Universidad
Zaragoza

[TT1]]
J U
—_—

1 2

w
-

Trabajo Fin de Grado

Implementacién del protocolo DNP3 en una red
de sistemas SCADA empotrados para la
monitorizacion de variables y dispositivos.

Implementation of the DNP3 protocol in
embedded SCADA systems for the
monitorization of variables from sensors and
devices.

; Autor:
Oscar Clemente Pedrico

Diregtor:
Fernando Tricas Lamana

3 .Ponent.e:
José Luis Briz Velasco

Escuela de Ingenieros y Arquitectos
2016



Escuelade
Ingenieria y Arquitectura
Universidad Zaragoza

(Este documento debe acompafiar al Trabajo Fin de Grado {TFG)/Trabajo Fin de
Master {TFM) cuando sea depositado para su evaluacién).

D./D2, Oscar Clemente Pedrico

con n2 de DNI 72983004W en aplicacion de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la
Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)
Grado de Ingenieria Informatica (Titulo  del

J

Trabajo)

Implementacién del protocolo DNP3 en una red de sistemas SCADA
empotrados para la monitorizacion de variables y dispositivos.

=

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 21 de Septiembre de 2016

Fdo: Oscar Clemente Pedrico




Implementacion del protocolo DNP3 en una red
de sistemas SCADA empotrados para la
monitorizacion de variables y dispositivos.

Resumen

Este Trabajo de Fin de Grado se enmarca dentro de mi trabajo en Pariver
S.A. y estd compuesto por tres partes diferenciadas.

Pariver recibié una oferta para un proyecto en El Salvador en la que se bus-
caba el uso del protocolo DNP3 en la comunicacién entre sistemas SCADA. En
este Trabajo de Fin de Grado se ha incluido también la creacién del propio
sistema SCADA y formar redes de comunicacion entre ellos.

La primera tarea consistio en el estudio y analisis del protocolo DNP3 bus-
cando toda la documentacién posible del protocolo. Para subsanar las lagunas
y dudas surgidas de la documentacién he recurrido a simuladores del protocolo
DNP3 y a un analizador de paquetes de red para realizar ingenieria inversa.

La segunda tarea traté la implementacion del protocolo DNP3 en sendas
aplicaciones cliente y servidor que leen los valores de un fichero, los traducen
al formato del protocolo y los envian para que sean leidos por el servidor. El
servidor analiza los datos y verifica que son aceptables, si no lo son responde al
cliente comunicando los cambios necesarios.

La tercera y ultima tarea abarcé la configuracion de las placas ARM Guru-
Plug sobre las que se desplegaron los clientes y servidores DNP3 y la utilizacion
de sensores que comuniquen valores a los SCADA a través de placas Arduino
mediante el protocolo Modbus.

El resultado es un sistema capaz de recolectar datos del entorno, enviarselos
al servidor de forma encriptada, analizar los datos y corregir posibles problemas
en la instalacion en la que se ha implantado de forma auténoma.



Indice general

o

Introduccién . . . . . . .o Lo 7
1.1.  Objetivo y alcance del proyecto . . . . . . ... ... ... 7
1.2. Contexto de desarrollo . . . . . . ... ... ... .. ... 7
1.3, Métodos y técnicas . . . . . . .. ... 7
1.4.  Tecnologias empleadas . . . . . ... ... ... .. .... 8
1.5.  Herramientas empleadas . . . . . . .. .. ... .. .... 8
Andlisis . . . . . . 10
Diseno . . . . . . .. 10
3.1.  Arquitectura del sistema . . . . . ... ... L. 10
Estudio del protocolo DNP3 . . . . . . .. .. ... ... .... 12
4.1.  Caracteristicas del protocolo DNP3 . . . . . .. ... ... 12
4.2, Metodologia del andlisis . . . . ... ... ... ...... 12
4.3.  Estructura del protocolo . . . . . ... ... ... .. ... 12

4.3.1. Objetos . . . . . . ... 14

4.3.2. Capadeenlace . . . . .. ... ... ... ... 14

4.3.3. Capa de transporte . . . . ... ... .. .... 15

4.3.4. Capa de aplicacion . . . . . . ... ... ..... 16
Implementacion del protocolo DNP3 . . . . . ... .. ... ... 18
5.1.  Librerfa de configuracion . . . . ... ... .. ... ... 19
5.2. Criptografia TLS . . . . . . . ... ... ... .. ... 20
5.3. Ejecutivociclico . .. ... ... ... L. 20
54.  Script IFTTT . . . . . . ... ... ... ... ... 23
SENSOTES . . . v v e e e e e e e e 24
6.1. ArduinoDue . .. ... ... ... ... .. ... ... 24
6.2. Caudalimetro . . . . .. .. ... ... .. 25
6.3.  Anemémetro . . . .. ... 26
6.4.  Detector de movimiento . . . . . . ... ... 26
6.5.  Sensor de humedad y temperatura . . . . ... ... ... 26
6.6.  Sensor de ultrasonidos . . . . . . ... ... 27
Gestién del proyecto . . . . . ..o 28
7.1. Planificacion . . . . . ... ..o o 28
7.2. Tiempodedicado . . . . .. .. .. ... .. .. ... 28
7.3.  Herramientas de gestién . . . . . .. ... ... L. 28
Conclusiones . . . . . . . . . . . e 30
81. Resultados . . ... ... ... ... ... 30



8.2. Lecciones aprendidas . . . . . . . .. ... ... ... 30

8.3.  Conclusion personal . . . . ... ... ... ... ... 30

8.4.  Futuro del proyecto . . . .. ... ... ... ... 31
Bibliograffa . . . . . ... o 32
Anexos 33
1. Anexol . . ... . . 34



Indice de figuras

O NSO W=

Diagrama de componentes y conectores. . . . . . ... ... ... 10
Diagrama de despliegue. . . . . . . . . ... 11
Composicion de tramas DNP3. . . . . ... ... ... ...... 13
Object header. . . . . .. .. ... . o 14
Link layer header. . . . . . . .. ... ... ... ... . ..., 14
Link layer control byte. . . . . . ... ... ... ... ... .. 15
Transport layer header. . . . . . . .. ... ... ... ... 16
Application layer. . . . . . . . ... 16
Application header. . . . . . . . ... 16
Diagrama de clases de la implementacién DNP3. . . . . ... .. 18
Establecimiento de una sesién TLS. . . . . . ... ... ... ... 20
Ejecutivo ciclico Pago de Aylés. . . . . . . ... ... ... 23
Campos del protocolo Modbus. . . . ... ... ... ....... 24
Diagrama de Gantt del proyecto. . . . . ... ... ... ... .. 28
Tiempo dedicado por tarea. . . . . . . ... .. ... ... .... 29



Indice de cuadros

1. Objetos implementados . . . . .. ... .. ... .. .......
2. Tareas del ejecutivo ciclico en Pago de Aylés . . ... ... ...
3. Requisitos funcionales . . . . .. ... ... ... ... ... ...



1. Introduccion

1.1. Objetivo y alcance del proyecto

El objetivo propuesto para este proyecto consiste en crear una red de SCADAs
que monitorizan las variables dadas por sensores y dispositivos, en la que toda
la informacion se comunica mediante el uso del protocolo DNP3 y criptografia
TLS por parte de los clientes y servidores . Las variables llegan a los clientes
DNP3, y éstos se las comunican a los servidores DNP3 que monitorizan cada
variable. El servidor se encarga de verificar que las variables permanecen dentro
de un rango definido mediante tecnologia basada en IFTTT. En caso de que el
valor se salga fuera del rango, el servidor actuard y usando un mensaje DNP3
se comunicara con el cliente adecuado y modificard su comportamiento para
corregir los valores.

Los clientes y servidores DNP3 se despliegan sobre dispositivos ARM Gu-
ruPlug que funcionaran como cliente o servidor dependiendo de la necesidad.
Las variables llegan a los clientes a través de unos sensores que captan la in-
formacién, se comunican con una placa Arduino y ésta se los pasa al ARM
GuruPlug.

1.2. Contexto de desarrollo

Pariver es una empresa fundada en 1985 en Zaragoza centrada en el de-
sarrollo de servicios TIC(Tecnologias de la Informacién y la Comunicacién) y
consultoria de empresas e instituciones.

Obtuvo el Certificado de Calidad de AENOR y han desarrollado aplicaciones
y webs para servicios publicos y para empresas internacionales. Destacan los
proyectos desarrollados para el gobierno de Aragén, el ministerio de economia,
DKV, BSH, Global Credit Solution y Enerland Group, ademds, Pariver esta
implantada de forma internacional en Brasil, México, Marruecos, Portugal y
Alemania.

El TFG se enmarca en un proyecto entre Pariver y la empresa Del Sur de El
Salvador, en la que se pidié establecer comunicacién con una planta industrial
usando el protocolo DNP3, el TFG se extendié y se anadié la también la tarea
de crear y configurar los sistemas SCADA empotrados sobre los que se usaria
el protocolo DNP3.

1.3. Meétodos y técnicas

El proyecto se ha organizado mediante el empleo de metodologias agiles
para el desarrollo del software que permiten realizar un desarrollo incremental
e iterativo.

Tras la realizacién de cada tarea se lleva a cabo una reunién entre el autor y
el director del proyecto, se discuten problemas y posibles mejoras y se formaliza
el trabajo para la siguiente tarea.



Se busca que cada tarea se base en lo realizado en la anterior para formar
un desarrollo incremental y también mantener el periodo de realizacion de cada
tarea en torno a dos semanas, tiempo suficiente para que una tarea sea intere-
sante y consistente pero también suficientemente pequeno como para que la
tarea no sea dificil de abordar y demasiado compleja.

Cada una de las tareas se encuentra dentro de los siguientes rangos:

1.4.

Anélisis: Estudio de la tarea y busqueda de requisitos.
Diseno: Planificacion de la arquitectura y la implementacién.

Implementacién: Desarrollo de las funcionalidades y los requisitos planifi-
cados previamente.

Pruebas: Evaluacién del correcto funcionamiento del sistema.

Tecnologias empleadas

Las principales tecnologias de las que se ha hecho uso para la elaboracién
del proyecto se presentan a continuacion.

1.5.

C: Concretamente C99. Es un lenguaje de programacién de propésito gen-
eral. Se ha utilizado para la implementacién del protocolo DNP3.

C++: En su version 11 es usada para programar la 1égica de los sensores
conectados a la placa Arduino.

BASH: Es un lenguaje compatible con shell para entornos Unix. Se utiliza
para definir una légica al estilo IFTTT (If This Then That) que permite
definir rangos de valores correctos para los sensores y definir la accion que
se ha de realizar ante valores impropios, es invocado por el cédigo C y
puede ser modificado en caliente.

libconfig: Es una libreria para C y C++ que permite la creacién y lectura
de ficheros de configuracién que permiten parametrizar los valores de un
sistema de forma rapida y segura.

openssl: Es una libreria para C orientada a criptografia, se encarga de
gestionar la comunicacion entre dos sockets de forma fiable y segura usando
criptografia SSL/TLS. Se usa el dltimo estdndar, TLS 1.2 pero en caso de
que uno de los dos dispositivos conectados no pueda utilizarla, se negocia
el uso de la tecnologia mas segura disponible ambos dispositivos. Permite
también crear certificados y usarlos para la comunicacion

Herramientas empleadas

Para completar el proyecto se han utilizado las siguientes herramientas de
trabajo:



Buildroot: Es una herramienta que facilita la generacién de entornos y
compiladores para compilacién cruzada [1]. En el caso de este TFG se ha
necesitado generar un compilador cruzado para la CPU ARM9E del ARM
GuruPlug.

Wireshark: Es un analizador de paquetes de red que permite comprobar el
protocolo de cada paquete, su identidad y verificar la correcta estructura
de este.

OpenDNP3: Simulador del protocolo DNP3 que permite generar tramas
del protocolo, para en este caso comprobar que la implementacién desar-
rollada cumple el estdndar DNP3.

VirtualBox: Es una herramienta desarrollada por Oracle que permite crear
maquinas virtuales para arquitecturas x86.

Arduino IDE: Entorno de programacién para placas Arduino que permite
escribir c6digo en C++, compilar y subir binarios a la placa Arduino.

Vim: Editor de texto basado en Vi. Se ha usado para el cédigo C.



Controlador de

SENSORES Sensores
|
__________________________________ MODBUS_ _________ .
|
CLIENTE Outstation DNF’SE|
|
_________________________________ DNP3/SSL__________ .
|
SERVIDOR Master DNP3 E

Figura 1: Diagrama de componentes y conectores.

2. Analisis

La fase de andlisis determina el alcance del proyecto y las funcionalidades
que va a presentar el sistema una vez completado. En el anexo se encuentra una
tabla con los requisitos funcionales (Anexo 1).

3. Diseno

Conociendo las funcionalidades que va a cumplir el proyecto se procedi6 al
diseno de alto nivel de la arquitectura y la organizacién del sistema.

3.1. Arquitectura del sistema

El sistema estd compuesto por tres partes diferenciadas: los sensores, el
cliente y el servidor (Figura 1). En la seccién de los sensores se encuentra el
controlador de los sensores que se encarga de recoger de forma periddica la in-
formacion de cada uno de los sensores para tenerla actualizada y unificada en un
solo lugar. El cliente lee los datos dados por el controlador de los sensores y los
prepara para ser enviados encapsulandolos en el protocolo DNP3 y finalmente
enviandolos al servidor. El servidor recibe mensajes DNP3 que ha de descom-
poner para poder leer los datos de los sensores, comprueba que los valores son

10



zzdevice>> *
Caudalimetro
<<device>> * <=devices>
5 GuruPlug
Anemodmetro ) cedevicess L
Arduino
Outstation DNP3
wegevice>> . *
Detector de .
movimiento
<<device>>
GuruPlug
S::esv;::}:;e * Master DNP3
temperatura
y humedad

Figura 2: Diagrama de despliegue.

correctos y en caso de que no lo sean responde al cliente con una orden que
permita corregir los valores.

El diagrama de despliegue muestra el despliegue fisico de cada una de las
partes que componen el proyecto incluyendo algunos de los sensores utilizados
(Figura 2).

11



4. Estudio del protocolo DNP3

4.1. Caracteristicas del protocolo DNP3

DNP3 (Distributed Network Protocol 3) es un protocolo industrial para co-
municaciones entre equipos inteligentes, estaciones controladoras y componentes
de sistemas SCADA. Es un protocolo ampliamente utilizado en el sector eléctrico
y de tratamiento de liquidos, de gran difusién en toda América.

Los sistemas que usan este protocolo se diferencian normalmente en dos: el
mdster y los outstation.

= El mdster es la maquina encargada de recopilar toda la informacién de las
diferentes outstationsy es usada por los equipos de gestién para visualizar
la informacién, agruparla, analizarla o reenviarla a otro sistema.

= El outstation o RTU (Remote Terminal Unit) es la médquina encargada
de coger los datos directamente del sistema eléctrico o de agua, transfor-
mar estos datos a datos DNP3 correctos, empaquetarlos en el mensaje y
enviarlos al madster.

El protocolo DNP3 presenta importantes funcionalidades que lo hacen maés
robusto, eficiente y compatible que otros protocolos més antiguos pero también
hacen que sea més complejo [2].

4.2. Metodologia del analisis

DNP3 es propiedad de DNP Users Group. Aunque su uso es libre, la docu-
mentacion oficial es de pago y no ha podido ser accedida para la realizacién de
este TFG. La documentacién publica disponible solo ofrece informacién super-
ficial, sin detalles sobre la estructura del protocolo. Hemos suplido esta falta de
informacidén recurriendo a técnicas de ingenieria inversa.

Para ello se han utilizado el analizador de paquetes Wireshark, que es capaz
de detectar los paquetes que se envian y descomponerlos para comprender en
detalle los valores de cada campo, y el simulador gratuito OpenDNP3. Estable-
ciendo una conexioén entre un mdster y un outstation creados con el simulador
y usando Wireshark para observar los paquetes se obtiene una idea de como se
estructura el protocolo y la utilidad de los campos [3].

Sin embargo, las tramas emitidas por el simulador son poco variadas y de
tamano pequeno, y no se utilizan todos los rangos de los campos sino solo unos
pocos valores. Por esta razon, para comprender el protocolo completamente hizo
falta crear un cliente DNP3 de prueba que se conectase al servidor del simulador
y comenzar a iterar entre diferentes valores para cada campo y seguir usando
ingenierfa inversa con Wireshark para descubrir el significado de cada valor.

4.3. Estructura del protocolo

La especificacion DNP3 divide el protocolo en tres capas segun el modelo
OSI: Nivel de enlace, nivel de aplicaciéon y nivel de transporte. Realmente no

12



Objetos

Cabecera
Aplicacion

Cabecera Cabecera
Transporte Transporte
Vi, e
Cabecera CRC CRC CRC

Enlace

Figura 3: Composicién de tramas DNP3.

cumple con todas las especificaciones del modelo OSI y a dia de hoy se suele
implementar sobre TCP/IP.
La estructura en capas sigue el siguiente esquema (Figura 3):

= Los mensajes a nivel de aplicaciones son denominados fragmentos. El
tamano méximo de un fragmento estd establecido en 2014 bytes.

= Los mensajes a nivel de transporte son denominados segmentos. El tamano
maximo de un segmento es de 291 bytes.

= Los mensajes a nivel de enlace son denominados tramas.

Cuando se transmiten datos desde un outstation hacia un mdster, estos pasan
por varias fases antes de ser encapsulados completamente.

= Si el conjunto de datos es mayor que el tamano méaximo del nivel de
aplicacién. Es necesario dividir los datos.

= Anadir la cabecera del nivel de aplicacién a todos los fragmentos.

= Si el fragmento es mayor que el tamano maximo del nivel de transporte,
es necesario dividir los fragmentos.

= Anadir la cabecera del nivel de transporte a todos los segmentos.

= Usando CRC 16 bit DNP [4], cada 16 bytes se insertan 2 bytes de CRC
usando los 16 bytes previos para el calculo.

13



Object Type Field Qualifier Range
Group Variation Field Field

2B 1B 1-28B

Figura 4: Object header.

Start Destination Source CRC
DX05  Ox64 Length Crl LSB  MSB LSE  MSB LSB  MSB

2B 1B 1B 2B 2B 2B

Figura 5: Link layer header.

= Anadir la cabecera del nivel de enlace. Las tramas ya estdn listas para ser
enviadas.

4.3.1. Objetos

Los datos que se envian a través de mensajes DNP3 estdan encapsulados
en el interior de objetos. Un objeto es un conjunto de datos que mantienen
caracteristicas comunes y estdn identificados por el Object Type Field (Figura
4).

» Object Type Field: (2 bytes) El primer byte indica de que grupo forma
parte el objeto y el segundo byte, la variacién de este.

= Qualifier Field: (1 byte) Indica la estructura de los datos que llegan. En
nuestro caso para simplificar, solo usaremos el valor 0x07 que establece
que el Range Field es de un solo byte y que indica el nimero de objetos
de forma numeral (otras formas de hacerlo son con rangos o con indices).

= Range Field: (1-2 bytes) Indica el nimero de objetos en este grupo.

En el caso de esta aplicacién se usan los objetos y variaciones visibles en el
cuadro 1.
4.3.2. Capa de enlace

Este nivel estd formado por una cabecera de 10 bytes en 6 campos distintos
(Figura 5).

= Start: (2 bytes) Con valor fijo en hexadecimal, el primer campo es 0x05
y el segundo 0x64, permite a los sistemas detectar el mensaje que llega
como DNP3

» Length: (1 byte) Tamano del mensaje. Este valor no tiene en cuenta los
campos Start y Length ni los CRCs.

14



Cuadro 1: Objetos implementados

#— it number

Objeto  Variacién Descripcién Tamano
1 1 Binary Input 1 bit

1 2 Binary Input Status 1 byte
10 1 Binary Output 1 bit
10 2 Binary Output Status 1 byte
30 1 32 bit Analog Input Quality 5 bytes
30 2 16 bit Analog Input Quality 3 bytes
30 3 32 bit Analog Input 4 bytes
30 4 16 bit Analog Input 5 bytes
40 1 32 bit Analog Output Status 5 bytes
40 2 16 bit Analog Output Status 3 bytes
40 3 32 bit Analog Output 4 bytes
40 4 16 bit Analog Output 2 bytes
70 1 File Object Identifier 1 byte
100 1 Short Floating Point 1 byte
100 2 Long Floating Point 2 bytes
100 2 Extended Floating Point 4 bytes
110 1 Octet String 1 byte

7 & 5 4 3 2 1
FCBE FCV
DIR PRM Function Code
0 DFC

- Primary to

sacondary

- Secoaary o
primary

Figura 6: Link layer control byte.

= Control: (1 byte) Cédigo de control. Permite fijar los servicios, el sentido
de flujo y el tipo de comunicacién (Figura 6).

= Destino: (2 bytes) Contienen un valor que identifica a la maquina con la

que se comunica.

= Origen: (2 bytes) Contiene un valor que identifica a la méquina que envia
este mensaje.

= CRC: (2 bytes) Cddigo de deteccién de errores 16 bit CRC DNP. Se calcula
con los 8 bytes de los campos anteriores y el polinomio 26 + 213 + 212

4.3.3. Capa de transporte

Consiste en un solo byte situado después de la cabecera de enlace y contiene
los siguientes campos (Figura 7).

15



7 6 5 4 3 2 1 a #— it number

FIN FIR SEQUENCE

Figura 7: Transport layer header.

Application | Object

Header Header DP3 Objects

4B 4-5B8 7B

Figura 8: Application layer.

Application [ Function

Contral Code Internal Indications

1B 1B 2B

Figura 9: Application header.

= FIN: (1 bit) Bit a 1 indica que el segmento actual es el dltimo de todos
los enviados.

= FIR: (1 bit) Bit a 1 indica que el segmento actual es el primero de todos
los enviados.

= SEQUENCE: (6 bits) Indica el nimero de orden del segmento enviado.

4.3.4. Capa de aplicaciéon

La trama de esta capa que aparece a continuacién de la capa de transporte
estd compuesta Unicamente por tres campos (Figura 8):

= Application Control: (1 byte) que estd compuesto por los siguientes sub-
campos.

e FIN: (1 bit) Bit a 1 indica que el segmento actual es el dltimo de
todos los enviados.

e FIR: (1 bit) Bit a 1 indica que el segmento actual es el primero de
todos los enviados.

e Confirmed: (1 bit) Indica si el segmento ha de ser confirmado, es decir
si el receptor del mensaje a de mandar un mensaje DNP3 de vuelta
mostrando que lo ha recibido

o Unsolicited: (1 bit) Indica si el segmento que se envia no ha sido
pedido por el mdster si no que se ha enviado de forma esporadica.

16



e Sequence: (4 bits) Indica el nimero de orden del segmento enviado.
Function Code: (1 byte) Cédigo de la funcién.

Internal Indications: (2 bytes) Cédigo usado solo en la respuesta del outsta-
tion al master con diferentes bits que indican el estado actual del sistema
(Problemas, sincronizacién, overflow, configuracién corrupta...).

Object Type Field: (2 bytes) El primer byte indica de que grupo forma
parte el objeto y el segundo byte, la variacién de este.

Qualifier Field: (1 byte) Indica la estructura de los datos que llegan. En
nuestro caso para simplificar, solo usaremos el valor 0x07 que indica que el
Range Field sea de un solo byte e indique el nimero de objetos de forma
numeral (otras formas de hacerlo son con rangos o con indices).

Range Field: (1-2 bytes) Indica el nimero de objetos en este grupo.

A partir de aqui se colocan los datos. El tamafio de los datos enviados de-
pende del Object Type y del Range Field. Una vez acaba el objeto actual, se
transmite el siguiente, comenzando con los tres campos anteriores. Conviene
notar que cada 16 bytes de la capa de aplicacién hay que insertar 2 bytes de
CRC, lo que incluye también a las cabeceras de la capa de aplicacién. Ha de
haber también un CRC final aunque el tamano de los datos previos sea menor
a 16 bytes.

17



dnp

+ main{ argc: int, *argu[]: char): int

outstation

master

- initcfg: struct init_master - Initcfg: struct init_outstation sensor-scheduler

- sockfd: int - sockfd: int

- *sslfd: SSL - *sslid: SSL _

-m_ssl: int -0 sslint + task_cycle(): void

= - - sensor_iterate(): void

+ master(): int + outstation(): int Use """~ :Eiltgiggdgarlglsize int

- master_crypt(): int - create_socket(): int _ buidata other swzégj' int

- master_nocrypi(): int - create_contexi(): SSL_CTX — —

- master_create_socket(): int - configure_context(): void T

- master_create_context(): SSL_CTX - cleanup_openssi(): void |

- master_configure_context(): vaid - init_openssl(): void :

—master_cleanup_openssl(): void - get_outstation_cfg(): int Use

- master_init_openssl(): void - outstation_loop(). void v

-get_master_cfg(): int - construct_dnp(): int i

- master_loop(): void - add_cre(); :

- deconstruct_dnp(): int

- valid_msg(): int sensor-collector
+read_sensor(): int
+write_sensor(): int

Use Uuse™” “Uise Use
e SV
cfg_functions dnp_utils objects

+set_data_cfg(): int
+write_zero_size(): int
+write_other_size(): int

+get data_cig(): int

+ write_file(). int

+ read_file(): int

+ read_file_chunk): int
+read_file_modbus(): int

+ get_description(): int
+get_sensors_used_cfg(): int
+get_sensor_info_cfg(): int
+read_sensors_cig(): int

- dnpCrcTable: unsigned short

+ error(): void

+wamning(): void

+ printBuf(): vaid

+ calcDnpCre(): short

+ checkDnpCre(): short

+ add_object_header(): int

+ add_application_header(): int
+ update_app_header(): void
+ add_transport_header(): int
+ update_tra_header(): void

+ get_link_header(): int
+get_transport_header(): int
+ get_application_header(): int
+ delete_cre(): int
+calc_msg_size (): int

+ print_items(): int

+ print_items_zero(): int
+get_number_items(): int
+write_object_output_file(): void
+get_item_size_file(): int
+get_item_size(): int

Figura 10: Diagrama de clases de la implementaciéon DNP3.

5. Implementacién del protocolo DNP3

La ejecucién comienza en dnp con la funcién main, es la encargada de tratar

los argumentos y ejecutar el servidor mdster o el cliente outstation.

Tanto outstation como mdster tienen una estructura similar. Ambos comien-
zan leyendo el fichero de configuracién que define valores a nivel de enlace, el
puerto de conexién, y valores de la aplicacién que establecen la frecuencia de
envio. Una vez configurados crean un socket TCP para leer y escribir sobre él, el
madster llama a la funcién loop y el outstation a la funcién del ejecutivo ciclico.

Estas funciones se encargan de iniciar el servicio DNP. A partir de aqui la
estructura del cédigo es similar en ambas maquinas pero la funcionalidad es
la opuesta. El outstation, mediante el ejecutivo ciclico, se encarga de obtener
valores y de componer mensajes, el mdster por su parte, los descompone y los

analiza.

18




El outstation inicia el ejecutivo ciclico y recibe los valores de los sensores
va encapsulados en objetos DNP3. El siguiente paso es dividir los datos de los
sensores si superan el tamano maximo de la capa de aplicaciéon. A continuacion,
se incluye la cabecera de la capa de aplicacién y se comprueba que no sobrepasa
el tamano méaximo de la capa de transporte, si lo supera se divide de nuevo.
Tras asegurar que los segmentos tienen un tamano valido, se anade la cabecera
de la capa de transporte a todos ellos. Tanto la cabecera de aplicacién como
la de transporte contienen valores que informan del orden del segmento para la
correcta recepcion de la trama completa.

En este momento el outstation tiene preparada una trama a nivel de trans-
porte que aun requiere cambios. Cada 16 bytes se calcula un CRC DNP de 16
bits y se insertan estos dos bytes después de los 16 bytes. Por ultimo se anade
la cabecera de enlace dejando el mensaje listo para ser enviado hacia el mdster.

El mdster por su parte hace lo mismo que el outstation pero en orden inverso.
Elimina la cabecera de enlace y los CRC, comprobando que estos tultimos sean
correctos. En caso de no serlos se deniega el mensaje completo y se espera a que
llegue un nuevo mensaje. Se elimina la cabecera de transporte pero con atencién
a los valores de secuencia que contienen, que ayudan para reensamblar la trama
de objetos en el orden original. Lo mismo ocurre con la cabecera de aplicacion.
El resultado final es una trama de objetos DNP3. El mdster llama a la funciéon
que descompone los objetos y los envia al script IFTT para ser analizados, en
caso de que algin valor no entre dentro de los rangos aceptables se enviara al
outstation una respuesta DNP3 con 6rdenes para los sensores.

5.1. Libreria de configuracién

Se usan varios ficheros de configuracién en el sistema, accediéndose a ellos
mediante la librerfa 1ibconfig [5]. Al iniciar el servicio DNP3 tanto el mdster
como el outstation necesitan leer sus ficheros de configuracién. Estos ficheros
de configuracion difieren para el mdster y el outstation y definen ip, puerto,
intervalo entre envio de tramas y parametros que se usaran en los campos de la
capa de enlace DNP3.

El conjunto de sensores también tiene sus propios ficheros de configuracion.
Existen dos ficheros. Uno de ellos contiene todos los sensores que se pueden
utilizar, estén instalados o no en el sistema actual, y define la cantidad de
variables y el tipo de cada variable que envia cada sensor. El otro fichero de
configuracion solo contiene el nombre de los sensores que se estan usando en ese
momento.

El uso de estos ficheros de configuracién hace que sea trivial anadir nuevos
sensores. Solo es necesario anadir la definicién del sensor al primer fichero, definir
el tipo de objeto DNP3, variacién y el niimero de datos que se reciben en cada
muestreo.

19



CLIENT SERVER
e ——— e ———

[ SYN ]
i SYN
[ ACK ] «—
[ ClientHello }
ServerHello
Certificate
ClientKeyExchange Senvertieliobone
ChangeCipherSpec
Finished Messag
il £ = ChangeCipherSpec
Finished Message
Application Data Application Data
v ¥

Figura 11: Establecimiento de una sesiéon TLS.

5.2. Criptografia TLS

La aplicacion disenada hace uso de criptografia TLS para la comunicacién
entre outstation y mdster. TLS es un protocolo de criptografia basado en SSL
que se emplaza sobre el protocolo TCP en la capa OSI de transporte [6].

Se usa OpenSSL para facilitar la integracion de la capa de criptografia. El uso
de la criptografia en la aplicacién es opcional, pudiéndose cambiar el fichero de
configuracion para evitar su utilizacion, pero el uso de criptografia es recomen-
dado.

Cuando ambos sockets han sido generados usando OpenSSL es el cliente out-
station quien comienza la comunicacién. Lo hace especificando una lista de con-
juntos de cifrados, métodos de compresién y la versién del protocolo SSL/TLS
mas alta permitida. El servidor responde eligiendo los pardmetros a partir de
las opciones del cliente. Tras esto se intercambian los certificados, generalmente
X.509, que autentican a ambas partes. Por ultimo, el cliente y el servidor ne-
gocian una clave secreta simétrica que se ha originado con el algoritmo Diffie-
Hellman. A partir de este momento ambos extremos son capaces de enviar las
tramas DNP3 cifradas.

5.3. Ejecutivo ciclico

El proceso outstation ha de realizar varias tareas que se ejecutan debiendo
cumplir un periodo de tiempo. Existen dos tipos de tareas que conforman el
ejecutivo ciclico.

20



Algoritmo 1: Algoritmo ejecutivo ciclico.

1 function task_cycle(mcd, mem, timecycle, tasklist, dnp3period)
2 step = mcm;

3 while always do

4 timeleft = time_compare(timecycle);

5

6

if lis_time_zero(timeleft) then
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
timeleft, NULL);
7 end
8 for i in sensorlist.length do
if step % sensorlistfi].period == 0 then
10 | get_sensor_data(sensorlist[i].id, message);
11 end
12 end
13 if step % dnp3period == 0 then
14 send_dnp3(message);
15 receive_dnp3_response();
16 end
17 step -= mcd;
18 if step < 0 then
19 ‘ step = mcin;
20 end
21 add_seconds(timecycle, med);
22 end

Las tareas de tipo sensor se encargan de leer los valores de un sensor realizan-
do una comunicacién Modbus con la placa Arduino que, una vez ha identificado
la peticién que ha recibido, selecciona el valor y lo devuelve al outstation donde
la propia tarea lo encapsula en un objeto DNP3. Todas tienen el mismo nivel
de prioridad y se ejecutan en el orden que han sido declaradas en el fichero de
configuracién. Hay dos ficheros de configuraciéon que son utilizados para poder
editar y anadir nuevas tareas de tipo sensor.

El primer fichero de configuracién, sensors.cfg, contiene todos los sen-
sores que se han implementado y que pueden o no ser usados en el sistema,
ademads se encarga de definir el tipo de sensor del que se trata con una descrip-
cién y con el tipo de objeto DNP3 en el que se va a encapsular. El segundo,
sensors_used.cfg, determina los sensores que se van a usar en el sistema actual
y el periodo de la tarea que lee el valor del sensor.

El otro tipo de tareas son las que denominamos tareas de comunicacion.
Constan de dos tareas ya definidas, la escritura de los mensajes DNP3 que van
a ser enviados al mdster y la lectura de las respuestas que llegan del mdster.
Estas dos tareas tienen su periodo definido en el fichero de configuracién del
proceso outstation.

21



El ejecutivo ciclico encargado de organizar y ejecutar cada una de las tareas
cumpliendo sus periodos es un ejecutivo soft real-time, por lo que se aligeran
las constricciones de tiempo. Se permite que alguna tarea sobrepase su deadline
ya que no es un sistema critico. Como reloj se usa CLOCK_MONOTONIC para las
mediciones de tiempo, es un reloj absoluto que garantiza su valor linealmente
incremental durante casi 50 anos.

El ejecutivo usa el Algoritmo 1. Los valores mcd y mem representan el méxi-
mo comun divisor y el minimo comun multiplo de los periodos de las tareas que
se han seleccionado en el fichero de configuracién sensors_used. cfg. Tanto mcd
como mcm, al existir las restricciones establecidas en el fichero de configuracion,
tendran siempre un valor de segundos. A continuacién se describen funciones
relevantes del ejecutivo.

= clock_gettime(clockid-t clk, struct timespec *t): Asigna el valor del reloj al

struct timespec *t. En este ejecutivo se usa el reloj CLOCK_-MONOTONIC.
= clock_nanosleep(clockid_t clock_id, int flags, const struct timespec *re-
quest, struct timespec *remain): Suspende la ejecucién del thread que
llama a la funcién durante el tiempo req usando el reloj establecido en
clock_id que en este caso serd el reloj usado en la funcién clock_gettime().
Se usa el flag TIMER_ABSTIME y el pardmetro remain es NULL.

= time_compare(struct timespec *t): Compara el valor del pardmetro *t con
el valor del reloj en el momento actual obtenido con clock_gettime(), de-
volviendo un struct timespec con la diferencia entre ambos.

= add_seconds(struct timespec *t, int sec): Anade a *t el valor de sec.

= is_time_zero(struct timespec *t): Devuelve uno si *t tiene un valor igual
0 menor a cero, devuelvo cero si el tiempo es mayor.

Para que el ejecutivo ciclico cumpla las restricciones tiempo real de las tareas,
debe de lanzar una nueva instancia de cada una de acuerdo con su periodo, y
de modo que finalice antes del siguiente. Para ello se ha tomado como tiempo
de ejecucién de cada tarea (C') el WCET (Worst Case Execution Time) de la
misma, usando una funcién que devuelve un valor temporal con precisién de
nanosegundos antes y después de la ejecucion de la tarea (Cuadro 2). El tiempo
de ejecucién de las tareas de tipo sensor es el mismo ya que solo se encargan de
obtener el valor del sensor en la placa Arduino, que al tener los valores de los
sensores guardados en memoria, no necesita calcularlos cada vez que se realiza
una peticién. Se ha utilizado el contexto de la instalacién realizada en la planta
depuradora de vifiedos Pago de Aylés.

Se ha incluido un diagrama que muestra la organizacién de la ejecucién de
tareas en el marco temporal (Figura 12).

22



Cuadro 2: Tareas del ejecutivo ciclico en Pago de Aylés

Tarea C(ms) T(ms) D(ms)
Caudalimetro 12 2000 2000
Detector mov. 12 2000 2000
Nivel liquido 12 2000 2000
Sensor PH 12 4000 4000
Anemémetro 12 8000 8000
Veleta 12 8000 8000
Humedad 12 8000 8000
Temperatura 12 8000 8000
Escribir DNP3 19 2000 2000
Leer DNP3 104 2000 2000
Tiempo

Caudalimetro

Detector de movimiento

Nivel de liquido

Sensor de PH

Anemometro

Veleta

Humedad

Temperatura

Escribir DNP3

Leer DNP3

Figura 12: Ejecutivo ciclico Pago de Aylés.

5.4. Script IFTTT

La logica que permite reaccionar ante ciertos valores de los sensores esté
basada en la tecnologia IFTTT (If This Then That) en la que existe un script
o receta que contiene unas instrucciones simples que ejecutan una accién segin
los valores de entrada. Existe un tnico script que esta implementado en BASH
ejecutado a través del cédigo C del master DNP3. En el caso del script que
funciona en este sistema los parametros de entrada son pares id_de_sensor val-
or_muestreado”, tras ser analizado por el script la salida serd un par id_de_sensor
cédigo_de_accién” que serd encapsulado en un mensaje DNP3 para ser devuelto
al outstation como respuesta.

La principal ventaja de usar este método en lugar de incluir la funcionalidad
en el programa principal es que no hace falta recompilar el sistema entero cada
vez que sea necesario cambiar algin elemento en la légica, ni detener el sistema
para usar nuevos valores, ya que es editable en tiempo de ejecucién.

23



Algoritmo 2: Extracto de script IFTT.

1 if [$sensor == "a”] then

2 #sensor de nivel

3 if $value -lt 20 then

4 #nivel alto

5 #desactivar bomba de liquido

6 echo 7¢ 07

7 end

8 if $value -gt 100 then

9 #nivel bajo
10 #activar bomba de liquido
11 echo 7¢ 17
12 end
13 end

Address | M 11o" Data CRC

1B 1B 4B 2B

Figura 13: Campos del protocolo Modbus.

6. Sensores

6.1. Arduino Due

La placa Arduino Due contiene una CPU ARM Cortex-M3 de 32 bits con
una frecuencia de 84 MHz. Los pines I/O permiten una tensién méxima de 3,3V
que es diferente del resto de Arduinos disponibles ya que funcionan a 5V.

El lenguaje de programacion usado para la placa Arduino es C++4. Se ha
utilizado el Arduino IDE para programar sobre la placa haciendo uso de las
librerias de terceros TimeLib y TimeAlarms para la implementacion de valores
histéricos de los sensores.

La comunicacién entre el GuruPlug outstation y la placa Arduino Due se
realiza mediante un cable USB usando el protocolo de comunicacién Modbus
(Figura 13). Modbus es un protocolo simple pero robusto para comunicaciones
en puertos serial compuesto por cuatro campos: La direccién del dispositivo al
que se dirige la accion, el cédigo de funcién que especifica el tipo de accién, un
conjunto de datos y por ultimo dos bytes de CRC [§].

Existen dos tipos de comunicacion.

= Lectura: El outstation realiza una peticién y el cédigo de funcién Modbus
contiene un c6digo que corresponde con la lectura de un sensor. El Arduino
verifica que es un mensaje Modbus correcto y comprueba el CRC, tras esto

24



comprueba cual es el sensor al que se ha realizado la peticiéon y coge el
valor correspondiente de la posicién de memoria donde estd almacenado
el valor. Compone un mensaje Modbus y lo devuelve al outstation por el
USB.

= Escritura: El outstation envia un mensaje por el Modbus con un cédigo de
funcién que corresponde al de la escritura de un sensor. Tras verificarse
que el mensaje es correcto, se comprueba cual es la posiciéon de memoria en
la que esté el registro del sensor sobre el que se va a actuar y se sobrescribe
usando el valor del campo Data del mensaje Modbus.

Inicialmente la comunicacion serial del Arduino a través del USB es lenta es-
tando siempre por encima del segundo, para mejorar la velocidad de las comuni-
caciones es necesario cambiar dos valores en la placa Arduino. Las funciones de
lectura del serial tienen como estandar un timeout de un segundo que garantiza
que el mensaje a leer va a llegar de forma completa y que no se va a detener
la lectura cuando ain faltan datos por llegar. Se ha reducido este timeout a
un milisegundo, esto es posible cambiando el valor de Serial.setTimeout y
haciendo que antes de realizar una lectura se compruebe que se han recibido
en el serial tantos bytes como tamano tiene el mensaje de Modbus que se esta
usando. El otro cambio que mejora la velocidad de la comunicacién es aumentar
la velocidad de la transmisién de datos al serial, inicialmente el valor son 9600
bps y se ha cambiado a 115200 bps.

El cédigo consiste en una funcién de setup que activa los pines a los que
estan conectados los sensores, prepara las interrupciones e inicializa variables
necesarias para la ejecucion. Una vez acaba la ejecucién de la funcién setup se
inicia la funcién loop que se ejecuta de forma continua y permanente, desde aqui
se llama al resto de funciones necesarias para el muestreo de los sensores.

6.2. Caudalimetro

El modelo FS300A G3/4.¢ un caudalimetro simple que funciona por el efecto
Hall al producirse una corriente en presencia de un electroiman perpendicular
que rota empujado por el flujo del interior del caudalimetro. Tiene tres cables,
el rojo contiene la tensién de 5V para alimentar el caudalimetro, el amarillo es
el cable de salida que sacara 5V cada vez que se reproduzca el efecto Hall y por
ultimo el cable negro que funciona como tierra.

La implementacién se ha realizado mediante interrupciones, cada vez que
llega un flanco de subida del sensor la interrupcién ejecuta una funcién que
aumenta el valor de una variable. El muestreo se realiza cada segundo, existe
un timeout preparado para que después de un segundo ejecute una funcién que
calcule el nimero de litros que han pasado por el caudalimetro segin el nimero
de interrupciones usando la siguiente ecuacion.

Interrupciones x 60

Caudal = 550

25



Usando la libreria para Arduino TimeAlarm se ha implementado un histérico
de los datos del caudalimetro, pudiéndose observar el caudal de las tiltimas horas.

6.3. Anemodmetro

FEl anemdémetro 6410 Davis Vantage Pro 2 tiene dos funcionalidades, medir
la velocidad del viento y con la veleta medir la orientacién desde la que sopla el
viento.

Para la velocidad del viento se usan interrupciones en el flanco de subida
que aumentan el valor de una variable. Debido a la variabilidad del viento que
cambia continuamente de velocidad, el muestreo se realiza cada 10 segundos para
aumentar la fiabilidad de la medicion. Para convertir los pulsos de la interrupcion
en velocidad real del viento existe una ecuaciéon del fabricante que produce
millas por hora, para convertirlo a metros por segundo es necesaria anadir otra
operacién de divisién a la formula del fabricante.

Pulsosx2,25

Velocidad = Periodo
oAt =70 44704

La veleta devuelve un entero entre 0 y 360 siendo 180 el soporte de la veleta
por lo que para obtener un valor correcto es necesario instalar la veleta en una
pared que apunte al norte o si no es posible usar un offset para corregir el valor.

6.4. Detector de movimiento

El PIR HC-SR501 es un detector de movimiento preparado para placas Ar-
duino con dos potenciémetros para regular la sensibilidad y el tiempo de ac-
tivacién tras detectar movimiento. Existe un jumper que permite cambiar la
modalidad de disparo, disparo repetido en el que la senal estd constantemente
alternando o disparo tdnico en el que la senal permanece activada. Requiere 5V
de alimentacién, un cable a tierra y el cable de senal con salida a 5V que deberéd
ser convertido a 3,3V para el Arduino Due.

Cada vez que el dispositivo detecta movimiento, se dispara una interrupcién
en el Arduino que aumenta la variable que contiene el niimero de detecciones,
GuruPlug lee los datos cada 10 segundos.

6.5. Sensor de humedad y temperatura

El sensor DHT22 permite medir simultdneamente la humedad y la temper-
atura debiendo dejar méas de dos segundos entre lecturas. Tiene cuatro pines:
El pin de alimentacién de 5V, pin de salida de datos a 5V, un pin cuyo uso no
es necesario para este proyecto y por tultimo el pin final para tierra.

En el cédigo hace falta usar la libreria cactus_io DHT22 que se encarga de
facilitar la lectura de los valores del sensor. Es necesario inicializar el sensor con
la funcién dht.begin() y a partir de ahi usar las funciones disponibles para leer
los valores del sensor, teniendo en cuenta siempre, que el sensor estd preparado

26



para solo actualizarse cada dos segundos por lo que al realizar lecturas con
intervalos menores se recibe el mismo valor.

6.6. Sensor de ultrasonidos

El sensor de ultrasonidos HC-SR04 para Arduino mide la distancia a la que
se encuentra un objeto o liquido. Tiene un rango minimo de dos centimetros y
un maximo de cuatro metros [9].

Tiene cuatro pines para conexiones, uno de alimentacién de 5v, uno para
tierra, un pin de trigger y otro de echo, estos dos ultimos pines son el que se
usa para realizar la peticién de medicién de distancia y la senal que avisa de la
recepcion del ultrasonido respectivamente.

El sensor funciona de la siguiente manera, hay un emisor de ultrasonidos
y un receptor de ultrasonidos, cuando el sensor recibe una senal en el pin de
trigger, este envia el ultrasonido. El ultrasonido rebotara contra alguna superficie
y volvera al sensor donde serd detectado por el receptor de ultrasonidos que
activara el pin de echo.

En el cédigo del Arduino es necesario llamar a una funcién de libreria que
mide el tiempo que tarda hasta que llega la senal de echo. Con el tiempo y
conociendo la velocidad del sonido en el aire podemos calcular la distancia del
objeto sobre el que ha rebotado el ultrasonido

27



2016
fehrero ‘marzu ‘ahrll Imayu ‘J\.InIU I]uhu Iagus‘tu ‘Seplwembre Iuctubre
Nombre Fecha de inicio | Fecha de fin
B o Anglisis y Disefio 16/02/16 14/03/16 pr— Borne
© Fase preliminar 16/02/16 23/02/16 [
@ Estudio DNP3 24/02/16 14/03/16 [
= © Implementacion y pruebas 15/03/16 29/07/16 s 1
© DNP3 outstation basico 15/03/16 25/03/16 [5]
© DNP2 master basico 28/03/16 8/04/16 /|
© DNP3 outstation extendido  8/04/16 25/04/16 |
© DNP2 master extendido 26/04/16 10/05/16 [}
© Entorno ARM Guruplug 11/05/16 17/05/16 =
© libconfig 18/05/16 25/05/16 =
@ OpenssL 26/05/16 30/05/16 ]
@ Ejecutivo ciclico 31/05/16 16/06/16 [
o IFTT 17/06/16 1/07/16 [
© Sensores Arduino 4/07/16 15/07/16 [
@ Comunicacién Modbus 18/07/16 29/07/16 =
© Documentacién 27/06/16 16/09/16
© Entrega del proyecto 19/09/16 23/09/16 ]
© Preparacion de presentacin 26/09/16 30/09/16 ]
© Defensa del proyecto 2710416 7/10/16 [m]

Figura 14: Diagrama de Gantt del proyecto.

7. Gestion del proyecto

Como se expuso previamente se ha utilizado una metodologia 4gil para la
realizacién del proyecto. A continuacién se muestra en detalle la planificacién
del proyecto, las horas de trabajo y las herramientas utilizadas para la admin-
istracion y gestion del trabajo.

7.1. Planificacion

El proyecto comenzo el dia 15 de febrero de 2016, principalmente definiendo
los objetivos y las funcionalidades a ser desarrolladas. Acabada esta fase pre-
liminar se comenzé con el andlisis del proyecto para realizar posteriormente un
primer diseno.

Las iteraciones en las que se realizan anélisis, diseno, implementacion, prue-
bas y documentacion concluyen el dia 29 de julio. Tras las iteraciones se dedico
un tiempo a acabar la memoria que ya se habia comenzado previamente y dejarla
preparada para el depésito (Figura 14).

7.2.

Para la realizacién del proyecto se han invertido unas 392 horas, estas in-
cluyen las fases de andlisis, disefio, implementacién y documentacién (Figura
15).

Tiempo dedicado

7.3. Herramientas de gestion

Se han utilizado las siguientes herramientas para administrar y gestionar la
elaboracién del proyecto.

28



» ANALISIS/DISERIO

= IMPLEMENTACION DNP3

» IMPLEMENTACION ARDUINO

= IMPLEMENTACION EJECUTIVO CiCLICO
» IMPLEMENTACION OTROS

= DOCUMENTACION

» OTROS

Figura 15: Tiempo dedicado por tarea.

GitLab. Es una plataforma de desarrollo colaborativo para alojar proyec-
tos en un servidor privado de la empresa usando el sistema de control de
versiones Git. Se ha usado para almacenar el cédigo del proyecto.

Google Drive. Servicio de alojamiento de archivos donde se ha almacenado
documentacién sobre el proyecto.

Gantt Project. Herramienta para crear diagramas de Gantt.

draw.io. Herramienta hospedada en una pagina web que permite realizar
diagramas de todo tipo incluyendo diagramas UML.

29



8. Conclusiones

Una vez finalizado el proyecto, se realizan las valoraciones sobre el desarrollo
y el resultado obtenido del proyecto.

8.1. Resultados

Con el proyecto acabado se ha conseguido implementar el sistema disenado
cumpliendo con todas las especificaciones definidas al comienzo del proyecto. El
sistema final permite obtener datos de sensores y dispositivos, comunicarlos con
el protocolo DNP3 y TLS a un maéster que monitoriza y analiza los datos y que
es capaz de responder ante valores impropios de los dispositivos enviando una
respuesta que corrige el funcionamiento de los dispositivos y sensores.

Se ha desarrollado un ejecutivo ciclico soft real-time que obtiene las tareas
de un fichero de configuracién y que permite cambiar las tareas sin necesidad
de recompilar el codigo.

Por dltimo se ha implementado una comunicacién Modbus con una placa
Arduino para obtener los valores de los sensores que también han sido progra-
mados y calibrados.

8.2. Lecciones aprendidas

Durante el desarrollo del proyecto se han aprendido lecciones que seran tutiles
para futuros proyectos.

= Documentarse minuciosamente antes de implementar: Usando librerias en
ocasiones la solucién parece simple y obvia, pero en varias ocasiones ha
ocurrido que ha sido necesario cambiar la implementacion de la libreria
tras comprobar que la implementacién inicial no daba el resultado esper-
ado y la documentacién ya explicaba el posible problema.

= Realizar pruebas completas al finalizar cada funcionalidad: En alguna
ocasién después de implementar una funcionalidad simple las pruebas re-
alizadas no cubrian todos los casos y poco después habiendo avanzado a
otras funcionalidades, la funcionalidad inicial fall6 en un caso especial que
no se habia comprobado.

= Metodologia de ingenieria inversa: Previamente a este proyecto nunca
habfa intentado usar ingenieria inversa. Al principio la investigacién fue
lenta, pero con organizacion y con una metodologia establecida se aumenté
la productividad.

8.3. Conclusion personal

El proyecto ha requerido bastante organizacién, especialmente debido a la
envergadura que tiene ya que hasta ahora nunca habfa realizado un proyecto tan
grande, no solo ha sido un proyecto de desarrollo de software sino que también

30



ha requerido implementar sensores fisicos. Ademas el proyecto requeria que se
ejecutase en los GuruPlug ARM por lo que ha sido necesario crear un entorno de
compilacién cruzada con BuildRoot para poder ejecutar el cdédigo en maquinas
ARM.

He aprendido a usar tecnologias y librerias que no conocia pero también he
mejorado mi conocimiento de otras que ya conocia como el lenguaje de progra-
maciéon C, que aunque ya lo habia usado varias veces, nunca lo habia hecho a
este nivel de profundidad.

Adema&s me he tenido que desenvolver en un entorno laboral real. Aunque el
proyecto ha sido individual, he debido de colaborar con companeros para ciertas
tareas y cada pocas semanas mostrar como avanzaba el proyecto a mi director
de TFG.

Por ultimo, la realizacién del proyecto me ha aportado madurez, capaci-
dad organizativa y la paciencia para enfrentarme a nuevos proyectos de gran
envergadura.

8.4. Futuro del proyecto

Este proyecto de SCADA con comunicacion DNP3 ha sido completado y
ya estd preparado para ser incluido en una instalacién industrial, de hecho la
parte de Arduino y sensores ya forma parte de la instalacién de la depuradora
de Aylés.

No obstante, es posible ampliar el proyecto anadiendo nuevos objetos DNP3,
nuevos sensores u otras funcionalidades que se crean adecuadas. El protocolo
DNP3 esté preparado para transmitir cualquier tipo de dato que sea necesario.

31



Bibliografia

1]

J. Thomas, How to Set Up Buildroot/QEMU/ARM  Cross-
Development — Environment, 28  Febrero 2010, [En  linea],
http://processors.wiki.ti.com/images/f/f5/Aaa.pdf

V. Prakash, Advantages of the DNP3 Communications Protocol in
Water and Wastewater Telemetry Systems, Enero de 2012, [En lineal,
http://www.automation.com/pdf_articles/1261002_DNP3Water Wastewater WP.pdf

Citrix, How to Decrypt SSL and TLS Traffic Using Wireshark, 25 Noviembre
2015, [En lineal, http://support.citrix.com/article/CTX116557

J. McFadyen, Calculating a CRC  in DNP3.0  proto-
col, 1 Noviembre 2000, [En  linea],  https://www.experts-
exchange.com/questions/11722859/Calculating-a-CRC-in-DNP3-0-
protocol.html

Mark A. Linder, A Library For Processing Struc-
tured  Configuration  Files, 16 Mayo 2015, [En  linea),
http://www.hyperrealm.com/libconfig/libconfig_manual.html

OpenSSL Validation Services, Inc., OpenSSL FIPS Object Module v2.0,
10 Mayo 2016, [En linea], https://www.openssl.org/docs/fips/UserGuide-
2.0.pdf

E. Oswald, What is IFTTT and How Does It Work?, 30 Junio 2016, [En
linea|, http://www.digitaltrends.com/cool-tech/what-is-ifttt-and-how-does-
it-work/

Modicon, Modicon Modbus Protocol Reference Guide, Junio 1996, [En lineal,
http://modbus.org/docs/PI_.MBUS_300.pdf

L. Llamas, Medir distancia con arduino y sensor de ultrasonidos, 16 Ju-
nio 2015, [En lineal], http://www.luisllamas.es/2015/06/medir-distancia-
con-arduino-y-sensor-de-ultrasonidos-hc-sr04/

32



Anexos

33



1. Anexo 1l

Cuadro 3: Requisitos funcionales

Cddigo

Requisito funcional

RF1

RF?2

El sistema estard compuesto por tres sistemas empotrados distintos: El
Arduino, el GuruPlug con funcionalidad outstation y el GuruPlug con
funcionalidad mdster. Un arduino estd conectado a un sélo GuruPlug con
funcionalidad outstation y varios Guruplug con funcionalidad outstation
pueden estar conectados a un Guruplug con funcionalidad mdster.

La comunicacién entre el mdstery el outstation se realizard mediante el
protocolo DNP3 sobre TCP /IP.

RF3

La comunicacién entre la Placa Arduino y el GuruPlug outstation se
realizard usando el protocolo Modbus.

RF4

La comunicacién DNP3 podré opcionalmente realizarse de forma encrip-
tada usando el protocolo de seguridad TLS.

RF5

El arduino se encargara de controlar las comunicaciones con los sensores,
muestreando los valores segiin el tipo de sensor y recolectando todos los
valores en la memoria del arduino para después poder enviarselos al
GuruPlug outstation.

RF6

El GuruPlug outstation se encargard de comunicarse con el Arduino
mediante el protocolo modbus para coger los datos, empaquetara los
datos en un mensaje DNP3 y los enviara al GuruPlug master, cuando
reciba una respuesta del mdster, el GuruPlug outstation se encargara de
analizarla y realizar las acciones necesarias en los sensores.

RF7

El GuruPlug mdster recibird el mensaje DNP3 del GuruPlug outstation,
procesard la informacién recibida y devolvera una respuesta al GuruPlug
outstation.

RF8

Al recibir un mensaje DNP3, el mdster ha de ejecutar un script basado
en tecnologia IFTTT que permita comprobar que el rango de los datos
recibidos es vélido. Generard una respuesta que contendrd tnicamente
la palabra response.®® caso de ser todos los valores validos. Si se ha
detectado un valor inadecuado se anadirda ademas una accién que los
sensores/actuadores deberdn realizar para corregir el valor inadecuado
componiéndose de la siguiente manera id_del_sensor cédigo_de_accion”.

RF9

Tanto el mdster como el outstation tendran su propio fichero de config-
uracién que permita variar el comportamiento del sistema: Uso o no de
criptografia, puertos e ips en los que se realizard la conexién o frecuencia
de envié de mensajes DNP3.

RF10

Existiran dos ficheros de configuracién para los sensores. El primero de-
fine los sensores que han sido preparados para poder ser utilizados, con-
tienen una descripcién del sensor y define el objeto y variacién que se
usara para transmitir el valor en la comunicacion DNP3. El segundo
fichero de configuracién define los sensores que se van a utilizar en el
sistema actual y el periodo de muestreo de cada sensor.

34



