

DEPARTMENT OF MECHANICAL ENGINEERING

TECHNISCHE UNIVERSITÄT MÜNCHEN

Model-based diagnosis -
Application to Matlab

Stateflow models
Bachelor Thesis 2016

Pablo Martí Blasco

Author: Pablo Martí Blasco
Supervisor: Prof. Dr. Julien Provost
Submission Date: September 8, 2016

DEPARTMENT OF MECHANICAL ENGINEERING
TECHNISCHE UNIVERSITÄT MÜNCHEN

Model-based diagnosis -
Application to Matlab

Stateflow models
Bachelor Thesis 2016

Model-based diagnosis - Application to Matlab Stateflow models

ii

I confirm that this Bachelor thesis is my own work and I have documented all sources
and material used.
Munich, September, 2016 Pablo Martí Blasco

Model-based diagnosis - Application to Matlab Stateflow models

iii

Content

Author: Pablo Martí Blasco --- i

1. Introduction -- 1

1.1 Organization of the document -- 3

2. Introduction to fault diagnosis in DES --- 4

2.1. Faults --- 4

2.2 Diagnosis -- 4

3. Classification of diagnosis methods -- 9

3.1 Rule-based expert systems --- 9

3.2 Data driven approaches --- 11

3.3 Model based approaches -- 11

4. Model Based approaches --- 13

4.1 Centralized Diagnosis -- 14

4.2 Decentralized Diagnosis -- 15

4.2.1 Global model with decentralized diagnosers -- 16

4.2.2 Local model with decentralized diagnosers -- 17

4.3 Distributed Diagnosis -- 18

5. Algorithm --- 20

5.1 Example -- 22

6. Practical cases --- 23

Model-based diagnosis - Application to Matlab Stateflow models

iv

6.1 Automatic deposits. --- 23

6.1.1 Description of the process --- 23

6.1.2 Fault free model --- 24

6.1.3 Description of the faults -- 25

6.1.4 Diagnosis. --- 25

Diagnosis L22 --- 26

Fault free model L22 --- 26

Faulty model L22 -- 26

Table L22 -- 27

Diagnoser -- 29

Diagnosis Valves --- 30

Fault free model Valves --- 30

Faulty model Valves -- 31

Table Valves --- 32

Diagnosis Pump Stuck --- 34

Fault free model --- 34

Faulty model -- 34

Table -- 35

Diagnoser -- 36

6.2. Heat, Ventilating and Air Conditioning --- 37

6.2.1 Description of the process --- 37

6.2.2 Fault free model --- 38

6.2.3 Description of the faults -- 38

6.2.4 Diagnosis. --- 39

Diagnosis Valve Stuck Open --- 39

Faulty model -- 39

Table -- 40

Diagnoser --- 40

Diagnosis Valve Stuck Close --- 41

Faulty model -- 41

Table -- 42

Diagnoser -- 42

Model-based diagnosis - Application to Matlab Stateflow models

v

Attached Program --- 44

Main code --- 44

Functions --- 44

Vector Events --- 44

Create States -- 45

Create Matrix --- 46

Search Fail --- 47

Bibliography --- 49

Model-based diagnosis - Application to Matlab Stateflow models

1

1. Introduction

Nowadays, the industrial systems are becoming more and more complex and

large, what is deriving in bigger problems to control the faults from the systems.

The centralized method for systems diagnosis is becoming obsolete and

useless against those enormous systems.

However, we cannot get behind because the technology of fault diagnosis is

vital in a market with such a fierce competition as the one that we have these

days.

In a big company where millions of products are manufactured every day, a

breakdown of the system that can stop the production is something that cannot

be permitted.

Speaking about costs, a good system of fault detection can save us a lot of

money because it is essential for a trustworthy maintenance planning. It will

increase the shelf life of the system, reduce the number of breakdowns and

help us to actuate where and when a failure occurs.

Therefore it will reduce the costs of production and will decrease the price of

our product in the market. That will help us to be more competitive against other

firms.

The correct diagnosis of a fault in the system is not just the identification of the

fault. It is composed of three steps [17]: first of all, detection, second isolation

and in third place identification.

In the area of discrete event systems, different methods of fault diagnosis can

be developed. We will be explain some of them along this thesis. We can split

these methods in three main groups.

1) Ruled based expert systems use the knowledge of an expert to create logic

rules. Those rules are triggered depending on the events that take place in our

system (Papadopoulos and McDermid, 2001).

2) Data driven approaches need a data base to store the knowledge about the

different faults we can have in the system.

3) Model base approach where a model of the system is built and observed to

detect the occurrence of fault.

The approach that I have decided to use is a model base approach. This

approach can be divided in another three categories depending on how the

diagnoser is built [11].

Model-based diagnosis - Application to Matlab Stateflow models

2

Diagnosers can be built with a centralized approach where a global model is

built and just one diagnoser is needed, a decentralized approach can be built

with one global model or with several local models and local diagnosers are

needed, with a distributed approach local models are built and local diagnosers

are developed to control the system.

After studying those three options I have decided to use a decentralized

approach because the centralized one can get too complex if we have a large

system.

Once we have built the model we have to build the diagnoser. To build the

model, expert knowledge is needed. However, the diagnoser can be built

automatically using an algorithm. It is an automatic process that can be

programmed.

In this thesis, an algorithm has been developed to change from a

nondeterministic model to a deterministic one. The algorithm has been

programmed in Matlab language and is applicable for the tool from Simulink

named Stateflow.

Stateflow is an environment for modeling and simulating combinatorial and

sequential decision logic based on state machines and flow charts. Stateflow

allows combining graphical and tabular representations, including state

transition diagrams, flow charts, state transition tables, and truth tables, to

model how the system reacts to events, time-based conditions, and external

input signals.

The algorithm is applicable in non deterministic automatons. An initial state has

to be previously defined and the non observable events have to be defined as

well and introduced in the program.

It is built to work in Stateflow. Nevertheless, I consider that it should not be hard

to modify some commands and make it work in other programs because the

main program is defined with standard language from Matlab and not the

specific of Stateflow.

Model-based diagnosis - Application to Matlab Stateflow models

3

1.1 Organization of the document

This document is organized in 7 points:

Point 2: An introduction to fault diagnosis is going to be described , the

explanation of what a fault is and basic concepts of diagnosis, including the

difference between deterministic and non deterministic automatons.

Point 3: In this point, the criteria to classify the methods of diagnosis are

developed and a longer explanation of rule-based expert systems, data driven

approaches and model based is provided .

Point 4: As the model based approach is the one that has been chosen in this

thesis, a detailed explanation about its types is expounded on this point.

Point 5: The algorithm that has been used to get a deterministic automaton

drew from a non deterministic one is explained.

Point 6: Two practical cases are developed in this point to show how the

algorithm works.

Attached 1: Code of the program in Matlab language.

Attached 2: Different models built in Stateflow.

Model-based diagnosis - Application to Matlab Stateflow models

4

2. Introduction to fault diagnosis in DES

In this part I am going to make a brief introduction to fault diagnosis. Meaning I

will explain how it works as well as the basic fundaments of the fault diagnosis

systems.

The fault diagnosis is based on the action of controlling a system in order to

detect when a problem occurs in it, when something unexpected changes the

running of our system.

Therefore I consider vital to make clear some points about those faults.

2.1. Faults

We need to start explaining what a fault is and how we can classify them before

moving forward into fault diagnosis.

Definition 1. A fault can be defined as an abnormal behavior of the system.[1]

There are several types of faults and they can have different effects in our

system. To classify these faults we can follow different principles:

i. The source of the fault: maintenance faults, human operator´s faults,

wrong operating conditions faults, design faults, failure of components,

software or hardware faults.

ii. The severity of the fault: whether a fault can affect the system but it can

keep working with it or if the fault can cause the complete stoppage of

the system.

iii. The time pattern of the fault: permanent, intermittent or incipient.

iv. The predictability of the faults: it can be predictable or unpredictable.

To sum up, a fault is an event that will lead the system to a different behavior

which is not supposed to have. This new behavior can still accomplish the

function of the system or not, depending on the type of fault. But either way it

will be a faulty behavior.

2.2 Diagnosis

Now that we have made clear what a fault is we can proceed to explain the

basis of diagnosis. We have already explained that fault diagnosis is used to

Model-based diagnosis - Application to Matlab Stateflow models

5

detect faulty behaviors of a system. However, the whole approach of this idea is

not just to detect when the system is not working correctly but to detect, isolate

and identify the origin of this failure behavior.

The detection consists on realizing when our system is not working as it should.

The isolation of the fault is to detect where this fail comes from.

The identification of the problem is to detect the severity of the failure.

In this thesis we are going to centre on the first two aspects: detection and

isolation of the faults and as it is explained on the introduction, we are going to

focus on fault diagnosis in discrete event systems (DES).

When we are working with a DES, it can be defined with Petri Nets, automatons

and other definitions. In this thesis we are going to use the automatons to define

our DES.

There are non deterministic finite automatons and deterministic finite

automatons.

The non deterministic finite automaton is defined by: M = (Q,E,δ,q0,F)

i. Q is the finite group of states

ii. E is the set of events

iii. q0 is the initial state

iv. F is the group of the last states

v. δ is the transition function

Figure 1

Model-based diagnosis - Application to Matlab Stateflow models

6

Inside the group of events, we can make two different groups that will be the

key for the fault diagnosis. We can divide this group in observable and

unobservable events. Faults, within other events, are considered as

unobservable events. Otherwise their detection would not be a problem and all

of these studies would not make any sense.

In the Figure 1 we can see the observable events as {1,0} and the unobservable

event as {ε} and all of them will be included in E.

The aim of fault diagnosis is to detect those unobservable events, so what we

need is to change the non deterministic automaton into a deterministic one that

will be our diagnoser. The deterministic finite automaton is defined by:

M = (Q,E,δ,q0,F), just as the non deterministic ones.

However, all the events from E are observable. This automaton is what we have

to build to be able to detect the faults.

An example can be found in the Figure 2 were we have the observable events

{1,0} but we have not any unobservable events as {ε}.

Figure 2

The new states of the observer are composed of one or more states of the non

deterministic automaton. To create these new states, we have to look at the

former automaton and see which states we can reach when an event occurs

and which others we can reach with an unobservable event (The detailed

explanation about how to do it can be found in point number 5).

Model-based diagnosis - Application to Matlab Stateflow models

7

We can classify the states of the diagnoser depending on whether they

represent a state of failure, a normal state or an uncertain state:

i. Normal state: if our diagnoser reaches this state we can confirm that the

behavior of the system is correct and that no fault has occurred.

ii. Faulty state: when our diagnoser has reached this state it unequivocally

means that a fault has occurred and our system is having an abnormal

functioning.

iii. Uncertain state: if our diagnoser reaches this state we cannot decide if

the system is faulty or not. We have to wait until we reach one of the

other type of states to decide whether or not our system is working

properly.

Nevertheless, a fault is not always observable. This means that sometimes we

will find a fault that we cannot detect with the diagnoser because our

automaton keeps running between uncertain states. Therefore we cannot

decide if the system is faulty or not. We can draw a new term from this fact:

diagnosability. We can find the following definitions about diagnosability [3]:

Definition 2. A fault is diagnosable if it can be detected with certainty within a

finite number of observable events after its occurrence. This means that fault f

is diagnosable if for every execution trace s of events ending with f, there exists

a sufficiently long continuation trace t such that any other execution trace

indistinguishable from s * t – that is, that produces the same record of

observable events as s * t – also contains f. (J.Zaytoon, S. Lafortune,

2013,p.313)

Definition 3. A fault is n-diagnosable if it can be detected with certainty within a

specified number, n, of observable events after its occurrence. . (J.Zaytoon, S.

Lafortune, 2013,p.313)

Definition 4. A system is diagnosable if it is possible to detect within a finite

delay occurrences of faults of any type using the record of observed events.

Alternatively speaking, diagnosability requires that every occurrence of every

fault event leads to observations distinct enough to enable unique identification

of the fault event within a finite delay. . (J.Zaytoon, S. Lafortune, 2013,p.314)

Model-based diagnosis - Application to Matlab Stateflow models

8

Theorem 1. The system is diagnosable if and only if there are no f-

indeterminate cycles in the diagnoser for any fault type f. . (J.Zaytoon, S.

Lafortune, 2013,p.313)

Model-based diagnosis - Application to Matlab Stateflow models

9

3. Classification of diagnosis methods

In the last years the fault diagnosis is becoming a more and more important

field in automatic systems. Therefore the studies about the techniques of fault

diagnosis have surprisingly increased since the late ninety's and the beginning

of the new century.

There are different ways to classify these methods depending on the criteria we

choose for it.

Some of these criteria are exposed on the article [3] :

i. Respect to fault compilation

ii. Respect to the modeling formalism

iii. Respect to fault representation

iv. Respect to the decision structure

Another classification is proposed (Papadopoulos and McDermid, 2001) on

which we can classify most of the approaches that have been developed until

now, which is the following:

i. Rule-based expert systems

ii. Data driven approaches

iii. Model based

These methods will be explained in more detail in the following pages.

3.1 Rule-based expert systems

These sytems are built with the knowledge of an expert about the system.

In the rule-based system, rules like IF-THEN-ELSE and an inference motor are

used to get some conclusions of the process. These kind of systems are easy

to build and implement for small systems. However they can become too big

and complex if the system is more complicated.

The way a rule-based systems works is as follows.

The expert has to define the rules that will rule our system. They usually are IF-

THEN-ELSE but can work as well with the type AND-OR. Once the system is

built and we start to run the system, some rules will be triggered, which, at the

Model-based diagnosis - Application to Matlab Stateflow models

10

same time, can trigger other rules. In the end we will arrive at a point where no

more rules can be triggered and the resulting information that we get is what will

tell us whether or not a fault has occurred.

A graphic technique can be used in this kind of method named fault tree. The

fault tree is made of nodes that are distributed in levels, representing the failure

on the top and different sub failures behind, what will define the shape of a tree.

Figure 3

The different levels of the tree are connected with logic doors AND-OR. The

functioning of this method is based on going from the top of the tree, where we

have a complex event, to the lowest part. To go through the tree we use the

logic doors until in the end we find a basic event that does not need other

events to be explained, so we can define exactly what is happening in our

system.

Model-based diagnosis - Application to Matlab Stateflow models

11

3.2 Data driven approaches

For this kind of methods what we need is an amount of historical registries of

the system making to make the diagnosis. (Dash and Venkatasubramanian,

2000) We store in a knowledge data base the trends that we measure in the

sensors when a fault occurs. With that, we will be able to identify if a fault is

taking place in our system.

The way to proceed with this method is as follows:

i. First of all we need to create our data base of the faulty behaviors.

ii. Run the system.

iii. Record the new measurements of the sensors from the system.

iv. Compare the measurements of the sensors with our data base of faulty

behaviors.

By comparing the current behavior of the system with the data base that we

have stored, we will be able to identify if the system is running correctly or, in

case that it is not, which is the fault that has occurred.

When we program a method like this one we have to make a compromise

between robustness and time for the detection. The main idea has to be

something in the middle where we do not use a chain of too long data, thus we

are not able to detect the failure in time to react against it, but we cannot use a

chain too small, hence we can take a normal behavior as faulty because we

have not checked enough data.

One of the most used approaches for this method is the Neuronal Nets. They

have very good properties for the diagnosis of failures, since they learn to

diagnose failures thanks to the training of data, being also tolerant to the noise

and to have good capacity of adaptation online.

3.3 Model based approaches

The general description of these methods (Matthias Roth. 2010) is that we
compare the system with an expected behavior of the system defined by the
model we have created.
To use this method, depth knowledge of the system is needed.

Model-based diagnosis - Application to Matlab Stateflow models

12

Figure 4

The different outputs between the system and our model will help us to decide if

the system is working correctly or if we have a faulty system. Taking into

account that not every difference between these signals has to be a fault, we

have to be able to distinguish whether the difference is caused by noise of the

system or a fault.

Various techniques are used to study those differences. In this thesis we are

going to use a diagnoser.

Diagnosers are used to recognize those deviations. There are different types of

diagnosers depending on the part of the system that we are observing or the

connection and interaction between the observers.

In the next point, the different type of observer we can create is explained, as

well as when we have to use them and their advantages and disadvantages.

This part is explained in more detail because it is the approach that has been

chosen to solve the practical cases that will be explained in the last point of the

document.

Model-based diagnosis - Application to Matlab Stateflow models

13

4. Model Based approaches

The model based approach can be divided in two main groups:

i. Methods where we create a model that includes the faulty behavior of the

system.

ii. Methods where only the fault-free model is built.

In this thesis we are going to use the first category that is showed above.

The model based approach needs three different structures: the model, the

observer and the diagnoser. When we start with this method the first thing we

build is the model. It represents the whole system, and it can be built following

several criteria.

This model will have two types of events: observable and non observable

events. Faults are considered non observable events. Therefore, this model will

be a non deterministic finite automaton.

However, with this model we cannot see the faults because they are

unobservable, so we need to build a deterministic automaton where we have

not any of those events. The deterministic automaton that is built, drew from the

non deterministic one, is named diagnoser.

The construction of the diagnoser can be made by an automatic algorithm and

that is the biggest aim of this thesis. The algorithm has been developed using

the language of Matlab and can be applied in the tool of Simulink named

Stateflows. The algorithm will be explained in the last point.

Different algorithms can be used to build the observer and some references

can be found in: [12],[13],[14].

Finally we need the structure that will be the system in charge of detecting

whether or not a fault has occurred.

In the model base approach we use a structure named diagnoser that is able to

make the diagnosis of the system and identify the faults. (Moamar Sayed-

Mouchaweh,2014) The diagnoser can be built in three different ways.

i. Centralized

ii. Decentralized

iii. Distributed

Structures made by a centralized approach are characterized for having a

global diagnoser that reaches the whole model.

Model-based diagnosis - Application to Matlab Stateflow models

14

When we build a decentralized structure we have to build several local

diagnosers. This diagnoser cannot be connected with each other. However we

have a coordinator that receives the information from those local diagnosers

and make the final decision: if a fault has occurred or not.

In a distributed structure, what we build are several systems, instead of the

global model that we used for the previous methods. Once that those

subsystems are built we create a diagnoser for each of them that will make a

local diagnosis of the system.

4.1 Centralized Diagnosis

As we have explained before, to apply a centralized diagnosis three main

elements are needed:

i. Global model

ii. Global observer

iii. Global diagnoser

The procedure of this system can be explained following the next steps. First of

all, as we want to do a centralized diagnosis, we will need to build the

centralized model of the system. That means that the automaton we have to

build includes all the process that takes place in our system, all the actuators

from our system and all the sensors used on it.

This first model will be a non faulty model and then we will add the faulty

behaviors to create the faulty model. Faults are considered non observable

events. Therefore, this model will be a non deterministic finite automaton.

As we have built just one model for the whole system, the observer that we

have to build will be a global observer as well. However, this new deterministic

automaton is supposed to be much simpler than the model because it is made

joining the states from the model to suppress the unobservable transitions we

had.

As a consequence of having a global observer, the diagnoser will be a global

structure as well.

When we use this approach the biggest problem we have is that, as we are

using one single automaton to describe the entire process, it can become an

enormous automaton if we are analyzing a complex system. Furthermore, we

can have problems of robustness because if one part of the model fails it can

cause the breakdown of the whole structure. Another problem we can find is the

Model-based diagnosis - Application to Matlab Stateflow models

15

difficulty to add new actualizations to the structure, because changing just a part

of the real system is usually translated into changing the entire model we had.

Thus this approach is recommended for small system and systems that are not

going to be developed in the future.

Behind we can see the schema of a centralized diagnoser.

Figure 5

4.2 Decentralized Diagnosis

Before, the problems with a centralized structure have been exposed. Thus we

need another method that will help us when we have to deal with a complex or

large system. The decentralized diagnosis has been developed in order to

overcome those problems.

In a decentralized diagnosis instead of building a huge global diagnoser we

create several smaller diagnosers where each focuses on a part of the system;

therefore it is simpler and can be modified easier without changing the whole

model.

 A decentralized approach is based on the idea of using local diagnosers to

identify the failures of the model. Two ideas have been developed to carry out a

decentralized diagnosis [11]:

i. A global model with local observers.

ii. Local models with one observer for each.

Model-based diagnosis - Application to Matlab Stateflow models

16

Several new concepts have to be explained to reach a complete understanding

of this new approach.

Definition 5. A fault f occurring on a subsystem is locally diagnosable if there is

a finite number of observations from the subsystem after the occurrence of f, so

that we are sure that f has effectively occurred on the subsystem [15].

Definition 6. A subsystem is locally diagnosable if every fault occurring on that

subsystem is locally diagnosable in the subsystem [15].

Definition 7. A fault is decentralized diagnosable if we can diagnose its

occurrence with the collaboration of local diagnosers after a finite gap of time of

its occurrence (Moamar Sayed-Mouchaweh, 2014).

We are going to start with the explanation of the global model with local

observers because it is more similar to the one that has been explained before.

4.2.1 Global model with decentralized diagnosers

To apply this method the first thing we have to do is to build the global model of

the process. It will be the same model as the one we create for a centralized

diagnosis so until this point both methods are completely equal.

Figure 6

Model-based diagnosis - Application to Matlab Stateflow models

17

What will make the difference is the way to build the diagnosers. Now, instead

of using just one for the whole system, various observers have to be developed.

All of them will focus in a part of the system whereas none of them will have a

complete vision of the model. They are not able to communicate with each

other.

However, if it is necessary, we will create another system named the

coordinator whose work is to use the information from the local diagnosers to

reach a conclusion about the occurrence of a failure.

4.2.2 Local model with decentralized diagnosers

In this approach the steps that we have to follow change from the very

beginning. Now, instead of building a global model we will have to build several

local models.

Each of these models will be able to represent a part of the system and all of

them together will be a representation of a real process. No global model is

needed. Just with the local models we have to be able to solve the problem of

diagnosability.

The second step is to build a diagnoser for each of these local models. With the

diagnosers we can identify the faults that occur during the functioning of the

system.

Figure 7

Model-based diagnosis - Application to Matlab Stateflow models

18

There is no communication between the local diagnosers. The ideal scenario

would be that without anything more than the local diagnosers we could be able

to identify every faulty behavior of the system.

However, that is not always possible and sometimes we need to use a

coordinator to reach the conclusion whether or not a fault has happened.

4.3 Distributed Diagnosis

This point explains the basic notions of the distributed approach. This last

approach can seem very similar to the distributed diagnosis based on local

models (J. Kurien, X. Koutsoukos, F. Zhao, 2002).

The model that we have to build is the local models of the system. As it has

been explained before, the local models focus on a part of the system and

cannot show the whole process that we are studying.

The second step will be to build the diagnosers. They will be local diagnosers,

one for each local model.

Until this point it can seem that we are describing the process to build a

decentralized diagnoser. However we will see the difference between them in

the next step.

Figure 8

Model-based diagnosis - Application to Matlab Stateflow models

19

Once we have created the diagnosers we are not going to build the coordinator,

as we should have done if we were building a decentralized diagnoser. Instead

of that, in this method we have to develop the communication between the

diagnosers because, on the contrary of the decentralized approach, the local

diagnosers are able to communicate with each other.

This approach is characterized for being more flexible than the others; however,

we have to reach a compromise between creating too many connections

between the diagnosers that can lead us to a very complex system, and

developing a connection too simple that can create a problem to detect a

failure.

Model-based diagnosis - Application to Matlab Stateflow models

20

5. Algorithm

Along this thesis several approaches for fault diagnosis have been explained.

Due to a personal preference I have chosen to work with a model base

approach. As it has been explained before, the basis of this approach are three

different structures: model, observer and diagnoser and in some cases the

coordinator.

When these structures are represented by automatons we have explained that

we can have two types of automatons:

i. Non deterministic finite automaton.

ii. Deterministic finite automaton.

The difference between them is that in the first one we have unobservable

events whereas in the second one all the events are observable.

The model that we build from a system is considered a non deterministic finite

automaton because it includes the faults that can take place in our process and

these faults are considered as non observable events.

On the other hand, the structure that we need to develop for the diagnoser is a

deterministic finite automaton where the non observable events will not appear.

The following algorithm has been developed to change from a non deterministic

finite automaton to a deterministic finite automaton.

The method that we are going to use is an algorithm in which we will fill a table

draw from the non deterministic finite automaton with the information that is

needed to build the deterministic automaton.

On the first line we will compile all the observable events from our system.

On the first column we will gather the new states that will be part of the new

automaton.

In the matrix between them we have to write the successors that will have the

state of the first column in case of firing the event on the first line.

Now that we have a general idea of how the table will look like , we can explain

how to fill it in more detail.

Model-based diagnosis - Application to Matlab Stateflow models

21

Considering a non deterministic finite automaton, it is defined by:

M = (Q, Σ ,δ,q0,F)

i. Q is the finite group of states

ii. Σ is the set of events

iii. q0 is the initial state

iv. F is the group of the last states

v. δ is the transition function

The steps that have to be followed in this algorithm are:

i. Build a table with one column for each e Σ

ii. In the first line we leave a blank space and we write all e Σ

iii. In the first column of the second line, we write the initial state I = E({q0}),

this corresponds to all the states that I can reach from q0 with ε* (all the

non observable events).

iv. We fill every square from that line with Ur I E(δ(r , a)), what means with

all of the states that can be reached from I with eiε
* (being ei the event of

the column i).

v. The new states that have appeared in the table have to be gathered in

the first column.

vi. We jump to the next line and we do the same as we have done with the

state I but with the new state R from the first column. We fill the line

writing in each column e, Ur R E(δ(r , a)). What means all of the states

that we can reach from R with eiε
* .

vii. The step "v." and "vi." have to be repeated until we finish and run out of

new states.

The process is showed in the following example.

Model-based diagnosis - Application to Matlab Stateflow models

22

5.1 Example

We have the automaton M:

Figure 9

The initial state is 1. And we have the events {a, b, ε}. The events a and b are

observable however ε is a non observable event.

Now we apply the algorithm to create the table:

 a b

{1} {3,4} {2}
{2} {4} {2}

{3,4} {} {2}
{4} {} {}

The new deterministic automaton that we get is this one. More complex

examples will be showed in the practical cases.

Figure 10

Model-based diagnosis - Application to Matlab Stateflow models

23

6. Practical cases

6.1 Automatic deposits.

6.1.1 Description of the process

The practical case that is going to be explained consists of the system to

control two deposits that are connected with each other by two pipes. Those

pipes can be regulated by two independent valves. Furthermore we have one

drain in each deposit ruled by two valves, one for each, that can work

independently as well. The deposits are filled with a pump that pours the water

in the first deposit.

In this case we have two deposits as the ones showed in the figure 11. The

process that is being performed follows the next steps:

1. All the valves are closed except V12h that is opened.

2. The pump starts working providing the deposits with a continuous flow

of water.

3. The deposits are filled so the level detectors are turned on.

4. The deposit one is being filled so the first level detector that appears is

L11.

5. When the water reaches the level of the valve the second deposit is

filled. Then we will see the level detector L21.

6. We keep filling the second deposit so the L22 is reached.

7. When the water is at the same level in both deposits the level increases

at the same time in both of them. Thus the next level reached is L12.

8. After L12 we will see the level detector L23.

9. Finally we reach LC that means that both deposits are full.

10. All the valves are opened except V12h that is closed.

Figure 11

Model-based diagnosis - Application to Matlab Stateflow models

24

6.1.2 Fault free model

First of all we are going to build an automaton with the fault free behaviour,

based on the process described above. The automaton could be smaller but the

idea is to show clearly the steps from the process.

This automaton shows the whole process so it is a global model of the system

under study.

.

Figure 12

Model-based diagnosis - Application to Matlab Stateflow models

25

6.1.3 Description of the faults

To determine the failures that we have to identify, first of all we have to define

those faults and the boundaries that we are going to apply for the simplicity of

the system.

The faults are:

1. f1: failure of L22, it can get stuck on, showing that the water has reached

that level.

2. f2: failure of L22, it can get stuck off, showing that the water has not

reached that level.

3. f3: failure of the pump, it can get stuck during the process.

4. f4: failure of V12h, it can get stuck closed when we try to open it.

5. f5: failure of V12l, it can get stuck opened when we try to close it.

The rest of the components of the system can be considered reliable.

6.1.4 Diagnosis.

As we have seen, the automaton that we have built before is a global model. It

is not specially big or complicated. In fact, it works following a sequential

behaviour that is quite simple. However, if we build the faulty global model for

this system it becomes much bigger and complex.

Thus, we have decided to change to a decentralized approach . Three local

models will be developed for this system focusing on the detection of the faults

that can occur in the system:

1. One for the detection of the failure of the level detector L22 (f1, f2).

2. A second local model to detect the failure of the valves (f4, f5).

3. The last one to control the pump (f3).

 The models are depicted in the next page

Model-based diagnosis - Application to Matlab Stateflow models

26

Diagnosis L22

Fault free model L22

With this local model we are going to define a diagnoser to control the

behaviour of the level detector L22. In this non faulty model the parts of the

system that we are controlling are just the pump P and L22.

Figure 13

Faulty model L22

The faulty model is built including the detectors L22, L23. In this model we can

see that the faults f2 and f1 are being checked. As we have explained before

the faults are considered non observable events.

Therefore the type of automaton that we have is a non deterministic automaton.

The states that we have in the middle represent the normal behaviour of the

system whereas the states in both sides are faulty states.

Model-based diagnosis - Application to Matlab Stateflow models

27

Figure 14

Table L22

Applying the algorithm that has been described in the point 5 to the model that

we have built in Stateflow we will get the following table as an output. With the

table we can easily create the diagnoser.

In the table we will have the observable event from this automaton on the

highest line:

Σ={[b>0], [l21<1], [pm>0], [l23>0], [pm<1], [l22<1], [l23<1], [l21>0], [l22>0]}

In the first column we have the new states for the deterministic automaton:

Q={start, Pon, L22, Poff, L22n, Pon2, L21, Poff2, L21n, Pon1, L23, Poff1, L23n}

In the matrix we have the transitions between the states. We can see the

transitions because the state in the first column is the source, the state in the

matrix is the destination and the event above the destination is the event that

fires the transition.

Model-based diagnosis - Application to Matlab Stateflow models

28

 [b>0] [l21<1] [l22<1] [l23<1] [pm>0] [l21>0] [l22>0] [l23>0] [pm<1]

Start Pon

Pon L22,L23

L22,L23 Poff Poff1

Poff L22n, L21n

Poff1 L23n

L22n, L21n Pon2 Pon

L23n Pon1

Pon2 L21

Pon1 L23

L21 Poff2

L23 Poff1

Poff2 L21n

L21n Pon2

Model-based diagnosis - Application to Matlab Stateflow models

29

Diagnoser

In the figure 15 we can see the diagnoser that has been built using the data

from the table. The states with the N are the normal states, are those states that

confirm that our system is working correctly.

The states with the U sae those states where we cannot say whether or not the

functioning is faulty.

And the states with the F are those states that represent a faulty behaviour of

the system.

With this diagnoser we can determine when the level detector is faulty.

Furthermore we can recognise if it is the fault type f1 or f2. The states on the

right represent the states of the fault 2 and the states on the right are the states

of the fault 1.

 So we can confirm that this local system is diagnosable because all the faults

can be detected.

Figure 15

Model-based diagnosis - Application to Matlab Stateflow models

30

Diagnosis Valves

Fault free model Valves

With this local model we are going to define a diagnoser to control the

behaviour of the valves between deposits. In this non faulty model the parts of

the system that we are controlling are the pump P, L11, L21 and L12.

The use of the visor L22 is avoided because it is not trustworthy.

Figure 16

Model-based diagnosis - Application to Matlab Stateflow models

31

Faulty model Valves

In this model we can see that the faults f5 and f4 are being checked. As we

have explained before in the faults are considered non observable events.

This is a non deterministic automaton so we will apply the algorithm to get the

new diagnoser for this model.

Figure 17

Model-based diagnosis - Application to Matlab Stateflow models

32

Table Valves

The table that we will get from the algorithm this time will be much bigger

because now we have the double number of states. But it will work the same

way.

In the table we will have the observable event from this automaton on the

highest line:

Σ={[s>0], [l21<1], [l11<1], [pm>0], [l21>0], [pm<1], [l12<1], [l11>0], [l12>0]}

In the first column we have the new states for the deterministic automaton:

Q={ Start, Pon, Pon-5, L21-5, L11,L11-5, L21, L12-5, L12, Poff-5, Poff, Poff-4,

L12n-5, L12n, L12n-4, L11n-5 L11n, L11n-4, L21n-5, Pon-4, L21n, Pon-5, L11-

4, L21-5, L12-4, Poff-4, L12n-4, L11n-4, Pon-4}

 [s>0] [l21<1] [l11<1] [pm>0] [l21>0] [l11>0] [l12>0] [pm<1] [l12<1]

start Pon,
Pon-5

Pon,
Pon-5

 L21-5,
L11

L21-5,
L11

 L11-5 L21

L11-5 L12-5

L21 L12

L12-5 Poff-5

L12 Poff,
Poff-4

Poff-5 L12n-5

Poff,
Poff-4

 L12n,
L12n-4

L12n-5 L11n-5

L12n,
L12n-4

 L11n,
L11n-4

L11n-5 L21n-f5

L11n,
L11n-4

 Pon-4,
L21n

L21n-5 Pon-5

Pon-4,
L21n

 Pon,
Pon-5

 L11-4

Pon-5 L21-5

L11-4 L12-4

L21-5 L11-5

L12-4 Poff-4

Poff-4 L12n-4

L12n-4 L11n-4

L11n-4 Pon-4

Pon-4 L11-4

Model-based diagnosis - Application to Matlab Stateflow models

33

Diagnoser

With this diagnoser we can determine when one of the two valves is faulty and

we can recognise if it is the high or the low valve. The states on the right

represent the states of the fault 4 and the states on the left are the states of the

fault 5.

So we can confirm that this local system is diagnosable because all the faults

can be detected.

Figure 18

Model-based diagnosis - Application to Matlab Stateflow models

34

Diagnosis Pump Stuck

Fault free model

In this model, the process of the pump is explained. Just the Pump, and the

level detector L11 and LC are used. I have decided to use those detectors

because they are not affected by any other faults.

Figure 19

Faulty model

The fault f3 is being checked. This is the fault of the pump, because the pump

can get stuck while the deposits are being filled and it can stop the water flow.

We can see that the faulty states are located on the right side of the automaton

while the normal states are in the middle.

Model-based diagnosis - Application to Matlab Stateflow models

35

Figure 20

Table

Below we can find the table that the algorithm will give us. As always, the new

states are on the left, the events on the top and we can find the transitions with

the matrix left in the middle.

 [s>0] [l11<1] [pm>0] [l11>0] [lc>0] [pm<1] [lc<1]

Start Pon
Pon L11,

Poff1

L11,
Poff1

 LC,
Poff1

 LCn1

LC,
Poff1

 Poff LCn1

LCn1 L11n1
Poff LCn
L11n1 Pon1
LCn L11n
Pon1 Poff1
L11n Pon
Poff1 LCn1

Model-based diagnosis - Application to Matlab Stateflow models

36

Diagnoser

With this diagnoser we will be able to identify the behaviour of the pump. As we

have done before we have three possible states.

We can see that the loop in the middle is composed by states classified as

unknown, or normal. However the loop on the right is composed by faulty

states. Therefore we can conclude that the fault is diagnosable because as

soon as the process falls in that loop it means that we are having a faulty

behaviour.

It can be explained as follows. We start running the middle loop but suddenly

while the pump is supposed to be working it get stuck. When this happens the

level of the deposits will not change anymore. Therefore the next event that we

will see is that the pump will be turned off, because it is programmed to do it

and we will identify that the pump is stuck.

Some other approaches can be proposed, such as the use of templates, that

will allow us to detect this fault more quickly.

We can conclude that this system is diagnosable.

Figure 21

Model-based diagnosis - Application to Matlab Stateflow models

37

6.2. Heat, Ventilating and Air Conditioning

6.2.1 Description of the process

The practical case that is going to be explained consists of the system to

control a HVAC (Heat, Ventilating and Air Conditioning). We will use just the

part that is depicted in the picture below.

Figure 22

We have three main components:

1. Pump P, that produces the air flow in the piping. It can be switched on and off

by the controller CRT.

2. Valve V, that can stop the flow. It can assume two positions, namely completely

open or closed.

3. Flow sensor F, that detects the presence of an air outflow in the pipe.

4. Controller CRT, that determines the behaviour the plant by driving the pump
and the valve and checking the sensor reading.

The normal process that is going to rule our system follows the next steps:

1. Open valve.

2. Start pump.

3. Stop pump.

4. Close valve.

And it starts again.

Model-based diagnosis - Application to Matlab Stateflow models

38

6.2.2 Fault free model

First of all I am going to build an automaton with the fault free behaviour, based

on the process described above.

Figure 23

6.2.3 Description of the faults

In general, we will consider all the components as faultless, apart from the

valve.

Two different faults can occur:

1. f1: the valve can get stuck-open.

2. f2: the valve can get stuck-close.

Model-based diagnosis - Application to Matlab Stateflow models

39

6.2.4 Diagnosis.

In this case the model is really simple. Therefore, a global model has been

chosen to represent the functioning of the system.

However, two local diagnosers are going to be created, one for each fault, so

the identification of the fault will be easier and the diagnosers will be much

simpler than one global diagnoser for both faults.

Diagnosis Valve Stuck Open

Faulty model

As we can see the faulty model has two loops. Both of them are similar and

related with each other by the faulty event.

Figure 24

Model-based diagnosis - Application to Matlab Stateflow models

40

Table

Diagnoser

In this diagnoser we can clearly see that all the states that we have ,except for

the start, are states of the type unknown. Thus, we will not be able to identify if

our system is running correctly or the fault has occurred.

Therefore we can conclude that the fault 1 is non diagnosable.

Figure 25

 [s>0] [v<1] [v>0] [p>0] [p<1]

Start Ov, ov1

Ov, Ov1 Pon. pon1

Pon. Pon1 Poff, Poff1

Poff, Poff1 Cv, Cv1

Cv, Cv1 Ov1,ov

Model-based diagnosis - Application to Matlab Stateflow models

41

Diagnosis Valve Stuck Close

Faulty model

The faulty model that we build from the previous model is depicted below. We

can see that we are using the detector of the flow and it will be the key to

identify the faulty behaviour.

We have one more states that have not appeared before an it represents the

sensor of the flow.

Figure 26

Model-based diagnosis - Application to Matlab Stateflow models

42

Table

The algorithm will give us the next table.

Diagnoser

The diagnoser for the previous faulty model is depicted below. As we can see

we have two types of states: unknown states which can be recognised with a U

and faulty states which can be recognised with an F.

Thus, even though we will not be able to know whether our system is faulty or

not until we reach the transition [d<1], we will be able to identify the fault.

Therefore we can conclude that the fault 2 is diagnosable.

 [s>0] [v<1] [v>0] [p>0] [p>0&&d<1] [d<1] [p<1]

Start Ov, ov1

Ov, ov1 Pon.
pon1

Pon.
pon1

 Poff, fnf Poff1

Poff, fnf Poff1 Cv, cv1

Poff1 Cv1

Cv, cv1 Ov1,ov

Cv1 Ov1

Ov1 Pon1

Pon1 Poff1

Model-based diagnosis - Application to Matlab Stateflow models

43

Figure 27

Model-based diagnosis - Application to Matlab Stateflow models

44

Attached Program

Main code

%We are going to use this program to create a table with all the

information that is necessary to build the deterministic automaton.

rt=sfroot;
m = rt.find('-isa', 'Simulink.BlockDiagram','-

and','Name','DepositSystem');
ch=m.find('-isa', 'Stateflow.Chart', '-and', 'Name', 'FaultyPump');
s=ch.find('-isa','Stateflow.State');
t=ch.find('-isa','Stateflow.Transition');
R={};
e={};
f=1;
R{1,1}={'start'};
e=VectorEventos(t,e);
C=cell(length(e));

while f<=length(R)
 C=CreateMatrix(R,C,f,e,t);
 [R]=CreateStates(R,f,e,C);
 f=f+1;
end;

Functions

Vector Events

%We are going to use this function to create a vector with all the

events
%from our automaton.
function [e]=VectorEventos(t,e)
i=1;
j=1;

%Inside t we have all the transitions from our automaton.
% With this loop we find every Label (events) from those transitions.
while i<=(length(t))
 w=t(i).LabelString;
 z={w};
 o=0;
 switch w
 case '[f1>0]'
 o=1;
 case '[f2>0]'
 o=1;
 case '[f3>0]'
 o=1;
 case '[f4>0]'
 o=1;
 case '[f5>0]'
 o=1;

Model-based diagnosis - Application to Matlab Stateflow models

45

 otherwise
 m=0;
 %We have already checked that the event is observable and

now
 %we have make sure that we have not already kept it in the
 %vector of events.
 while m<(length(e))
 m=m+1;
 if strcmp(e{1,m},z)
 o=1;
 end

 end

 end
 if o==0
 e{1,j}=z;
 j=j+1;
 end
 i=i+1;

end

Create States

%With this function we create the vector of the new states in the
%determinnistic automaton.
function [R]=CreateStates(R,f,e,C)
j=1;
%With this loop we go over all the new states in the line of the

matrix
while j<=length(e)
 esta=0;
 if 1> isempty(C{f,j})
 k=1;
 while k<=length(R)
 %With this two loops we compare the state that we have in

the
 %matrix with the state from R.
 in=0;
 m=1;
 while m<=length(C{f,j})
 n=1;
 while n<=length(R{k,1})

 if strcmp(R{k,1}(1,n),C{f,j}(1,m))
 in=in+1;
 end
 n=n+1;
 end
 m=m+1;
 end
 %with this "if" we check if the state is the sameone as

one that
 %is already in R
 if in==length(R{k,1})
 esta=1;

Model-based diagnosis - Application to Matlab Stateflow models

46

 k=length(R);
 end
 k=k+1;
 end
 if esta==0
 n=length(R)+1;
 R{n,1}=C{f,j};
 end
 end
 j=j+1;
end

Create Matrix

%In this function we are going to create a matrix with all the new

possible
%states for the deterministic automaton.
function [C]=CreateMatrix(R,C,f,e,t)
%We have to fill the line of the matrix with the successors from the

states in the
%array of new states
%With this while we find wich transitions have the state that we have
%as a source. We need to check every state from the cell.
if length(R)>length(e)
 C{length(R),length(e)}=[];
end
a=1;
while a<=(length(t))
 w=t(a).Source.Name;
 n=1;
 in=0;
 while n<=length(R{f,1})
 if strcmp(R{f,1}(1,n),w)
 in=1;
 end
 n=n+1;
 end
 if in==1
 u=t(a).LabelString;
 %once that we have found it, we need to know wich is the event
 %that we´ll lead us to a new state.
 b=1;
 while b<=(length(e))

 if strcmp(u,e{1,b})
 h={t(a).Destination.Name};

 if isempty(C{f,b})
 C{f,b}=h;
 l=1;
 %once that we have found it we storage it in the

cell
 %and we check if we can go from this state to

another
 %one with an unobservanle event.
 [C]=SearchFail(t,C,b,f,l);

 else

Model-based diagnosis - Application to Matlab Stateflow models

47

 l=length(C{f,b});
 l=l+1;
 C{f,b}(1,l)=h;
 [C]=SearchFail(t,C,b,f,l);

 end
 end
 b=b+1;
 end

 end
 a=a+1;
end

Search Fail

%In this function we check if we can go from this state to another one

with an unobservanle event.
function [C]=SearchFail(t,C,b,f,l)
a=1;
m=length(C{f,b});

%We find the transitions from the state and we see if the event that

fires
%them is one of the fails (unobservable events).In case that we have

it, we
%write the other event in the cell.
while a<=(length(t))
 w={t(a).Source.Name};
 if strcmp(w,C{f,b}(1,l))
 u=t(a).LabelString;
 switch u
 case '[f1>0]'
 m=m+1;
 c={t(a).Destination.Name};
 C{f,b}(1,m)=c;

 case '[f2>0]'
 m=m+1;
 c={t(a).Destination.Name};
 C{f,b}(1,m)=c;

 case '[f3>0]'
 m=m+1;
 c={t(a).Destination.Name};
 C{f,b}(1,m)=c;

 case '[f4>0]'
 m=m+1;
 c={t(a).Destination.Name};
 C{f,b}(1,m)=c;

Model-based diagnosis - Application to Matlab Stateflow models

48

 case '[f5>0]'
 m=m+1;
 c={t(a).Destination.Name};
 C{f,b}(1,m)=c;

 end
 end
 a=a+1;
end

Model-based diagnosis - Application to Matlab Stateflow models

49

Bibliography

[1] Gertler, Janos J. (1998). Fault detection and diagnosis in engineering systems.

New York:Marcel Dekker. 11

[2] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohidden, K., & Teneketzis, D.
(1995). Diagnosability of discrete event systems. IEEE Transactions Automatic
Control, 40, 1555–1575.

[3] J.Zaytoon, S. Lafortune (2013). Overview of fault diagnosis methods for

Discrete Event Systems. Annual Reviews in Control 37 (2013) 308–320

[4] Papadopoulos, Y. and McDermid, J. (2001). Automated safety monitoring: A
review and classification of methods. International Journal of Condition
Monitoring and Diagnostic Engineering Management, 4(4):14_32.

[5] Dash, D. and Venkatasubramanian, V. (2000). Challenges in the industrial
applications of fault diagnostic systems. Computers & Chemical Engineering,
24(2-7):785_791.

[6] Matthias Roth. Identification and fault diagnosis of industrial closed-loop
discrete event systems. Other. Ecole normale superieure de Cachan -
ENS Cachan, 2010. English. <NNT : 2010DENS0028>. <tel-00561906>

[7] Cassandra C-G, Lafortune S (2008) Introduction to Discrete Event Systems,

2nd edn. Springer, New York Inc

[8] Isermann R (2005) Model-based fault-detection and diagnosis: status and
applications. Annu Rev Control 29:71–85

[9] Jéron T, Marchand H, Pinchinat S, Cordier M-O (2006) Supervision patterns in
discrete event systems. 17th International Workshop on Principal of Diagnosis,
pp 117–124

[10] Jiang S, Kumar R (2004) Failure diagnosis of discrete event systems with
linear-time temporal logic specifications. IEEE T Automat Contr 49(6):934–945

[11] Moamar Sayed-Mouchaweh (2014) Discrete Event Systems. Diagnosis and
Diagnosability. London. Springer

[12] Gascard Eric, Zineb Simeu-Abazi. Automatic Construction of Diagnoser for
Complex Discrete Event Systems. International workshop on Dependable
Control of Discrete systems, Jun 2011, Saarbrucken, Germany. pp.112-1125,
2011. <hal-00676764>

[13] C. Mahulea, C. Seatzu, M.P. Cabasino, and M. Silva, “Fault Diagnosis of
Discrete-Event Systems using Continuous Petri Nets,” IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 42, no. 4,
pp. 970 - 984, July 2012.. DOI: 10.1109/TSMCA.2012.2183358

Model-based diagnosis - Application to Matlab Stateflow models

50

[14] M.P. Cabasino, A. Giua, C. Seatzu, "Diagnosability of discrete event systems
using labeled Petri nets", IEEE Trans. on Automation Science and Engineering,
Vol. 11, No. 1, pp. 144-153, Jan 2014.

[15] Pencolé Y (2004) Diagnosability analysis of distributed discrete event
systems. European Conference on Artificial Intelligence. 2-3

[16] J. Kurien, X. Koutsoukos, and F. Zhao. Distributed diagnosis of networked,
embedded systems. Technical report, DTIC Document, 2002.

[17] I. Hwang, S. Kim, Y. Kim, and C. E. Seah. A survey of fault detection, isolation,
and reconfiguration methods. IEEE Transactions on Control Systems
Technology, 18(3):636–653, May 2010.

