

Rubén Hermoso Diez

OPTICALLY COMMANDED

LAB-ON-A-CHIP

CONTROLLER

Bachelor’s Thesis

Linköping University

Institute of technology

Supervisor: Dr. Daniel Filippini

Advisor: Carlos Sagües Bláquiz

Linköping, June 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly marked all

material which has been quoted either literally or by content from the used

sources.

A mi familia, por confiar en mí y Estar
muy cerca a pesar de estar muy
lejos.

A mis amigos, por aguantarme día a
día y ayudarme a que todo esto
fuese mucho más llevadero.

A Daniel, porque además de
descubrirme un gran proyecto, me ha
descubierto un gran profesor y una
persona enorme.

Abstract

This thesis deals with the design, programming and testing of an Android

application for controlling a sensor which function is performing an ELISA test.

Taking a previous version of the device and the Android application as a starting

point. All the necessary steps will be comprehensively detailed, with a strong

emphasis on the required concepts.

Contenido

Abstract .. iv

1. Introduction ... 1

1.1. Why I Chose This Project and Motivation .. 1

1.2. Goals of This Project ... 2

1.3. Objectives ... 2

1.4. How This Project Was Developed ... 3

2. Background ... 4

2.1. ELISA test ... 4

2.2. Biosensing with cell phones .. 5

2.3. LOC Devices for cell phone biosensing ... 6

3. Study of the Previous Application .. 7

3.1. Hardware ... 7

3.2. Software .. 9

3.3. Defining work lines .. 10

4. Things Learnt .. 11

4.1. Files and exceptions .. 11

4.2. Digital image concepts .. 14

4.2.1. Vectorial images ... 14

4.2.2. Bitmaps ... 14

4.2.3. File size .. 15

4.2.4. Color mode: RGB ... 16

4.3. Android Studio Basics ... 16

4.3.1. Android graphic interfaces .. 17

4.4. Managing Android Camera ... 20

4.5. Processing Images with Android Studio .. 21

5. Applications Designed ... 23

5.1. Timed Process .. 25

5.2. Manual Process .. 29

5.2.1. Optically controlled Process .. 30

6. Conclusion and future work ... 36

6.1 Future work ... 36

Referencies .. 37

1

1. Introduction

1.1. Why I Chose This Project and Motivation

When I decided to go on Erasmus and stay abroad during 10 months, I was aware

that I had to do the last courses before becoming an engineer and also my

bachelor thesis at my destination university.

Finally, I decided coming to Linköping, and here I noticed that there are some

differences comparing to my home University in the way that students can finally

get a thesis for finishing their studies. Here, it is needed to find a teacher, discuss

with him the topic and then accept it or not, there are few options which can be

found on the web, but most of the teachers prefer discussing it on their

departments.

In my case, I was very interested in microcontrollers, programming or electronic

instrumentation, so I started looking for some available projects related to that.

The fact was that I could not find anything interesting.

After some weeks, and thanks to Professor Daniel Filippini I found my topic. I was

surprised, as it was implementing a controller for a sensor, but the platform where

the code was going to be executed was not a microcontroller, it was an Android

mobile phone, and I was completely unfamiliar with this field. At first I was a little

doubtful about accepting it or not, but finally I decided that it could be a good idea,

as the use of the phones nowadays is very extended and I was quite curious

about Android programming. I also thought that maybe it is not a crazy thing using

mobile phones for controlling complex devices or sensors if they do not need to

be static in a place.

Finally accepted it, as it was a great opportunity for discovering new fields and

being aware of the huge possibilities that a mobile phone can contribute for

controlling and automate a process.

2

1.2. Goals of This Project

Once I accepted the project, the next important step was being aware of what I

had to do, what my function in that researching group called ODL (Optical

Devices Laboratory) was. In short, this thesis deals with the problem of designing

and programming an Android application with the aim of controlling some valves,

a pump and some extra outputs integrated on a device for achieving a successful

ELISA test inside a Lab-On-A-Chip.

The application I had to design and program was an update of a similar

application started by Professor German Comina. At the very beginning it was

certainly helpful having his starting application for giving me the idea of my first

steps, despite the final app is completely different of this starting one in both

graphic and logic design.

In my opinion, this project is not a complex one for somebody who has the

previous knowledge needed for programming an application in Android, and

some experience using JAVA, but for me (novice at this field) it was a demanding

exercise. But as I see this, it brought me the opportunity of being able to reinforce

the idea that no matter what you are asked to do, making some effort and working

constantly it can be achieved, and also to discover a new field where now I feel

really comfortable with, that is Android programming.

1.3. Objectives

The goals of the project, both theoretical and practical are the following ones:

 Redesign of the optical coupling stage of the existing platform, including

the mechanical vehicle to support sensors and cell phone attachment, for

which ODL is equipped with a Form1+ 3D SLA platform.

 Understanding the previous application, redesigning, and adding some

new functions for the upcoming changes.

 Design of the feedback stage and controlling software. Measurement

carried out on a LOC, created with the fast prototyping unibody-LOC

(ULOC15) technique developed at ODL

 Characterization of the measuring systems of the control sequence

required for an immunologic LOC configuration.

 Writing the Project Document.

3

1.4. How This Project Was Developed

 March April May June July

Study of previous documentation X

Redesign of the platform X X X X X

Redesigning the application X X

Design of the controlling soft X X

Characterization of measuring
syst

 X

Writing the project document X X

Table 1 Chronology of the project

The default load of work established for this thesis was 22.5 ECTS, which was

readapted to my needs, around 18 ECTS of real work load. Taking into account

that an ECTS is equivalent to 25 hours of work, the estimated time for

accomplishing my project was 450 hours in total. Distributed approximately as it

is shown in Table 1.

This thesis started on February 2016 when I was given the topic, but in the real

context, the project didn’t start until March, when I really started working on all

the tasks and being aware of what I had to do. The development of this project

finished in the end of June of the same year, when the application was completely

finished and only this document was left to finish the bachelor thesis.

Apart from this, also there were several reuinions with my supervisor Professor

Daniel Filippini, who was always up for a meeting if I needed it and really helped

me to keep working with the project.

4

2. Background

2.1. ELISA test

The ELISA test (Enzyme-Linked ImmunoSorbent Assay) is a test designed by

Swedish and Dutch scientist in 1971 that uses antibodies and color changes to

identify a substance. The technique consists in using an antigen immobilized (that

uses to be a protein fragment), detected by an antibody linked to an enzyme

capable to produce a detectable product like a change of color. If colorants are

used, it is possible to measure the antigen directly by using spectrophotometry,

as the amount of color indicates the amount of substance present.

Despite it is a routine technique and quite easy, it involves a big amount of

variables, as the temperature, volume, time or reactive selection, and if they are

not adjusted correctly, next steps of the test can be affected.

In medicine this test is used to identify germs which can be found in blood, urine,

sputum… Also can be used to determine if a patient has any autoimmune disease

or infection. This technique was generalized and used with simple and cheap

devices for diagnosis. Despite all the advantages mentioned, it also has some

limitations:

 A positive result that confirms the presence of antibodies does not mean
that the patient has a disease. A person who has been ill and now is
recovered can still be producing antibodies (false positives).

 On the other hand, a person who produces less antibodies than normal
can have the opposite problem, as these antibodies can be unnoticed if
they are too few, causing a false negative.

 If there is not good affinity between the antigen and the antibody, this
means that there are weak links which can create false negatives in the
test.

Several devices have been used for this tests, at the beginning until the

microplates used nowadays which have 96 holes made from special plastic for

improving the adsorption, and with the bottom of the hole made of transparent

plastic for making the measurements easier.

5

2.2. Biosensing with cell phones

Nowadays that mobile phones are comparable to a mobile computer with some

physical sensors embedded in it, such as magnetometers, accelerometers,

gyroscopes, proximity sensors… Which can be used for example to know how

our mobile phone is oriented, or for turning off/on the screen of the phone while

we are talking through it. All these functionalities, which are quite effective, are

useful as improve functions of the phone, but for the moment, mobilephones do

not support chemical sensing or biosensing. Measurements cannot be done

directly, so some extra devices are used complementing these physical sensors

named before for making biosensing possible by using a mobile phone.

Biosensing and diagnostics tipically involve the detection of analytes in solution

and sample conditioning, these two things are impossible to be made with the

phone, but they can be integrated within a Lab-on-a-Chip (LOC).

The use of disposable fluidics with detection chemistry simplifies aspects such as

calibration and can exploit chemical iteractions. Also biosensing with phones

exploits the physical-sensing capabilities and the processing power of the mobile

phones to provide the support required for advanced biosensing. But this is not

the first time that consumer electronic devices (CEDs) have been used for

complementing biosensing, such as flatbed scanners, CD units, or web camera-

screen combinations.

Nowadays that mobile phones have their own OS, they are the most common

devices used for biosensing with minimal or no dedicated interfacing electronics,

two strategies can be identified:

 Use of auxiliary reusable devices (ARDs) specifically designed for a phone

brand and used for link the biosensing assay to the cell phone.

 Auxiliary disposable devices (ADDs) have generic designs that are

compatible with diverse phone brands and models. For our project we

used this kind of device, since the idea was being able to make ELISA

tests with no dependence of the mobile phone we were using. In our case

a Samsung Galaxy Note II.

Another helpful physical sensor that mobile phone owns is their cameras, ADD

and ADR biosensing are dominated by optical detection, this supported by the

continuous development of the phone cameras and the optical biosensing helped

with LOC solutions.

6

Biosensing techniques often exploit optical coupling to cell phone cameras, which

are present in approximately all the phone models nowadays, as well as image

and video acquisition become more and more popular for recording phenomena

happened during the tests as chemical responses, for example detecting a

change of color, displacement signals, contrast… In addition, this camera can

help for having control of the test closing the control loop optically doing some

actions when these responses are detected, or even fixing concrete volume,

creating a region of interest.

2.3. LOC Devices for cell phone biosensing

It can be said that the same instruments interfaced to computers can be

implemented with cell phones, which gives certain freedom to the instrumentation

design. But the main objective on this project is preserving the cell phone’s

ubiquity by adapting the sensing. These devices should be low-cost and

adaptable to any phone brand/model. Now it is going to be analyzed the lab-on-

a-chip (LOC) biosensing that can be adapted for this aim.

One Lab-on-a-chip is a device which integrates one or several functionalities

which can be done in a laboratory in only one chip. One Lab-on-a-chip allows to

work with volumes extremely reduced with a huge accuracy, even less than

picoliters, this makes Lab-on-a-chip a very useful tool for working with

microfluidics.

For this project a Lab-on-a-chip printed with a 3D printer is used. The reason is

that, during the development of a project, it is needed to make some trials with

the LOC, for adjusting the design to the necessities, and sometimes the design

can be improved, and it can be only noticed by testing (for example using new

materials or different pipelining), so a “cheap” and very fast way of obtaining this

prototypes was 3D printing.

In addition, another thing that must be taken into account that the size of the LOC

is very small, so for the 3D printer there are some troubles when the top cover

needed to be printed, as the shape of the design in the actual printing was not

corresponding to the one showed on CAD. So Professor D.Filippini decided to

leave the device open on the top, leaving the pipes made without the top part,

and covering it with transparent scotch tape for a correct operation of the device.

7

3. Study of the Previous Application
Once I was informed about the aim of the project, and I did know the basic theory

concepts and approaches, the next step was understanding the actual state of

the project and, how the previous Android app worked.

This project involved software and hardware development, despite my main goal

was developing the control application, I also had to understand the electronics

and how the device worked for reaching my objective. Some hardware and

design modifications were performed during the development of the project for

optimizing the device and adapting it to the new possibilities that a more

advanced application offered.

The first objective was to know how the project was raised: for performing a

conventional ELISA test, it is needed that one person does the optimum steps

and revises the results obtained for reaching a diagnosis. One of the biggest

problems is the amount of time and resources needed, since normally the tests

are performed in boards with lots of small holes where everything is carried out.

The objective of this project was eliminating all these problems integrating all the

tools needed for performing this medical test into a self-dependent device.

3.1. Hardware

For making this possible, professor D. Filippini and G. Comina decided to use a

3D-printed Lab-on-a-chip, inside it all the reactions and liquid substance mixtures

will happen and some results will be obtained and analyzed by the experts later

on. This Lab on a chip would be located onto an electronic platform composed

by various valves and pump, once the test is finished, the pipes would be empty

and cleaned with water for restarting the process automatically. More concretely

the device was composed by:

 A switching regulator responsible of supplying power to all the electronic

devices, the valves and the micropump that will be described in the

following steps.

 For making the device self-dependent in an energetic way, a LiPo Charger

was included, using a 2100mA battery for having a reasonable autonomy.

In later steps we decided to quit it due to some bad connections.

8

 The LOC where all the chemistry is carried out, this LOC allows to handle

low volume fluids and was the key element for carrying out the ELISA test.

 A very simple hydraulic circuit composed by two simple effect valves which

output is followed by two double effect valves that allow four different

outputs for the fluidic substances. For pumping the water through the pipes

a Micropump mp6-pp was used, this micropump is intended for pumping

liquids with varying flow rates controlled by electronics. For driving this

micropump it was used a L9110 2-Channel Motor Driver as it is shown in

the next figure:

Next step was choosing a way for controlling all the items described and making

them work together for performing the tests, conventionally computers are the

most common tool used for doing this task due to the processing capacity and

the big range of applications and programs that can be used for the control aim

(Matlab…).

For our concrete case, one of the main goals of the project was doing a portable

device, that could be used almost anywhere without the need of being physically

connected with a cable to any other apparatus like computers. For achieving this,

the input signals and instructions given to the device would be optical signals

generated by a mobile phone: some light sequencies were shown in the mobile

phone screen and capted by 8 photoresistors to control the valves and motors.

Depending if the screen showed a black square, which meant ACTIVATE, or a

white square used to DEACTIVATE the different independient elements (the

pump, the valves…), also some extra features where implemented for a future

possible use: aux and LED which use is not given yet in the project.

Four different sequences were used for selecting one of the four possible outputs

in the valve circuit, as it is shown in the next figure, where the photoresistors

illuminated with white light would be the ones represented by a circle filled by

blue. P and Pc are related with the pump, for activating it is necessary to have

both of them with no illumination, otherwise the pump will not work at all:

Figure 1 - Simplified Hidraulic Circuit

9

3.2. Software

After understanding how all the hardware part worked it was time to deal with the

software. Originally the control application designed for driving all the electronics

and performing the tests was designed using Adobe Flash CC, this program is

typically used for developing games and applications focused on the graphical

part. The language used for programming was Adobe Action Script.

Previously, a timed control was used, this means that the sequences shown on

the phone screen to be detected by the photoresistors changed each a

determined quantity of seconds.

The basic operation of the application was: when the user pressed the start

button, the app was initialized and the 8 squares were shown on the screen that

will be in contact with the photoresistors. Next step was loading the sequences

that will be used for the test, which were contained on a LibreOffice file uploaded

to the Linköping’s University server. After this the different columns were split for

obtaining the data of each sequence, then the corresponding frames were shown

during a determined amount of time which was determined in the Server’s

LibreOffice. When the process was finished, the application was ready to start

again by pressing the start button. This app could be stopped immediately if the

stop button was pressed.

Figure 2 – Illumination scheme for enabling pumping fluid through different valves

10

3.3. Defining work lines

First of all, the program used for developing the application was Adobe Flash CC,

this was a big disadvantage as it needs a license that Daniel had to purchase if

this program was needed. The whole previous app had been programmed using

the trial version of the Adobe Flash CC. One of the first things I started checking

was the viability of developing the app using some other program.

I found out two possible options: Oracle and Android Studio. With both of them it

was possible programming Android applications, and the programming language

was JAVA. At the end, since the installation and the graphic interface of Android

Studio looked better for me, I decided to start using this program for redesigning

the application.

Dr. D.Filippini also commented some modifications for including in the new

application:

 Finding a way to not depend on the internet (as the sequences had to be

stored on the server) for performing the tests in the timed application, for

using it while the optically controlled app was being developed.

 The main focus of this thesis, which deals with the problem of controlling:

pumping fluid during a determined period of time for fixing the volume used

for the tests is quite uncertain, as maybe the response of the micropump

is not all time the same. The LOC works with very small volumes of fluid

and it was quite hard to be sure that for all the test the volume used was

exactly the same and was adequate if the control was timed.

11

4. Things Learnt

4.1. Files and exceptions

If there is a need for storing Data into memory, two different ways of storage can

be chosen. RAM memory, which is fast, volatile and it has a quite limited size of

storage. But sometimes, this information is too big for being stored at RAM

memory, or maybe we need to keep it during a long time, even if the device is

turned off and restarted. This data is stored in files, a collection of information

contained into a physical support which can be volatile or permanent, the data

type must be the same during all the document (integer, string…). Depending on

the information contained we can classify the files into two groups. Binary files

which are the ones that hold binary digits inside. And text files store alphanumeric

characters with a standard format (ASCII, Unicode…) and can be modified by

text editors. The operations for handling a file are:

1. Creation (if the file did not exist before)

2. Opening the file

3. Editing the file (reading/writing, erasing…)

4. Closing the file

When it is needed to communicate our program with another data source or

container, streams are used, which are threads where data flows freely, and can

be input streams or output streams depending on our interests. They are grouped

at java.io class. The steps for using streams are mainly the same: creating,

reading of writing and closing it. The Reader abstract class is used for reading

characters, depending on the data source, different subclasses are used, which

are shown in the next table.

12

Source Class

Buffer BufferedReader

File FileReader

Char array CharArrayReader

Stream that can receive characters
once is read

PushbackReader

Buffer for counting lines LineNumberReader

String StringReader

Byte string InputStreamReader

Table 2 - Reader Classes

There are also some basic methods tipically used in the Reader class:

 Int read () : reads the next available character in the stream. If there’s no

more characters available, it returns -1.

 Int read (char [] v) : tries to read as many characters as v array’s size. This

method returns the number of characters read. If there is no more

characters available to read, it returns -1.

 Void close() : closes the stream

Classes used to write characters are derived from the abstract class Writer.

Depending on the data destination, different classes can be used, as it is shown

in the following table:

Destination Class

Buffer BufferedWriter

File FileWriter

Character Array CharArrayWriter

Formatted Text PrintWriter

String StringWriter

Byte string OutputStreamWriter

13

Basic methods used in the Writer class are:

 Void write (int c) : writes the “character” contained in c

 Void write (string s) : writes the String s

 Void write (String s, in pos, int len): writes len characters contained in the

chain s, from the position pos.

 Void write (char [] b): writes in the stream the char array b

 Void write (char[] b, int pos, int len) : writes len characters contained in

b, starting in the position pos.

 Void close() : closes the stream.

In case there is any problem with the input or the output, all the methods launch

an IOException.

For accessing to a file, there are some classes, FileReader is similar to reader,

but it is used for reading text files. There are two useful methods,

FileReader(String name), which is a constructor whose argument is the name of

the file, which is received via a string, and the FileReader(File name), which is a

constructor with a File argument, which is the file that is going to be read. Also

some exceptions are launched just in case that the file does not exist. In case it

is needed to write into a file, FileWriter (String name) can be used, using the

name of the file as an argument, or simply indicating the file it is going to be read

using FileWriter(File name).

Appart from that, files can be edited, for this, PrintWriter class can be used. The

most common methods for writing into a file are println(String s) and

print(Strings).

14

4.2. Digital image concepts

Nowadays, information is suffering a digitalization process where images play an

important role. Photos, graphic design, cinema, TV… thousand images are

produced and stored into a physical support, some others are sent, projected or

printed.

When it is needed to deal with images, and process them after, it is necessary to

take some decisions, for example, the kind of compression, the size of the file,

the quality of the image once it is stored…

First step for example is deciding to produce a vectorial image or a bitmap. Since

this two types of images are created an edited with different programs, and they

have completely different uses.

4.2.1. Vectorial images

Vectorial images are composed by simple geometrical identities, segments and

polygons (in fact, a curve can be expressed as a succession of segments). Each

one of this entities is defined mathematically by a group of parameters (initial and

final coordinates, thickness and color contour, fill color… With this technique,

quite complex images can be designed.

One of the most useful advantages of this kind of images is that as it is composed

by simple geometric entities, this images can be resized for enlarging or reducing

them without any loss of quality. This way, plain colours and clean contours are

maintained no matter the size they are shown.

4.2.2. Bitmaps

Bitmap images are built using a huge amount of little squares called pixels, each

square is filled by a uniform color, but the sensation perceived by the eyes is the

result of integrating the color variations and the luminosity between neighbor

pixels.

This bitmap images are very useful for representing illuminations or big tonal

variations into a scene. In fact, this is the type of image used at photography and

cinema. Obviously the quality of the image varies depending on the quantity of

pixels used for representing it.

15

4.2.3. File size

The size of a file is a value, measured in bytes or bits that describes the amount

of memory used for storing the image information into a physical support (USB,

SD card…). This size depends on several factors, especially the resolution (R),

the image dimensions (Length x Width) and the color depth (D). With this

information, the size of a file can be estimated by the following formula:

𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 = 𝑅2 · 𝐿 · 𝑊 · 𝐷

For the correct interpretation of this formula, it is needed to express the length

units using inches, as it is shown in the next formula:

𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 = (𝑝𝑝𝑖)2 · 𝑖𝑛𝑐ℎ · 𝑖𝑛𝑐ℎ · 𝑏𝑖𝑡𝑠 = 𝑏𝑖𝑡𝑠

It is important to know that 1 byte is equivalent to 8 bits and 1 Kilobyte is equal to

1024 bytes. As it is shown, the resolution influences the most in the final file size

as it is squared, one of the most important steps is choosing an optimal resolution,

adequate to the needs of the project for reducing as much as possible the size of

the file it is created, since the storage space is not unlimited and not always a

high quality image is needed.

The resolution is the capacity of reproducing faithfully the details contained into

an image. For a bitmap, this resolution is referred to the quantity of pixels that

form that image. It is measured in pixels per inch (ppi). The more resolution, the

more image quality.

On the other hand, the color depth is related to the number of bit which are used

for describing the colors contained in each pixel of the image. With a high color

depth, there are more color possibilities and the representation can be more

precise and have more shades. In the following table there is a calculation where

it is shown the amount of colors available for each depth:

Depth Colors

1 bit 2

4 bit 16

8 bit 256

16 bit 65536

32 bit 4294967296

16

In a bitmap, the quality is composed by various layers, one for each basic color

(red, blue and green) and another one for the luminosity (complete darkness to

complete light).

Above 16 bits of depth, the color description is divided in layers. If the depth is 16

bits for example, 4 bits (128 levels) for each layer are used. If the depth is 32 bits,

each layer uses 8 bits (256 levels) to adjust the colors.

4.2.4. Color mode: RGB

The eye perceives colors depending on the wavelength that receives. White light

contains all the color spectrum, while the absence of light is perceived by our

eyes as the black color. Most of the edition programs use several color modes

for defining and classifying all the possible colors. Most of the programs use HSB

(hue, saturation and brightness), RGB (red, green and blue) or CMYK (cyan,

magenta, yellow and black).

RGB mode is used in all processes where color is obtained by additive mixture

of lights: television, graphic screens, artificial illumination… In all this devices, the

whole color range is obtained by mixing three primary colors: red, green and blue.

In this case, any color is obtained mixing two or more lights, the mixture of

variable proportions of colors produce the complete color range. The mixture of

the three basic colors produces white color, while the absence of colors produces

black color. The image edition applications, express the quantity of each primary

color used for defining the pixel by using a number that can adopt a value from 0

(absence of color) to 255 (maximum). For example, one RGB color can be

defined with the digits (156, 69, 242).

4.3. Android Studio Basics

Android is an OS based on Linux Kernel designed mainly for mobile phone

devices with a touch screen. Originally, Android was developed by Android Inc,

a firm bought by Google in 2005. In 2007 it was presented to the public and since

that date it kept growing until today.

As a starting point, Android was originally developed for smartphones, buy

nowadays with this crescent development of application and technologies, this

operative system can be found even in watches, vehicles, televisions…

17

The main characteristics of Android that are interesting for this project are, among

others: the adaptation, since Android applications are adjusted to different

screens without any problem. There is also support for additional hardware, since

this OS supports cameras, tactile screens, GPS, accelerometers… And related

to this, Android also allows working with some different multimedia formats for

video and audio without any problem. With all this characteristics, taking into

account that supports JAVA and the development environment of this platform is

quite easy and useful (there are 2 official ones: ADT and Android Studio) and

provides an emulator for testing the apps developed.

4.3.1. Android graphic interfaces

One of the most important features in Android Studio is the graphic interface into

its apps. For analyzing this it is important to clarify some concepts that is

important to know before:

The Views are the basis in the graphic development in Android, all the graphic

elements are subclasses from View. Other complex elements, as view

aggrupation or layouts are inherited from this class. This way, in Android, a button

or a text field are views. One of the most common used views are:

 TextView: it is a simple text label which is used for showing a text to the

user. Its most important attribute is Android:text which value indicates the

text shown in the screen. Other useful parameters are android:textColor

and android:textSize.

Inside the code, the most used methods are setText and appendText that

allows modifying the text shown or adding additional text during execution.

In both cases the parameter received is a string.

 EditText: it is a subclass prepared for text editing. When the view interface

is pressed, a keyboard is shown, allowing entering data. The code is

managed the same way as with TextView by using for example getText or

setText.

 Button: which represents a normal button with a text associated to it. For

changing the button text, android:text must be used.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <TextView

 android:id="@+id/texto"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Texto"

18

 />

 <Button

 android:id="@+id/boton"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Púlsame"

 />

</LinearLayout>

The easiest way of interacting with a button is pushing it for unleashing an

event. Also another function must be implemented for capturing the click

event (OnClick) as it is shown in the following code:

public class MiActividad extends Activity {

 protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.miLayout);

 TextView texto = (TextView)findViewById(R.id.texto);

 Button boton = (Button)findViewById(R.id.boton);

 boton.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 texto.setText("Botón pulsado");

 }

 });

 }

}

Another option is defining the handler for the click on the XML file, by using

the android:onCLick attribute. The value of that attribute will be the name

of the method that will handle the event, once the button is pressed, the

method will be launched.

 ImageView: this subclass displays an image, it can be loaded from various

sources (such as resources or content providers) and it can be used in any

layout manager, also provides different options such as scaling or tinting.

As when buttons are used, the first step is assigning an ID to the

imageView and then the next step is modifying the different editable

properties as it is shown in the following code:

 <ImageView

 android:id="@+id/imageView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/android"

 />

For associating this XML code with the android Activity it must be used

image = (ImageView) findViewById(R.id.imageView1) and for displaying a

concrete image placed in the drawable file it is used the function:

image.setImageResource(R.drawable.myImage).

19

Layouts are the means used to organize views in the device screen, there are

different types of layout that allow us dispose elements on the screen in different

modes. Using layouts allows separating the logic and the design parts of the

application, with flexibility enough to modify the graphic interface without need of

modifying code. Some of the available layouts are:

 FrameLayout: this is the simplest one. It adds the views on the top left

corner. If various views are added, they are superposed.

 LinearLayout: aligns different views on a horizontal or vertical line, a

vertical linear layout consists on a column of views and a horizontal linear

layout is a row of views. These layouts allow establishing a weigh to each

element, which controls the relative size of each element inside the view.

A basic example of use can be found in Annex B.

 RelativeLayout: it is the most flexible layout, that allows defining the

position of each one of its views relative to the position of the rest of the

view or the corners. An example can be found at Annex C.

Defining the graphic interface by using resources instead of code, also allows to

specify different layouts depending on the hardware configurations or even the

interface can be modified while execution when an event is produced, for

example when the screen orientation changes.

Alo t is very common that one application has more than one screen for

increasing its functionalities. For implementing this in Android it is necessary to

include two more files: one XML file with the graphic interface of the new screen

and a JAVA one with the logic part.

After creating a new activity for doing this, there will be two new files

corresponding to the ones that were created when the project was created:

newactivity_main.xml and MainNewActivity.java.

Instde the very first Main activity it is needed to create an Intent class object where

the parameters used are the references from the object of this class, and the

reference of the new activity (NewActivity.class). After it is needed to call the

method startActivity() for displaying on the screen the new activity created. This

can be seen in the following example code:

public void newActivity(View view) {

 Intent i = new Intent(this, newActivity.class);

 startActivity(i);

 }

20

4.4. Managing Android Camera

In this section it will be discussed how to manage the android camera, and how

to display on the screen a camera preview where the images capted by the

camera can be seen in real time.

First of all, it should be clear that it for some uses, where integrating photos or

videos is not an important part on the application developed, the default camera

application can be used. For our purpose this is not possible due to some

limitations, as we need to access to data generated by the preview of the camera

in next steps and this cannot be done using the simple camera intent.

When the camera user interface needs to be customized to the look of the

existing application, and providing special features it is easier to build an own

camera application for obtaining a more compelling experience. During this

section the necessary steps for creating a custom camera interface for an specific

application will be explained:

 Detect and Access the Camera: in this step it is checked if any existing

camera is detected by our mobile phone. Also it is possible that the device

used has more than one camera (if it has front facing camera). On the last

Android API it is possible to check the concrete number of cameras

available on a device using Camera.getNumberOfCameras().

/** Check if this device has a camera */

private boolean checkCameraHardware(Context context) {

 if

(context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_CAMERA)){

 // this device has a camera

 return true;

 } else {

 // no camera on this device

 return false;

 }

}

21

After this, access to the concrete camera must be requested, for making

this is needed to call Camera.open(int) where the number given to the

function is corresponded to the camera which access is demanded (0 for

backfacing camera, 1 for frontfacing camera…). Once it is achieved, some

camera parameters can be shown and changed by using

Camera.getParameters() there it is possible to select the focus mode,

rotate the image, enable or disable the flash…

/** A safe way to get an access to the Camera. */

public static Camera getCameraInstance(){

 Camera c = null;

 try {

 c = Camera.open(); // attempt to get a Camera instance

 }

 catch (Exception e){

 // Camera is not available (in use or does not exist)

 }

 return c; // returns null if camera is unavailable

}

 Create a preview class: for users to effectively take pictures or video, it is

needed that they can see what is capted by the camera. The data can be

displayed live since the camera preview class is a Surfaceview, and the

users can frame and capture pictures or videos. In addition,

surfaceChanged can be used to modify the specific size of the preview.

For all these things it is needed to create a specific class similar to the one

included in the Annex A.

4.5. Processing Images with Android Studio

When it is needed to process an image with a computer, some specific programs

are used. For working with android Apps the image processing can be done

directly using Android Studio libraries but in case this is not enough, it is also

possible using OpenCV which is free artificial vision library originally developed

by Intel, which offers huge possibilities for processing video and images captured

with a camera.

22

For most programs, images are stored and represented as bidimensional vectors

(matrices) where each element is corresponded with a single pixel. Working with

images in some programs like Android Studio or Matlab is equivalent to work with

the data type matrix. Depending on the type of image used the data contained

inside the matrix can be different:

 Binary images only contain two possible pixels: black and white. The

representation of these images is made by a matrix with only two different

elements, 0 and 1.

 Grey scale images: where only one matrix is used for representing the

data, but for this case, the elements can acquire up to 256 different values

corresponding to the different grey levels.

 RGB images: in this last case, the final image is composed by three

bidimensional matrices corresponded to different layers R (red), G (grey)

and B (blue). Into each layer the elements can take numeric values up to

256 for representing the colors as explained in previous sections.

For this project, we will focus on RGB images. A useful thing to know is the

possibility of going across the different elements of the matrix for checking the

colors that are contained into pixel. For doing this, the different layouts (i, j, k) will

be checked, and for each of the layouts (R, G, B) a value corresponded to a

concrete intensity will be obtained. This is implemented in the bitmap library with

the function: getPixel (x, y) where the RGB color from a specified location is

returned as an integer and can be stored into a variable.

While going through the different elements contained into a matrix, it is also

possible to discard some layers if needed, in some medical cases where liquid

substances are used, especially ours, it is very useful since the fluid can be

pigmented with a distinctive color which can be completely different from the rest

of the colors contained in the image, this way if some layers are discarded it is

easier to find a layout where this pigment used in the fluid will be highlighted

comparing to the rest of the image. For doing this in Android Studio, it is needed

to call the Color class, where the different layouts can be selected calling

Color.red(pixel), Color.green(pixel) and Color.blue(pixel).

It is also useful to know some functions used for creating a bitmap specifying

different parameters using createBitmap() and selecting its height and width

using setHeight(int) and setWidth(int). For modifying it changing for example the

color of some pixels setPixel(int x, int y, int color) must be called, where the

specified color is written into the bitmap at the x, y coordinate. More information

can be found in the Android Studio Developer API, looking for the specific class

Bitmap.

23

5. Applications Designed
As it was said during this document I had an application implemented using

Adobe Flash CC as a starting point. I started modifying this application for

showing the camera preview on it and I obtained some good results as it can be

seen in the next figure. The code associated to this can be found at the Annex E.

There were some graphic and logic modifications comparing to the original app

and it was possible to select the camera displayed between the front facing and

back facing camera in case that there were more than one available.

Also I moved the squares that in the original app occupied the entire screen,

displacing them to the left for fitting the preview, this last thing involved a

hardware modification since the original device was designed for being placed

above the phone screen and the photoresistors were originally fixed to a position

that had been changed in the last app version, for solving this, we decided to wire

the photoresistors using long wires, and covering them with an independent case

for making the light detection more flexible as we could choose where to put the

device, that now did not need to be above the phone screen as it can be seen in

the next figure.

Figure 3 - Given application Figure 4 - Modified application using
Adobe Flash CC

24

While developing the android application using I was really surprised since Adobe

Flash CC looked quite easy and also I had not so many problems for making the

camera preview appear on the screen.

Problems started when I tried to go on with the next steps of the project, where I

needed to access to the mobile phone camera preview information for a further

processing of the images. I also had never used Adobe Action Script for

programming so I started thinking on the possibility of using another Android

development software more adapted to my needs.

After informing myself about different options, I finally chose Android Studio, as it

was designed specifically for developing Android apps and was completely free,

offering a lot of possibilities and a very comfortable graphic interface. Its

installation was also easier than other options like Oracle.

Figure 5 - Device and modifications made for adjusting photoresistors to the new
app. Previous method on the top right

25

5.1. Timed Process

First step was being able to migrate the previous application to Android Studio, it

may seem like a simple task, but it wasn’t as I had never used Android Studio

before, so I started learning basic concepts of Android, once I more or less

understood how everything worked, was time to start with the new application.

Daniel also suggested me to store in the phone the sequences corresponded to

the light illumination, as before this data was retrieved from the Linkoping

University’s server. For solving this inconvenient, first of all I decided to save the

different sequences on the device storage in order to access to them later and

show the corresponding squares without the need of internet.

This timed application consists in 3 different screens, one of them corresponded

to a selection menu, where the user can choose between creating or opening a

sequence, and the control mode where that sequence is used to control the

device with the illumination code.

In the second screen, where new steps can be added, first of all it is needed to

introduce the File Name (which should be different each time, otherwise the

information will be overwritten in the same file all time) followed by the number of

steps that will be executed, and a final field where the instructions of each

sequence are entered by the user, this last field will determine which squares will

be illuminating the photoresistors. For each step, the following information must

be included:

1. Valve 1: 1 if square HIDDEN or 0 if square SHOWN.

2. Valve 2: 1 if square HIDDEN or 0 if square SHOWN.

3. Valve 3: 1 if square HIDDEN or 2 if square SHOWN.

4. Valve 4: 1 if square HIDDEN or 2 if square SHOWN.

5. Pump: for enabling the pump, both squares related to it must be HIDDEN,

corresponded to a ‘1’ in the code, for disabling the pump a ‘0’ is needed.

6. Time: expressed in seconds, this time must have two digits, since for the

tests performed at that moment we did not need to deal with big amounts

of time.

7. LED and AUX were two not used variables in this code due to the changes

in the application and the platform. Daniel decided to leave them as

auxiliary photoresistors for future uses.

26

Once all the data described before have been introduced, the user must click on

the Save button for storing a text file with the name chosen, this file contains all

the information written. It is important to know that the numbers introduced by the

user are saved on a single line, this means that each character is only separated

by the rest by using a simple space no matter if some line breaks are introduced

by the user (will be erased). For example:

Step 1

Sequence 1 0 1 1 1 09 1

Note that also the number of steps that will be executed is stored in the first

position of the text file, as it can be seen in the following example where it is

shown how the information is stored into the text file:

1 1 0 1 1 1 09 1

At the same time that the first file is created, another one with a predefined name

is automatically created/overwritten, this new file is used in the other activity

(control screen) where it is read by default. Reading all time the same file avoids

the doubt of which filename should be loaded, as it will be all time the same.

For editing a text file already created or just check the content of the file, the user

needs to introduce the original name given to the file and click Load. It is important

to know that the control program will only run the last file stored, this means that

if for example “Test 2” is being used, but it is needed “Test 1” for some trials, this

“Test 1” must be loaded and saved again for being ready to use.

When Stop is clicked the process finishes, this ending is not immediate, it is

needed to wait for some time corresponded to the time of the last step which was

being executed. Once the time is up, a popup message is displayed informing

that the process has finished correctly and it is possible to restart again the test.

27

It is also possible to turn on the flash. It was also useful for preventing a bad

illumination while using the back facing camera, in that moment we did not know

where to place the phone for dealing with the detection, and also did not know

about the conditions needed for performing the tests, so it was a good idea to

implement that option. Finally, we used the back facing camera, and decided to

place the mobile phone above the device, where the LOC was focused by the

camera of the phone, giving also a chance for illuminating with the flash.

In this timed application, I also implemented the option of recording a video of the

test while it was being performed. In that concrete moment I was not aware of

how to access to the information related to the camera preview, so I started

recording a video just to try to process it later.

Figure 6 - Main menu, Add new file and Test screens

28

This application was programmed as a compendium of different blocks which

were programmed independently, and after that I made them work together for

achieving a result, the different blocks used for design this program were:

 SaveTextFileOnMemory: which was a simple example where a name and

some data was introduced, then this information can be saved and loaded

from the mobile phone storage.

 SquareSequenceAuto: simple application that reads a preloaded

sequence of steps stored into a string with the format:

nsteps V1 V2 V3 V4 PUMP Time LED

For example:

1 1 0 1 1 1 09 1 1

After this, white squares will be shown or hidden depending on the values

stored in the string, each step lasts the time determined by the field Time

in seconds, and once this time passes, next step is executed.

 VideoCapture is an app where the camera preview is shown, it is possible

to capture video and save it on the phone using a predefined name. Also

different aspects related to the video quality and the way the video is

stored can be edited. There was also a button for selecting which camera

is being used (front facing or back facing camera).

Regarding the video capture, after a lot of hours of work looking for a possible

solution about how to process the video recorded allowing a “real time” control of

the device, I finally discarded using a video as a source of images, as it was not

the most optimum way for reaching our goal. First of all, the videos created

occupied big amount of memory, limiting the functionality of the application and

also it was not possible to process each frame of the video while was being

recorded, so this made the video recording an impossible option.

After discarding videos, next thing that came to my mind was capturing photos,

when I told Daniel to try this, he also agreed, since for an optimal control he

determined that we needed to process around 5 photos per second, this looked

and affordable requirement. I started finding out how to manage the android

camera and also looked for different options for capturing photographs. After

quite a lot of time working on this part and investigating different possibilities, I

found that I was able to capture an image and store it into memory each 4

seconds. After some work I could reduce the time employed for performing this

process to 1 second for each photograph, despite this it was not useful for the

purpose of the project but it was a better result.

29

5.2. Manual Process

While I was finding out an optimum way for getting and processing camera

frames, Daniel told me the necessity of controlling the device manually for

performing some custom tests and adjusting different parameters while the

optically controlled application was being developed. As it was a priority task I

started with this new application.

It mainly consists in a simplified version of the timed app, where there are four

different buttons used for enabling the four different where the fluid will flow

through by changing the position of the different valves. When a button is

pressed, the two squares corresponded to the pump are hidden for enabling it

and also the squares necessary for enabling the corresponding output. When the

STOP button is pressed, all the squares are shown for stopping the pump and

setting the device into the rest mode configuration. If the STOP button is pressed

again while the device is in rest mode, the app will enable the pump and the last

valve selected before pressing STOP the first time.

In this mode it is also possible to record video while different configurations are

being selected for allowing a later analysis of the test results and the test

development.

Figure 7 - Different manual mode states

For programming this application, t programmed different independent blocks

and put them together fitting them for my custom purpose. In this case both were

used for the timed application and are described in the previous section:

SquareSequence and VideoCaptured

30

5.2.1. Optically controlled Process

Once I finished the manual application I kept with the image processing, as not

so many people need to process live images from camera video and the ones

who try to do this often use external libraries like OpenCV (which was not an

option for me, as we decided to use the standard libraries and also the

documentation provided by OpenCV for Android is not so clear for a novice in the

field).

Mainly the idea was using a camera preview external class for showing the

images captured by the camera live contained into a Frame Layout, and then get

the information of minimum 5 frames per second for processing them.

For achieving this I found out that there was a callback function called

onPreviewFrame by default, this callback was executed each time a frame was

received by the camera preview. My idea was making that callback work and then

try to obtain the still image from the camera. As I said, not so many people need

to deal with this problem and there was quite few information related to this, most

of it was controversial or not useful, but finally I got the solution consulting a

forum, in the solution presented, the preview class was declared normally

including the preview callbacks enabled, and then in the activity was declared the

onPreviewFrame callback, which finally worked perfectly.

This was a huge step for continuing developing the application, as achieving this

was being the biggest barrier found during the project. With this done I started

trying simple things like incrementing a number each time a preview frame arrived

and showing it in the phone screen.

When I succeeded in that I started trying to get each image captured by the

camera to convert it into a bitmap for its later processing, as this is the easiest

way for accessing to the different pixels contained in the images obtained from

the preview. For this, first of all is necessary to create a YUV image and convert

it to JPEG, it is also necessary to transform that JPEG into a byte array for finally

converting it easily into a bitmap.

Testing this application, I found out that it is possible to get 13 successfully

bitmaps within a second, more than enough for the specifications imposed by the

project. Once the bitmap is available first of all it is needed to start the image

processing. For understanding how this process works it is important to know that

the goal of the project was being able to fix a known volume of fluid within a

selected region of interest.

31

Figure 8 - Defining a region of interest

Next step is detecting when the liquid reaches the input mark and after some

time, when this fluid arrives to the output mark it can be said the volume contained

between those two marks is determined exactly, as the diameter of the pipe and

the separation between the two marks are known, it is possible to calculate the

volume of the cylinder.

For an ideal case where the image captured is still and the only thing that moves

is the fluid, detecting the two marks (input and output) is quite easy, since the

position of the marks is known and will not change over time.

For the first trials I captured a video of the fluid flowing through the pipe and

Daniel helped me to split it into a lot of images which gave me. For approaching

the problem, we first used Matlab as it is shown in the Annex F for understanding

how to do it, and later I started to develop an Android application which would

have the same function:

First of all, the image is charged, and then the pixel corresponded to the input

mark coordinates is searched, the color of that pixel is compared to a threshold

color, if the fluid is not passing through the pipe in that moment, the pixel color

detected will be higher than the threshold, and lower for the opposite case. The

same happens with the Output mark: the pixel corresponded to the output mark

coordinates is searched and then the same color comparison is performed. When

both of them are lower than the threshold, this means that the volume delimited

between the two marks can be known by measuring the distance between marks

since the diameter of the pipe is known by design.

The problem found with method is that in my case, the marks can change its

position from one image captured to another if the mobile phone is moved. For

solving this, two extra marks were painted in two of the corners of the LOC: the

coordinates of one of the corners of the LOC are taken as a reference point, and

then the coordinates of the input and output marks are calculated in relative to

the corners.

32

The logic part related to the steps described in the previous page, are contained

in a function called Calibration, pressing that button black corners are searched

and detected. The idea is going through the bitmap matrix and comparing the

pixel color to a threshold color corresponded to black. As the mobile phone will

be placed more or less at the same position each time (there is a platform where

the mobile phone is left for making the tests) it was not necessary to spend

computing time scanning the whole image (that situation was also out of the

thesis purpose). As a design constraint we decided to scan two isolated areas

where I tried to search each painted corner of the LOC as it is shown in the figure.

Figure 9 - Detection areas

For this detection it is very important to know that despite the preview shown in

the phone screen is 480 x 640 (which is the result of rotating the image received

and showing it on the screen), when the bitmap is captured, it gets the real

orientation of the camera without any rotation which is 640 x 480.

This is very useful to know, since the way the way the image is traversed depends

directly on this and is reflected in the code. To go through the photo, it is started

from bottom to top and then from left to right for avoiding conflicts with some

darker zones (note that in the image shown in this document there is a white

paper below the LOC for facilitate finding the corners as in the end this process

is a search of a dark color, then it was important to avoid having extra dark colors

in our image captured that may cause false positives.

33

Once the corners are detected the next step was calculating the two points

corresponded to the interest region input and output. For this, it is needed to

measure the distance (in millimeters) between one of the LOC corners and the

marks corresponding to input and output: containing the part it is going to be

observed of the LOC into a plan and taking one of the corners as origin (0,0), the

idea is positioning in both x and y axis, the coordinates (in mm) corresponded to

the input and the output marks (x1, x2 and y). Also it is important to know which

is the distance between the two LOC corners (Δx).

Despite the measurements made are in mm, the Android application cannot

understand this numbers directly, it is needed to make a conversion between

pixels and distance measured. Known Δx, x1, x2 and y, and assuming that the

size of a pixel is the same in x and y axis, the pixel density per mm can be

calculated as:

𝑆𝑦 =
𝑥𝑓 − 𝑥𝑜

∆𝑥
 [

𝑝𝑖𝑥

𝑚𝑚
] 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑆𝑥 = 𝑆𝑦

Figure 10 - Measurements needed Figure 11 - Points to be detected

34

Once this density is calculated, can be used as a conversion factor for calculating

the coordinates in pixels for the input and the output of the region of interest:

𝑥1𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑆𝑥 · 𝑥1 [𝑝𝑖𝑥]

𝑥2𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑆𝑥 · 𝑥2 [𝑝𝑖𝑥]

𝑥3𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑆𝑥 · 𝑥3 [𝑝𝑖𝑥]

After calculating the equivalent in pixels the next thing was checking the color of

the pixels located in that positions and controlling: after the calibration, when the

program is running and nothing happened before, the output S1 is open, and the

pump is pumping fluid, if a color below the threshold color is detected in the input

mark, S1 is turned on and off during a variable period of time which can be

adjusted by the user, and finally when the liquid reaches the output mark, the

pump is deactivated, achieving our goal which was fixing a concrete volume

between the input and the output.

The layout of the application is shown in the Figure 11, when the button

calibration is pressed, all the process described in this section starts working once

and the processing part is executed each frame is received, and when stop is

pressed, the process is halted until calibration is clicked again. Also the color of

the pixels which delimit the region of interest color two squares in the upper part

of the application, overwriting the Up color and Down color labels.

Figure 12 - Optically controlled app

35

For programming this last application I also made some independent blocks for

checking that all parts worked before combining them together for controlling

optically the device:

 DoActionWhenReceiveOneFrame: this application opens the camera

preview and each time a frame arrives, a variable is incremented and

printed in the screen.

 Calibration: this app opens an image preloaded in the drawable folder as

a bitmap and starts searching the corners of the LOC as it has been

described during this section, finally the app returns the coordinates of the

two points corresponded to the input and the output of the region of

interest.

 DetectColorsInDeterminedPixel: this application is equivalent to the

application shown in the Annex F but programmed for Android. Using a

pre-loaded image sequence the color is detected in two fixed points

(corresponded to the input and the output of the region of interest) of each

photograph. The app can detect when the fluid has entered into the region

of interest, and when it reaches the output mark.

 TouchColorDetection: an image is shown on the screen; this application

detects the color of a pixel that the user has pressed with the finger. Both

the color and the coordinates where the pixel can be found are shown on

the screen.

 DetectPointsInRealTime: each time an image frame arrives, the calibration

is executed, this way it can be said that there is a continuous detection of

the points, and then there is a real time knowledge of where is the region

of interest.

36

6. Conclusion and future work
Finally, the project came to its end. Before closing this document, it may be

relevant to evaluate the fulfilment of the goals that were set prior to the start of

this work

 Redesign of the platform for adapting it to the needs imposed by the new

design of the application, learning that small modifications in a device can

produce great results. Discovered the versatility of 3D printers and the

great possibilities in terms of design and prototyping.

 Understanding the previous application, redesigning, and adding some

new functions for the upcoming changes. From the total ignorance about

Android, a solid theoretical and practical programming base was acquired

while the application was being developed.

 Design of the feedback stage and controlling software. Measurement

carried out on a LOC, created with the fast prototyping unibody-LOC

(ULOC15) technique developed at ODL. Understanding of image

processing and computer vision techniques adapted to Android

programming without the use of external libraries.

 Writing the Project Document as a result of the accomplishment of the

mentioned goals, this detailed document mainly sums up all the

knowledge acquired during the development of this project.

6.1 Future work

As this project was part of a bigger one, where the whole ODL investigation group

was working on, the next steps were first of all, make some test to adjust the

operation of the application and add new functionalities if necessary.

Some of the functionalities of the software designed could be improved are the

following:

 Implementing the detection algorithm for having more than one region of

interest was one of the future goals to achieve for finally controlling the

process, this remaining work would be continued by Germán for

continuously develop a valid application adequate to the needs of the

tests.

 Implementing a better control of the times introduced by the user in the

timed application.

 Combining the three different applications into a single one with a menu

which allows selecting between the three options.

 Improving the graphic part and adapting it to different phone screens.

37

Referencies
Alicante, U. (2016). Experto Java Universidad Alicante. Obtenido de

http://www.jtech.ua.es/dadm/restringido/android/sesion03-apuntes.pdf

Alicante, U. d. (2012). Experto Java. Obtenido de

http://www.jtech.ua.es/dadm/restringido/android/sesion03-apuntes.pdf

API, A. D. (2016). Android Development Web. Obtenido de Android

Development Web:

https://developer.android.com/guide/topics/media/camera.html#camera-

preview

Comina, G., Suska, A., & Filippini, D. (2015). Towards autonomus lab-on-a-chip

devices for cell phone biosensing. ScienceDirect.

Dimitri. (21 de Abril de 2011). 41 POST. Obtenido de

http://www.41post.com/3719/programming/android-how-to-return-rgb-

values-from-an-image-file

Preechaburana, P., Suska, A., & Filippini, D. (2014). Biosensing with cell

phones. Cell Press.

Profesorado, I. N. (s.f.). educaLab. Obtenido de educaLab:

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Stack Overflow. (s.f.). Obtenido de http://stackoverflow.com

Wikipedia.org. (2016). Obtenido de Wikipedia.org:

https://es.wikipedia.org/wiki/ELISA

