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Nanofibrillar Al2O3-Y3Al5O12-ZrO2 eutectic rods were manufactured by directional 
solidification from the melt at high growth rates in an inert atmosphere using the laser-
heated floating zone method. Under conditions of cooperative growth, the ternary 
eutectic presented a homogeneous microstructure, formed by bundles of single-crystal 
c-oriented Al2O3 and Y3Al5O12 (YAG) 
Y2O3-doped ZrO2 (YSZ) whiskers between them. Owing to the anisotropic fibrillar 
microstructure, Al2O3-YAG-YSZ ternary eutectics present high strength and toughness 
at ambient temperature while they exhibit superplastic behavior at 1600K and above. 
Careful examination of the deformed samples by transmission electron microscopy did 
not show any evidence of dislocation activity and superplastic deformation was 
attributed to mass-transport by diffusion within the nanometric domains. This 
combination of high strength and toughness at ambient temperature together with the 
ability to support large deformations without failure above 1600K is unique and shows 
a large potential to develop new structural materials for very high temperature structural 
applications. 
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1. Introduction 

According to the second principle of thermodynamics, the efficiency of a thermal 

engine increases with the maximum temperature in the thermodynamic cycle. This 

driving force towards higher operation temperatures is currently limited by the 

-based superalloys is below 1400ºC 

and oxidation becomes an issue above 1100ºC. In addition to a very high melting point, 

high strength and toughness are required for structural components like blades and 

nozzle guide vanes in gas turbines, and SiC [1], Si3N4 [1], transition metal borides 

(ZrB2 and HfB2) [2] as well as SiC-C fiber composites [3] have been targeted for these 

applications. Nevertheless, their practical implementation was hindered by two 

problems. Firstly, microstructural design of high toughness ceramics normally involves 

the promotion of a tortuous crack path by engineering the grain boundaries or fiber-

matrix interfaces. These weak links, which enhance the energy dissipation during 

fracture at ambient temperature, are further degraded at high temperature, dramatically 

reducing the creep resistance and very often resulting in brittle behavior [1, 4-5]. 

Secondly, non-oxide ceramics are rapidly degraded by oxidation at high temperature in 

the aggressive environment of a combustion chamber [6]. 

 

Directionally-solidified eutectic oxides are an appealing alternative to non-oxide 

ceramics for high temperature structural applications as a result of their thermo-

mechanical behavior [7]. In particular, they present a high melting point, excellent 

microstructural stability up to temperatures very close to the eutectic point, as well as 

chemical stability in combustion environments [8]. This behavior is associated with an 

outstanding strength retention at high temperature and creep resistance due to the large 

area fraction of clean and strong interfaces without glassy phases, a major difference 
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with standard ceramic oxides which present a marked degradation in strength below 

1000ºC [9-10]. The best mechanical properties in terms of high temperature strength 

and creep resistance have been reported for Al2O3-based eutectics (in particular Al2O3-

YAG, Al2O3-Er3Al5O12 (EAG) and Al2O3-YAG-YSZ) with an interpenetrating 

microstructure [10-13] but these systems present very low toughness (in the range 2-4 

-15]. As a result, they are prone to catastrophic failure and not suitable for 

critical structural components within the gas turbine.  

 

This limitation was recently overcome by ternary eutectics of the system Al2O3-YAG-

YSZ with a nanofibrillar microstructure, which were grown by the laser-heated floating 

zone method at high growth rates in an inert atmosphere [16]. Under conditions of 

cooperative growth, the ternary eutectic presented a homogeneous microstructure, 

formed by bundles of single-crystal c-oriented Al2O3 and YAG 

width, with smaller YSZ whiskers between them. Toughening of these materials was 

induced by crack deflection along the nanofibrils due to the anisotropy in the fracture 

toughness of sapphire and to the thermal residual stresses, leading to rods with 

extremely high strength (> 4 GPa) and very high toughness perpendicular to the 

nanofibrils at ambient temperature. The high temperature properties were not explored, 

however, and this was the objective of this investigation. 

 

2. Materials and Experimental T echniques 

Ternary eutectic rods of a mixture of Al2O3/Y2O3/ZrO2 were grown by directional 

solidification at relatively high cooling rates of 200K/s. Ceramics were prepared using a 

mixture of commercial powders of Y2O3 (Aldrich, 99%), Al2O3 (Sigma-Aldrich 

99.99%) and 8% yttria-stabilized zirconia (Tosoh Corporation) in the ternary (65 mol% 
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Al2O3, 19 mol% ZrO2, 16 mol% Y2O3) eutectic composition. Precursor rods of 2 mm in 

diameter and up to 100 mm in length were prepared by cold isostatic pressing for 3 min 

at 200 MPa followed by sintering in a furnace at 1773K for 12 hours. Eutectic rods of 

in diameter were fabricated by directional solidification from the melt using the 

laser-heated floating zone method with a CO2 laser [10]. The rods were grown in 

nitrogen atmosphere and the growth chamber was kept with a slight overpressure of 

0.15-0.25 bar above ambient pressure in order to avoid the appearance of voids in the 

solidified rods. Several growth steps of diameter reduction were applied at growth rates 

between 100 and 250 mm/h. The last stage was always performed with the solidified 

rod being pulled out downwards using a growth rate of 1200 mm/h and without rotation 

of the crystal and precursor. A 

maintained by adjusting the laser power input.  

 

The microstructure of the rods before and after mechanical testing was examined using 

TEM and SEM. For the TEM studies, thin specimens were prepared in both transverse 

and longitudinal cross-sections. The cross-sections were prepared by saw cutting, 

parallel mechanical thinning down to 40 µm and Ar+ ion milling at 77 K, followed by 

carbon coating. Longitudinal and transverse cross-sections were extracted from the bent 

region of the rod shown in Fig. 2a using focused ion beam techniques in a Dual Beam 

FEI Helios 650 equipment to preserve the integrity of the sample.  They were studied in 

a Jeol 2000FXII microscope equipped with an INCA 200 X-ray microanalysis detector. 

High-resolution TEM images were obtained from the longitudinal cross-sections before 

and after mechanical testing using a FEI Titan 60-300KV Cube Ultra High Resolution 

TEM equipped with a spherical aberration objective lens corrector working at 300 kV. 

HRTEM images of the tested samples corresponded to the bent region of the rod. For 
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SEM analysis, longitudinal samples of the deformed rods were cut using a diamond 

saw, and initially polished using diamond of 30 µm grain size as an abrasive, and 

afterwards with diamond slurry (up to 1 µm). The polished surfaces were coated with a 

thin layer of Au and observed in a field-emission SEM (Nova NanoSEM 320, FEI) 

using secondary and backscattered electron detectors.  

 

The strength of the rods in the longitudinal direction was measured from 300 to 1900 K 

by flexure tests carried out in an alumina three-point bend testing fixture of 8.5 mm 

loading span. The specimen and the loading fixture were placed in a furnace and loaded 

through two alumina rods connected to the actuator and load cell, respectively, of a 

servomechanical testing machine (model 4505, Instron Ltd). The heating rate was 10 

K/min up to 1300K, 5 K/min up to 1500K and 3K/ min up to 1700 K. The specimen 

was kept at the test temperature for 30 min before testing. The tests were performed in 

air under stroke control at a crosshead speeds in the range 10 to 5000 µm/min.  

 

3. Results 

The microstructure of the rods in the longitudinal and transverse direction is given in 

Figs. 1a and 1b, respectively. The component phases, -Al2O3, YAG and YSZ, were 

identified by X-ray and electron diffraction. The Y2O3 content in the cubic ZrO2 was 20 

mol %, as determined by energy dispersive spectroscopy The TEM image of the 

longitudinal section (Fig. 1a) shows a microstructure consisting of Al2O3 and YAG 

single-crystal whiskers up to 1 mm in in thickness. Narrow YSZ 

single-crystalline fibers lay at the interfaces between sapphire and YAG. The cross-

sectional microstructure as shown by the TEM image of transverse sections (Fig. 1b) 

shows a continuous matrix of YAG with triangular section Al2O3 inclusions and 
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elongated YSZ domains at the interface. The volume composition of the material as 

determined from TEM images of longitudinal sections was 38, 39 and 23 vol% of 

Al2O3, YAG and YSZ respectively. The crystallographic orientations of the component 

phases have been previously reported [16]. Sapphire whiskers were aligned along the 

[0001] direction indicating a c-axis growth. The main growth directions of YSZ and 

YAG elongated domains were [001] in both cases.  

 

Thermal expansion mismatch among the component phases induced thermo-elastic 

residual stresses upon solidification from the melt. In eutectics containing sapphire 

crystals, residual stresses can be accurately determined by piezospectroscopy using the 

shift of the Cr3+ ion emission present at trace level in Al2O3 [17]. The average 

hydrostatic component of residual stress in the Al2O3 phase, measured with this 

technique, was -0.170  0.03 GPa. This magnitude is very close to the one computed 

from the thermo-elastic properties of the phases using the self-consistent approximation 

for a three-phase composite assuming a stress-free temperature of 1493 K. Thermal 

expansion coefficients of Al2O3 and YAG are similar and close to 8 x 10-6 K-1 but that 

of the minority YSZ phase is much larger: 12.65 x 10-6 K-1. As a consequence, 

extremely high tensile residual stresses  

Al2O3 and YAG are under compression [16]. The presence of such high residual 

stresses is in favor of strong and clean interfaces, free of glassy phases. They are 

normally found in eutectics grown from melt because the system has a tendency to form 

the most stable low-energy interfaces to minimize the system-free energy [18]. 

 

The rods were tested under three-point bending at temperatures in the range 1500K to 

1700K at different strain rates, as defined by the crosshead speed. Two different 
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behaviors were found, as depicted in Fig. 2a. At low temperature and high strain rate, 

the mechanical behavior was practically linear until fracture, in agreement with the 

standard behavior of ceramic eutectics. The bending strength could be determined from 

maximum load, !max , following the Strength of Materials theory for a Bernoulli elastic 

beam of circular section according to  " = !max# /  $
3, where S is the span and r the rod 

radius. The bending strength of the elastic rods can be found in Fig. 2b for different 

temperatures and loading rates. These values are lower than those measured previously 

at ambient temperature (> 4 GPa [16]) but equivalent to those reported in the same 

temperature range for ternary Al2O3/Y2O3/ZrO2 eutectics with micron or submicron 

domains arranged in a three-dimensional interpenetrating network [19-20]. 

 

Surprisingly, the typical elastic behavior until fracture of these eutectics changes 

abruptly at higher temperatures and/or lower loading rates to a ductile regime in which 

the rods underwent very large plastic deformations without fracture. An extreme, but 

representative, case is found in the inset of Fig. 2a, where the eutectic rod is completely 

bent around the alumina loading pin. If all the tests are represented in a loading rate vs. 

temperature diagram (Fig. 2b), two different regions appear: elastic behavior is found in 

the upper-left region, which corresponds to low temperature/high strain rates, while 

superplastic deformation is concentrated in the lower-right zone. It should be noted that 

superplastic deformation occurred at a constant flow stress that depended on 

temperature and loading rate (Fig. 2b). 

 

The fracture and deformation mechanisms of the elastic and superplastic samples were 

studied by scanning electron microscopy (SEM). Elastic rods failed with the 
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propagation of a brittle crack from surface defects, in agreement with previous 

observations in these ternary eutectics [19, 20]. Superplastic samples were not broken 

and the microstructure of the rods was analyzed just below the loading point (Figs. 3a 

and 3b) where the rod underwent the largest (compressive) stresses and at the opposite 

surface (Fig. 3c), where the tensile stresses were maximum. The secondary and back-

scattered electron images just below the loading point showed that the fibrillar 

microstructure had become wavy. Neither cracks nor other defects were found, 

indicating that all the phases were able to accommodate the large plastic strains. On the 

contrary, surface defects were found in the tensile region of the rod, as shown in Fig. 

3c. These defects did not lead, however, to fracture by the propagation of a crack 

perpendicular to the rod axis. On the contrary, the cracks propagated parallel to the rod 

(Fig. 3d) and did not cause brittle fracture. This mechanism of toughening by crack 

deflection was already found at ambient temperature and it was responsible for the 

extremely high bending strength of the rod [16]. Crack deflection in the nanofibrillar 

eutectic was attributed to two cooperative mechanisms at ambient temperature, namely 

the thermal residual stresses and the anisotropy of the fracture toughness of sapphire. 

These results indicate that the differences in the toughness of sapphire between the 

basal (0001) plane (4.5 MPam1/2) and the prismatic (11-20) or rhombohedral (10-12) 

planes (2.4 MPam1/2) [21] is sufficient to promote crack deflection in this nanofibrillar 

microstructure. 

 

In order to gain understanding of the physical mechanisms responsible for the 

superplastic behavior, transmission electron microscopy (TEM) samples were obtained 

from the deformed region below the loading point. Samples from the non-deformed 

areas of the same superplastic rod were also examined. Precipitates of ~10 nm were 
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abundantly found in the alumina phase in both deformed and non-deformed zones (Fig. 

4). They showed a coffee bean type contrast that is typically attributed to coherent 

precipitates probably formed by aggregation of vacancies during heating. Slightly larger 

precipitates 15 nm) were also found in YAG but the density was lower.  

 

HRTEM was carried out in order to ascertain the presence of amorphous precipitates or 

glassy zones at the interfaces before or after deformation. The HRTEM images of the 

three interfaces, Al2O3-YAG, Al2O3-YSZ and YAG-YSZ, corresponding to the as-

processed ternary eutectic are shown in Figs. 5a, 5b and 5c, respectively. Similar 

HRTEM images were obtained from the region deformed superplastically in the bent 

rods and are shown in Fig. 6. Both figures, representative of the interfaces in the ternary 

eutectic, demonstrate that neither amorphous precipitates nor glassy zones were present 

in the ternary eutectic before or after deformation. This feature, which hinders the 

activation of domain boundary sliding as the dominant deformation mechanisms, is a 

well-known characteristic of directionally-solidified eutectics, responsible for their 

excellent creep resistance [9, 13-14, 22-25]. 

 

In addition, dislocations were not found in the deformed region. As the rods were 

highly textured, the absence of dislocations was checked in both transverse and 

longitudinal cross-sections and under various electron illumination conditions. The only 

feature associated with the deformation observed in the TEM analysis was the presence 

of bend contours, mainly in the alumina phase (Fig. 4b). These contours are formed by 

diffraction of crystallographic planes that rock into the Bragg condition due to the 

macroscopic bending of the specimen. The presence of these contours is in agreement 
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with the large deformations undergone by the nanofibrillar crystals under the loading 

points, as shown by SEM (Figs. 2a and 2b). Note also that the contours of Fig. 4b were 

perpendicular to the deformation axis. 

 

4. Discussion 

Previous evidence of plastic deformation in directionally-solidified binary eutectics 

(Al2O3-GdAlO3, Al2O3-YAG, Al2O3-EAG) [9, 13, 22] reported continuous flow at 

higher temperatures (above 1823K) with creep exponents of around 5. These results 

were supported by TEM studies, which showed evidence of dislocation activity in both 

phases, particularly in Al2O3. Creep tests between 1673K and 1823K in these binary as 

well as ternary systems (Al2O3-YAG-YSZ and Al2O3-EAG-YSZ) [13, 23-26] with an 

interpenetrating microstructure reported creep exponents in the range 2 to 5, which 

were indicative of creep due to dislocation movement. In general, the creep resistance 

of the binary Al2O3-YAG and Al2O3-EAG eutectics was very good, comparable to that 

of c-axis sapphire [22]. The creep exponent decreased with the domain size [26], 

indicating that the contribution of bulk diffusion to the overall creep rate increased for 

finer microstructures. TEM studies provided evidence of dislocation activity in Al2O3 

but not in EAG [24] or YAG [23]. More detailed studies showed the presence of 

dislocation networks formed by basal dislocations in Al2O3, while the dislocation 

density in YAG was much lower [26]. It should be noticed that the total (compressive) 

creep strain in the binary eutectics was always limited (in the range 5 to 15%) and that 

these values were even smaller in the case of ternary eutectics [26] in which damage 

occurred at smaller strains (3-4%). 
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Dislocation activity was not found in any of the three phases of the nanofibrillar 

eutectic. This was not expected in the case of YAG because temperatures in excess of 

1800K are necessary to activate dislocation motion in this oxide [27]. YAG has a bcc 

+3 ions occupying cubic sites while the 

smaller Al+3 ions are located at both octahedral and tetrahedral sites. The most 

favorable slip system is [1-11]<111> with a very large Burgers vector (1/2<111> = 1.04 

nm), which mainly accounts for the exceptional creep resistance. In the case of Al2O3, 

plastic deformation mainly occurs by basal slip and, to a lesser extent and higher 

temperature, by prism plane slip [28]. The Schmid factor for both basal and prismatic 

slip was zero, however, because the rods were textured and the c axis of sapphire was 

parallel to the longitudinal stresses induced by bending. Although pyramidal and 

rhombohedral slip have also been reported in Al2O3, the stresses required are too high 

to be active in the ternary eutectic rods [28-29]. Finally, it should be noticed that 

dislocation slip is far easier in YSZ than in either Al2O3 or YAG [30] but the small 

thickness of YSZ domains (< 50 nm) leads to very high stresses for dislocation 

nucleation [31] and hinders the dislocation activity in this phase. 

 

Neither interface sliding nor dislocation activity were found operative in the case of 

nanofibrillar ternary eutectics loaded along the c axis of the Al2O3 domains and the 

large plastic deformations have to be attributed to mass transport by diffusion. This 

hypothesis is favored by the small dimensions of the domains in the microstructure and 

is in agreement with the experimental results in Fig. 2b which show that superplastic 

deformation is enhanced by high temperatures and low strain rates (Fig. 2b). These 

results are in contrast with those reported in Al2O3-based binary and ternary eutectics 

with interpenetrating microstructure in which dislocation slip in Al2O3 was the 
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mechanisms controlling creep deformation below 1800K. The change in the 

deformation mechanisms between these materials and nanofibrillar eutectics have to be 

traced to the microstructural difference (domain size, shape, orientation), which inhibit 

the activation of basal slip, the easiest slip system in Al2O3, in the nanofibrillar 

eutectics.  

 

Diffusion-controlled creep, which t

necessary condition to achieve the superplastic behavior but it is not sufficient. An 

adequate interface strength, relative to the flow stress, is required to mitigate interface 

cracking and/or cracking during large strain deformation, while coarsening of the fine 

superplastic microstructure should be inhibited [32]. These conditions, which lead to 

complex microstructural design rules to obtain ceramics with superplastic behavior, 

arise naturally by self-assembly upon directional solidification from the melt at very 

high growth rates. Directional growth of eutectic mixtures ensures low-energy 

interfaces without glassy phases and very high strength, while they present an excellent 

resistance to homogeneous coarsening even at temperatures approaching the eutectic 

point [10, 33]. Moreover, superplastic behavior was also found in high purity tetragonal 

ZrO2 polycrystals (TZP) and SiO2-

4]. HRTEM showed that the grain boundaries in both materials 

were free of glassy phases and SiO2 glass pockets were concentrated at the grain 

boundary multiple junctions in the second material. These authors reported that 

segregation of both Y and Si at the grain boundaries strengthened the chemical bonding 

at the grain boundaries and it was assumed that grain boundary cavitation and resultant 

fracture was suppressed by the formation of strong grain boundaries [34]. A similar 

mechanism can be responsible for the superplastic behavior of ternary Al2O3-YAG-
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YSZ eutectics, which are known to present very strong domain boundaries. Finally, it 

should be noted that the crack deflection mechanism -which enhances the damage 

tolerance of the ternary eutectic upon tensile deformation- is also important from the 

viewpoint of manufacturing components with complex shape by means of sheet 

forming, extrusion, forging, etc. in the superplastic regime. 

 

5. Conclusions 

The possibility of superplastic deformation has been demonstrated for the first time in 

directionally-solidified eutectic oxides grown from the melt. Superplastic deformation 

comes about as a result of a number of features that arise during eutectic solidification 

at very high growth rates: a nanofibrillar microstructure whose texture impedes 

deformation by dislocation slip when stressed along the solidification direction, very 

high interface strength and resistance to homogenous coarsening during high 

temperature exposure. This finding, together with the high strength and toughness of 

this nanofibrillar eutectic [16], has major implications in the manufacturing of eutectic 

oxides for high temperature structural applications. 
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F I G UR E C APT I O NS 

 
 
F ig. 1. TEM images showing the microstructure of the as-grown rods. (a) Longitudinal 
cross-section. (b) Transverse cross-section. The different phases were identified by 
energy dispersive spectroscopy, but can also be recognized by their grey level. In 
general, heavier phases appear darker in the micrograph due to higher electron 
scattering. The triangular shape of the Al2O3 inclusions observed in the transverse 
cross-section reflects the 3-order symmetry of the [0001] growth axis. 
 
F ig. 2. (a) Representative load-displacement curves of eutectic rods displaying elastic 
and superplastic behavior. The inset shows the final shape of the rod, completely bent 
around the alumina loading after superplastic deformation. (b) Elastic and superplastic 
domains of deformation as a function of temperature and loading rate. The numbers 
indicate the bending strength (elastic) or the flow stress (superplastic). 
 
F ig. 3. SEM micrographs of the longitudinal section of a rod after superplastic 
deformation. (a) Secondary electron micrograph showing significant distortion of the 
microstructure below the loading point due to plastic deformation. (b) Back-scattered 
electron detail of (a). Contrary to TEM images, Al2O3 appears black, YAG grey and 
YSZ white. (c) Back-scattered electron micrograph of a surface defect at the tensile 
region of the rod. (d) Idem as (c), showing the propagation of a crack (marked with an 
arrow) from the defect parallel to the rod axis. 
 
F ig. 4. TEM images obtained from transverse (a) and longitudinal (b) cross-sections of 
the deformed and of the longitudinal (c) cross-section of the non-deformed region of the 
ternary eutectic rod. The rod growth direction was horizontal in both cases, as shown in 
(c). Neither dislocations nor interphase amorphous precipitates were found in either 
region. The image (b) shows the presence of bend contours, mainly evident in the 
alumina phase, associated to the macroscopic superplastic deformation of the sample. 
The small precipitates in both Al2O3 and YAG (although the density is higher in Al2O3) 
are attributed to vacancy aggregation. 
 
F ig. 5. HRTEM images of the three different interfaces in the ternary eutectic in the as 
processed condition. (a) Al2O3-YAG. (b) Al2O3-YSZ. (c) YAG-YSZ. The main atomic 
planes are marked in the figures. 
 
F ig. 6. HRTEM images of the three different interfaces in the ternary eutectic after 
testing. (a) Al2O3-YAG. (b) Al2O3-YSZ. (c) YAG-YSZ. The images correspond to the 
superplastically deformed region. The main atomic planes are marked in the figures. 



! ":!

F I G UR ES 

 
 

 
 
 

 
 
Fig. 1. TEM images showing the microstructure of the as-grown rods. (a) Longitudinal 
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energy dispersive spectroscopy, but can also be recognized by their grey level. In 
general, heavier phases appear darker in the micrograph due to higher electron 
scattering. The triangular shape of the Al2O3 inclusions observed in the transverse 
cross-section reflects the 3-order symmetry of the [0001] growth axis. 
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Fig. 2. (a) Representative load-displacement curves of eutectic rods displaying elastic 
and superplastic behavior. The inset shows the final shape of the rod, completely bent 
around the alumina loading after superplastic deformation. (b) Elastic and superplastic 
domains of deformation as a function of temperature and loading rate. The numbers 
indicate the bending strength (elastic) or the flow stress (superplastic). 
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Fig. 3. SEM micrographs of the longitudinal section of a rod after superplastic 
deformation. (a) Secondary electron micrograph showing significant distortion of the 
microstructure below the loading point due to plastic deformation. (b) Back-scattered 
electron detail of (a). Contrary to TEM images, Al2O3 appears black, YAG grey and 
YSZ white. (c) Back-scattered electron micrograph of a surface defect at the tensile 
region of the rod. (d) Idem as (c), showing the propagation of a crack (marked with an 
arrow) from the defect parallel to the rod axis. 
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Fig. 4. TEM images obtained from transverse (a) and longitudinal (b) cross-sections of 
the deformed and of the longitudinal (c) cross-section of the non-deformed region of the 
ternary eutectic rod. The rod growth direction was horizontal in both cases, as shown in 
(c). Neither dislocations nor interphase amorphous precipitates were found in either 
region. The image (b) shows the presence of bend contours, mainly evident in the 
alumina phase, associated to the macroscopic superplastic deformation of the sample. 
The small precipitates in both Al2O3 and YAG (although the density is higher in Al2O3) 
are attributed to vacancy aggregation. 
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Fig. 5. HRTEM images of the three different interfaces in the ternary eutectic in the as-
processed condition. The main atomic planes are marked in the figures. (a) Al2O3-YAG. 
(b) Al2O3-YSZ. (c) YAG-YSZ. 
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Fig. 6. HRTEM images of the three different interfaces in the ternary eutectic after 
testing. (a) Al2O3-YAG. (b) Al2O3-YSZ. (c) YAG-YSZ. The images correspond to the 
superplastically deformed region. The main atomic planes are marked in the figures. 


