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1 Abstract

The combination of the non-adiabatic Ehrenfest-path molecular dynamics (EMD)
based on time-dependent density-functional theory (TDDFT), and the quantum
optimal control formalism (QOCT) is used to optimize the shape of ultra-short
laser pulses in order to achieve the photo-dissociation of the Hydrogen molecule
and the trihydrogen cation Hj . This work completes a previous one [A. Cas-
tro, ChemPhysChem 2013, 14, 1488-1495], in which the same objective was
achieved by demonstrating the combination of QOCT and TDDFT for many-
electron systems on static nuclear potentials. The optimization model, therefore,
did not include the nuclear movement and the dissociation mechanism obtained
could only be sequential: fast laser assisted electronic excitation to non-bonding
states (during which the nuclei are considered to be static), followed by field-free
dissociation. Here, in contrast, the optimization is performed with the QOCT
constructed on top of the full dynamical model comprising both electrons and
nuclei, as described within EMD based on TDDFT. This is the first numerical
demonstration of an optimal control formalism for a hybrid quantum-classical
model, i.e. a molecular dynamics method.

2 Introduction

The manipulation of physical processes at the quantum level is generically called
“quantum control” [1, 2, 3], an emerging field of Science that is making fast
progress both experimentally and theoretically. One of its most impressive suc-
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cess stories is its application for selective photo-chemistry: the shaping of femto-
second laser pulses to induce photo-chemical reactions in molecules [4, 5, 6].

Experimentally, numerous groups are pursuing this objective, typically bas-
ing their work on the “adaptive feedback control” experimental setup [7], which
uses the fundamental tool needed for this purpose — the laser shaper [8]. The-
oretically, the prediction of pulse shapes capable of breaking or creating bonds
at will is a challenging task, and is usually attempted with the aid of “optimal
control theory” (OCT), the mathematical discipline that is concerned with the
optimization of dynamic systems in general [9]. The quantum branch of OCT
(QOCT) was born in the 80s, and has quickly developed ever since. In order
to be useful, QOCT must be applied on a suitable model for the system and
process whose optimization is attempted.

The choice of the model to simulate the dynamical process (the laser-molecule
irradiation, in this case) has obvious consequences on the numerical difficulty
of the optimization, and on the reliability of the results. Most applications of
QOCT in this area have relied on wave packet propagation techniques: they
have addressed the motion of nuclear wave packets, on one or a few poten-
tial energy surfaces. This may be a very precise model, provided a sufficient
number of surfaces is included, and their non-adiabatic couplings are correctly
computed. However, the computational cost of pre-computing the surfaces, in
addition to the cost of the propagation of the nuclear wave packets, is very high.

A cost reduction may be obtained by taking the classical approximation for
the nuclei i.e. using a mixed quantum-classical model. This may be sufficient for
many problems, and is the fundamental principle of Molecular Dynamics (MD).
There are a large number of MD variants; for the problem of laser-assisted
photo-chemistry, we must choose an ab initio formulation capable of dealing
with changing bonds, external fields, non-adiabatic electronic transitions and
strongly excited electronic systems. This is of course the worst-case scenario for
MD models - specially since, on top of it, one must build an OCT formalism
(not just the standard quantum or classical one, but one capable of dealing with
mixed quantum and classical degrees of freedom together).

One simple alternative is Ehrenfest molecular dynamics (EMD) based on
time-dependent density-functional theory (TDDFT) [10, 11]. EMD deals with
the issue of mixing quantum and classical degrees of freedom in a straightforward
manner, and although suffers from serious shortcomings, provides an acceptable
first-order approximation to the solution. TDDF'T, on the other hand, is in prin-
ciple an exact reformulation of the many-electron quantum dynamics problem
- yet this formal exactness cannot be realized in practice due to the need of
approximating some of its ingredients in the current state of affaires. Finally,
the combination of these two techniques (EMD-TDDFT) has been successfully
employed in various works in the past[12, 13, 14, 15, 16, 17, 18].

Once the equations of motion that model the physical process have been cho-
sen, the OCT formalism must be constructed. The combination of QOCT with
TDDFT was presented in Ref. [19], that also displayed the first numerical results
for a simple two-dimensional electronic problem. This theoretical scheme and
the corresponding implementation, however, only addressed a purely quantum



(electronic) system.

The combined use of EMD and TDDFT within QOCT was first approached
in Ref. [20]. However, the optimization was performed with a gradient-free
algorithm that did not use of the main theoretical result provided by OCT:
the expression of the gradient of the magnitude that is to be maximized, as a
function of the parameters that define the controlling function (a laser pulse,
in our case). We did not have, at that time, the complete theoretical OCT
framework for a mixed quantum-classical system.

Later, Ref. [21] reported the optimal shaping of laser pulses for molecular
photo-dissociation, by making use of the QOCT-TDDFT combination presented
in Ref. [19], even if the movement of classical nuclei was ignored. This was
possible because a truly ultra-fast situation was assumed: the action of the
laser pulse was very short, giving no time for the nuclei to react until it was
over. The dissociation mechanism could therefore only be sequential: fast laser
assisted electronic excitation to non-bonding states (during which the nuclei are
static), followed by field-free dissociation. The role of QOCT-TDDFT was then
to prepare the electronic system into those non-bonding states, considering fixed
nuclei.

This procedure cannot however be employed in general, as it was demon-
strated in the very same Ref. [21]: as soon as the laser pulses become long
enough, the nuclear movement must be taken into account into the optimization
algorithm. Therefore, the OCT formalism for mixed-quantum classical systems
in general, and for the EMD-TDDFT model in particular, was needed. This
theory was presented in Ref. [22]. This article can be considered the completion
of Ref [21], since it solves the limitations reported in that article by making use
of the new quantum-classical OCT. It reports the implementation of this theory
into the octopus code [23, 24], and a few numerical examples demonstrating its
feasibility.

3 Theory and computational aspects

The main results of the theory presented in Ref [22] will be summarized here,
as well as the key aspects of the corresponding numerical implementation. The
first step is to present the model on top of which the optimization is performed.
In essence, the EMD-TDDFT model consists of coupling a classical system of
particles with a quantum many-electron system, and using TDDFT in order to
handle the latter.

The classical system is defined by a set of K nuclear coordinates and mo-
menta, {R, P} = {ﬁa, ﬁa}le, where o runs over all the K nuclei, each with
mass M, and charge z, (atomic units will be used through this article). Their
dynamics is coupled to that of a quantum system of N electrons, described by
a many-body wave function ¥(7y01,...,7NyoN), where 7, and o, represent the
orbital and spin degrees of freedom of one electron (o,, =1,J). The EMD model



is then given by the following equations of motion:

Ralt) = 5y Palt). (1)
Pult) = FulR(), ¥(t),u.1], (2)
N(6) = —iH[R(E),u, ] 9(2) (3)

In these equations, the force Fy,[R(t), U(t), u, 1] is:
FolR(), U(t),u,t] = =V W™ (R(t)) + 2ac(u, t) 7 — (U ()| Vo H[R(2), u, ]| ¥ ()
The nucleus-nucleus interaction function has the usual Coulomb form:

WER) =Y ﬁ. (5)

B<y

The time-dependent function €(u, t) is the amplitude of the electric field of the
laser pulse (I ignore the magnetic component, and assume the dipole approxi-
mation and the length gauge). The light is polarized in the direction given by
the unit vector ©. The symbol u represents a set of parameters wuy,us, ..., uns
that are the ones that can be controlled, determining the precise shape of the
laser pulse.

Finally, the dynamics of the electrons is determined by the following Hamil-
tonian:

N n
H[R,u,t] = Z 5+Z ;1;+5(u,t) Zﬁ;-ﬁ+22v5(\ﬁ—ﬁﬁ(t)|) . (6)

The position and momenta operators of the N electrons are 7%1 and ﬁ}, respec-
tively. Note the presence of the electron-nucleus interaction, the last term of
the Hamiltonian, which typically is given by (local) Coulomb terms:

P (r) = % (7)
r
However, sometimes the electron-nucleus interaction is handled with the help of
pseudo-potentials [25], which may be non-local operators.

The previous equations are those of the EMD model with the true many-
electron wave function ¥. Given the difficulties of manipulating such a large
object, the TDDFT Kohn-Sham (KS) formalism substitutes the real electronic
system by a fictitious non-interacting set of electrons, that can be described by
a single Slater determinant characterized by N spin orbitals ¢1,...,¢x. The
time-dependent one-electron density of both systems are, however, identical by
construction. The spin-resolved version of this density is defined, for the true
many-electron wave function ¥, as:

Ngr (7, 1) = (L)L) (72 (1)) | (8)



using the creation and annihilation field operators 1[)];(77) and ’(/AJT (7), respectively.
The Kohn-Sham spin orbitals, however, permit an easier computation of this
object, as:

N
Nor (7)) = Z O (70, ) o (7T, ) . (9)
m=1

In many situations, the problem does not affect the spin degrees of freedom (i.e.
there are no magnetic fields, and the spin-orbit coupling term can be ignored),
and the number of electrons is even, which allows for a spin-restricted treatment:
the Kohn-Sham spin-orbitals ¢,, can be grouped in pairs that share the same
orbital shape, but have opposite spin quantum number. In the following we will
assume this restriction in order to simplify the notation, since the numerical
examples shown below fall into this category. The time-dependent density is

then:
N/2

n(7) = n(it) = Y 2om (7 1) (10)

m=1
The dynamics of the KS orbitals is governed by the time-dependent KS equa-
tions, a set of non-linear Schrodinger-like equations:

d - .
1a|<pi(t)> = Hxs[R(t), ne, u, t]pi(t)) (i=1,...,N/2), (11)
The Kohn-Sham Hamiltonian HKS is defined as:

Al ] = 5+ 3007~ Rl + )7

-
/d3 / |7zt(T3| +vxc[nt](77). (12)
The next-to-last term is the Hartree potential, whereas the last term is the
exchange and correlation potential, whose exact form is unknown and must be
approximated. We assume an adiabatic approximation, meaning that it depends
at each time t on the density at that time only, n;. In particular, we will simply
use the adiabatic local density approximation (ALDA).

The EMD-TDDFT model is then determined by the KS equations (Egs. 11),
plus the equations for the classical degrees of freedom, Egs. 1 and 2, although
the force is not any more a functional of the many-electron wave function ¥, but
has the following form that depends on the Kohn-Sham orbitals ¢ = {(pm}N/ 2

—

FL[R®), o), u,t] = =V W™ (R()) + zqe(u, t)@
N/2 B

= > 2pn®)] Var (IF = Ra(t)]) lom (1)) . (13)

Once the model that describes the dynamics of the system is completely
specified, the objective is to search in the parameter space u those values that



optimize the behavior of the system with respect to a physical goal, e.g. the
cleavage of a chemical bond, the ionization of the system, or the population of
some electronic excited state. This can be formulated as the maximization of a
target functional that depends on the system variables, i.e.:

F = Flng, R(T), P(T),u]. (14)

The time T is the final time of the propagation interval [0, T (it is also possible
to formulate OCT for a target functional that depends on the evolution of
the system during the full interval, and not only on its final state). Note the
dependence on the control parameters u, which may be used to favor or penalize
regions of the parameter space. However, in the example below the target
functional will only depend on the classical variables, i.e. F = F[R(T), P(T)],
and therefore that restriction will be assumed hereafter (the general formulation
can be found in Ref. [22].
The specification of a set of parameters u determines the evolution of the
system:
w — Rlul, Plu], ol (15)

In consequence, the problem is reduced to that of maximizing a function:
Glu] = FIR[u|(T), Plu[(T)]. (16)

The tools of OCT permit then to obtain an expression for the gradient of G
(see Egs. (30) and (31) in Ref. [22]):

T
() = / (. )g(1). (17)
where g is:
. N/2 A
60) = = 3" 2 Bs(t) - 7+ 2m 3 (um (O Flom (1) (18)
B m=1

Note the appearance of new objects: new position and momenta variables R}g, ]35

and one-particle orbitals, {Xm}fvn/jl; together they form a costate, an auxiliary

quantum-classical system whose evolution must be computed in order to obtain



g; the equations of motion for the costate are:

Ralt) Bu(t)

2

B

=/

1
E ’
Poz(t) = 6Ot{ ﬁ(t)'ﬁﬁ[R(t)vw(t)vu7t]}
N/2
+2Re i Z (Xm (8)|V o Hies [R(t), 114, 1w, 1] [0 (20)
|Xm(t)> = _iﬁKS[R(t)authXm(t» )
N/2

—1 Y Kpnle(®)][xn (1))

2" Ry 0% (7~ Bst))om(t) (1)
B

The equations for the evolution of the costate orbitals x,, contain a new, non-
Hermitian term:

<F|Kmn [‘p(tﬂ |Xm (t)> = _4190m(F7 t)Im dST/Xn (Fu t)foc [nt] ('Fv F)‘aon (77’ t) )
(22)
where frxc[nd] (7, 7) is the “kernel” of the KS Hamiltonian, defined as the func-
tional derivative of that Hamiltonian with respect to the density:
R 1 OUxe [N (7

These expressions assume an adiabatic approximation for the exchange and
correlation potential vy, i.e. its functional dependence on the density is only
through its instantaneous value at a given time, and not on it full history,
as the exact theory prescribes. A mnon-adiabatic functional would lead to a
more complicated Eq. 22: the space integral in the right hand side would also
be a time integral. This would complicate the numerical integration of the
costate evolution, in a similar way that the non-adiabatic approximation would
complicate the normal Kohn-Sham states evolution. In the examples below, we
have used the ALDA. The use of better — yet still adiabatic — approximations
does not significantly complicate the numerics, unless the computation of the
kernel in Eq. 23 is itself complicated.

The equations of motion for the costate must be supplemented by the cor-
responding boundary conditions, which are:

0

(23)

Ro(T) = —af(R(T),P(T)% (24)
= 0

Po(T) = 8ﬁaf(R(T)’P(T))’ (25)
IXm(T)) = 0. (26)



These are not initial value conditions, but final value conditions. Therefore,
the computation of the gradient components of G must be performed as fol-
lows: first, propagate forwards the equations of motion for the system state
(Egs. 1, 2 and 11), a propagation that also permits to compute the value of
the function, G(u). Then, propagate backwards the equations of motion of the
costate (Egs. 19, 20 and 21), starting from the final value conditions 24, 25, and
26.

Once there is a procedure to compute G(u) and VG(u), the next step is
choosing an optimization algorithm. In the examples shown below, the Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton algorithm (BFGS) [26] as implemented
in the GSL mathematical library [27].

Before moving on to the description of some examples of application, I will
describe the salient features of the numerical implementation of these equations,
which has been done on top of the octopus code [23, 24]. This code specializes
in the solution of the TDDFT equations for a wide variety of systems. Its most
relevant numerical characteristics are:

e It is mostly a real-space code: the wave functions, densities, potentials, etc.
are represented by the values that they take on a regular mesh of points
in real space. In this representation, the potential operator are in princi-
ple local (i.e. diagonal; but see the next point about pseudo-potentials),
whereas the kinetic operator is a non-local finite-difference expression, i.e.
it is computed through a very sparse matrix-vector operation.

e The electron-ion interaction is handled with the help of pseudo-potentials [25],
which both avoids the Coulomb discontinuity at zero electron-nucleus
distance, and permits to avoid the explicit treatment of the inert core-
electrons. However, they are non-linear operators in real space.

e The time-propagation can be handled with a variety of algorithms [28].
For this work, I have used the 4th order explicit Runge-Kutta scheme
(RK4) [29, 30]. The propagation error is fourth-error in the time-step. If
the computation of the integral in Eq. 17 is also performed with a fourth
order scheme, the overall error in the calculation of the gradient is also of
order four.

e The control parameters u that define the precise shape of the electric field
amplitude e(u,t) are defined as in Ref. [21]: First, the pulse temporal
shape is expanded in a Fourier series:

2L
et) = Z ei(u)gi(t) (27)

where

cos (2&it t1=1,...,L
(Fit) ( )

9i(t) = sin (25(i— L)t) (i=L+1,...,2L)



This fixes a maximum possible (cut-off ) frequency to Q%L. Note the zero-
frequency term is explicitly omitted, which is a desired restriction, in order
to fulfill the physical condition

/ Yt e(t) = 0. (29)
0

The coefficients ¢; are not, however, directly identical to the optimization
parameters uq,...,uy = u, but are function of them. The reason is that
there are other conditions that are enforced: First, the preservation of the
fluence, or integrated intensity over the duration of the pulse, defined as:

Flu) = /0 dt e2(u, 1) (30)

The search is performed only in the set of pulses whose fluence equals a
given value Fy (a fully unconstrained search would in this case lead to a
problem without an optimum, since it would allow pulses with unlimited
intensities). Second, other obvious conditions that must be fulfilled are:

e(u,0) =e(u,T) =0. (31)
The parameters u are chosen to fulfill all these conditions, as described in
Ref. [21].

In the calculations below, the total propagation time T is set to =~ 157.a.u.
~ 3.8 fs, which amounts to 25w cycles of frequency w = 1 a.u. The cut-
off is set at 2 a.u. This means 100 Fourier coefficients, which implies 98
degrees of freedom due to the constraints described above.

4  Examples of application

4.1 Hydrogen molecule

The optimal dissociation of the Hydrogen with the QOCT-TDDFT method-
ology molecule was studied in Ref. [21]. The goal now is to prove that the
problems encountered then, due to the use of an optimization scheme that ig-
nored nuclear movement, can be solved with the full quantum-classical optimal
control presented in Ref. [22]. Let us recall the key points of that attempt: the
definition of the target was:

Fln] = Piz[nr] = Pog[nr], (32)
where . ,
P.[n] = /O dtF,[ng] = — /0 dt /d3r n(7,t)Vavo(7: R) . (33)

is the time-integrated force on each nucleus. In that calculation, the nuclei were
not allowed to move during the optimization runs, under the assumption that



the pulse is short enough to ignore that movement. However, the system would
“accumulate momentum” through the excitation of the electronic system, lead-
ing to dissociation after the pulse has ended. For the laser pulse length chosen
(= 157.a.u.), this proved to be sufficient when the laser fluence was sufficiently
high, but not for lower fluences. In that case, the neglect of the ionic move-
ment in the optimization caused the optimal pulse to perform badly at its task
of accelerating the nuclei away from each other when the pulse was used with
moving nuclei. This can be seen in the lower panels of Fig. 1, which are the
calculations presented in Ref. [21], repeated here for convenience. These calcu-
lations are Ehrenfest propagations (i.e. nuclei are allowed to move) performed
with the optimal pulse.

In the bottom-left panel, one can see the internuclear distance as a function
of time, which first increases, but is then reduced, showing how the system does
not dissociate, but would stay oscillating around the equilibrium configuration.
The reason for the failure can be learnt from the bottom-right panel, which
shows the relative force on the nuclei: it increases during the first half of the
laser pulse (the shadowed area in the plots), but does not reach a very high
value, and moreover it diminishes during the second half of the laser pulse. The
optimal pulse was designed by the optimization procedure to increase the forces
acting on the static nuclei, but does not perform so well on the forces acting on
the moving nuclei.

The new optimization procedure described above should account for the
nuclear movement, and solve the problem. The target functional used now is:

FIR(t), P(t)] = (PL(T) - Po(T))?, (34)

i.e. the two Hydrogen atoms should have the largest possible relative momenta
at the final time of the pulse. This choice of target is similar to the one used
in Ref. [21], and it amounts to maximizing the average relative force during the
action of the pulse. Afterwards, the gained dissociative momentum should be
enough to separate the atoms definitively.

The numerical parameters and settings were equal to those used in Ref. [21].
The (initial) bond-length is 1.44 a.u. The nucleus-electron interaction is not
Coulombic, but softened through the pseudo-potential method [25]. This is
necessary to avoid singularities in the calculation, since all functions (wave func-
tions, potentials, etc.) are represented on a real-space regular cubic mesh. The
grid spacing is chosen to be 0.4 a.u., and the simulation box used during the
optimization is a sphere of radius 13 a.u. However, the performance of the final
optimal pulses are checked with a simulation box twice as large, in order to
make sure the calculations are converged with respect to box size. Regarding
the computational cost, each forward propagation requires 30 minutes when per-
formed on four cores of an AMD Opteron 6376 processor, whereas the backward
propagations are twice as long, approximately. The optimization algorithm is
completed after around 100 function and function-gradient evaluations — these
numbers depend on the number of degrees of freedom of the laser pulse search
space, the initial guess, etc.

10
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Figure 1: Internuclear distance (left panels) and relative forces (right panels)
of the nuclei of the Hydrogen molecule, for the pulse obtained performed with
the fixed-nuclei optimization scheme (bottom), and for the pulse obtained with
then new QOCT for the Ehrenfest model (top). In the left panels, the total
charge N(t) contained in the simulation region is also overlaid (thin lines, scale
of the y-axis on the right side of each plot). The shadowed region marks the
time during which the pulse acts on the system; the pulses are also drawn, in
arbitrary units, on the left panels.
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Figure 2: Distances among the nuclei of the H;r cation, when irradiated with the
optimal pulse obtained by the maximization algorithm. The shadowed region
marks the time during which the pulse acts on the system; the pulse is also
represented in this shadowed area, in arbitrary units. The vector @ marks the
pulse polarization with respect to the nuclear positions, labeled 1, 2 and 3 in
the diagram. Notice that the distances D(1,2) and D(1,3) are equal due to
symmetry.

The initial guess for the new optimization is the optimal pulse obtained
previously and reported in Ref. [21]. Then, the algorithm searches for better-
performing pulses in the search space described above: pulses with equal fluence,
with a maximum cut-off of 2 a.u. The Ehrenfest simulation performed with the
new optimum is shown in Fig. 1, top panels. The system clearly dissociates, and
the reason can be understood by looking at the internuclear forces (top right
panel), compared to the ones that were obtained with the previous optimal pulse
(top left panel): the forces are larger, and they keep increasing until almost the
end of the pulse action. The pulses, both the initial guess — which was the
optimal one in Ref. [21] — and the new optimum, are also drawn in Fig. 1, above
the grey-shaded are that represents the first ~ 157 a.u. of simulation. Their
average intensities are ~ 3 x 10'? W/cm?.

4.2 Trihydrogen cation

The second example is the H;“ cation. We approached this problem previ-
ously [20], where we used a gradient-free optimization algorithm, on top of the
EMD-TDDFT model. Gradient-free algorithms allow to by-pass the backward-

12



propagation equations of QOCT, but are not as efficient as the algorithms that
use the gradient. Now, I have approached the same problem, using the full
QOCT for the EMD-TDDFT model described above. The goal is to obtain a
selective photo-dissociation, breaking the molecule in a prescribed way. In this
case, there are three identical bonds, and therefore it is specially challenging to
address some of the bonds specifically. The laser pulse should take out one of
the Hydrogen atoms, leaving behind a bound Hydrogen molecule. The chosen
Hydrogen atom is number 1 in the notation of the inset of Fig. 2.

The definition of the target follows the pattern used in the previous example:

— —

FIR(t), P(t)] = (Pi(T) = Po(T))* + (Po(T) = Py(T))* — (Po(T) — P5(T))° . (35)

The meaning of this definition is the following: at the end of the pulse, the
relative momenta between the nuclei that need to be separated should be as
large as possible (hence the positive sign of the first two terms), whereas the
relative momenta between the nuclei that need to stay bound should be small
(hence the negative sign of the last one).

The laser pulse length was chosen to be equal to the one used for the H2 case
(= 157a.u.). This is substantially shorter than the 400 a.u. used in Ref. [20];
we will see how the new methodology is able to find a successful pulse even in
this very fast time scale. The search space, spanning 98 degrees of freedom,
is also the same. The cost of these calculations was similar to the cost of the
calculations of the Hydrogen molecule. The results obtained with the optimal
pulse found by the algorithm are shown in Fig. 2. It can be seen how the
the distances between nuclei 1 and 3 and 1 and 2 rapidly grow, leading to the
dissociation of atom 1, whereas nuclei 2 and three remain bound — although in
a highly excited vibrational state.

Finally, Fig. 3 displays the power spectra of the optimal pulses, both for
the Hydrogen molecule case (bottom), and for the Hi case (top). They are
shown together with the photo-absorption cross section of both systems, com-
puted with the real-time propagation TDDFT technique [31], assuming the laser
polarization orientation used in the OCT calculations. This permits to com-
pare the spectral decomposition of the pulses with the key excitations of both
the Hydrogen molecule and of the trihydrogen cation, as predicted by TDDFT
with the ALDA, since these are located at the peaks of the photo-absorption
cross section. It is clear that, unsurprisingly, the optimization algorithm creates
pulses whose power spectrum is centered around the main resonances, in order
to maximize the system response. However, there are other important minor
components: simple quasi-monochromatic pulses tuned to the main references
would not induce the same reaction.

It is also noteworthy the difference, for the Hydrogen molecule case, between
the pulse optimized with the fixed-nucleus approximation in Ref. [22] (green in
Fig. 3), and the new optimal pulse. The strong difference stresses, once more,
the necessity of using a combined electron-ion dynamics scheme in combination
with OCT.

13
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Figure 3: Photo-absorption cross section (o(w)) and power spectrum of the
optimal pulses (|eopt(w)]?) for the Hydrogen molecule (bottom) and the trihy-
drogen cation (top). For the former, the initial guess pulse (|eo(w)|?) is also
shown (this initial pulse is in fact the optimal pulse obtained in the fixed-pulse
approximation approach reported in Ref. [22]). All plots are shown in arbitrary
units.
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5 Conclusions

An optimal control theory can be worked out for the EMD-TDDFT molecular
dynamics scheme; in this article I have reported its numerical implementation
and some first examples of application. The work essentially consists of enhanc-
ing the combination of TDDFT and QOCT reported in Ref. [19], to deal with
systems containing both electrons and nuclei, described with the EMD-TDDFT
formalism. It is the first application of optimal control to a molecular dynamics
model.

The method has been used to obtain ultra-fast photo-dissociation for the
Hydrogen molecule and the H; cation. This goal is achieved by maximizing a
target functional constructed by considering the momenta of the nuclei at the
end of the propagation time: the relative momenta of the nuclei that one wants
to break apart are to be maximized, whereas in order for the dissociation to be
“selective”, one also wants to make the relative momenta of the nuclei that one
wants to keep bound small.

The equations that result are numerically tractable, and the good scala-
bility of TDDFT permits to foresee the extension of this work, that has only
considered two-electron very small molecules, to larger systems. The work in
this direction is in progress. The biggest challenge is, however, the reliability of
current approximations to the exchange-and-correlation functional in TDDFT.
Any application of TDDFT to the non-linear interaction of many-electron sys-
tems with light, such as the one proposed here, is subject to the error of these
approximations. It is to be expected that these will improve in the coming years.
This first demonstration of use of optimal control for a non-adiabatic molecu-
lar dynamics scheme opens the way to other possibilities — dynamics based on
other quantum chemistry approaches, or on other quantum/classical coupling
schemes, such as surface hopping, etc.
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