).
Take α = µ2 ∈ F× and b ∈ C with n(b)α = 1. Then, (1 + b · e) · (1 +

αb · f) · (1 + b · e) = b · (e + αf) = µb · (µ−1e + µf) = (µ−1e + µf) · (−µb),
and note that n(−µb) = 1. In consequence, for any b ∈ C with n(b) = 1
we have (µ−1e + µf) · b ∈ GW , and therefore (µ−1e + µf) · x = ((µ−1e +
µf) · b) · (b · x) ∈ GW (because b · x ∈ GW by the case λ = µ). Then,
(1 − µa · f) · (1 − µ−1a · e) · g = (µ−1e + µf) · x ∈ GW , and therefore
g ∈ GW .

The groups AutVB and Aut TB are explicitly described by the following
Theorem.

Theorem 2.2.27. With the same notation as above, define the linear maps
Φ± : W → End(C⊕ C) by

Φ±(a) =

(
0 rā
lā 0

)
, Φ±(x) =

(
1 0
0 −1

)
, Φ±(y) =

(
±i 0
0 ±i

)
,

where a ∈ C. Then, the linear map

Ψ: W → End(B ⊕ B), w 7→
(

0 Φ+(w)
Φ−(w) 0

)
,
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defines an algebra isomorphism Ψ: Cl(W,n)→ End(B⊕B). Moreover, if we
identify each ϕ ∈ AutVB with(

ϕ+ 0
0 ϕ−

)
∈ End(B ⊕ B),

then Ψ restricts to a group isomorphism Spin(W,n) → 〈ϕa, ϕ̂a | a ∈ C〉 ≤
AutVB, which in turn restricts to a group isomorphism Spin(V, n)→ Aut TB.
Furthermore, AutVB ∼= Γ+(W,n)/〈−iz〉 with 〈−iz〉 ∼= Z2, where z = Ψ−1(ci).
(Recall that Γ+(W,n) is the even Clifford group.)

Proof. Fix a ∈ C. First, note that Ψ(a)2 = n(a)id, Ψ(x)2 = Ψ(y)2 = id. Also,
the matrices Ψ(a), Ψ(x) and Ψ(y) anticommute, so we have Ψ(w)2 = n(w)id
for each w ∈ W . Therefore, the linear map W → End(B ⊕ B), w 7→ Ψ(w),
extends to an algebra homomorphism Cl(W,n)→ End(B⊕B). Since Cl(W,n)
is simple and has the same dimension as End(B ⊕B), it follows that Ψ is an
isomorphism.

It can be checked that Ψ sends λ1+a·x 7→ ϕa,λ (where n(a)+λ2 = 1). We
know by Theorem 2.2.24 that Aut TB = 〈ϕa,λ | a ∈ C, λ ∈ F, n(a) + λ2 = 1〉,
and on the other hand, by Lemma 2.2.26 we have Spin(V, n) = 〈λ1 + a ·
x | a ∈ C, λ ∈ F, n(a) + λ2 = 1〉, so that Ψ restricts to an isomorphism
Spin(V, n)→ Aut TB.

Furthermore, Ψ sends 1 + a · e 7→ ϕa, 1 + a · f 7→ ϕ̂a. By Theorem 2.2.23
we have that AutVB = 〈ϕa, ϕ̂a, cλ | a ∈ C, λ ∈ F×〉 and, by Lemma 2.2.26,
we have Spin(W,n) = 〈1 + a · e, 1 + a · f | a ∈ C〉. Consequently, Ψ restricts
to a group isomorphism Spin(W,n)→ 〈ϕa, ϕ̂a | a ∈ C〉. Moreover, we obtain
a group epimorphism

Λ: F× × Spin(W,n)→ AutVB, (λ, x) 7→ cλ ◦Ψ(x). (2.2.4)

It is well-known that Z(Spin(W,n)) = 〈z〉 ∼= Z4, with z2 = −1 and
z /∈ F (also Z(Cl(W,n)0̄) = F1 + Fz). Since Ψ restricts to an isomorphism
Spin(W,n) → 〈ϕa, ϕ̂a〉 ≤ AutVB, replacing z by −z if necessary, we have
Ψ(z)± = ±iidB (because Ψ(z) ∈ Z(AutVB) = 〈cλ | λ ∈ F×〉 and z4 = 1).
Hence Ψ(z) = ci (note that this implies that Ψ−1(cλ) = 1

2
(λ+λ−1)1 + 1

2i
(λ−

λ−1)z).
We claim that ker Λ = 〈(−i, z)〉. It is clear that 〈(−i, z)〉 ≤ ker Λ. Fix

(λ, x) ∈ ker Λ, so that Λ(λ, x) = cλ ◦Ψ(x) = 1, i.e.,(
λid+ 0

0 λ−1id−

)(
Ψ(x)+ 0

0 Ψ(x)−

)
=

(
id+ 0
0 id−

)
,

which in turn implies that Ψ(x)± ∈ F×id and Ψ(x) ∈ Z(AutVB). Recall
again that Ψ restricts to an isomorphism Spin(W,n) → 〈ϕa, ϕ̂a | a ∈ C〉 ≤
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AutVB, so that x ∈ Z(Spin(W,n)) = 〈z〉 and therefore ker Λ = 〈(−i, z)〉 ∼=
Z4. Therefore, we obtain (F× × Spin(W,n))/〈(−i, z)〉 ∼= AutVB.

Define a new epimorphism by means of

Λ̃ : F× × Spin(W,n)→ Γ+(W,n), (λ, x) 7→ λx. (2.2.5)

Then, ker Λ̃ = 〈(−1,−1)〉 ∼= Z2 and (F××Spin(W,n))/〈(−1,−1)〉 ∼= Γ+(W,n).
Finally, note that (−1,−1) ∈ ker Λ. Hence, the epimorphism Λ factors

through Λ̃, and we obtain an epimorphism Γ+(W,n) → AutVB with kernel

Λ̃〈(−i, z)〉 = 〈−iz〉 ∼= Z2.



Chapter 3

Gradings on bi-Cayley systems

In this Chapter we give classifications of the fine gradings on the bi-Cayley
pair and on the bi-Cayley triple system, which are some of the main original
results of this thesis. Also, all these fine gradings are described given by their
universal grading groups, their Weyl groups are computed, and we determine
the (fine) gradings on e6 induced by the fine gradings on the bi-Cayley pair.

The main results in this chapter are Theorem 3.3.3 and Theorem 3.4.4,
that classify the fine gradings, up to equivalence, on the bi-Cayley Jordan
pair and triple system, respectively.

3.1 Construction of fine gradings on the bi-

Cayley pair

Given a grading on VB such that Cσi are graded subspaces for i = 1, 2, and
σ = ±, we will denote by degσi the restriction of deg to Cσi .

Recall that the trace of VB is homogeneous for each grading, i.e., we have
that t(x+, y−) 6= 0 implies deg(y−) = − deg(x+) for x+, y− homogeneous
elements of the grading. Hence, to give a grading on VB it suffices to give
the degree map on V+

B .

Example 3.1.1. Since char F 6= 2, we can take a Cayley-Dickson basis
{xi}7

i=0 of C, as in Section 1.4. Let degC denote the associated degree of the
Z3

2-grading on C. Then, we will call the set {(xi, 0)σ, (0, xi)
σ | σ = ±}7

i=0 a
Cayley-Dickson basis of VB. It is checked directly that we have a fine Z2×Z3

2-
grading on VB that is given by deg+

1 (xi) = (1, 0, degC(xi)) = − deg−1 (xi) and
deg+

2 (xi) = (0, 1, degC(xi)) = − deg−2 (xi). This grading will be called the
Cayley-Dickson grading on VB (and is fine because its homogeneous compo-
nents have dimension 1).

54
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Note that, for the Cayley-Dickson basis, the triple product is determined
by:

i) {(xi, 0), (xj, 0), (xk, 0)} = (2δijxk + 2δjkxi − 2δikxj, 0),

ii) {(xi, 0), (0, xj), (xk, 0)} = 0,

iii) {(xi, 0), (xj, 0), (0, xk)} = (0, 2δijxk − (xkxi)x̄j).

The rest of the cases are obtained by symmetry in the first and third compo-
nents of the triple product, and using the automorphism τ̄12 : C⊕ 0↔ 0⊕C,
(x1, x2)σ 7→ (x̄2, x̄1)σ.

Example 3.1.2. Let {zi}8
i=1 be a Cartan basis of C, as in Section 1.4. Then,

{(zi, 0)σ, (0, zi)
σ | σ = ±}8

i=1 will be called a Cartan basis of VB. It is checked
directly that we have a fine Z6-grading on VB determined by

deg C+
1 C+

2

e1 (0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 1, 0)
e2 (0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 1)
u1 (1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 0)
u2 (0, 1, 0, 1, 0, 0) (0, 1, 0, 0, 1, 0)
u3 (−1,−1, 1, 0,−1, 1) (−1,−1, 1,−1, 0, 1)
v1 (−1, 0, 1, 0, 0, 0) (−1, 0, 0, 0, 0, 1)
v2 (0,−1, 1, 0, 0, 0) (0,−1, 0, 0, 0, 1)
v3 (1, 1, 0, 1, 1,−1) (1, 1,−1, 1, 1, 0)

and deg(x+) + deg(y−) = 0 for any elements x+, y− of the Cartan basis such
that t(x+, y−) 6= 0. (Notice that the projection on the two first coordinates
of the group coincides with the Cartan Z2-grading on C, which behaves well
with respect to the product on VB, so it suffices to show that the projection
on the last four coordinates behaves well with respect to the product.) This
grading will be called the Cartan grading on VB (and is fine because its
homogeneous components have dimension 1).

We will prove now that the grading groups of these gradings are their
universal groups.

Proposition 3.1.3. The Cayley-Dickson grading on the bi-Cayley pair has
universal group Z2 × Z3

2.

Proof. Let {xi}7
i=0 be a Cayley-Dickson basis of C with x0 = 1. Let Γ be a

realization as a G-grading of the associated Cayley-Dickson grading on VB,
for some abelian group G. For each element x of the Cayley-Dickson basis of
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VB we have t(x+, x−) 6= 0, and since the trace is homogeneous, it has to be
deg(x+)+deg(x−) = 0. Define gi = deg+

1 (xi) = − deg−1 (xi), a = g0 = deg+
1 (1)

and b = deg+
2 (1). If i 6= j, then Q+

(xi,0)+(xj, 0)− = (−xj, 0)+, so that we have

2gi = 2gj. Thus, ai := gi − g0 has order ≤ 2, and we have deg+
1 (xi) =

ai + a. If i 6= 0, {(xi, 0)+, (1, 0)−, (0, 1)+} = (0,−xi)+, so deg+
2 (xi) = ai + b.

If 0 6= i 6= j 6= 0, we have {(xi, 0)+, (xj, 0)−, (0, 1)+} = (0,−xix̄j)+, and
we get deg+

2 (xixj) = (ai + aj) + b, and also {(0, xi)+, (0, 1)−, (xj, 0)+} =
(−xixj, 0)+, so deg+

1 (xixj) = (ai + aj) + a. Therefore, degC(xi) := ai defines
a group grading by 〈ai〉 on C that is a coarsening of the Z3

2-grading on C.
Therefore, there is an epimorphism Z2×Z3

2 → G that sends (1, 0, 0̄, 0̄, 0̄) 7→ a,
(0, 1, 0̄, 0̄, 0̄) 7→ b, and restricts to an epimorphism 0 × Z3

2 → 〈ai〉, so we
conclude that Z2 × Z3

2 is the universal group.

Proposition 3.1.4. The Cartan grading on the bi-Cayley pair has universal
group Z6.

Proof. Let {ei, uj, vj | i = 1, 2; j = 1, 2, 3} be a Cartan basis of C. Let Γ
be a realization as a G-grading of the associated Cartan grading on VB, for
some abelian group G. Recall that if t(x+, y−) 6= 0 for homogeneous elements
x+, y−, since the trace is homogeneous we have deg(x+) + deg(y−) = 0, and
therefore the degree is determined by its values in V+

B . Put a1 = deg+
1 (e1),

a2 = deg+
1 (e2), b1 = deg+

2 (e1), b2 = deg+
2 (e2). To simplify the degree map,

define gi (i = 1, 2) by means of deg+
1 (u1) = g1 + a2, deg+

1 (u2) = g2 + a2,
g3 = −g1 − g2. Then we deduce:

{(e1, 0)−, (ui, 0)+, (0, e1)−} = (0, ui)
− (i = 1, 2)

⇒ deg+
2 (vi) = −gi + b2 (i = 1, 2),

{(vi, 0)+, (e2, 0)−, (0, e2)+} = (0,−vi)+ (i = 1, 2)

⇒ deg+
1 (vi) = −gi + a1 (i = 1, 2),

{(ui, 0)+, (e1, 0)−, (0, e1)+} = (0,−ui)+ (i = 1, 2)

⇒ deg+
2 (ui) = gi + b1 (i = 1, 2),

{(u2, 0)+, (e2, 0)−, (0, u1)+} = (0,−v3)+ ⇒ deg+
2 (v3) = −g3 − a1 + a2 + b1,

{(v2, 0)+, (e1, 0)−, (0, v1)+} = (0,−u3)+ ⇒ deg+
2 (u3) = g3 + a1 − a2 + b2,

{(0, u3)+, (0, e2)−, (e2, 0)+} = (−u3, 0)+ ⇒ deg+
1 (u3) = g3 + a1 − b1 + b2,

{(0, v3)+, (0, e1)−, (e1, 0)+} = (−v3, 0)+ ⇒ deg+
1 (v3) = −g3 + a2 + b1 − b2.

The relations above show that the set {a1, a2, b1, b2, g1, g2} generatesG. Hence,
there is an epimorphism Z6 → G determined by

(1, 0, 0, 0, 0, 0) 7→ g1, (0, 0, 1, 0, 0, 0) 7→ a1, (0, 0, 0, 0, 1, 0) 7→ b1,

(0, 1, 0, 0, 0, 0) 7→ g2, (0, 0, 0, 1, 0, 0) 7→ a2, (0, 0, 0, 0, 0, 1) 7→ b2,
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and therefore the universal group is Z6.

3.2 Construction of fine gradings on the bi-

Cayley triple system

Example 3.2.1. Consider a Cayley-Dickson basis {xi}7
i=0 of C and denote by

degC the degree map of the associated Z3
2-grading. Then {(xi, 0), (0, xi)}7

i=0

will be called a nonisotropic Cayley-Dickson basis of TB. It can be checked
that we have a fine Z5

2-grading on TB given by deg(xi, 0) = (1̄, 0̄, degC(xi))
and deg(0, xi) = (0̄, 1̄, degC(xi)). This grading will be called the nonisotropic
Cayley-Dickson grading on TB. (The isotropy is relative to the quadratic
form q = n ⊥ n of B.)

Example 3.2.2. Let {xi}7
i=0 be as above. Fix i ∈ F with i2 = −1. Then,

{(xi,±ix̄i)}7
i=0 will be called an isotropic Cayley-Dickson basis of TB. It can

be checked that we have a fine Z×Z3
2-grading on TB given by deg(xi,±ix̄i) =

(±1, degC(xi)). This grading will be called the isotropic Cayley-Dickson grad-
ing on TB. (The isotropy is relative to the quadratic form q = n ⊥ n of B.)

Example 3.2.3. Let {zi}8
i=1 be a Cartan basis of C. Then, we will say that

{(zi, 0), (0, zi)}8
i=1 is a Cartan basis of TB. It can be checked that we have a

fine Z4-grading where the degree map is given by the following table:

deg C1 C2

e1 (0, 0, 1, 0) (0, 0, 0,−1)
e2 (0, 0,−1, 0) (0, 0, 0, 1)
u1 (1, 0,−1, 0) (1, 0, 0,−1)
u2 (0, 1,−1, 0) (0, 1, 0,−1)
u3 (−1,−1, 1, 2) (−1,−1, 2, 1)
v1 (−1, 0, 1, 0) (−1, 0, 0, 1)
v2 (0,−1, 1, 0) (0,−1, 0, 1)
v3 (1, 1,−1,−2) (1, 1,−2,−1)

(Notice that the projection Z4 → Z2 of the degree on the first two coordinates
induces the Cartan Z2-grading on C, so it suffices to show that the last
two coordinates behave well with respect to the product, and this is easily
checked). This grading will be called the Cartan grading on TB.

Note that the homogeneous elements of the nonisotropic Cayley-Dickson
grading on TB are in the orbits O2(λ) with λ ∈ F×, the ones of the isotropic
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Cayley-Dickson grading on TB are in the orbit O2(0), and the ones of the Car-
tan grading on TB are in the orbit O1 (see Lemma 2.2.21); hence these three
gradings cannot be equivalent. This can also be seen from their universal
groups, as follows:

Proposition 3.2.4. The nonisotropic Cayley-Dickson grading on the bi-
Cayley triple system has universal group Z5

2.

Proof. Let {xi}7
i=0 be a Cayley-Dickson basis of C with x0 = 1. Con-

sider a realization of the nonisotropic Cayley-Dickson grading on TB as G-
grading for some abelian group G. Since the trace t is homogeneous and
t((xi, 0), (xi, 0)) 6= 0 6= t((0, xi), (0, xi)), it follows that all the elements of
G have order ≤ 2. Call a = deg(1, 0), b = deg(0, 1), gi = deg(xi, 0) and
ai = a + gi for 0 ≤ i ≤ 7. Note that we have deg(xi, 0) = gi = ai + a. Since
{(1, 0), (xi, 0), (0, 1)} = (0, xi) for each i, we have deg(0, xi) = a + gi + b =
ai + b. If i 6= j with i, j 6= 0, we have {(xi, 0), (0, 1), (0, xj)} = (xixj, 0);
hence deg(xixj, 0) = gi + b + (aj + b) = (ai + aj) + a, and it follows that
degC(xi) := ai defines a coarsening of the Z3

2-grading on C. It is clear that the
G-grading is induced from the Z5

2-grading by an epimorphism Z5
2 → G that

sends (1̄, 0̄, 0̄, 0̄, 0̄) 7→ a, (0̄, 1̄, 0̄, 0̄, 0̄) 7→ b and restricts to some epimorphism
0 × Z3

2 → 〈ai〉. We can conclude that Z5
2 is (isomorphic to) the universal

group of the nonisotropic Cayley-Dickson grading on TB.

Proposition 3.2.5. The isotropic Cayley-Dickson grading on the bi-Cayley
triple system has universal group Z× Z3

2.

Proof. Let {xi}7
i=0 be a Cayley-Dickson basis of C with x0 = 1. Consider a

realization of the isotropic Cayley-Dickson grading on TB as G-grading for
some abelian group G. Call gi = deg(xi, ix̄i) and ai = gi−g0. Since the trace t
is homogeneous and t((xi, ix̄i), (xi,−ix̄i)) 6= 0, it follows that deg(xi,−ix̄i) =
−gi. For each i 6= 0 we have Q(1,i1)(xi,−ix̄i) = −2(xi, ix̄i), so 2g0 = 2gi.
Thus, ai has order ≤ 2. Moreover, deg(xi, ix̄i) = ai+g0, deg(xi,−ix̄i) = ai−
g0. But also, for each i 6= j with i, j 6= 0, we have x̄i = −xi, x̄j = −xj, xixj =
−xjxi, from where we get {(1, i1), (xi, ix̄i), (xj,−ix̄j)} = −2(xixj, ixixj), and
taking degrees we obtain deg(xixj, ixixj) = (ai + aj) + g0. In consequence,
degC(xi) := ai defines a coarsening of the Z3

2-grading on C. Therefore, the G-
grading is induced from the Z×Z3

2-grading by an epimorphism Z×Z3
2 → G

that sends (1, 0̄, 0̄, 0̄) 7→ g0 and restricts to some epimorphism 0×Z3
2 → 〈ai〉.

We can conclude that Z × Z3
2 is (isomorphic to) the universal group of the

isotropic Cayley-Dickson grading on TB.

Proposition 3.2.6. The Cartan grading on the bi-Cayley triple system has
universal group Z4.
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Proof. Let {ei, uj, vj|i = 1, 2; j = 1, 2, 3} be a Cartan basis of C. Consider a
realization of the Cartan grading on TB as G-grading for some abelian group
G. Call a = deg(e1, 0), b = deg(0, e2), and hi = deg(ui, 0) for i = 1, 2. We
claim that {a, b, g1, g2} generate G. Indeed, since the trace is homogeneous,
we get deg(e2, 0) = −a, deg(0, e1) = −b, and deg(vi, 0) = −hi for i = 1, 2.
Since {(v1, 0), (v2, 0), (0, e2)} = (0, u3), we deduce that deg(0, u3) = −h1 −
h2 + b = − deg(0, v3). Also, from {(0, e2), (0, u3), (e2, 0)} = (u3, 0), we obtain
deg(u3, 0) = −h1−h2−a+2b = − deg(v3, 0). We have proved the claim. It is
clear that the G-grading is induced from the Z4-grading by an epimorphism
Z4 → G that sends (1, 0, 0, 0) 7→ g1, (0, 1, 0, 0) 7→ g2, (0, 0, 1, 0) 7→ a and
(0, 0, 0, 1) 7→ b, and we can conclude that Z4 is (isomorphic to) the universal
group of the Cartan grading on TB.

3.3 Classification of fine gradings on the bi-

Cayley pair

Given a grading on a semisimple Jordan pair, by Remark 2.1.23, any homo-
geneous element can be completed to a maximal orthogonal system of homo-
geneous idempotents. In the case of the bi-Cayley pair, since the capacity is
2, it will consist either of two idempotents of rank 1, or one idempotent of
rank 2. We will cover these possibilities with the following Lemmas.

Lemma 3.3.1. Let Γ be a fine grading on the bi-Cayley pair such that there
is some homogeneous element of rank 1. Then Γ is equivalent to the Cartan
grading (Example 3.1.2).

Proof. Write V = VB for short. First, we complete the homogeneous element
to a set consisting of two homogeneous orthogonal idempotents of rank 1. By
Theorem 1.7.2, we can assume without loss of generality that the homoge-
neous orthogonal idempotents are (c+

1 , c
−
2 ) and (c+

2 , c
−
1 ), where ci = (ei, 0) ∈ B

and ei are nontrivial orthogonal idempotents of C with e1 + e2 = 1. We will
consider the Peirce decomposition C = Fe1 ⊕ Fe2 ⊕ U ⊕ V associated to the
idempotents e1 and e2. Since the generic trace is homogeneous,

f(xσ, y−σ, zσ) := t(x, y)z + t(z, y)x− {x, y, z}
= (n(x1, z1)y1 + ȳ2(x2z1 + z2x1), n(x2, z2)y2 + (x2z1 + z2x1)ȳ1)

(3.3.1)

is a homogeneous map too. By Remark 2.1.26, Kσ = ker(tc1) ∩ ker(tc2)
is a graded subspace of Vσ. For each homogeneous z+ ∈ K+, we have
n(e1, z1) = t(c1, z) = 0 and f(c+

1 , c
−
2 , z

+) = (0, z2e1)+ is homogeneous. Note
that (0 ⊕ C)σ ⊆ Kσ, so there are homogeneous elements {(xi, yi)}8

i=1 of
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B+ such that {yi}8
i=1 is a basis of C. Thus, the subspace (0 ⊕ Ce1)+ =∑8

i=1 F(0, yie1)+ is graded. Similarly, (0 ⊕ Ce1)σ and (0 ⊕ Ce2)σ are graded
for σ = ±. Hence, Cσ2 = (0 ⊕ C)σ is graded, and in consequence Cσ1 =
(C⊕ 0)σ =

⋂
x∈C−σ2

ker(tx) is graded too.

We claim that the homogeneous elements of C+
i and C−i coincide. Indeed,

take homogeneous elements x+ = (x1, 0) and z+ = (z1, 0) of C+
1 such that

n(x1, z1) = 1. Then, for any homogeneous element y− = (y1, 0) of C−1 ,
f(x+, y−, z+) = y+ is homogeneous too, and hence the homogeneous elements
of C+

1 and C−1 coincide; and similarly this is true for C+
2 and C−2 . Since Γ is

fine, the supports Supp Cσi are disjoint (because otherwise we could obtain a
refinement of Γ combining it with the Z2-grading: V(σ1,0) = Cσ1 , V(0,σ1) = Cσ2 .

From now on, we can omit the index σ, because the homogeneous com-
ponents of V+ coincide with those of V−. The rest of this proof will be used
in the proof of Lemma 3.4.1.

Recall that (0⊕Cei) are graded subspaces, where Ce1 and Ce2 are isotropic
subspaces of C. Since the trace is homogeneous, there is a homogeneous basis
{(0, xi), (0, yi)}4

i=1 of C2 such that {xi, yi}4
i=1 is a basis of C consisting of four

orthogonal hyperbolic pairs, that is, such that n(xi, yj) = δij, n(xi, xj) = 0 =
n(yi, yj). It is not hard to see that there is an element of O+(C, n) that sends
the elements {xi, yi}4

i=1 to a Cartan basis {ei, uj, vj | i = 1, 2; j = 1, 2, 3} of C,
and by Lemma 2.2.15, that can be done in C2 with an automorphism given
by a related triple (as in Remark 2.2.14). Hence, we can assume that we
have a homogeneous Cartan basis of C2 (and the subspace C1 is still graded).
Then we have the following graded subspaces:

f((0, e1), (0, e2),C⊕ 0) = ē2(e1C)⊕ 0 = (Fe1 + U)⊕ 0,

f((0, e2), (0, e1),C⊕ 0) = ē1(e2C)⊕ 0 = (Fe2 + V )⊕ 0,

f((0, u1), (0, e1), (Fe1 + U)⊕ 0) = (ē1(u1(Fe1 + U)))⊕ 0

= (Fv2 + Fv3)⊕ 0,

f((0, v2), (0, e2), (Fv2 + Fv3)⊕ 0) = (ē2(v2(Fv2 + Fv3)))⊕ 0 = (Fu1)⊕ 0,

so (u1, 0) is homogeneous, and similarly (ui, 0), (vi, 0) are homogeneous for
i = 1, 2, 3. Furthermore, f((0, u1), (0, e2), (v1, 0)) = (ē2(u1v1), 0) = (−e1, 0),
so (e1, 0) and (e2, 0) are homogeneous. Since Γ is fine, we conclude that Γ is
the Cartan grading.

Lemma 3.3.2. Let Γ be a fine grading on the bi-Cayley pair such that the
nonzero homogeneous elements have rank 2. Then Γ is equivalent to the
Cayley-Dickson grading (Example 3.1.1).

Proof. Write for short V = VB. Take a homogeneous element and com-
plete it to a homogeneous idempotent of rank 2. By Remark 1.7.6, we
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can assume without loss of generality that our homogeneous idempotent is
c1 = ((1, 0)+, (1, 0)−). The subpaces Cσ1 = im Q(1,0)σ and Cσ2 = kerQ(1,0)−σ

are graded. With the same arguments given in the proof of Lemma 3.3.1,
we can deduce that the supports Supp Cσi are disjoint and the homogeneous
components of V+ coincide with those of V−. From now on, we can omit the
index σ. The arguments of the rest of this proof will be used in the proof of
Lemma 3.4.2.

We can take a homogeneous element (0, x) with n(x) = 1 (otherwise,
n(x) = 0 and (0, x) would have rank 1, a contradiction). By Lemma 2.2.15
and Remark 2.2.14, there is an automorphism of V , given by a related triple,
that maps (1, 0) 7→ (1, 0), (0, x) 7→ (0, 1). In consequence, we can assume that
(1, 0) and (0, 1) are homogeneous. Recall that the map f in Equation (3.3.1)
is homogeneous. From f((x, 0), (1, 0), (0, 1)) = (0, x), it follows that (x, 0)
is homogeneous if and only if (0, x) is homogeneous, i.e., the homogeneous
components coincide in both C1 and C2. We can take a homogeneous basis
B = {(xi, 0), (0, xi)}8

i=1 where x1 = 1 and n(xi) = 1 for all i. Since the
trace is homogeneous and the homogeneous components are 1-dimensional
(by Theorem 2.1.24), we also have n(xi, xj) = t((xi, 0), (xj, 0)) = 0, i.e., {xi}
is an orthonormal basis of C. Using the map f , it is easy to deduce that
(xixj, 0) and (0, xixj) are homogeneous for any 1 ≤ i, j ≤ 8, so actually we
can assume, without loss of generality, that B is a Cayley-Dickson basis of
V . Since Γ is fine, we conclude that Γ is the Cayley-Dickson grading.

Theorem 3.3.3. Let Γ be a fine grading on the bi-Cayley pair. Then, Γ is
equivalent to either

• the Cartan grading, with universal group Z6,

• the Cayley-Dickson grading, with universal group Z2 × Z3
2.

Proof. Consequence of Lemmas 3.3.1 and 3.3.2 (and Propositions 3.1.3 and
3.1.4), since they cover all the possibilities.

3.4 Classification of fine gradings on the bi-

Cayley triple system

Recall that we defined the norm of B as the quadratic form q : B → F,
q(x, y) := n(x) + n(y). Also, we already know (see Section 2.2.3) that
Aut TB ≤ O(B, q), and the nonzero isotropic elements of B are exactly the
ones contained in the orbits O1 and O2(0) of TB.
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Lemma 3.4.1. Let Γ be a fine grading on TB with some homogeneous element
in the orbit O1. Then Γ is, up to equivalence, the Cartan grading on TB
(Example 3.2.3).

Proof. Let x be homogeneous in the orbit O1. We claim that we can take a
homogeneous element y in the orbit O1 and such that t(x, y) = 1. Indeed,
it suffices to consider the grading (Γ,Γ) on the bi-Cayley pair and complete
the element x to a homogeneous idempotent (x, y) of the pair (recall that we
have rk(e+) = rk(e−) for any idempotent). Since the trace form is invariant
for automorphisms of the pair and all idempotents of rank 1 of the pair are
in the same orbit, it follows that t(x, y) = 1 (it suffices to check this for an
idempotent of rank 1 of the pair).

Up to automorphism, by Lemma 2.2.21, we can assume that x = (e1, 0)
with e1 a nontrivial idempotent of C. Consider, as usual, the Peirce decom-
position of C relative to the idempotents e1 and e2 := ē1. By Lemma 2.2.21,
we know that n(y1) = n(y2) = 0 and y2y1 = 0. Since n(y1) = 0 and
n(e1, y1) = t(x, y) = 1, there is an automorphism given by a related triple
(see Lemma 2.2.15) that sends (e1, 0) 7→ (e1, 0), y 7→ (e2, y2). Thus, we can
also assume that y = (e2, y2). Since y2y1 = 0, it follows that y2 = λe1 + v
with λ ∈ F, v ∈ V . Take a = −y2 and µ = 1 (so n(a) + µ2 = 1). We have
ϕa,µ(e1, 0) = (e1, 0) and ϕa,µ(e2, y2) = (e2, 0). Therefore, we can assume that
(ei, 0) are homogeneous for i = 1, 2.

Since the trace is homogeneous, f(x, y, z) := t(x, y)z+t(z, y)x−{x, y, z} is
a homogeneous map and ker(tx) is graded. For any homogeneous z ∈ ker(tx),
we have n(e1, z1) = t(x, z) = 0, and so f((e1, 0), (e2, 0), z) = (n(e1, z1)e2, z2e1) =
(0, z2e1) is homogeneous. In consequence (0 ⊕ Ce1) is graded. Similarly,
(0⊕Ce2) is graded, and hence C2 is graded. Since the trace is homogeneous,
the subspace orthogonal (for the trace) to C2, which is C1, is graded too. We
can conclude the proof with the same arguments given in the end of the proof
of Lemma 3.3.1.

Lemma 3.4.2. Let Γ be a fine grading on TB with some homogeneous el-
ement in some orbit O2(λ) with λ 6= 0. Then Γ is, up to equivalence, the
nonisotropic Cayley-Dickson grading (Example 3.2.1).

Proof. It is clear that Γ cannot be equivalent to the Cartan grading, because
there is a homogeneous element x in the orbit O2(λ) with λ 6= 0 and in the
Cartan grading all the homogeneous elements have rank 1. In particular, by
Lemma 3.4.1, all nonzero homogeneous elements of Γ must have rank 2. Up
to automorphism and up to scalars, we can assume by Lemma 2.2.21 that
x = (1, 0). Then, C1 = im Qx and C2 = kerQx are graded subspaces, and
we can conclude with the same arguments given in the end of the proof of
Lemma 3.3.2.
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Lemma 3.4.3. Let Γ be a fine grading on TB where all the nonzero homo-
geneous elements are in the orbit O2(0). Then Γ is, up to equivalence, the
isotropic Cayley-Dickson grading (Example 3.2.2).

Proof. Take a nonzero homogeneous element x ∈ B. Since x ∈ O2(0), up to
automorphism we can assume that x = (1, i1) for some i ∈ F with i2 = −1.
Then, W := im Qx = kerQx = {(z, iz̄) | z ∈ C} is a graded subspace.
Let C0 denote the traceless octonions and set V := {(z0, iz̄0) | z0 ∈ C0},
W ′ := {(z,−iz̄) | z ∈ C}, V ′ := {(z0,−iz̄0) | z0 ∈ C0}, x′ := (1,−i1).
Consider the map tx : B → B, z 7→ t(x, z). Since the trace is homogeneous,
ker tx = W ⊕ V ′ = Fx⊕ V ⊕ V ′ is a graded subspace. Hence Qx(ker tx) = V
is graded too. (Note that V and V ′ are isotropic subspaces which are paired
relative to the trace form, and x is paired with x′ too. But in general, Fx′,
W ′ and V ′ are not graded subspaces.) The subspace V ⊥ = Fx′⊕W is graded
because the trace is homogeneous, so we can take a homogeneous element
x̃ = x′ + λx + v with λ ∈ F, v ∈ V . Since x̃ ∈ O2(0), we have q(x̃) = 0, so
λ = 0 and x̃ = x′+v. Put v = (w, iw̄) with w ∈ C0, so x̃ = (1 +w,−i1 + iw̄).

We claim that there is an automorphism such that ϕ(x) ∈ Fx and ϕ(x̃) ∈
Fx′. If v = 0 there is nothing to prove, so we can assume w 6= 0. We consider
two cases.

First, consider the case n(w) = 0. Set µ = 1
2
(1 + i), a = µw, λ = 1.

Then λ2 + n(a) = 1, and hence ϕa,λ is an automorphism. It is not hard to
check that ϕa,λ(x) = (b, ib) and ϕa,λ(x̃) = (b,−ib), where b = 1 + 1

2
(1− i)w.

Since n(b) = 1, by Lemma 2.2.15 we can apply an automorphism given by a
related triple that sends (b, ib) 7→ x = (1, i1) and (b,−ib) 7→ x′ = (1,−i1), so
we are done with this case.

Second, consider the case n(w) 6= 0. Take λ, µ ∈ F such that λ2 +
µ2n(w) = 1 and µ = 1−2λ2

2iλ
. (Replace the expression of µ of the second

equation in the first one, multiply by λ2 to remove denominators, take a
solution λ of this new equation, which exists because F is algebraically closed
and is nonzero because n(w) 6= 0. Then take µ as in the second equation,
which is well defined because λ 6= 0.) Moreover, it is clear that 2λ2 − 1 6= 0,
because otherwise we would have µ = 0 and the first equation would not be
satisfied. Set a = µw, so we have λ2 + n(a) = 1 and therefore ϕa,λ is an
automorphism, that sends x 7→ (b, ib), x̃ 7→ (γb,−iγb), where b = λ1 − iµw
and γ = (λ + iµn(w))λ−1 (this is easy to check using the two equations
satisfied by λ and µ). Note that n(b) = 2λ2 − 1 6= 0, so again we can
compose with an automorphism given by a related triple to obtain ϕ(x) ∈ Fx
and ϕ(x̃) ∈ Fx′.

By the last paragraphs, we can assume that x = (1, i1) and x′ = (1,−i1)
are homogeneous elements. Therefore, im Qx = W , Qx(ker tx) = V , im Qx′ =
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W ′ and Qx′(ker tx′) = V ′ are graded subspaces (where V , V ′, W and W ′ are
defined as above). Note that for each z ∈ C0, (z, iz̄) ∈ V is homogeneous
if and only if (z,−iz̄) ∈ V ′ is homogeneous because Qx(z,−iz̄) = −2(z, iz̄)
and Qx′(z, iz̄) = −2(z,−iz̄) for any z ∈ C0. On the other hand, if Z = (z, iz̄)
is homogeneous for some z ∈ C, then n(z) 6= 0, because otherwise we would
have Z ∈ O1 by Lemma 2.2.21, which is not possible.

Take a homogeneous element x1 = (z1, iz̄1) ∈ V . Since n(z1) 6= 0, scaling
x1 we can assume that n(z1) = 1. Also, x′1 := Qx′(x1) = (z1,−iz̄1) ∈ V ′ is
homogeneous. Since the trace is homogeneous, we can take a homogeneous el-
ement x2 = (z2, iz̄2) ∈ V ∩ker tx∩ker tx′∩ker tx1∩ker tx′1 . Note that n(z1, z2) =
0 = n(1, z2), and scaling x2 if necessary, we will assume that n(z2) = 1. Then
x′2 = (z2,−iz̄2) ∈ V ′ is homogeneous. Furthermore, for any homogeneous
elements (yi,±iȳi), i = 1, 2, we have that {(y1, iȳ1), (1, i1), (y2,−iȳ2)} =
2(y1y2, iy1y2) is homogeneous too. Thus, in our case, (x1x2,±ix1x2) are ho-
mogeneous. Again, since the trace is homogeneous, we can take homogeneous
elements x3 = (z3, iz̄3) and x′3 = (z3,−iz̄3), with n(z3) = 1 and z3 orthogonal
to span{1, z1, z2, z1z2}. Notice that {z1, z2, z3} are homogeneous elements
generating a Z3

2-grading on C, and the elements {x, x′, xi, x′i | i = 1, 2, 3}
generate an isotropic Cayley-Dickson grading on the bi-Cayley triple system.
Note that there is only one orbit of isotropic Cayley-Dickson bases (up to
constants) on TB, because the same is true for Cayley-Dickson bases (up to
constants) on C. We can conclude the proof since Γ is fine.

Theorem 3.4.4. Any fine grading on the bi-Cayley triple system is equiva-
lent to one of the three following nonequivalent gradings:

• the nonisotropic Cayley-Dickson Z5
2-grading (Example 3.2.1),

• the isotropic Cayley-Dickson Z× Z3
2-grading (Example 3.2.2),

• the Cartan Z4-grading (Example 3.2.3).

Proof. This is a consequence of Lemmas 3.4.1, 3.4.2 and 3.4.3.

Remark 3.4.5. We already know that the isotropic and nonisotropic Cayley-
Dickson gradings on the bi-Cayley triple system are not equivalent. How-
ever, the isotropic Cayley-Dickson grading on the bi-Cayley pair (defined
in the obvious way) and the (nonisotropic) Cayley-Dickson grading on the
bi-Cayley pair are equivalent. This equivalence is given by the restriction
of the automorphism in Equation (4.1.1) to the bi-Cayley pair defined on
B = ι2(C)⊕ ι3(C).



3.5. INDUCED GRADINGS ON E6 65

3.5 Induced gradings on e6

It is well-known that TKK(VB) = e6 and TKK(VA) = e7. Recall that
dim e6 = 78 and dim e7 = 133. We will study now the gradings induced
by the TKK construction from the fine gradings on VB and VA. Note that
the classification of fine gradings, up to equivalence, on all finite-dimensional
simple Lie algebras over an algebraically closed field of characteristic 0 is
complete ([EK13, Chapters 3-6], [Eld16], [Yu14]). A classification of the fine
gradings on e6, for the case F = C, can be found in [DV16].

Proposition 3.5.1. The Cartan Z6-grading on the bi-Cayley pair extends to
a fine grading with universal group Z6 and type (72, 0, 0, 0, 0, 1) on e6, that
is, a Cartan grading on e6.

Proof. This is a consequence of Theorem 2.1.21 and the fact that the only
gradings up to equivalence with these universal groups on the Lie algebras are
the Cartan gradings. (Recall that Cartan gradings on simple Lie algebras are
induced by maximal tori. By [H75, Section 21.3], the maximal tori of Aut(e6)
are conjugate, so their associated Z6-gradings on e6 must be equivalent.

Proposition 3.5.2. The Cayley-Dickson Z2 × Z3
2-grading on the bi-Cayley

pair extends to a fine grading with universal group Z2×Z3
2 and type (48, 1, 0, 7)

on e6. (The fourth grading in the list of the classification given in [DV16].)

Proof. This is a consequence of Theorem 2.1.21, except for the type, which
we will now compute. Set e = (0, 0, 0̄, 0̄, 0̄) and write L = e6, V = VB. If
ν(x, y) ∈ L0

e, it must be deg(x+) + deg(y−) = e and hence Fx = Fy. For
elements in the Cayley-Dickson basis of VB we have {(xi, 0), (xi, 0), ·} = m2,1

and {(0, xi), (0, xi), ·} = m1,2, where mλ,µ : B → B, (a, b) 7→ (λa, µb). It
follows that L0

e is spanned by (m2,1,−m2,1) and (m1,2,−m1,2). In particular,
dimL0

e = 2.
Take g = (0, 0, t) ∈ G = Z2 × Z3

2 with 0 6= t ∈ Z3
2. Given a homogeneous

element x ∈ L1 = V+ in the Cayley-Dickson basis of V , there is a unique
y ∈ L−1 = V− in the Cayley-Dickson basis such that ν(x, y) = [x, y] ∈
L0
g, i.e., deg(x+) + deg(y−) = g, and in that case we always have x 6= y.

Take different elements xi, xj in the Cayley-Dickson basis of C such that
deg((xi, 0)+) + deg((xj, 0)−) = g. There are four such pairs {i, j}. Then, we
have four linearly independent elements of L0

g such that their first components
are given by:

{(xi, 0), (xj, 0), ·} = −{(xj, 0), (xi, 0), ·} =


(xj, 0) 7→ 2(xi, 0)
(xi, 0) 7→ −2(xj, 0)
(0, xk) 7→ (0,−(xkxi)x̄j) for any k
0 otherwise.
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It follows that dimL0
g ≥ 4, and there are seven homogeneous components of

this type, one for each choice of t.
Take now g = (1,−1, t) with t ∈ Z3

2 (the case g = (−1, 1, t) is simi-
lar). Take elements (xi, 0) and (0, xj) in the Cayley-Dickson basis such that
deg((xi, 0)+) + deg((xj, 0)−) = g. Note that, for elements in the Cayley-
Dickson basis we have

{(xi, 0), (0, xj), ·} =

{
(0, xk) 7→ (x̄k(xjxi), 0)
(xk, 0) 7→ (0, 0)

,

which is a nonzero map. Hence L0
g 6= 0, and therefore dimL0

g ≥ 1. Note that
there are 8 homogeneous components with degrees g = (1,−1, t) for t ∈ Z3

2,
and 8 more with degrees g = (−1, 1, t) for t ∈ Z3

2.
Finally, the subspace L1 ⊕ L−1 = V + ⊕ V − consists of other 32 ho-

mogeneous components of dimension 1. The sum of the subspaces already
considered has dimension at least 2+4 ·7+16+32 = 78 = dimL. Therefore,
the inequalities above are actually equalities and the type of the grading is
(48, 1, 0, 7).

Remark 3.5.3. For the TKK construction L = TKK(VB) of e6, it can be
proved that L0 = innstr(VB) ∼= d5 ⊕ Z, where Z is a 1-dimensional center.
The Z6-grading on L restricts to a Z5-grading of type (40, 0, 0, 0, 0, 1) on
L0, which restricts to the Cartan Z5-grading on d5. On the other hand, the
Z2×Z3

2-grading on L restricts to a Z×Z3
2-grading of type (16, 1, 0, 7) on L0.

On the other hand, note that the fine gradings on TB induce three of the
four fine gradings on f4 ∼= Der(TB)⊕ TB.

3.6 Weyl groups of fine gradings on bi-Cayley

systems

Now we will compute the Weyl groups of the fine gradings on the bi-Cayley
pair and the bi-Cayley triple system.

Theorem 3.6.1. Let Γ be either the Cayley-Dickson Z2 × Z3
2-grading on

the bi-Cayley pair, or the nonisotropic Cayley-Dickson Z5
2-grading on the bi-

Cayley triple system. Then,

W(Γ) ∼=
{(

A 0
B C

)
∈ GL5(Z2) | A ∈ 〈τ〉, B ∈M3×2(Z2), C ∈ GL3(Z2)

}
,

where τ =

(
0 1
1 0

)
∈ GL2(Z2).
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Proof. We will prove now the first case. Identify Z2 and Z3
2 with the sub-

groups Z2 × 0 and 0 × Z3
2 of G = Z2 × Z3

2. Let {a, b} and {ai}3
i=1 denote

the canonical bases of the subgroups Z2 and Z3
2. Let ΓC be the Z3

2-grading
on C. It is well-known (see [EK13]) that W(ΓC) ∼= Aut(Z3

2) ∼= GL3(Z2). If
f ∈ Aut ΓC, then f×f ∈ Aut Γ (notation as in the proof of Theorem 2.2.23),
and with an abuse of notation we have W(ΓC) ≤ W(Γ) ≤ Aut(G).

Since τ̄12 induces an element τ of W(Γ) of order 2, given by a↔ b, that
commutes with W(ΓC), we have 〈τ〉 ×GL3(Z2) ≤ W(Γ). Furthermore, from
Lemma 2.2.15 we can deduce that there is a related triple ϕ that induces
an element ϕ̄ of W(Γ) of the form a 7→ a + c1, b 7→ b + c2 with ci ∈ Z3

2,
c1 6= 0. Without loss of generality, composing ϕ with some element ofW(ΓC)
if necessary, we can also assume that ϕ̄ fixes ai for i = 1, 2, 3. It is clear that
ϕ̄ and 〈τ〉×GL3(Z2) generate a subgroup W of W(Γ) isomorphic to the one
stated in the result. It remains to show that W(Γ) ≤ W .

Take φ ∈ W(Γ); we claim that φ ∈ W . By φ-invariance of Supp Γ, either
φ(a) = a + c, or φ(a) = b + c, for some c ∈ Z3

2, so if we compose φ with
elements of W we can assume that φ(a) = a. Since the torsion subgroup
Z3

2 is φ-invariant, if we compose with elements of W(ΓC) we can also assume
that φ(ai) = ai (i = 1, 2, 3). Finally, by φ-invariance of Supp Γ and Z3

2, it
must be φ(b) = b+ c for some c ∈ Z3

2, and composing again with elements of
W we can assume in addition that φ(b) = b. Hence φ = 1 and W(Γ) =W .

Finally, let Γ′ denote the Z5
2 grading on the bi-Cayley triple system. Note

that Γ′ induces a coarsening (Γ′,Γ′) of Γ on VB, where we can identify the set
Supp Γ′ with Supp Γ+. SinceW(Γ) is determined by the action of Aut(Γ) on
Supp Γ+ ≡ Supp Γ′, it follows that we can identify Aut(Γ′) with a subgroup
of Aut(Γ) and hence W(Γ′) ≤ W(Γ). Recall that τ̄12, Aut(ΓC) and ϕ induce
the generators of W(Γ), and on the other hand these are given by elements
of Aut(Γ′), so we also have W(Γ) ≤ W(Γ′) with the previous identification,
and therefore W(Γ) =W(Γ′).

Theorem 3.6.2. Let Γ be the isotropic Cayley-Dickson Z × Z3
2-grading on

the bi-Cayley triple system. Then W(Γ) is the whole Aut(Z× Z3
2).

With the natural identification we can express this result as follows:

W(Γ) ∼=
{(

A 0
B C

)
| A ∈ {±1}, B ∈M3×1(Z2), C ∈ GL3(Z2)

}
.

Proof. The proof is similar to the proof of Theorem 3.6.1, so we do not give
all the details. The block with GL3(Z2) is induced by automorphisms of C ex-
tended to TB. The blocks with 0 and {±1} are obtained by W(Γ)-invariance
of the torsion subgroup and the support of Γ. (Both automorphisms τ̄12 and
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c1,−1 induce the element that generates the block {±1} in W(Γ).) Take a
homogeneous a ∈ C with nonzero degree in the associated Cayley-Dickson
grading on C. Hence, tr(a) = 0, and scaling we can assume that n(a) = 1.
Consider the automorphism ϕ = Φ(a) of TB, with Φ as in Proposition 2.2.16.
It is checked that ϕ(xi,±ix̄i) = ±i(xia,±ixia), and therefore ϕ belongs to
Aut(Γ) and induces a nonzero element of the blockM3×1(Z2). We conclude
that all the block M3×1(Z2) appears, which finishes the proof.

Remark 3.6.3. The Weyl group in the result above is isomorphic to the Weyl
group of the Z× Z3

2-grading on the Albert algebra.

We will now compute the Weyl group of the Cartan grading on VB.

Let V denote the bi-Cayley pair. Let Γ be the Cartan grading on V
by G = U(Γ) = Z6. Let T := Diag(Γ) ≤ Aut(V) ≤ Aut(L), where L =
TKK(V) = L−1 ⊕ L0 ⊕ L1. Then, T is a maximal torus of Aut(L) that

preserves Li for i = −1, 0, 1. Consider the extended grading Γ̃ = EG(Γ)

on L (the Cartan grading) and let Φ be the root system associated to Γ̃.
We have the corresponding root space decomposition L = H ⊕ (

⊕
α∈Φ Lα),

where the Cartan subalgebra H is contained in L0, Φ splits as a disjoint union
Φ = Φ−1 ∪ Φ0 ∪ Φ1, and Γσ : Vσ =

⊕
α∈Φσ1 Lα. Also, L0 = Z(L0) ⊕ [L0, L0]

with dimZ(L0) = 1, where [L0, L0] is simple of type D5.
Take a system of simple roots ∆ = {α1, . . . , α6} of Φ with Dynkin diagram

E6 d d d d dd
α1 α3 α4 α5 α6

α2

(3.6.1)

such that {α1, . . . , α5} is a system of simple roots of Φ0 and

Φ±1 = {
6∑
i=1

miαi ∈ Φ | m6 = ±1}.

Any ϕ = (ϕ+, ϕ−) ∈ Aut(Γ) induces an automorphism ϕ̄ ∈ AutU(Γ)
which in turn induces an automorphism ϕ̂ ∈ Aut Φ preserving Φi for i =
−1, 0, 1. Conversely, given any ψ ∈ Aut Φ preserving Φi for i = −1, 0, 1,
there is an automorphism ϕ ∈ Aut(L) such that ϕ(Lα) = Lψ(α) for each
α ∈ Φ; in particular, ϕ(L±1) = ϕ(

⊕
α∈Φ±1 Lα) = L±1 because ψ(Φ±1) = Φ±1,

so ϕ restricts to an automorphism of V . Therefore we have proven:

Theorem 3.6.4. Let Γ denote the Cartan grading on the bi-Cayley pair.
Then, the Weyl group of Γ is isomorphic to the group

W := {ψ ∈ Aut Φ | ψ(Φi) = Φi, i = −1, 0, 1},
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where Φ is the root system of type E6.

Consider the restriction map

Θ: W → Aut Φ0. (3.6.2)

Lemma 3.6.5. The map Θ is injective and im Θ is the Weyl group of type
D5.

Proof. Recall the ordering of the roots in (3.6.1). Extend Θ to the restriction
map

Θ̂: StabAut Φ(Φ0)→ Aut Φ0.

We claim that Θ̂ is injective. If ψ ∈ ker Θ̂, then ψ ∈ Aut Φ and ψ(αi) = αi
for i = 1, . . . , 5. In the euclidean space E = R⊗Z ZΦ, ψ is an isometry. The
orthogonal subspace to α1, . . . , α5 is spanned by the fundamental dominant
weight w6 = 1

3
(2α1+3α2+4α3+6α4+5α5+4α6). Therefore either ψ(w6) = w6

and ψ = id, or ψ(w6) = −w6. In the latter case,

1

3
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4ψ(α6))

= −1

3
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6),

so that ψ(α6) = −α6 − 1
2
(2α1 + 3α2 + 4α3 + 6α4 + 5α5), which is not a root,

a contradiction.
Now, we claim that Θ̂ is surjective. We have Aut Φ0 = WD5 o C2 with

C2 = 〈ϑ〉, where WD5 is the Weyl group of D5 and ϑ is the ‘outer’ automor-
phism such that ϑ(αi) = αi for i = 1, 3, 4, ϑ(α2) = α5, ϑ(α5) = α2. The
linear map ψ such that

ψ(αi) = αi for i = 1, 3, 4,

ψ(α2) = α5, ψ(α5) = α2,

ψ(α6) = −(α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6) (the lowest root),

(3.6.3)

belongs to Aut Φ and Θ̂(ψ) = ϑ. Also, WD5 is generated by the reflections

sα1 , . . . , sα5 , which are the images under Θ̂ of the corresponding reflections

of Φ. We conclude that Θ̂ is surjective.
Finally, the reflections sα1 , . . . , sα5 in Φ belong to W , while ψ in (3.6.3)

permutes Φ1 and Φ−1. Hence, since Θ̂ is bijective, we get StabAut Φ(Φ0) =

W o 〈ψ〉 and im Θ = Θ̃(W) =WD5 .

Theorem 3.6.6. The Weyl group of the Cartan grading on the bi-Cayley
pair is isomorphic to the Weyl group of the root system of type D5.
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Proof. Consequence of Lemma 3.6.5.

Theorem 3.6.7. The Weyl group of the Cartan grading on the bi-Cayley
triple system is isomorphic to Z4

2 o Sym(4), i.e., the automorphism group of
the root system of type B4 (or C4).

Proof. Let Γ denote the Cartan grading on the bi-Cayley triple system. The
automorphisms 2), 3) and 4) of the proof of [EK13, Th. 5.15] induce a sub-
group of the Weyl group of the Cartan Z4-grading on A that is isomorphic
to Z4

2oSym(4). It can be checked that these automorphisms of A restrict to
automorphisms of the bi-Cayley triple system, which is identified with the
subspace B = ι2(C) ⊕ ι3(C), and they induce a subgroup W ∼= Z4

2 o Sym(4)
of W(Γ) (we omit the details here).

On the other hand, the pair (Γ,Γ) can be regarded as a coarsening of

the Cartan grading Γ̃ on VB. Since Supp Γ̃+ generates U(Γ̃), we have that

the Weyl group of Γ̃ can be identified with a subgroup of Sym(Supp Γ̃+).
Also, we can identify W(Γ) with a subgroup of Sym(Supp Γ), and Supp Γ

with Supp Γ̃+. Therefore, with the previous identifications, we can identify
W(Γ) with a subgroup ofW(Γ̃). We recall from Theorem 3.6.6 thatW(Γ̃) is
isomorphic to the Weyl group of the root system of type D5, which is known
to be isomorphic to Z4

2 o Sym(5) (see [H78, Section 12.2]). Therefore, we

have W ≤W(Γ) ≤ W(Γ̃), where W has index 5 in W(Γ̃). We need to prove

that W =W(Γ), so it suffices to prove that W(Γ) 6=W(Γ̃).
Note that any element ϕ ∈ W(Γ) satisfies ϕ(deg(e1, 0)) = −ϕ(deg(e2, 0))

because deg(e1, 0) = − deg(e2, 0). Consider the automorphism φ = ϕ̂e2ϕe1ϕ̂e2
of VB. Then, it can be checked that φ+ is given by

φ+ :


(e1, 0) 7→ (0, e2), (0, e1) 7→ (0, e1),
(e2, 0) 7→ (e2, 0), (0, e2) 7→ (−e1, 0),
(ui, 0) 7→ (ui, 0), (0, ui) 7→ (0, ui),

(vi, 0) 7→ (0,−vi), (0, vi) 7→ (vi, 0),

(3.6.4)

and similarly for φ−, so φ belongs to Aut(Γ̃) and induces an element φ̄ in

W(Γ̃). Notice that φ̄ satisfies φ̄(deg(e1, 0)+) 6= −φ̄(deg(e2, 0)+), and this

implies (with the previous identifications of supports Supp Γ ≡ Supp Γ̃+)
that φ̄ /∈ W(Γ), which concludes the proof.



Chapter 4

Gradings on Albert systems

In this Chapter we give classifications of the fine gradings on the Albert
pair and on the Albert triple system, which are some of the main original
results of this thesis. Also, all these fine gradings are described given by their
universal grading groups, their Weyl groups are computed, and we determine
the (fine) gradings on e7 induced by the fine gradings on the Albert pair.

The main results in this chapter are Theorem 4.2.4 and Theorem 4.3.1,
that classify the fine gradings, up to equivalence, on the Albert Jordan pair
and triple system, respectively.

4.1 Construction of fine gradings on the Al-

bert pair

Recall that the trace of VA is homogeneous for each grading, i.e., we have
that T (x+, y−) 6= 0 implies deg(y−) = − deg(x+) for x+, y− homogeneous
elements of the grading. Hence, to give a grading on VA it suffices to give
the degree map on A+.

Example 4.1.1. Consider a Cayley-Dickson basis {xi}7
i=0 on C with asso-

ciated Z3
2-grading and degree map degC. It can be checked directly that we

have a fine Z3 × Z3
2-grading on VA, with homogeneous basis {Eσ

j , ιj(xi)
σ},

and determined by

deg(E+
1 ) = (−1, 1, 1, 0̄, 0̄, 0̄), deg(ι1(xi)

+) = (1, 0, 0, degC(xi)),

deg(E+
2 ) = (1,−1, 1, 0̄, 0̄, 0̄), deg(ι2(xi)

+) = (0, 1, 0, degC(xi)),

deg(E+
3 ) = (1, 1,−1, 0̄, 0̄, 0̄), deg(ι3(xi)

+) = (0, 0, 1, degC(xi)),

and deg(x+) + deg(y−) = 0 for any elements x+, y− of the homogeneous

71
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basis such that t(x+, y−) 6= 0. This grading will be called the Cayley-Dickson
grading on VA.

Example 4.1.2. Consider the Z3
3-grading on A as a grading on VA and

denote its degree map by degA. Then, we can define a fine Z×Z3
3-grading on

VA by deg(xσ) = (σ1, degA(x)). (Note that, if we identify Z3
3 with a subgroup

of Z × Z3
3, our new grading is just the g-shift of the Z3

3-grading on VA with
g = (1, 0̄, 0̄, 0̄).)

Example 4.1.3. Using the triple product, one can check directly that we
have a fine Z7-grading on VA, where the degree map on A+ is given by

deg ι1(C)+ ι2(C)+ ι3(C)+

e1 (1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 1)
e2 (0, 1, 0, 0, 0, 0, 0) (−1,−2, 1, 1, 1, 1, 0) (2, 1,−1,−1,−1, 0, 1)
u1 (0, 0, 1, 0, 0, 0, 0) (0,−1, 1, 0, 0, 1, 0) (1, 1, 0,−1,−1, 0, 1)
u2 (0, 0, 0, 1, 0, 0, 0) (0,−1, 0, 1, 0, 1, 0) (1, 1,−1, 0,−1, 0, 1)
u3 (0, 0, 0, 0, 1, 0, 0) (0,−1, 0, 0, 1, 1, 0) (1, 1,−1,−1, 0, 0, 1)
v1 (1, 1,−1, 0, 0, 0, 0) (−1,−1, 0, 1, 1, 1, 0) (1, 0,−1, 0, 0, 0, 1)
v2 (1, 1, 0,−1, 0, 0, 0) (−1,−1, 1, 0, 1, 1, 0) (1, 0, 0,−1, 0, 0, 1)
v3 (1, 1, 0, 0,−1, 0, 0) (−1,−1, 1, 1, 0, 1, 0) (1, 0, 0, 0,−1, 0, 1)

E+
1 (0,−1, 0, 0, 0, 1, 1)

E+
2 (2, 2,−1,−1,−1,−1, 1)

E+
3 (−1,−1, 1, 1, 1, 1,−1)

and deg(y−) := − deg(x+) if T (x+, y−) 6= 0, where y ∈ {Ei, ιi(z) | i =
1, 2, 3, z ∈ BC} and BC denotes the associated Cartan basis on C. (The
proof is similar to the proof of Proposition 3.1.4, and using the fact that the
trace is homogeneous.) This Z7-grading will be called the Cartan grading on
VA.

Proposition 4.1.4. The Cayley-Dickson grading on the Albert pair has uni-
versal group Z3 × Z3

2.

Proof. Consider a realization as G-grading, with G an abelian group, of the
Cayley-Dickson grading on VA. Identify ι1(C) ⊕ ι2(C) with B, and notice
that the restriction of the grading to these homogeneous components is the
Cayley-Dickson grading on VB. Call gi = deg(ι1(xi)

+) = − deg(ι1(xi)
−),

a = g0 = deg(ι1(1)+), b = deg(ι2(1)+), c = deg(ι3(1)+) and ai = gi − g0.
Using the same arguments of the proof of Proposition 3.1.3, we deduce that
deg(ι1(xi)

+) = a + ai, deg(ι2(xi)
+) = b + ai, deg(ι3(xi)

+) = c + ai, and also
that degC(xi) := ai defines a group grading which is a coarsening of the Z3

2-
grading on C. Therefore, there is an epimorphism Z3 × Z3

2 → G that sends
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(1, 0, 0, 0̄, 0̄, 0̄) 7→ a, (0, 1, 0, 0̄, 0̄, 0̄) 7→ b, (0, 0, 1, 0̄, 0̄, 0̄) 7→ c and restricts to
an epimorphism 0 × Z3

2 → 〈ai〉. We conclude that Z3 × Z3
2 is the universal

group.

Proposition 4.1.5. The fine Z× Z3
2-grading on A in (1.5.8), considered as

a grading on VA, admits a unique fine refinement, up to relabeling, which has
universal group Z3 × Z3

2 and is equivalent to the Cayley-Dickson grading.

Proof. With the notation in (1.5.6), since

Uν+(1)(S−) = 16E and {ν+(1), E, ν−(1)} = 8Ẽ,

it follows that Eσ and Ẽσ are homogeneous for any refinement of this grading.
Set a = −1√

2
1, λ = 1√

2
. It suffices to prove that the automorphism ϕ =

ci,1,i φ1(a, λ) of the Albert pair (see Proposition 2.2.10 and (2.2.3)) is an
equivalence between the Cayley-Dickson grading and any fine refinement of
the Z× Z3

2-grading. A straightforward computation shows that:

ϕ+ : E1 7→ E1, E2 7→
1

2
S+, E3 7→

1

2
S−,

ι1(1) 7→ 2Ẽ, ι1(a) 7→ iι1(a) = ν(a),

ι2(x) 7→ 1√
2
ν−(x), ι3(x̄) 7→ 1√

2
ν+(x),

ϕ− : E1 7→ E1, E2 7→
1

2
S−, E3 7→

1

2
S+,

ι1(1) 7→ 2Ẽ, ι1(a) 7→ −iι1(a) = −ν(a),

ι2(x) 7→ 1√
2
ν+(x), ι3(x̄) 7→ 1√

2
ν−(x)

(4.1.1)

so that ϕ takes the homogeneous components of the Cayley-Dickson grading
to homogeneous components in any refinement of the Z × Z3

2-grading, as
required.

Proposition 4.1.6. The fine Z3
3-grading on A, considered as a grading on

VA, admits a unique fine refinement, up to relabeling, which has universal
group Z× Z3

3.

Proof. This is a consequence of Proposition 2.1.17. The degree map can be
given by deg(xσ) = (σ1, degA(x)), where degA(x) denotes the degree of the
Z3

3-grading on A.

Proposition 4.1.7. The fine Z4-grading on A, considered as a grading on
VA, admits a unique fine refinement, up to relabeling, which has universal
group Z7 and is the Cartan grading on VA.
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Proof. The proof is arduous but straightforward, so we do not give all the
details. Note that, since {ιi+1(e1)σ, ιi(e1)−σ, ιi+2(e1)σ} = 8Eσ

i , the elements
Eσ
i must be homogeneous, so the fine refinement is unique. Consider a re-

alization as G-grading, with G an abelian group, of the Cartan grading on
VA. One can check directly that the degrees of the elements ι1(e1)+, ι1(e2)+,
ι1(u1)+, ι1(u2)+, ι1(u3)+, ι2(e1)+, ι3(e1)+ generate G. We conclude that the
G-grading is induced from the Cartan grading by some epimorphism Z7 → G
that is the identity on the support (and sends the canonical basis of Z7 to
the degrees of the mentioned elements), and so Z7 is the universal group of
the Cartan grading on VA.

4.2 Classification of fine gradings on the Al-

bert pair

Given a grading on a semisimple Jordan pair, by Remark 2.1.23, any ho-
mogeneous element can be completed to a maximal orthogonal system of
homogeneous idempotents. In the case of the Albert pair, since the capacity
is 3, it will consist either of three idempotents of rank 1, or one idempo-
tent of rank 2 and another of rank 1, or one of rank 3. We will cover these
possibilities with the following Lemmas.

Lemma 4.2.1. Let Γ be a fine grading on VA such that all nonzero homoge-
neous idempotents have rank 1. Then, Γ is equivalent to the Cartan grading
(Example 4.1.3).

Proof. We can take a set of three orthogonal homogeneous idempotents
F = {e1, e2, e3}, so F is a frame, and up to automorphism (by Theorem 1.7.2
or Remark 1.7.6), we can assume that ei = (E+

i , E
−
i ). Hence, for any per-

mutation {i, j, k} = {1, 2, 3}, the associated Peirce subspaces,

(VB)σjk = {x ∈ A | D(eσj , e
−σ
j )x = x = D(eσk , e

−σ
k )x} = ιi(C)σ,

are graded. It is clear that Γ restricts to a grading ΓB on the bi-Cayley
pair VB := (B,B), where B := ι1(C) ⊕ ι2(C). By [S87], we know that each
automorphism of the bi-Cayley pair has a unique extension to the Albert pair
that fixes E+

3 and E−3 , and hence we can identify AutVB with the stabilizer
of e3 in AutVA. The nonzero homogeneous elements of ΓB must have rank
one, and therefore ΓB is equivalent to the Cartan Z6-grading. We can apply
an automorphism of VB extended to AutVA and assume that we have the
Cartan basis on VB as in Example 3.1.2. Then, it is easy to check that we
have the homogeneous basis of the Cartan grading on the Albert pair, and
consequently, Γ is the Cartan Z7-grading on the Albert pair.
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Lemma 4.2.2. Let Γ be a fine grading on VA such that there are two orthog-
onal homogeneous idempotents, one of rank 1 and the other of rank 2. Then,
Γ is equivalent to the Cayley-Dickson Z3 × Z3

2-grading (Example 4.1.1).

Proof. Denote by e1 and e2 the orthogonal homogeneous idempotents, with
rk(e1) = 1 and rk(e2) = 2. By Remark 1.7.6 we can assume that eσ1 =

E := E1 and eσ2 = Ẽ := E2 + E3. The Peirce subspace Bσ := {x ∈
A | D(eσ1 , e

−σ
1 )x = x = D(eσ2 , e

−σ
2 )x} = ι2(C) ⊕ ι3(C) is graded, and we

can identify it with the bi-Cayley pair VB. The grading ΓB induced on VB
must be equivalent to the Cayley-Dickson Z2×Z3

2-grading (because the Car-
tan grading on VB can only be extended to the Cartan grading on VA, which
does not have homogeneous elements of rank 2). By the same arguments
used in the proof of Lemma 4.2.1, we can apply an automorphism of the
bi-Cayley pair extended to VA to assume that we have a homogeneous basis
of VA as in Proposition 4.1.5 (the elements of VB are of the form ν±(x)). We
conclude that Γ is equivalent to the Cayley-Dickson Z3 × Z3

2-grading.

Lemma 4.2.3. Let Γ be a fine grading on VA with some homogeneous idem-
potent of rank 3. Then, char F 6= 3 and Γ is equivalent to the Z×Z3

3-grading
(Example 4.1.2).

Proof. Let e be a homogeneous idempotent of rank 3. By Remark 1.7.6, we
can assume, up to automorphism, that e = (1+, 1−), where 1 is the identity
of A. By Theorem 2.1.24, the homogeneous components are 1-dimensional,
and on the other hand the trace is homogeneous and nondegenerate, so the
restriction of the trace to the subpair (F1+,F1−) must be nondegenerate,
which forces char F 6= 3.

By Proposition 2.1.17, if g = − deg(1+) and degg is the degree map of the

shift Γ[g] of Γ, then degg(x
+) = degg(x

−) for any homogeneous element x ∈ A,
and degg restricts to a grading ΓA on A. Since Γ is fine, its homogeneous
components are 1-dimensional by Proposition 2.1.24, and this is also true
for ΓA. Therefore, ΓA must be, up to equivalence, the Z3

3-grading, because
this is the only grading on A with 1-dimensional homogeneous components.
Finally, since Γ is a shift of the Z3

3-grading (ΓA,ΓA) on VA, this forces Γ to
be the Z× Z3

3-grading (see Proposition 2.1.17).

Theorem 4.2.4. The fine gradings on the Albert pair are, up to equivalence,

• the Cartan Z7-grading (Example 4.1.3),

• the Cayley-Dickson Z3 × Z3
2-grading (Example 4.1.1),

• the Z× Z3
3-grading (Example 4.1.2).
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The Z× Z3
3-grading only occurs if char F 6= 3.

Proof. This result follows since Lemmas 4.2.1, 4.2.2 and 4.2.3 cover all pos-
sible cases.

4.3 Classification of fine gradings on the Al-

bert triple system

Theorem 4.3.1. There are four gradings, up to equivalence, on the Albert
triple system. Their universal groups are: Z4 ×Z2, Z6

2, Z×Z4
2 and Z3

3 ×Z2.

Proof. This is a consequence of Corollary 2.1.12, Proposition 2.1.18 and the
classification of fine gradings on the Albert algebra ([EK12a]).

4.4 Induced gradings on e7

Proposition 4.4.1. The Cartan Z7-grading on the Albert pair extends to a
fine grading with universal group Z7 and type (126, 0, 0, 0, 0, 0, 1) on e7, that
is, a Cartan grading on e7.

Proof. This follows by the same arguments as in the proof of Proposition 3.5.1.

Proposition 4.4.2. The Cayley-Dickson Z3×Z3
2-grading on the Albert pair

extends to a fine grading with universal group Z3 × Z3
2 and type (102, 0, 1, 7)

on e7.

Proof. This is a consequence of Theorem 2.1.21, except for the type, which
we will now compute. Notice that L1 ⊕ L−1 = A+ ⊕ A− consists of 54
homogeneous components of dimension 1.

Set e = (0, 0, 0, 0̄, 0̄, 0̄) ∈ Z3 × Z3
2. Note that {Ei, Ei, ·} acts multiplying

by 2 on Ei, and multiplying by 0 on Ei+1 and Ei+2. Therefore, dimL0
e ≥ 3.

Recall from the proof of Proposition 3.5.2 that the Z2 × Z3
2-grading on

e6 (induced from VB) has 16 components of dimension 1 with associated de-
grees (±1,∓1, g) with g ∈ Z3

2. Therefore, by symmetry for our grading on e7,
there must be 16 × 3 = 48 homogeneous components of at least dimension
1 (the dimension may increase on e7), with associated degrees (±1,∓1, 0, g),
(±1, 0,∓1, g), (0,±1,∓1, g), where g ∈ Z3

2. These components span a sub-
space of dimension at least 48.

Recall also that the Z2×Z3
2-grading on e6 has 7 components of dimension

4 and degrees (0, 0, g) with e 6= g ∈ Z3
2, so the Z3 × Z3

2-grading on e7 has at
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least 7 components, with degrees (0, 0, 0, g) with e 6= g ∈ Z3
2, of dimension at

least 4, whose sum spans a subspace of dimension at least 28.
Finally, note that de sum of the previous subspaces has dimension at least

54 + 3 + 48 + 28 = 133 = dime7. Hence, the inequalities in the dimensions
above are equalities, and the result follows.

Proposition 4.4.3. The Z×Z3
3-grading on the Albert pair extends to a fine

grading with universal group Z× Z3
3 and type (55, 0, 26) on e7.

Proof. This is a consequence of Theorem 2.1.21, except for the type, which
we will now compute. We know that our grading satisfies that, if Aσg = Fx
for some 0 6= x ∈ A, then A−σ−g = Fx−1. Hence L0

e is spanned by elements of
the form ν(x, x−1). But it is well-known that, if an element x is invertible
in a Jordan algebra, then {x, x−1, ·} = 2id. Therefore, L0

e = F(id,−id) has
dimension 1. (Actually, L0

e is the center of L0.) Moreover, the subspace
L1 ⊕ L−1 = A+ ⊕ A− consists of 54 homogeneous components of dimension
1.

The rest of homogeneous components span a subspace of dimension 133−
55 = 78 (actually, a subalgebra isomorphic to e6) and support {(0, g) | 0 6=
g ∈ Z3

3}, and since its homogeneous components are clearly in the same orbit
under the action of Aut Γ (see Theorem 4.5.1 and its proof for more details),
each of them must have dimension 78/26 = 3.

4.5 Weyl groups of fine gradings on Albert

systems

Now we will compute the Weyl groups of the fine gradings on the Albert pair
and Albert triple system.

As a consequence of Corollary 2.1.14 and the classification of the Weyl
groups of fine gradings on A (see [EK13]), we already know the Weyl groups
of the fine gradings on the Albert triple system.

Theorem 4.5.1. Let Γ be the fine grading on VA with universal group Z×Z3
3.

Then, with the natural identification of Aut(Z × Z3
3) with a group of 4 × 4-

matrices,

W(Γ) ∼=
{(

1 0
A B

)
| A ∈M3×1(Z3), B ∈ SL3(Z3)

}
.

Proof. Set G = Z × Z3
3 and identify the subgroups Z and Z3

3 with Z × 0
and 0 × Z3

3. Let ΓA be the Z3
3-grading on A as given in Equation (1.5.9),
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and degA its degree map. Let a1, a2, a3 denote the canonical generators of
Z3

3 (hence degA(Xi) = ai), and write a for the generator 1 of Z. Therefore,
for each homogeneous element x ∈ A, we have deg(x±) = (±1, degA(x)) in
Γ. By [EK12b], W(ΓA) ∼= SL3(Z3). With the identification AutA ≤ AutVA,
we have Aut ΓA ≤ Aut Γ, and we can also identify W(ΓA) with a subgroup
of W(Γ) which acts on Z3

3 and fixes the generator a of Z. Since Supp Γ+

and the torsion subgroup Z3
3 are W(Γ)-invariant, we deduce that SL3(Z3),

0 and 1 appear in the block structure of W(Γ), as it is described above.
We claim now that M3×1(Z3) appears in the block structure, and for this
purpose, it suffices to find an element of W(Γ) given by a 7→ a+ a3 and that
fixes each ai. Take ϕ = c1,ω2,ω with ω a primitive cubic root of 1, and the
induced automorphism τ in W(Γ) (notation cλ1,λ2,λ3 as in Subsection 2.2.2).
It is clear that τ(a1) = a1 and τ(a2) = a2. Since ϕ(1) =

∑3
i=1 ω

2iEi, we
have τ(a) = a + a3. Also, ϕ(

∑3
i=1 ω

2iEi) =
∑3

i=1 ω
iEi, from where we get

τ(a+ a3) = a+ 2a3, and so τ(a3) = a3. We conclude that τ is the element of
W(Γ) that we were looking for, and hence a subgroup W of W(Γ) as in the
statement appears. It remains to prove that W(Γ) ≤ W .

Take φ ∈ W(Γ); we claim that φ ∈ W . Without loss of generality
for our purpose, if we compose with elements of W we can assume that
φ(a) = a. It suffices to show that φ acts on Z3

3 as an element of SL3(Z3).
We know by [EK12b] that there are two equivalent but nonisomorphic G-
gradings on A, that we denote by Γ+ = ΓA and Γ−. (The nonisomorphy
is due to the existence of homogeneous elements Xi in Γ+ and X ′i in Γ−,
with Xi and X ′i of the same degree, and such that (X1X2)X3 = ωX1(X2X3)
and (X ′1X

′
2)X ′3 = ω2X ′1(X ′2X

′
3).) Notice that the product in the algebra is

determined by the triple product and the elements 1± (because {x, 1, y} =
2xy), so it follows that Γ+ and Γ− remain nonisomorphic when they are
considered as Z3

3-gradings on VA. Thus, the whole GL3(Z3) cannot appear
in the block structure. Since SL3(Z3) has index 2 in GL3(Z3), we deduce
that SL3(Z3) is exactly what appears in the block structure of W(Γ). We
conclude that φ acts on Z3

3 as an element of SL3(Z3), and so φ ∈ W .

Theorem 4.5.2. Let Γ be the Cayley-Dickson Z3×Z3
2-grading on VA. Then,

W(Γ) ∼=
{(

A 0
B C

)
| A ∈ Sym(3) = 〈τ, σ〉, B ∈M3(Z2), C ∈ GL3(Z2)

}
,

with

τ =

 0 1 0
1 0 0
0 0 1

 , σ =

 0 0 1
1 0 0
0 1 0

 ∈ GL3(Z2).
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Proof. Set G = Z3×Z3
2 and identify Z3 and Z3

2 with the subgroups Z3×0 and
0 × Z3

2. Let a1, a2, a3 be the canonical generators of Z3
2, and bi = deg+(Ei),

for i = 1, 2, 3, the generators of Z3. Let ΓC be the Z3
2-grading on C. It

is well-known (see [EK13, Th. 4.19]) that W(ΓC) ∼= Aut(Z3
2) ∼= GL3(Z2),

and the automorphisms of C are extended to related triples, which are also
extended to Aut(VA), and hence GL3(Z2) appears in the block structure.
Since the torsion subgroup Z3

2 isW(Γ)-invariant, the zero block must appear.
The homogeneous components consisting of elements of rank 1 are exactly
the ones of the idempotents Ei, and therefore the set {b1, b2, b3} is W(Γ)-
invariant. This implies that the (1, 1)-block is, up to isomorphism, a subgroup
of Sym(3); since there are elements of Aut Γ that permute the idempotents
Ei, the group Sym(3) must be what appears in the block. On the other hand,
for the Cayley-Dickson grading Γ′ of VB, we know that there are related triples
in Aut Γ′ that do not fix the subgroup Z3 of the universal group, and these
are obtained as restriction of elements of Aut Γ that do not fix Z3, so it
follows thatM3(Z2) must appear in the block structure. This concludes the
proof.

We will now compute the Weyl group of the Cartan grading on VA.

Let V denote the Albert pair. Let Γ be the Cartan grading on V by
G = U(Γ) = Z7. Let T := Diag(Γ) ≤ Aut(V) ≤ Aut(L), where L =
TKK(V) = L−1 ⊕ L0 ⊕ L1. Then, T is a maximal torus of Aut(L) that

preserves Li for i = −1, 0, 1. Consider the extended grading Γ̃ = EG(Γ)

on L (the Cartan grading) and let Φ be the root system associated to Γ̃.
We have the corresponding root space decomposition L = H ⊕ (

⊕
α∈Φ Lα),

where the Cartan subalgebra H is contained in L0, Φ splits as a disjoint union
Φ = Φ−1 ∪ Φ0 ∪ Φ1, and Γσ : Vσ =

⊕
α∈Φσ1 Lα. Also, L0 = Z(L0) ⊕ [L0, L0]

with dimZ(L0) = 1, where [L0, L0] is simple of type E6.
Take a system of simple roots ∆ = {α1, . . . , α7} of Φ with Dynkin diagram

E7 d d d d d dd
α1 α3 α4 α5 α6 α7

α2

(4.5.1)

such that {α1, . . . , α6} is a system of simple roots of Φ0 and Φ±1 = {
∑7

i=1miαi ∈
Φ | m7 = ±1}.

Any ϕ = (ϕ+, ϕ−) ∈ Aut(Γ) induces an automorphism ϕ̄ ∈ AutU(Γ)
which in turn induces an automorphism ϕ̂ ∈ Aut Φ preserving Φi for i =
−1, 0, 1. Conversely, given any ψ ∈ Aut Φ preserving Φi for i = −1, 0, 1,
there is an automorphism ϕ ∈ Aut(L) such that ϕ(Lα) = Lψ(α) for each
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α ∈ Φ; in particular, ϕ(L±1) = ϕ(
⊕

α∈Φ±1 Lα) = L±1 because ψ(Φ±1) = Φ±1,
so ϕ restricts to an automorphism of V . Therefore we have proven:

Theorem 4.5.3. Let Γ denote the Cartan grading on the Albert pair. Then,
the Weyl group of Γ is isomorphic to the group

W := {ψ ∈ Aut Φ | ψ(Φi) = Φi, i = −1, 0, 1},

where Φ is the root system of type E7.

Consider the restriction map

Θ: W → Aut Φ0. (4.5.2)

Lemma 4.5.4. The map Θ is injective and im Θ is the Weyl group of type
E6.

Proof. This proof is analogous to the proof of Lemma 3.6.5, so we will not
give all the details. Recall the ordering of the roots in (4.5.1). Extend Θ to
the restriction map

Θ̂: StabAut Φ(Φ0)→ Aut Φ0.

The proof of the injectivity of Θ̂ is similar to the one given in the proof of
Lemma 3.6.5. In this case, this is proven with the same arguments and using
that the orthogonal subspace to α1, . . . , α6 is spanned by the fundamental
dominant weight w7 = 1

2
(2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7).

The proof of the surjectivity of Θ̂ is similar to the one given in the proof
of Lemma 3.6.5. In this case, this is proven using the automorphism ψ of Φ
that fixes α2 and α4, interchanges α1 ↔ α6, α3 ↔ α5, and sends α7 to the
lowest root −(2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7)).

Finally, the reflections sα1 , . . . , sα6 in Φ belong to W , while ψ in (3.6.3)

permutes Φ1 and Φ−1. Hence, since Θ̂ is bijective, we get StabAut Φ(Φ0) =

W o 〈ψ〉 and im Θ = Θ̃(W) =WE6 .

Theorem 4.5.5. The Weyl group of the Cartan grading on the Albert pair
is isomorphic to the Weyl group of the root systems of type E6.

Proof. Consequence of Lemma 4.5.4.



Chapter 5

A Z34-grading on the Brown
algebra

This Chapter is part of a joint work with A. Elduque and M. Kochetov
([AEK14]). In Section 5.1 we recall some well-known constructions of the
Brown algebra. A construction of a fine Z3

4-grading on the Brown algebra
is given in Section 5.2, which is one of the main original contributions of
the author in this thesis. (Another different construction of this grading was
given in [AEK14], which is not included in this thesis since the author did
not contribute to it.) In the latter sections, which are a joint work with the
authors mentioned above, we give a recognition Theorem of the Z3

4-grading,
the Weyl group of the grading is computed, and we study some related fine
gradings induced on the exceptional simple Lie algebras of type E.

The main results in this chapter are given in Section 5.2, where the Z3
4-

grading is constructed explicitly, and Theorem 5.3.1, that is the recognition
theorem.

5.1 Brown algebras

5.1.1 Brown algebras via Cayley–Dickson process

Recall that we assume char F 6= 2. The split Brown algebra can be obtained
as the Cayley–Dickson double of two different separable Jordan algebras of
degree 4. We will consider a more general situation. For the basic definitions
of structurable algebras and the Cayley-Dickson doubling process, the reader
may consult Chapter 1.

Let Q be a quaternion algebra over F with its standard involution, q 7→ q̄.
The algebra M4(Q) is associative and has a natural involution (qij)

∗ = (qji),

81
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so H4(Q) := {x ∈ M4(Q) | x∗ = x} is a Jordan algebra with respect to the
symmetrized product (x, y) 7→ 1

2
(xy + yx). This is a simple Jordan algebra

of degree 4 and dimension 28, so CD(H4(Q), µ) is a structurable algebra of
dimension 56, for any µ ∈ F×.

Remark 5.1.1. If char F = 3, we cannot apply the results in [AF84] di-
rectly, but Q can be obtained by “extension of scalars” from the “generic”
quaternion algebra Q̃ over the polynomial ring Z[X, Y ], hence H4(Q) can be
obtained from the Jordan algebra H4(Q̃) over Z[1

2
][X, Y ], and CD(H4(Q), µ)

can be obtained from the algebra CD(H4(Q̃), Z) over Z[1
2
][X, Y, Z], which

satisfies the required identities because it is a subring with involution in a
structurable algebra over the field Q(X, Y, Z).

Let C be an octonion algebra over F and consider the associated Albert
algebra A = H3(C). Then, A × F is a separable Jordan algebra of degree 4
and dimension 28, so CD(A×F, µ) is a structurable algebra of dimension 56,
for any µ ∈ F×.

The connection between the above two Cayley–Dickson doubles is the
following: if C = CD(Q, µ), then CD(H4(Q), µ) is isomorphic to CD(A ×
F, µ). Indeed, we have CD(H4(Q), µ) = H4(Q)⊕vH4(Q) and CD(A×F, µ) =
(A× F)⊕ v′(A× F) with v2 = µ1 = v′2. For any a ∈ Q, define the elements
of H4(Q):

ι′1(a) =


0 0 0 2a
0 0 0 0
0 0 0 0
2ā 0 0 0

 , ι′2(a) =


0 0 0 0
0 0 0 2a
0 0 0 0
0 2ā 0 0

 , ι′3(a) =


0 0 0 0
0 0 0 0
0 0 0 2a
0 0 2ā 0

 .

Then we have a Z2-grading onH4(Q) given byH4(Q)0̄ = diag(H3(Q),F) and
H4(Q)1̄ =

⊕3
j=1 ι

′
j(Q). The automorphism of order 2 producing this grading

can be extended to an automorphism of A = CD(H4(Q), µ) sending v to
−v, which also has order 2 and will be denoted by Υ. The fixed subalgebra
of Υ is B = diag(H3(Q),F) ⊕

⊕3
j=1 vι

′
j(Q). The involution is trivial on B,

so it is a Jordan algebra. Since Lv is an invertible operator, the Z2-grading
produced by Υ is A = B ⊕ vB. Write C = Q ⊕ uQ with u2 = µ1. Then
it is straightforward to verify that the mapping ϕCD : B → A × F defined
by diag(x, λ) 7→ (x, λ), for x ∈ H3(Q), λ ∈ F, and vι′j(a) 7→ (ιj(ua), 0), for
a ∈ Q, is an isomorphism of algebras. Moreover, we have ϕCD(bθ) = ϕCD(b)θ

for all b ∈ B, so identities (1.10.4) for the algebra A imply that ϕCD can be
extended to an isomorphism ϕCD : CD(H4(Q), µ)→ CD(A×F, µ) sending v
to v′.

Definition 5.1.2. LetQ be a quaternion algebra over F and let C = CD(Q, 1),
so C is the split octonion algebra and A = H3(C) is the split Albert algebra.
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Then the structurable algebra CD(H4(Q), 1) ∼= CD(A×F, 1) will be referred
to as the split Brown algebra.

5.1.2 Brown algebras as structurable matrix algebras

It is shown in [AF84], assuming char F 6= 2, 3, that the admissible triple
(T,N,N) arising from a separable Jordan algebra J of degree 3 can be
realized on the space of elements with generic trace 0 in the separable Jordan
algebra J ×F of degree 4 (see Propositions 5.6 and 6.5) so that CD(J ×F, 1)
is isomorphic to the structurable matrix algebra defined by (T,N,N). We
will now exhibit this isomorphism for the case J = A and see that it also
works in the case char F = 3.

Remark 5.1.3. If char F = 3, we can still define “structurable matrix alge-
bras” starting from the cubic form N(x) and taking its polarization for the
symmetric trilinear form N(x, y, z).

For the admissible triple (T,N,N) on A, we have

x# = x2 − T (x)x+ S(x)1 (Freudenthal adjoint),

x× y = (x+ y)# − x# − y# (Freudenthal cross product),

S(x) =
1

2
(T (x)2 − T (x2)),

for any x, y ∈ A, hence we have the identities

x× x = 2x2 − 2T (x)x+
(
T (x)2 − T (x2)

)
1,

x× 1 = T (x)1− x.
(5.1.1)

Let Ã be the corresponding structurable matrix algebra (defined as in Sec-
tion 1.9) and let s0 = ( 1 0

0 −1 ), so s0 spans the space of skew elements and
s2

0 = 1. For x ∈ A, denote η(x) = ( 0 x
0 0 ) and η′(x) = ( 0 0

x 0 ). The sub-
algebra B̃ := {η(x) + η′(x) + λ1 | x ∈ A, λ ∈ F} of Ã consists of sym-
metric elements, so it is a Jordan algebra. We claim that it is isomor-
phic to A × F. Indeed, define a linear injection ι : A → B̃ by setting
ι(x) = 1

4

(
η(2x−T (x)1)+η′(2x−T (x)1)+T (x)1

)
for all x ∈ A. Using identi-

ties (5.1.1), one verifies that ι(x)2 = ι(x2), so ι is a nonunital monomorphism
of algebras. Then eA = ι(1) and eF = 1 − eA are orthogonal idempotents
and B̃ = ι(A) ⊕ FeF. We conclude that A × F → B̃, (x, λ) 7→ ι(x) + λeF, is
an isomorphism of algebras. This isomorphism extends to an isomorphism
CD(A × F, 1) = (A × F) ⊕ v′(A × F) → Ã sending v′ to s0. (The bilinear
form φ(a, b) in the Cayley–Dickson construction corresponds to 2tr(ab̄) on
the structurable matrix algebra.)
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5.2 A construction of a fine Z3
4-grading

In this section, we will construct a Z3
4-grading for the model of the split

Brown algebra as in Subsection 5.1.2, assuming F contains a 4-th root of
unity i. Let C be the split octonion algebra and let A = H3(C) be the split
Albert algebra, with generic trace T and generic norm N . Consider the
structurable matrix algebra A associated to the admissible triple (T,N,N),
i.e., the product is given by (1.9.1) and the involution is given by (1.9.2).
Note that the Freudenthal cross product on A, which appears in (1.9.1), is
given by:

i) Ei × Ei+1 = Ei+2, Ei × Ei = 0,

ii) Ei × ιi(x) = −ιi(x), Ei × ιi+1(x) = 0 = Ei × ιi+2(x),

iii) ιi(x)× ιi(y) = −4n(x, y)Ei, ιi(x)× ιi+1(y) = 2ιi+2(x̄ȳ).

As shown in [AM99], for the Z3
2-grading on the split Cayley algebra C one

can choose a homogeneous basis {xg | g ∈ Z3
2} such that the product is given

by xgxh = σ(g, h)xg+h where

σ(g, h) = (−1)ψ(g,h),

ψ(g, h) = h1g2g3 + g1h2g3 + g1g2h3 +
∑
i≤j

gihj.

Consider the para-Cayley algebra associated to C, i.e., the same vector space
with the new product x ∗ y = x̄ȳ. Note that xg ∗ xh = γ(g, h)xg+h where

γ(g, h) = s(g)s(h)σ(g, h),

s(g) = (−1)φ(g),

φ(g) =
∑
i

gi +
∑
i<j

gigj + g1g2g3,

because s(g) = −1 if g 6= 0 and s(0) = 1, so x̄g = s(g)xg for all g ∈ Z3
2.

Denote a0 = 0, a1 = (0̄, 1̄, 0̄), a2 = (1̄, 0̄, 0̄), a3 = a1 + a2, g0 = (0̄, 0̄, 1̄)
in Z3

2. We will consider the quaternion algebra Q = span{xai | i = 0, 1, 2, 3}
with the ordered basis BQ = {xai | i = 0, 1, 2, 3}, and Q⊥ = span{xg0+ai | i =
0, 1, 2, 3} with the ordered basis BQ⊥ = {xg0+ai | i = 0, 1, 2, 3}. Thus,
BC = BQ ∪ BQ⊥ is an ordered basis of C. It will be convenient to write the
values γ(g, h) as an 8 × 8 matrix according to this ordering and split this
matrix into 4 × 4 blocks: γ = ( γ11 γ12γ21 γ22 ), so γ11 records the values for the
support of Q, etc.
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A straightforward calculation shows that

γ11 =


1 −1 −1 −1
−1 −1 1 −1
−1 −1 −1 1
−1 1 −1 −1

 , γ12 =


−1 −1 −1 −1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1

 ,

γ21 =


−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1

 , γ22 =


−1 −1 −1 −1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 .
(5.2.1)

Define σj(h) := σ(aj, g0 + h) for any h ∈ Supp Q⊥, j = 1, 2, 3. Note that
the matrix of σ(aj, g0 + h), h ∈ BQ⊥ , coincides with the matrix σ11, which is
given by

σ11 = (σ(aj, ak))j,k =


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 . (5.2.2)

We will need the following result in our construction of the Z3
4-grading

on A.

Lemma 5.2.1. The basis BC = BQ ∪BQ⊥ of C has the following properties:

(P11) γ(g, g′) = γ(g + aj, g
′ + aj+1),

(P22) γ(h, h′) = σj(h)σj+1(h′)γ(h+ aj, h
′ + aj+1),

(P12) γ(g, h) = σj+1(h)σj+2(g + h)γ(g + aj, h+ aj+1),

(P21) γ(h, g) = σj(h)σj+2(g + h)γ(h+ aj, g + aj+1),

for all g, g′ ∈ Supp Q, h, h′ ∈ Supp Q⊥ and j ∈ {1, 2, 3}.

Proof. To shorten the proof, we will use matrices, but we need to introduce
some notation. For j = 1, 2, 3, let σj be the column of values σj(h), h ∈
Supp Q⊥, i.e., σj is the traspose of the corresponding row of matrix σ11. We
will denote by · the entry-wise product of matrices. (It is interesting to note
that the rows and columns of σ11 are the characters of Z2

2, which is related
to the obvious fact σj ·σj+1 = σj+2.) Denote Mσj = [σj|σj|σj|σj] (the column
σj repeated 4 times), and define the permutation matrices

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and P2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
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Note that the properties asserted in this lemma possess a cyclic symmetry
in j = 1, 2, 3 (as can be checked in the four blocks of γ), so it suffices to
verify them for j = 1. Then, property (P11) can be written as γ11 = P1γ11P2,
because P1γ11P2 is the matrix associated to γ(g + a1, g

′ + a2). Similarly,
property (P22) can be writen as γ22 = Mσ1 · (P1γ22P2) ·M t

σ2
. Note that σ

is multiplicative in the second variable (because ψ is linear in the second
variable), so σ3(g + h) = σ(a3, g + g0 + h) = σ(a3, g)σ(a3, g0 + h) = σ3(g0 +
g)σ3(h). Therefore, (P12) and (P21) can be written as γ12 = Mσ3 · (P1γ12P2) ·
M t

σ2·σ3 and γ21 = Mσ1·σ3 · (P1γ21P2) ·M t
σ3

. It is straightforward to check these
four matrix equations.

We will consider Z3
2 as a subgroup of Z3

4 via the embedding a1 7→ (0̄, 2̄, 0̄),
a2 7→ (0̄, 0̄, 2̄), a3 7→ (0̄, 2̄, 2̄) and g0 7→ (2̄, 0̄, 0̄), so we can assume that γ and
σ are defined on a subgroup of Z3

4 and take values as recorded in matrices
(5.2.1) and (5.2.2). Define b1 = (0̄, 1̄, 0̄), b2 = (0̄, 0̄, 1̄) and b3 = −b1 − b2 in
Z3

4. Note that
∑
bj = 0 and aj 7→ 2bj under the embedding.

Now we will define a Z3
4-grading on A by specifying a homogeneous basis.

For each g ∈ Supp Q, h ∈ Supp Q⊥ and j ∈ {1, 2, 3}, consider the elements
of A:

αj,g :=

(
0 ιj(xg)

ιj(xg+aj) 0

)
, α′j,h :=

(
0 σj(h)iιj(xh)

ιj(xh+aj) 0

)
,

εj :=

(
0 Ej
Ej 0

)
, ε′j := εjs0 =

(
0 −Ej
Ej 0

)
.

(5.2.3)

Then BA = {1, s0, αj,g, αj,gs0, α
′
j,h, α

′
j,hs0, εj, ε

′
j} is a basis of A. Set

deg(1) := 0, deg(εj) := aj,
deg(αj,g) := bj + g, deg(α′j,h) := (1̄, 0̄, 0̄) + bj + h,
deg(xs0) := deg(x) + g0 for x ∈ {1, αj,g, α′j,h, εj}.

(5.2.4)

To check that (5.2.4) defines a Z3
4-grading, we compute the products of

basis elements.

Proposition 5.2.2. For any elements x, y ∈ BA\{1, s0}, if deg(x)+deg(y) 6=
g0 then xy = yx, and otherwise xy = −yx. The products of the elements of
BA are then determined as follows:

i) s2
0 = ε2

j = 1 = −ε′2j , εjεj+1 = εj+2,

ii) εjε
′
j = s0, ε′jε

′
j+1 = εj+2, εjε

′
j+1 = −ε′j+2, εj+1ε

′
j = −ε′j+2,

iii) εjαj,g = ε′j(αj,gs0) = −αj,g+aj , εj(αj,gs0) = ε′jαj,g = αj,g+ajs0,
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iv) εjα
′
j,h = ε′j(α

′
j,hs0) = −iσj(h)α′j,h+aj

, εj(α
′
j,hs0) = ε′jα

′
j,h = iσj(h)α′j,h+aj

s0,

v) εjαk,g = εjα
′
k,h = ε′jαk,g = ε′jα

′
k,h = 0 if j 6= k,

vi) α2
j,g = (αj,gs0)2 = −8εj, αj,gαj,g+aj = −(αj,gs0)(αj,g+ajs0) = 8,

vii) αj,g(αj,gs0) = 8ε′j, αj,g(αj,g+ajs0) = 8s0,

viii) α′2j,h = (α′j,hs0)2 = 8ε′j, α
′
j,hα

′
j,h+aj

= −(α′j,hs0)(α′j,h+aj
s0) = 8iσj(h)s0,

ix) α′j,h(α
′
j,hs0) = −8εj, α

′
j,h(α

′
j,h+aj

s0) = 8iσj(h),

x) αj,gαj,g′ = αj,g(αj,g′s0) = (αj,gs0)(αj,g′s0) = 0 if g′ /∈ {g, g + aj},

xi) α′j,hα
′
j,h′ = α′j,h(α

′
j,h′s0) = (α′j,hs0)(α′j,h′s0) = 0 if h′ /∈ {h, h+ aj},

xii) αj,gα
′
j,h = (αj,gs0)α′j,h = αj,g(α

′
j,hs0) = (αj,gs0)(α′j,hs0) = 0,

xiii) αj,gαj+1,g′ = (αj,gs0)(αj+1,g′s0) = 2γ(g, g′)αj+2,g+g′+aj+2
,

xiv) (αj,gs0)αj+1,g′ = αj,g(αj+1,g′s0) = −2γ(g, g′)αj+2,g+g′+aj+2
s0,

xv) αj,gα
′
j+1,h = (αj,gs0)(α′j+1,hs0) = 2iσj+1(h)γ(g, h)α′j+2,g+h+aj+2

,

xvi) (αj,gs0)α′j+1,h = αj,g(α
′
j+1,hs0) = −2iσj+1(h)γ(g, h)α′j+2,g+h+aj+2

s0,

xvii) α′j,hαj+1,g = (α′j,hs0)(αj+1,gs0) = 2iσj(h)γ(h, g)α′j+2,h+g+aj+2
,

xviii) (α′j,hs0)αj+1,g = α′j,h(αj+1,gs0) = −2iσj(h)γ(h, g)α′j+2,h+g+aj+2
s0,

xix) α′j,hα
′
j+1,h′ = (α′j,hs0)(α′j+1,h′s0) = −2γ(h+aj, h

′+aj+1)αj+2,h+h′+aj+2
s0,

xx) (α′j,hs0)α′j+1,h′ = α′j,h(α
′
j+1,h′s0) = 2γ(h+ aj, h

′ + aj+1)αj+2,h+h′+aj+2
.

Proof. For the first assertion, observe that x and y are symmetric with respect
to the involution, while xy is symmetric if deg(x) + deg(y) 6= g0 and skew
otherwise.

Equations from i) to xii) are easily checked. For iv), viii) and ix), we use
the property σj(h + aj) = −σj(h), which is a consequence of σ(aj, aj) = −1
and the multiplicativity of σ in the second variable.

The first equation in all cases from xiii) to xx) is easy to check, too. Also
note that (αj,gs0)αj+1,g′ = −(αj,gαj+1,g′)s0, so case xiv) is a consequence of
xiii). Similarly, cases xvi), xviii) and xx) are consequences of xv), xvii) and
xix), respectively. It remains to check the second equation for the cases xiii),
xv), xvii) and xix).
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In xiii), equation αj,gαj+1,g′ = 2γ(g, g′)αj+2,g+g′+aj+2
can be established

using property (P11). Indeed,

αj,gαj+1,g′ = η(2ιj+2(x̄g+aj x̄g′+aj+1
)) + η′(2ιj+2(x̄gx̄g′))

= 2γ(g, g′)αj+2,g+g′+aj+2
,

because

x̄g+aj x̄g′+aj+1
= γ(g + aj, g

′ + aj+1)xg+g′+aj+2
= γ(g, g′)xg+g′+aj+2

and x̄gx̄g′ = γ(g, g′)xg+g′ .
In xix), we use property (P22) to obtain

α′j,hα
′
j+1,h′ =η(2ιj+2(x̄h+aj x̄h′+aj+1

)) + η′(2ιj+2(−σj(h)σj+1(h′)x̄hx̄h′))

=− 2γ(h+ aj, h
′ + aj+1)[η(ιj+2(−xh+h′+aj+2

)) + η′(ιj+2(xh+h′))]

=− 2γ(h+ aj, h
′ + aj+1)αj+2,h+h′+aj+2

s0.

Finally, to complete cases xv) and xvii), we use property (P12), respec-
tively (P21), and the fact σj(h + aj) = −σj(h) to deduce, with the same
arguments as above, that

αj,gα
′
j+1,h = 2iσj+1(h)γ(g, h)α′j+2,g+h+aj+2

and
α′j,hαj+1,g = 2iσj(h)γ(h, g)α′j+2,h+g+aj+2

.

Clearly, all products in Proposition 5.2.2 are either zero or have the correct
degree to make (5.2.4) a Z3

4-grading of the algebra A. Moreover, Z3
4 is the

universal grading group.

Remark 5.2.3. The grading given by (5.2.4) restricts to a Z2
4-grading on the

subalgebra spanned by {1, εj, αj,g | g ∈ Supp Q}, which is isomorphic to

H4(K) ∼= M4(F)(+).

Remark 5.2.4. For any (finite-dimensional) structurable algebra X , an ele-
ment x ∈ X is said to be (conjugate) invertible if there exists x̂ ∈ X such that
Vx,x̂ = id (equivalently, Vx̂,x = id) — see [AF92] and references therein. If x is
invertible then the operator Ux : y 7→ {x, y, x} is invertible and x̂ = U−1

x (x),
so x̂ is uniquely determined. In the case when X is a Jordan algebra, x̂
coincides with the inverse of x in the Jordan sense, whereas in the case when
X is a composition algebra, x̂ coincides with the conjugate of the inverse of
x in the sense of alternative algebras (hence the terminology). In the case of
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the Brown algebra, s0 is invertible, with (s0)̂ = −s0, and any element x is
invertible if and only if ψ(x, Ux(s0x)) 6= 0, with x̂ = 2ψ(x, Ux(s0x))̂ Ux(s0x),
where ψ : A → Fs0 is defined by ψ(x, y) := xȳ − yx̄ ([AF92, Proposi-
tion 5.4]). It is straightforward to verify that nonzero homogeneous ele-
ments in grading (5.2.4) are invertible, with (εj )̂ = εj, (αj,g )̂ = 1

8
αj,g+aj ,

(α′j,h)̂ = − iσj(h)

8
α′j,h+aj

s0, and (xs0)̂ = −x̂s0.

Remark 5.2.5. Denote by Γ+ the grading (5.2.4). With a slight modification,
we can define a new Z3

4-grading Γ−, determined by

deg(α1,0) := b1, deg(α2,0) := b2, deg(α′1,g0s0) := (1̄, 0̄, 0̄)+b1+g0. (5.2.5)

Although Γ+ and Γ− are equivalent, they are not isomorphic. Indeed, we can
write

(α1,0α2,0)α′1,g0 = λ1α1,0(α2,0α
′
1,g0

)

and
(α1,0α2,0)(α′1,g0s0) = λ2α1,0(α2,0(α′1,g0s0))

for some λi ∈ F. If Γ+ and Γ− were isomorphic, we would have λ1 = λ2. But
a straightforward computation shows that λ1 = −i and λ2 = i, which implies
that Γ+ and Γ− are not isomorphic.

5.3 A recognition theorem for the Z3
4-grading

The goal of this section is to prove the following result:

Theorem 5.3.1. [AEK14, Th. 14] Let A be the Brown algebra over an
algebraically closed field F, char F 6= 2, 3. Then, up to equivalence, there
is a unique Z3

4-grading on A such that all nonzero homogeneous components
have dimension 1.

To this end, we will need some general results about gradings on A and
the action of the group Aut(A, )̄, which contains an algebraic group of type
E6 as a subgroup of index 2 (see [Gar01]). The arguments in [Gar01] also
give that Der(A, )̄ is the simple Lie algebra of type E6 (see also [All79]). We
will use the model of A described in Subsection 5.1.2.

5.3.1 Group gradings on A
Recall from (1.9.3) the trace form on A and the bilinear form 〈a, b〉 = tr(ab̄).

Lemma 5.3.2. The trace form on A has the following properties:
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i) If a2 = 0 and ā = a, then tr(a) = 0.

ii) 〈a, b〉 is a nondegenerate symmetric bilinear form.

iii) 〈a, b〉 is an invariant form: 〈ā, b̄〉 = 〈a, b〉 and 〈ca, b〉 = 〈a, c̄b〉.

iv) For any group grading A =
⊕

g∈GAg, gh 6= e implies 〈Ag,Ah〉 = 0.

Proof. i) Since ā = a, we have a = ( α x
x′ α ) and tr(a) = 2α. Moreover,

0 = a2 =

(
α2 + T (x, x′) 2αx+ x′ × x′
2αx′ + x× x α2 + T (x, x′)

)
, (5.3.1)

so α2 + T (x, x′) = 0, αx = −x′# and αx′ = −x#. In case x = 0 or x′ = 0,
we have 0 = tr(a2) = 2α2, so α = 0 and hence tr(a) = 0. Now assume
that x 6= 0 6= x′ but α 6= 0. Since (x#)# = N(x)x for any x ∈ A (see
e.g. [McC69, Eq.(4)]), we get αx = −x′# = −(−α−1x#)# = −α−2N(x)x.
Thus −α3x = N(x)x, and similarly −α3x′ = N(x′)x′, which implies N(x) =
N(x′) = −α3 6= 0. But then T (x, x′) = T (x(−α−1)x#) = −3α−1N(x) = 3α2

and α2+T (x, x′) = 4α2 6= 0, which contradicts the equation α2+T (x, x′) = 0.
Therefore, α = 0 and tr(a) = 0.

ii) Since tr is invariant under the involution, 〈a, b〉 = tr(ab̄) = tr(ab̄) =
tr(bā) = 〈b, a〉, so 〈·, ·〉 is symmetric. The nondegeneracy of the bilinear form
〈·, ·〉 is a consequence of the nondegeneracy of the trace form T of A.

iii) It is easy to see that tr(ab) = tr(ba). Hence 〈ā, b̄〉 = tr(āb) = tr(bā) =
tr(bā) = tr(ab̄) = 〈a, b〉. Using the fact that T (x × y, z) = N(x, y, z) is
symmetric in the three variables, is is straightforward to check that 〈ca, b〉 =
〈a, c̄b〉.

iv) Observe that the restriction of tr to the subspace A0 := Fs0⊕ker(id+
Ls0Rs0) is zero, and A = F1 ⊕ A0, so A0 equals the kernel of tr. Now, Fs0

is a graded subspace and s2
0 = 1, hence s0 is a homogeneous element and

its degree has order at most 2. It follows that A0 is a graded subspace.
Therefore, Ag ⊆ A0 for any g 6= e. The result follows.

Lemma 5.3.3. For any G-grading on A and a subgroup H ⊆ G such that
deg(s0) /∈ H, B =

⊕
h∈H Ah is a semisimple Jordan algebra of degree ≤ 4.

Proof. Since deg(s0) /∈ H, the involution is trivial on B, so B is a Jordan
algebra. By Lemma 5.3.2(ii), the symmetric form 〈·, ·〉 is nondegenerate on
A. By (iv), the subspaces Ag and Ag−1 are paired by 〈·, ·〉 for any g ∈ G.
It follows that the restriction of 〈·, ·〉 to B is nondegenerate. Moreover, (iii)
implies that this restriction is associative in the sense that 〈ab, c〉 = 〈a, bc〉
for all a, b, c ∈ B.
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Suppose I is an ideal of B satisfying I2 = 0. For any a ∈ I and b ∈ B,
we have ab ∈ I and hence (ab)2 = 0. By Lemma 5.3.2(i), this implies
tr(ab) = 0. We have shown that 〈I,B〉 = 0, so I = 0. By Dieudonné’s
Lemma (see [Jac68, p.239]), we conclude that B is a direct sum of simple
ideals.

The conjugate norm of a structurable algebra was defined in [AF92] as the
exact denominator of the (conjugate) inversion map (i.e., the denominator
of minimal degree), and it coincides with the generic norm in the case of a
Jordan algebra. If NB is the generic norm of B, then it is the denominator
of minimal degree for the inversion map, and therefore it divides any other
denominator for the inversion map. Since the conjugate norm ofA has degree
4, we conclude that the degree of NB is at most 4.

Lemma 5.3.4. For any G-grading on A and a subgroup H ⊆ G such
that deg(s0) ∈ H, B =

⊕
h∈H Ah is a simple structurable algebra of skew-

dimension 1.

Proof. If I is an ideal of B as an algebra with involution and I2 = 0, then
s0 /∈ I, so I is a Jordan algebra, and, as in the proof of Lemma 5.3.3,
we obtain I = 0. On the other hand, if I 6= 0 is an ideal of B as an
algebra (disregarding involution), I2 = 0, and I is of minimal dimension
with this property, then either I = Ī or I ∩ Ī = 0. In the first case, I is
an ideal of B as an algebra with involution, so we get a contradiction. In
the second case, I ⊕ Ī is an ideal of B as an algebra with involution and
(I ⊕ Ī)2 = 0, again a contradiction. The bilinear form (a|b) := 〈a, b̄〉 is
symmetric, nondegenerate and associative on A, and hence on B. Therefore,
Dieudonné’s Lemma applies and tells us that B is a direct sum of simple ideals
(as an algebra). The involution permutes these ideals so, adding each of them
with its image under the involution, we write B as a direct sum of ideals,
each of which is simple as an algebra with involution. Since dimK(B, )̄ = 1,
there is only one such ideal where the involution is not trivial, and it contains
s0. Since s2

0 = 1, this ideal is the whole B.

5.3.2 Norm similarities of the Albert algebra

A linear bijection f : A → A is called a norm similarity with multiplier λ
if N(f(x)) = λN(x) for all x ∈ A. Norm similarities with multiplier 1 are
called (norm) isometries. We will denote the group of norm similarities by
M(A) and the group of isometries by M1(A).

For f ∈ End(A), denote by f ∗ the adjoint with respect to the trace form T
of A, i.e., T (f(x), y) = T (x, f ∗(y)) for all x, y ∈ A. Following the notation of
[Gar01], for any element ϕ ∈ M(A), we denote the element (ϕ∗)−1 = (ϕ−1)∗



92 CHAPTER 5. A Z3
4-GRADING ON THE BROWN ALGEBRA

by ϕ†, so we have T (ϕ(x), ϕ†(y)) = T (x, y) for all x, y ∈ A. If the multiplier
of ϕ is λ, then ϕ† is a norm similarity with multiplier λ−1, and also

ϕ(x)× ϕ(y) = λϕ†(x× y) and ϕ†(x)× ϕ†(y) = λ−1ϕ(x× y) (5.3.2)

for all x, y ∈ A (see [Gar01, Lemma 1.7]). The U -operator Ux(y) := {x, y, x} =
2x(xy)− x2y can also be written as Ux(y) = T (x, y)x− x#× y (see [McC70,
Theorem 1]; cf. [McC69, Theorem 1]). Therefore, Uϕ(x)ϕ

†(y) = ϕUx(y) for
any ϕ ∈ M(A) and x, y ∈ A. In other words, ϕ is a norm similarity of A if
and only if (ϕ, ϕ†) is an automorphism of the Albert pair, and we can identify
M(A) with AutVA.

Also, it follows that the automorphisms of the Albert algebra are precisely
the elements ϕ ∈M1(A) such that ϕ† = ϕ. Moreover, any ϕ ∈M1(A) defines
an automorphism of the Brown algebra A given by(

α x
x′ β

)
7→
(

α ϕ(x)
ϕ†(x′) β

)
.

Thus we can identify M1(A) with a subgroup of Aut(A, )̄. In fact, this
subgroup is precisely the stabilizer of the element s0.

For λ1, λ2, λ3 ∈ F× and µi = λ−1
i λi+1λi+2, we can define a norm simi-

larity cλ1,λ2,λ3 , with multiplier λ1λ2λ3, given by ιi(x) 7→ ιi(λix), Ei 7→ µiEi.

Note that c†λ1,λ2,λ3 is given by ιi(x) 7→ ιi(λ
−1
i x), Ei 7→ µ−1

i Ei. (These norm
similarities appear e.g. in [Gar01, Eq. (1.6)].) For λ ∈ F×, denote cλ := cλ,λ,λ.

We already know that there are four orbits of elements of A under the
action of AutVA ∼= M(A), which are determined by the rank (see Section 1.7).
Denote byOr := {x ∈ A | rank(x) = r} the orbit of elements of rank r, where
r ∈ {0, 1, 2, 3}. Denote by µx(X) the minimal polynomial of x; it is a divisor
of the generic minimal polynomial mx(X) = X3−T (x)X2 +S(x)X−N(x)1
in A.

Proposition 5.3.5. The orbits for the action of M(A) on A are exactly
O0 = {0}, O1, O2 and O3. The orbit O3 consists of all nonisotropic elements:
x ∈ A with N(x) 6= 0. The orbit O1 consists of all 0 6= x ∈ A satisfying
N(x) = 0, S(x) = 0 and deg µx(X) = 2; equivalently, O1 consists of all 0 6=
x ∈ A satisfying x# = 0. Moreover, if x ∈ O1 we have µx(X) = X2−T (x)X.

Proof. The two first statements are already known by Section 1.7.
If ϕ ∈ M(A) has multiplier λ, then by (5.3.2) we have 2ϕ(x)# = ϕ(x)×

ϕ(x) = λϕ†(x× x) = 2λϕ†(x#). Therefore, since E1 belongs to the orbit O1

and satisfies E#
1 = 0, it follows that x# = 0 for any x ∈ O1. Similarly, since
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E1 +E2 and 1 are representative elements of the orbits O2 and O3 and they
satisfy (E1 + E2)# 6= 0 6= 1#, it follows that x# 6= 0 for any x ∈ O2 ∪ O3.

Fix x ∈ O1. We have x 6= 0, hence deg µx(X) > 1. Since N(x) = 0,
we have X|mx(X); also µx(X) and mx(X) have the same irreducible factors
by [Jac68, Chapter VI, Theorem 1], hence X|µx(X). On the other hand,
we have x# = 0, i.e., x2 − T (x)x + S(x)1 = 0. Thus µx(X) divides X2 −
T (x)X + S(x)1, which implies that µx(X) = X2 − T (x)X + S(x)1, and
since X|µx(X) we have S(x) = 0. Conversely, if 0 6= x ∈ A satisfies the
conditions deg µx(X) = 2 and S(x) = 0 = N(x), then, since µx(X) divides
mx(X) = X3 − T (x)X2 = X2(X − T (x)) and has the same irreducible
factors, we have µx(X) = X2 − T (x)X and also x# = µx(x) + S(x)1 = 0.
The conditions x 6= 0 and x# = 0 imply that x has rank 1.

Remark 5.3.6. Note that in [Jac68, p.364], the elements of rank 1 of A are
defined as the nonzero elements such that x# = 0 , which is equivalent to
our definition.

Corollary 5.3.7. The orbits for the action of M1(A) on A are O0, O1, O2

and O3(λ) := {x ∈ O3 | N(x) = λ}, λ ∈ F×.

Proof. Note that the elements E1 and E2 +E3 can be scaled by any λ ∈ F×
using some norm similarity cα,β,γ with αβγ = 1. Therefore, O1 and O2

are orbits for M1(A), too. Fix x, y ∈ O3(λ). By Proposition 1.7.5 there is
ϕ ∈M(A) such that ϕ(x) = y, and the multiplier associated to ϕ must be 1
because N(x) = N(y), so ϕ ∈ M1(A). This proves the fact that O3(λ) is an
orbit for M1(A).

Lemma 5.3.8. The rank function on A has the following properties:

i) If x, y ∈ A have rank 1, then N(x+ y) = 0.

ii) If x1, x2, x3 ∈ A have rank 1 and N(x1 + x2 + x3) 6= 0, then xi + xj has
rank 2 for each i 6= j.

iii) If x1, x2, x3 ∈ A have rank 1 and N(x1 + x2 + x3) = 1, then there is an
isometry sending xi to Ei for all i.

iv) If rank(x) = 1, then rank(x#) = 0. If rank(x) = 2, then rank(x#) = 1.
If rank(x) = 3, then rank(x#) = 3. In general, rank(x#) ≤ rank(x).

Proof. i) Assume, to the contrary, that N(x+ y) 6= 0. By Proposition 1.7.5,
applying a norm similarity, we may assume x + y = 1. We know by Propo-
sition 5.3.5 that x2 = T (x)x. If it were T (x) = 0, applying an automor-
phism of A we would have x = ι1(a) with n(a) = 0, and therefore N(y) =
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N(1 − ι1(a)) 6= 0, which contradicts rank(y) = 1. Thus λ := T (x) 6= 0.
Hence, applying an automorphism of A, we may assume x = λE1, and we
still have x+y = 1. If λ = 1, then S(y) = 1 6= 0; otherwise N(y) = 1−λ 6= 0.
By Proposition 5.3.5, in both cases we get a contradiction: y /∈ O1.

ii) Take k such that {i, j, k} = {1, 2, 3}. By i), rank(xi + xj) 6= 3. We
cannot have rank(xi + xj) = 0, because this would imply xi + xj = 0 and
rank(xk) = 3. We cannot have rank(xi + xj) = 1, because this would imply
N(xi + xj + xk) = 0 by i). Therefore, rank(xi + xj) = 2.

iii) Applying an isometry, we may assume x1 + x2 + x3 = 1. By ii), we
have rank(xi + xi+1) = 2. By Proposition 5.3.5, we know that x2

i = T (xi)xi.
If it were T (x1) = 0, applying an automorphism of A we would have x1 =
ι1(a) with n(a) = 0, and therefore N(x2 + x3) = N(1 − ι1(a)) 6= 0, which
contradicts rank(x2 + x3) = 2. Hence, T (xi) 6= 0 for i = 1, 2, 3. Applying
an automorphism of A, we obtain x1 = λE1 where λ = T (x1), and still
x1 + x2 + x3 = 1. If λ 6= 1, then N(x2 + x3) = 1− λ 6= 0, which contradicts
i). Therefore, T (x1) = 1, and similarly T (x2) = T (x3) = 1. We have shown
that the xi are idempotents. Moreover, since 1 − xi = xi+1 + xi+2 is an
idempotent, we also have xi+1xi+2 = 0, so the idempotents xi are orthogonal
with

∑
xi = 1. Now by [Jac68, Chapter IX, Theorem 10], there exists an

automorphism of A sending xi to Ei for i = 1, 2, 3.

iv) If rank(x) = 1, we already know that x# = 0. It follows from (5.3.2)
that ϕ(x)# = ϕ†(x#) for any isometry ϕ. If rank(x) = 2, then by Corollary
5.3.7 there is ϕ ∈M1(A) such that ϕ(x) = E2 +E3, hence ϕ†(x#) = ϕ(x)# =
(E2 +E3)# = E1, and so rank(x#) = 1. If rank(x) = 3, then N(x) 6= 0. Since
N(x#) = N(x)2 (see [McC69]), we obtain N(x#) 6= 0 and rank(x#) = 3.

5.3.3 Proof of the recognition Theorem

Suppose Γ : A =
⊕

g∈Z3
4
Ag is a grading such that dimAg ≤ 1 for all g ∈ Z3

4.

Set g0 = deg(s0), so g0 is an element of order 2.

Denote W = η(A) ⊕ η′(A). Since W = ker(id + Ls0Rs0), it is a graded
subspace. Hence, for any g 6= 0, g0, we have Ag ⊆ W . Also, for any g 6= g0,
the component Ag consists of symmetric elements.

Let Sg0 = {g ∈ Z3
4 | 2g 6= g0}. We claim that Supp Γ = Sg0 . Note

that |Sg0| = 56 = dimA, so it is sufficient to prove that 2g = g0 implies
Ag = 0. Assume, to the contrary, that 0 6= a ∈ Ag. Then b = as0 is a
nonzero element in A−g. By Lemma 5.3.2, the components Ag and A−g are in
duality with respect to the form 〈·, ·〉, hence 〈a, b〉 6= 0. But a = η(x) + η′(x′)
for some x, x′ ∈ A, so b = −η(x) + η′(x′), which implies 〈a, b〉 = tr(ab) =
T (x, x′)− T (x, x′) = 0, a contradiction.
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Suppose H is a subgroup of Z3
4 isomorphic to Z2

4 and not containing g0.
Consider B =

⊕
h∈H Ah and D = B ⊕ s0B. Lemma 5.3.4 shows that D is a

simple structurable algebra of skew-dimension 1 and dimension 32. Hence,
by [All90, Example 1.9], D is the structurable matrix algebra corresponding
to a triple (T,N,N) where either (a) N and T are the generic norm and
trace form of a degree 3 semisimple Jordan algebra J , or (b) N = 0 and T
is the generic trace form of the Jordan algebra J = J (V ) of a vector space
V with a nondegenerate symmetric bilinear form. In case (a), we have by
dimension count that either J = H3(Q) or J = F×J (V ), where dimV = 13.
In case (a), as in Subsection 5.1.2, F × J is a Jordan subalgebra of D. If
J = F × J (V ), then L := span{Dx,y | x, y ∈ V } (the operators Dx,y are
defined by (5.5.1) in the next section) is a subalgebra of Der(A, )̄ isomorphic
to the orthogonal Lie algebra so(V ). Indeed, the image of L in End(V ) is
so(V ), and dimL ≤ ∧2V = dim so(V ). But dim so(V ) = 78 = dim Der(A, )̄
and Der(A, )̄ is simple of type E6, so we obtain a contradiction. In case
(b), D contains the Jordan algebra of a vector space of dimension 15 (the
Jordan algebra J with its generic trace form), hence Der(A, )̄ contains a Lie
subalgebra isomorphic to so15(F), which has dimension larger than 78, so we
again obtain a contradiction. Therefore, the only possibility is J = H3(Q).
Then, with the same arguments as for (A, )̄, it can be shown that Der(D, )̄
is a simple Lie algebra of type A5, so it has dimension 35.

By Lemma 5.3.3, B is a semisimple Jordan algebra of degree ≤ 4. Since
dimB = 16, we have the following possibilities: (i) J (V ) with dimV = 15,
(ii) F × J (V ) with dimV = 14, (iii) F × F × J (V ) with dimV = 13, (iv)
J (V1)×J (V2) with dimV1 +dimV2 = 14 and dimVi ≥ 2, (v) F×H3(Q) and

(vi) M4(F)(+), where, as before, J (V ) denotes the Jordan algebra of a vector
space V with a nondegenerate symmetric bilinear form. Cases (ii), (iii) and
(v) are impossible, because these algebras do not admit a Z2

4-grading with
1-dimensional components. Indeed, since char F 6= 2, such a grading would
be the eigenspace decomposition with respect to a family of automorphisms,
but in each case there is a subalgebra of dimension 2 whose elements are
fixed by all automorphisms. The same argument applies in case (iv) unless
dimV1 = dimV2 = 7. On the other hand, cases (i) and (iv) give, as in
the previous paragraph, subalgebras of Der(D, )̄ isomorphic to so(V ) or
so(V1) × so(V2) of dimension larger than 35, so these cases are impossible

too. We are left with case (vi), i.e., B ∼= M4(F)(+). Then, up to equivalence,
there is only one Z2

4-grading with 1-dimensional components, namely, the
Pauli grading on the associative algebra M4(F). (For the classification of
gradings on simple special Jordan algebras, we refer the reader to [EK13,
§5.6].)
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As a consequence of the above analysis, if X 6= 0 is a homogeneous
element of A whose degree has order 4 then we have 0 6= X4 ∈ F1. Indeed,
the degree of X is contained in a subgroup H as above, so X is an invertible
matrix in B ∼= M4(F)(+). Moreover, we can fix homogeneous elements X1,
X2 and X3 of B such that X2

i = 1 and XiXi+1 = Xi+2 (indices modulo 3),

because these elements exist in the Z2
4-grading on M4(F)(+). We will now

show that Γ is equivalent to the grading defined by (5.2.4) in Section 5.2.
Denote ai = deg(Xi), then the subgroup 〈a1, a2〉 is isomorphic to Z2

2 and does
not contain g0.

We can write Xi = η(xi) + η′(x′i) with x, x′ ∈ A. Since X2
i = 1, we get

x#
i = 0 = x′#i and thus xi and x′i have rank 1 (see Remark 5.3.6). Set Z =
X1 +X2 +X3 and write Z = η(z) + η(z′) with z, z′ ∈ A. Then Z2 = 2Z + 3,
which implies z# = z′ and z′# = z. But, by Lemma 5.3.8(iv), rank(z#) ≤
rank(z) and rank(z′#) ≤ rank(z′), so we get rank(z#) = rank(z) = rank(z′) =
rank(z′#). Since Z 6= 0, we have z 6= 0 or z′ 6= 0, and hence by Lemma
5.3.8(iv), we obtain rank(z) = 3 = rank(z′). Then, by Lemma 5.3.8(iii),
there is an isometry of A sending xi to λEi (i = 1, 2, 3), where λ is any
element of F satisfying λ3 = N(z). Since isometries of A extend to auto-
morphisms of (A, )̄, we may assume that xi = λEi. Then XiXi+1 = Xi+2

implies x′i = λ2Ei and hence λ3 = 1. Therefore, N(z) = 1 and we may take
λ = 1, so xi = Ei = x′i, i.e., Xi = εi := η(Ei)+η′(Ei). Thus, εi and ε′i := εis0

are homogeneous elements; their degrees are precisely the order 2 elements
of Z3

4 different from g0.

Since the subspaces ker(Lεi) = η(ιi+1(C)⊕ ιi+2(C))⊕ η′(ιi+1(C)⊕ ιi+2(C))
are graded, so are η(ιi(C)) ⊕ η′(ιi(C)), i = 1, 2, 3. For any homogeneous
element X = η(ιj(x)) + η′(ιj(x

′)), we saw that 0 6= X4 ∈ F1, which forces
0 6= X2 ∈ Fεj ∪ Fε′j, and this implies n(x, x′) = 0 and n(x) = ±n(x′) 6= 0.
These facts will be used several times. Also note that automorphisms of C
extend to automorphisms of A preserving Ei, and therefore to automorphisms
of A preserving εi.

Fix homogeneous elements Y1 = η(ι1(y1))+η′(ι1(y′1)) and Y2 = η(ι2(y2))+
η′(ι2(y′2)) such that Y 2

i ∈ Fεi. Without loss of generality, we may assume
n(y1) = 1 = n(y2), and therefore n(y′1) = 1 = n(y′2). Also, we have n(yi, y

′
i) =

0. By [EK13, Lemma 5.25], there exists an automorphism of A that fixes
Ei and sends y1 and y2 to 1. Thus we may assume y1 = 1 = y2 and hence
y′i = −y′i. Then Y1Y2 = η(2ι3(y′1y

′
2)) + η′(2ι3(1)), so we obtain n(1, y′1y

′
2) = 0,

which implies n(y′1, y
′
2) = 0. Thus the elements 1, y′1, y

′
2 are orthogonal of

norm 1, and applying an automorphism of C (extended to A) we may assume
that Y1 = α1,0 := η(ι1(1))+η′(ι1(xa1)) and Y2 = α2,0 := η(ι2(1))+η′(ι2(xa2)),
as in the grading (5.2.4). Consequently, the elements of the form αj,g, for j =
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1, 2, 3 and g ∈ 〈a1, a2〉, will be homogeneous because they can be expressed
in terms of α1,0 and α2,0.

Fix a new homogeneous element Y3 = η(ι3(y3)) + η′(ι3(y′3)) such that
Y 2

3 ∈ Fε′3. As before, we have n(y3, y
′
3) = 0, but this time n(y3) = −n(y′3).

Using again that the products of the form Y3α1,g and Y3α2,g, with g ∈
〈a1, a2〉, have orthogonal entries in C, we deduce that y3, y

′
3 ∈ Q⊥, where

Q = span{1, xai | i = 1, 2, 3}, and that y′3 ∈ Fy3xa3 . Hence, scaling Y3, we
obtain either Y3 = α′3,h or Y3 = α′3,hs0 for some h ∈ g0 + 〈a1, a2〉. (Actually,
applying another automorphism of C that fixes the subalgebra Q point-wise,
we can make h any element we like in the indicated coset.) Replacing Y3 by
Y3s0 if necessary, we may assume Y3 = α′3,h. Since the elements α1,0, α2,0 and
α′3,h determine the Z3

4-grading (5.2.4), the proof is complete.

Remark 5.3.9. If char F = 3, the arguments with derivations of A that we
used to establish the existence of the elements Xi are not valid, but the
remaining part of the proof still goes through. Hence, in this case, we obtain
a weaker recognition theorem by adding the condition of the existence of Xi

to the hypothesis.

5.4 Weyl group

The Weyl group of the Z3
2-grading on the octonions is GL3(Z2), the entire

automorphism group of Z3
2, whereas the Weyl group of the Z3

3-grading on
the Albert algebra is SL3(Z3), which has index 2 in the automorphism group
of Z3

3 (see e.g. [EK13]). This means that in the case of the octonions, all
gradings in the equivalence class of the Z3

2-grading are actually isomorphic to
each other, while in the case of the Albert algebra, there are two isomorphism
classes in the equivalence class of the Z3

3-grading.

Theorem 5.4.1. Let Γ be a Z3
4-grading on the Brown algebra as in Theorem

5.3.1. Then the Weyl group of Γ is the subgroup StabGL3(Z4)(g0)∩SL3(Z4) of
GL3(Z4), where g0 is the degree of nonzero skew elements.

Proof. We will work in the model given by (5.2.4), where g0 = (2̄, 0̄, 0̄).
Denote H = StabGL3(Z4)(g0) and W = W(Γ). It is clear that W ⊆ H,
and the proof of Theorem 5.3.1 shows that W has index at most 2 in H
(because any ordered generator set of Z3

4 can be sent to either to (a1, a2, a3)
or to (a1, a2, a3 + g0) by applying an element of W , where {ai} denotes the
canonical basis of Z3

4). On the other hand, by Remark 5.2.5, W is not the
entire H, so we get [H : W ] = 2. The derived subgroup H ′ has index 4 in
H (see below), hence there are three subgroups of index 2 in H, including
H ∩ SL3(Z4).
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The elements of H have the form A = (aij) where a11 ≡ 1 and a21 ≡
a31 ≡ 0 (mod 2). Hence, the mapping (aij) 7→ (aij)2≤i,j≤3 mod 2 is a ho-
momorphism H → GL2(Z2). Since GL2(Z2) is isomorphic to S3, it has a
unique nontrivial homomorphism to Z2. Composing these two, we obtain a
nontrivial homomorphism ϕ1 : H → Z2. Of course, another nontrivial ho-
momorphism, ϕ2 : H → Z2, is given by detA = (−1̄)ϕ2(A), and we want to
show that W = kerϕ2. Clearly, H ′ ⊆ kerϕ1 ∩ kerϕ2, and with elementary
arguments (using the fact that the commutator of the elementary matrices
I + αEij and I + βEjk is equal to I + αβEik if i, j, k are distinct) one shows
that actually H ′ = kerϕ1 ∩ kerϕ2. Therefore, it will be sufficient to find a
matrix A in W that belongs to kerϕ2 but not kerϕ1. One such matrix is

A =
(

3̄ 0̄ 0̄
0̄ 0̄ 1̄
0̄ 1̄ 0̄

)
. Indeed, consider the automorphism ψ(12) of the Albert algebra

A given by ι1(x) ↔ ι2(x̄), E1 ↔ E2, ι3(x) 7→ ι3(x̄), E3 7→ E3. Also, there
is an automorphism f(12) of C given by xa1 ↔ −xa2 , xa3 7→ −xa3 , and fix-
ing xg0 . Extend both to automorphisms of A and consider the composition
φ = f(12)ψ(12). One checks that φ sends α1,0 ↔ α2,0, α′3,g0 ↔ α′3,g0s0, thus
inducing A in W .

Corollary 5.4.2. The equivalence class of gradings characterized by Theo-
rem 5.3.1 consists of 14 isomorphism classes: for each order 2 element of
Z3

4, there are two nonisomorphic gradings (analogous to Γ+ and Γ− of Re-
mark 5.2.5).

5.5 Fine gradings on the exceptional simple

Lie algebras E6, E7, E8

Gradings on the exceptional simple Lie algebras are quite often related to
gradings on certain nonassociative algebras that coordinatize the Lie algebra
in some way. The aim of this section is to indicate how the fine grading by
Z3

4 on the split Brown algebra is behind certain fine gradings on the simple
Lie algebras of types E6, E7 and E8. Here we will assume that the ground
field F is algebraically closed and char F 6= 2, 3.

Given a structurable algebra (X , )̄, there are several Lie algebras attached
to it. To begin with, there is the Lie algebra of derivations Der(X , )̄. For
the Brown algebra, this coincides with the Lie algebra of inner derivations
IDer(X , )̄, which is the linear span of the operators Dx,y, for x, y ∈ X , where

Dx,y(z) =
1

3
[[x, y] + [x̄, ȳ], z] + (z, y, x)− (z, x̄, ȳ) (5.5.1)
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for x, y, z ∈ X . (As usual, (x, y, z) denotes the associator (xy)z − x(yz).) If
(X , )̄ is G-graded, then Der(X , )̄ is a graded Lie subalgebra of End(X ), so
we obtain an induced G-grading on Der(X , )̄. For the Brown algebra (A, )̄,
the Lie algebra of derivations is the simple Lie algebra of type E6. The fine
grading by Z3

4 on the Brown algebra induces the fine grading by Z3
4 on E6

that appears in [DV16].
Another Lie subalgebra of End(X ) is the structure Lie algebra

str(X , )̄ = Der(X , )̄⊕ TX

where Tx := Vx,1, x ∈ X . The linear span of the operators Vx,y, x, y ∈ X ,
is contained in str(X , )̄ and called the inner structure Lie algebra (as it
actually equals IDer(X , )̄⊕ TX ). It turns out (see e.g. [All78, Corollaries 3
and 5]) that str(X , )̄ is graded by Z2, with str(X , )̄0̄ = Der(X , )̄⊕ TK and
str(X , )̄1̄ = TH, where K = K(X , )̄ and H = H(X , )̄ denote, respectively,
the spaces of symmetric and skew-symmetric elements for the involution. If
(X , )̄ is G-graded then we obtain an induced grading by Z2×G on str(X , )̄
and on its derived algebra. In the case of the Brown algebra (A, )̄, the inner
structure Lie algebra coincides with the structure Lie algebra and is the direct
sum of a one-dimensional center and the simple Lie algebra of type E7. (The
arguments in [All79, Corollary 7] work here because the Killing form of E6

is nondegenerate.) Therefore, the Z3
4-grading on (A, )̄ induces a grading by

Z2 × Z3
4 on the simple Lie algebra of type E7.

Recall from Section 1.11 that the Kantor Lie algebra L = K(X , )̄ has a
Z-grading with support contained in {−2,−1, 0, 1, 2}. Any grading on (X , )̄
by a group G induces naturally a grading by Z×G on K(X , )̄. For the Brown
algebra, K(A, )̄ is the simple Lie algebra of type E8 (see [All79] and note
that, as for str(A, )̄, the arguments are valid in characteristic 6= 2, 3), and
we obtain a grading by Z × Z3

4 on E8, which is the grading that prompted
this study of the Z3

4-gradings on the Brown algebra.



Conclusions and open problems

In this work we have given a classification of the equivalence classes of fine
gradings by abelian groups on exceptional simple Jordan pairs and triple
systems (i.e., the Jordan pairs and triple systems of types Albert and bi-
Cayley) over an algebraically closed field of characteristic different from 2.

We gave an explicit construction of a grading of each equivalence class
of fine gradings, and then we computed the Weyl group for each one. Each
equivalence class of fine gradings that appear in the classification is deter-
mined by its universal grading group. We list them in the table below (note
that some gradings do not occur if char F = 3):

Jordan system Universal groups of fine gradings

Bi-Cayley pair: VB Z6, Z2 × Z3
2

Bi-Cayley triple: TB Z4, Z× Z3
2, Z5

2

Albert pair: VA Z7, Z3 × Z3
2, Z× Z3

3 (if char F 6= 3)
Albert triple: TA Z4 × Z2, Z6

2, Z× Z4
2, Z3

3 × Z2 (if char F 6= 3)

The orbits under the automorphism groups of the Jordan systems of type
bi-Cayley have been classified. In turn, the orbits have been used to classify
the equivalence classes of fine gradings. (Note that the orbits were already
classified for simple Jordan pairs in [ALM05].) These orbits, in the case
of simple Jordan pairs, are determined by the ranks of the elements of the
Jordan pair. We have obtained generators of the automorphism groups of
both Jordan systems of type bi-Cayley, and then we have used them to
determine their structure, i.e., we have proved that Aut TB ∼= Spin9(F) and
that AutVB is a quotient of F× × Spin10(F).

We also proved that the fine gradings by their universal group on the
bi-Cayley and Albert pairs extend to fine gradings on their respectives TKK
Lie algebras by the same universal groups. In particular, we obtained that
the fine gradings on VB induce the following fine gradings on TKK(VB) = e6:

• U(Γ) = Z6 and type (72, 0, 0, 0, 0, 1) (Cartan grading),

• U(Γ) = Z2 × Z3
2 and type (48, 1, 0, 7),
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and the fine gradings on VA induce the following fine gradings on TKK(VA) =
e7:

• U(Γ) = Z7 and type (126, 0, 0, 0, 0, 0, 1) (Cartan grading),

• U(Γ) = Z3 × Z3
2 and type (102, 0, 1, 7),

• U(Γ) = Z× Z3
3 and type (55, 0, 26).

It remains as an open problem to extend this classification to the remain-
ing simple Jordan pairs, i.e., the four infinite families of non-exceptional
simple Jordan pairs. A more ambitious open problem would be to extend
the classification for all simple Kantor pairs, simple Kantor triple systems
and simple structurable algebras.

We have also given in this work a construction of a fine Z3
4-grading on the

Brown algebra. We have given a recognition Theorem of this grading and
computed its Weyl group, which is isomorphic to StabGL3(Z4)(g0) ∩ SL3(Z4)
where g0 denotes the degree of the skew homogeneous component. We have
shown that this grading can be used to obtain gradings on the exceptional
simple Lie algebras of types E6, E7 and E8; in particular, we can use it
to construct a fine Z3

4-grading on its derivation Lie algebra e6, and a fine
Z× Z3

4-grading on e8 via the Kantor construction.
Many other (less complicated) fine gradings are known on the Brown

algebra, but the complete classification remains an open problem that may
be considered by the author in future work. Also, an interesting Kantor pair
is the Brown pair (i.e., the Kantor pair associated to the Brown algebra),
which contains subpairs isomorphic to the Albert pair. Note that the Kantor
construction of the Brown pair is the exceptional simple Lie algebra e8, so
its gradings can be extended to gradings on e8.

The author has considered for future work to extend each result of Sec-
tion 2.1, whenever it is possible, to the Kantor case, i.e., for structurable
algebras and Kantor pairs and triple systems. This could allow to use simi-
lar techniques to the study of gradings on Kantor systems.

In the present state of the art, fine gradings on simple Lie algebras over
algebraically closed fields of characteristic 0 have already been classified up to
equivalence by other authors (see [DE16b] and references therein); however,
the problem remains open for the case of positive characteristic. (Note that
the Z3

4-grading on the Brown algebra has been used by other authors in
the classification of fine gradings, up to equivalence, on exceptional simple
Lie algebras of type E over an algebraically closed field of characteristic
0.) Nonassociative systems appear frequently as coordinate algebras of Lie
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algebras in many different constructions, and in many cases their gradings can
be extended to gradings on the Lie algebra. Since the results of this thesis,
including the constructions of fine gradings, are proven for characteristic
different from 2, they could be useful to extend known results on simple Lie
algebras over a field of characteristic 0 to the case of positive characteristic.
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Conclusiones y problemas
abiertos

En este trabajo hemos dado clasificaciones de las clases de equivalencia de
graduaciones finas de grupo abeliano en pares y sistemas triples de Jordan
simples excepcionales (es decir, los pares y sistemas triples de Jordan de tipos
Albert y bi-Cayley) sobre un cuerpo algebraicamente cerrado de caracteŕısti-
ca distinta de 2.

Hemos dado una construcción expĺıcita de una graduación de cada clase
de equivalencia de graduaciones finas, y después hemos calculado el grupo
de Weyl para cada una. Cada clase de equivalencia de graduaciones finas
que aparece en la clasificación está determinada por su grupo de graduación
universal. Damos una lista de ellas en la tabla siguiente (observamos que
algunas de las graduaciones no aparecen si char F = 3):

Sistema de Jordan Grupos universales de graduaciones finas

Par bi-Cayley: VB Z6, Z2 × Z3
2

Triple bi-Cayley: TB Z4, Z× Z3
2, Z5

2

Par de Albert: VA Z7, Z3 × Z3
2, Z× Z3

3 (si char F 6= 3)
Triple de Albert: TA Z4 × Z2, Z6

2, Z× Z4
2, Z3

3 × Z2 (si char F 6= 3)

Las órbitas bajo el grupo de automorfismos de los sistemas de Jordan de
tipo bi-Cayley han sido clasificadas. A su vez, las órbitas han sido usadas
como herramienta para clasificar las clases de equivalencia de graduaciones
finas. (Notemos que las órbitas fueron clasificadas para los pares de Jordan
simples en [ALM05]). Estas órbitas, en el caso de pares de Jordan simples,
están determinadas por el rango de los elementos del par de Jordan. Hemos
obtenido generadores de los grupos de automorfismos de ambos sistemas
de Jordan de tipo bi-Cayley, y luego los hemos usado para determinar su
estructura, es decir, hemos probado que Aut TB ∼= Spin9(F) y que AutVB es
un cociente de F× × Spin10(F).

También hemos probado que las graduaciones finas sobre su grupo uni-
versal en los pares de tipos bi-Cayley y Albert se extienden a graduaciones
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finas en sus respectivas álgebras de Lie TKK dadas sobre los mismos gru-
pos universales. En particular, obtuvimos que las graduaciones finas en VB
inducen las siguientes graduaciones finas en TKK(VB) = e6:

• U(Γ) = Z6 de tipo (72, 0, 0, 0, 0, 1) (graduación de Cartan),

• U(Γ) = Z2 × Z3
2 de tipo (48, 1, 0, 7),

y las graduaciones finas en VA inducen las siguientes graduaciones finas en
TKK(VA) = e7:

• U(Γ) = Z7 de tipo (126, 0, 0, 0, 0, 0, 1) (graduación de Cartan),

• U(Γ) = Z3 × Z3
2 de tipo (102, 0, 1, 7),

• U(Γ) = Z× Z3
3 de tipo (55, 0, 26).

Todav́ıa es un problema abierto extender esta clasificación al resto de
pares de Jordan simples, es decir, las cuatro familias infinitas de pares de
Jordan simples no excepcionales. Un problema abierto aún más ambicioso
seŕıa extender la clasificación a todos los pares de Kantor simples, sistemas
triples de Kantor simples y álgebras estructurables simples.

En este trabajo también hemos dado una construcción para una Z3
4-

graduación fina en el álgebra de Brown. Hemos dado un Teorema de recono-
cimiento de esta graduación y calculado su grupo de Weyl, el cual es isomorfo
a StabGL3(Z4)(g0) ∩ SL3(Z4) donde g0 denota el grado de la componente ho-
mogénea antisimétrica. Hemos visto cómo esta graduación puede usarse para
construir graduaciones en las álgebras de Lie simples excepcionales de tipos
E6, E7 y E8; en particular podemos usarla para construir una Z3

4-graduación
fina en su álgebra de Lie de derivaciones e6, y una Z×Z3

4-graduación fina en
e8 obtenida mediante la construcción de Kantor.

Muchas otras graduaciones (menos complicadas) son ya conocidas en el
álgebra de Brown, pero la clasificación completa sigue siendo un problema
abierto y podŕıa ser considerado por el autor como trabajo futuro. Además,
un par de Kantor interesante es el par de Brown (es decir, el par de Kan-
tor asociado al álgebra de Brown), el cual contiene subpares isomorfos al
par de Albert. Conviene recalcar que la construcción de Kantor del par de
Brown es el álgebra de Lie simple excepcional e8, lo que permite extender sus
graduaciones a graduaciones en e8.

El autor también ha considerado como trabajo futuro extender los re-
sultados de la Sección 2.1, siempre que sea posible, al caso de Kantor, es
decir, para álgebras estructurables y pares y sistemas triples de Kantor. Esto
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podŕıa permitir usar técnicas similares para el estudio de las graduaciones en
sistemas de Kantor.

En los últimos avances en esta área, otros autores han clasificado salvo
equivalencia las graduaciones finas en álgebras de Lie simples sobre cuerpos
algebraicamente cerrados de caracteŕıstica 0 (véase [DE16b] y referencias
alĺı citadas); sin embargo, el problema sigue abierto para el caso de carac-
teŕıstica positiva. (Notemos que la Z3

4-graduación en el álgebra de Brown ha
sido utilizada por otros autores en la clasificación de graduaciones finas, sal-
vo equivalencia, de las álgebras de Lie simples excepcionales de tipo E sobre
un cuerpo algebraicamente cerrado de caracteŕıstica 0.) Los sistemas no aso-
ciativos aparecen con frecuencia como álgebras coordenadas de álgebras de
Lie en muchas construcciones diferentes, y en muchos casos sus graduaciones
pueden ser extendidas a graduaciones en el álgebra de Lie. Como los resulta-
dos de esta tesis, incluyendo las construcciones de graduaciones finas, se han
demostrado en el caso de caracteŕıstica distinta de 2, podŕıan ser útiles para
extender resultados conocidos en álgebras de Lie simples sobre un cuerpo de
caracteŕıstica 0 al caso de caracteŕıstica positiva.

105



Bibliography

[AF84] B.N. Allison and J.R. Faulkner, A Cayley–Dickson process for a class
of structurable algebras, Trans. Amer. Math. Soc. 283 (1984), no. 1, 185–
210.

[AF92] B.N. Allison and J.R. Faulkner, Norms on structurable algebras,
Comm. Algebra 20 (1992), no. 1, 155–188.

[AF93] B.N. Allison and J.R. Faulkner, Nonassociative coefficient algebras
for Steinberg unitary Lie algebras, J. Algebra 161 (1993), no. 1, 1–19.

[AF99] B. Allison and J. Faulkner, Elementary groups and invertibility for
Kantor pairs, Comm. Algebra 27 (1999), 519–556.

[All78] B.N. Allison, A class of nonassociative algebras with involution con-
taining the class of Jordan algebras, Math. Ann. 237 (1978), 133–156.

[All79] B.N. Allison, Models of isotropic simple Lie algebras, Comm. Algebra
7 (1979), no. 17, 1835–1875.

[All90] B.N. Allison, Simple structurable algebras of skew-dimension one.
Comm. Algebra 18 (1990), no. 4, 1245–1279.

[ALM05] P. Alberca-Bjerregaard, O. Loos and C. Mart́ın-González, Deriva-
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