
Implementación del protocolo DNP3 en una red
de sistemas SCADA empotrados para la

monitorización de variables y dispositivos.

Implementation of the DNP3 protocol in
embedded SCADA systems for the

monitorization of variables from sensors and
devices.

Autor:

Óscar Clemente Pedrico

Director:
Fernando Tricas Lamana

Ponente:
José Luis Briz Velasco

Escuela de Ingenieros y Arquitectos
2016

Implementación del protocolo DNP3 en una red
de sistemas SCADA empotrados para la

monitorización de variables y dispositivos.

Resumen

Este Trabajo de Fin de Grado se enmarca dentro de mi trabajo en Pariver
S.A. y está compuesto por tres partes diferenciadas.

Pariver recibió una oferta para un proyecto en El Salvador en la que se bus-
caba el uso del protocolo DNP3 en la comunicación entre sistemas SCADA. En
este Trabajo de Fin de Grado se ha incluido también la creación del propio
sistema SCADA y formar redes de comunicación entre ellos.

La primera tarea consistió en el estudio y análisis del protocolo DNP3 bus-
cando toda la documentación posible del protocolo. Para subsanar las lagunas
y dudas surgidas de la documentación he recurrido a simuladores del protocolo
DNP3 y a un analizador de paquetes de red para realizar ingenieŕıa inversa.

La segunda tarea trató la implementación del protocolo DNP3 en sendas
aplicaciones cliente y servidor que leen los valores de un fichero, los traducen
al formato del protocolo y los env́ıan para que sean léıdos por el servidor. El
servidor analiza los datos y verifica que son aceptables, si no lo son responde al
cliente comunicando los cambios necesarios.

La tercera y última tarea abarcó la configuración de las placas ARM Guru-
Plug sobre las que se desplegaron los clientes y servidores DNP3 y la utilización
de sensores que comuniquen valores a los SCADA a través de placas Arduino
mediante el protocolo Modbus.

El resultado es un sistema capaz de recolectar datos del entorno, enviárselos
al servidor de forma encriptada, analizar los datos y corregir posibles problemas
en la instalación en la que se ha implantado de forma autónoma.

2

Índice general

1. Introducción . 7
1.1. Objetivo y alcance del proyecto 7
1.2. Contexto de desarrollo . 7
1.3. Métodos y técnicas . 7
1.4. Tecnoloǵıas empleadas . 8
1.5. Herramientas empleadas 8

2. Análisis . 10
3. Diseño . 10

3.1. Arquitectura del sistema 10
4. Estudio del protocolo DNP3 . 12

4.1. Caracteŕısticas del protocolo DNP3 12
4.2. Metodoloǵıa del análisis 12
4.3. Estructura del protocolo 12

4.3.1. Objetos . 14
4.3.2. Capa de enlace 14
4.3.3. Capa de transporte 15
4.3.4. Capa de aplicación 16

5. Implementación del protocolo DNP3 18
5.1. Libreŕıa de configuración 19
5.2. Criptograf́ıa TLS . 20
5.3. Ejecutivo ćıclico . 20
5.4. Script IFTTT . 23

6. Sensores . 24
6.1. Arduino Due . 24
6.2. Caudaĺımetro . 25
6.3. Anemómetro . 26
6.4. Detector de movimiento 26
6.5. Sensor de humedad y temperatura 26
6.6. Sensor de ultrasonidos . 27

7. Gestión del proyecto . 28
7.1. Planificación . 28
7.2. Tiempo dedicado . 28
7.3. Herramientas de gestión 28

8. Conclusiones . 30
8.1. Resultados . 30

3

8.2. Lecciones aprendidas . 30
8.3. Conclusión personal . 30
8.4. Futuro del proyecto . 31

Bibliograf́ıa . 32

Anexos 33
1. Anexo 1 . 34

4

Índice de figuras

1. Diagrama de componentes y conectores. 10
2. Diagrama de despliegue. 11
3. Composición de tramas DNP3. 13
4. Object header. 14
5. Link layer header. 14
6. Link layer control byte. 15
7. Transport layer header. 16
8. Application layer. 16
9. Application header. 16
10. Diagrama de clases de la implementación DNP3. 18
11. Establecimiento de una sesión TLS. 20
12. Ejecutivo ćıclico Pago de Aylés. 23
13. Campos del protocolo Modbus. 24
14. Diagrama de Gantt del proyecto. 28
15. Tiempo dedicado por tarea. 29

5

Índice de cuadros

1. Objetos implementados . 15
2. Tareas del ejecutivo ćıclico en Pago de Aylés 23
3. Requisitos funcionales . 34

6

1. Introducción

1.1. Objetivo y alcance del proyecto

El objetivo propuesto para este proyecto consiste en crear una red de SCADAs
que monitorizan las variables dadas por sensores y dispositivos, en la que toda
la información se comunica mediante el uso del protocolo DNP3 y criptograf́ıa
TLS por parte de los clientes y servidores . Las variables llegan a los clientes
DNP3, y éstos se las comunican a los servidores DNP3 que monitorizan cada
variable. El servidor se encarga de verificar que las variables permanecen dentro
de un rango definido mediante tecnoloǵıa basada en IFTTT. En caso de que el
valor se salga fuera del rango, el servidor actuará y usando un mensaje DNP3
se comunicará con el cliente adecuado y modificará su comportamiento para
corregir los valores.

Los clientes y servidores DNP3 se despliegan sobre dispositivos ARM Gu-
ruPlug que funcionarán como cliente o servidor dependiendo de la necesidad.
Las variables llegan a los clientes a través de unos sensores que captan la in-
formación, se comunican con una placa Arduino y ésta se los pasa al ARM
GuruPlug.

1.2. Contexto de desarrollo

Pariver es una empresa fundada en 1985 en Zaragoza centrada en el de-
sarrollo de servicios TIC(Tecnoloǵıas de la Información y la Comunicación) y
consultoŕıa de empresas e instituciones.

Obtuvo el Certificado de Calidad de AENOR y han desarrollado aplicaciones
y webs para servicios públicos y para empresas internacionales. Destacan los
proyectos desarrollados para el gobierno de Aragón, el ministerio de economı́a,
DKV, BSH, Global Credit Solution y Enerland Group, además, Pariver está
implantada de forma internacional en Brasil, México, Marruecos, Portugal y
Alemania.

El TFG se enmarca en un proyecto entre Pariver y la empresa Del Sur de El
Salvador, en la que se pidió establecer comunicación con una planta industrial
usando el protocolo DNP3, el TFG se extendió y se añadió la también la tarea
de crear y configurar los sistemas SCADA empotrados sobre los que se usaŕıa
el protocolo DNP3.

1.3. Métodos y técnicas

El proyecto se ha organizado mediante el empleo de metodoloǵıas ágiles
para el desarrollo del software que permiten realizar un desarrollo incremental
e iterativo.

Tras la realización de cada tarea se lleva a cabo una reunión entre el autor y
el director del proyecto, se discuten problemas y posibles mejoras y se formaliza
el trabajo para la siguiente tarea.

7

Se busca que cada tarea se base en lo realizado en la anterior para formar
un desarrollo incremental y también mantener el periodo de realización de cada
tarea en torno a dos semanas, tiempo suficiente para que una tarea sea intere-
sante y consistente pero también suficientemente pequeño como para que la
tarea no sea dif́ıcil de abordar y demasiado compleja.

Cada una de las tareas se encuentra dentro de los siguientes rangos:

Análisis: Estudio de la tarea y búsqueda de requisitos.

Diseño: Planificación de la arquitectura y la implementación.

Implementación: Desarrollo de las funcionalidades y los requisitos planifi-
cados previamente.

Pruebas: Evaluación del correcto funcionamiento del sistema.

1.4. Tecnoloǵıas empleadas

Las principales tecnoloǵıas de las que se ha hecho uso para la elaboración
del proyecto se presentan a continuación.

C: Concretamente C99. Es un lenguaje de programación de propósito gen-
eral. Se ha utilizado para la implementación del protocolo DNP3.

C++: En su versión 11 es usada para programar la lógica de los sensores
conectados a la placa Arduino.

BASH: Es un lenguaje compatible con shell para entornos Unix. Se utiliza
para definir una lógica al estilo IFTTT (If This Then That) que permite
definir rangos de valores correctos para los sensores y definir la acción que
se ha de realizar ante valores impropios, es invocado por el código C y
puede ser modificado en caliente.

libconfig: Es una libreŕıa para C y C++ que permite la creación y lectura
de ficheros de configuración que permiten parametrizar los valores de un
sistema de forma rápida y segura.

openssl: Es una libreŕıa para C orientada a criptograf́ıa, se encarga de
gestionar la comunicación entre dos sockets de forma fiable y segura usando
criptograf́ıa SSL/TLS. Se usa el último estándar, TLS 1.2 pero en caso de
que uno de los dos dispositivos conectados no pueda utilizarla, se negocia
el uso de la tecnoloǵıa más segura disponible ambos dispositivos. Permite
también crear certificados y usarlos para la comunicación

1.5. Herramientas empleadas

Para completar el proyecto se han utilizado las siguientes herramientas de
trabajo:

8

Buildroot: Es una herramienta que facilita la generación de entornos y
compiladores para compilación cruzada [1]. En el caso de este TFG se ha
necesitado generar un compilador cruzado para la CPU ARM9E del ARM
GuruPlug.

Wireshark: Es un analizador de paquetes de red que permite comprobar el
protocolo de cada paquete, su identidad y verificar la correcta estructura
de este.

OpenDNP3: Simulador del protocolo DNP3 que permite generar tramas
del protocolo, para en este caso comprobar que la implementación desar-
rollada cumple el estándar DNP3.

VirtualBox: Es una herramienta desarrollada por Oracle que permite crear
máquinas virtuales para arquitecturas x86.

Arduino IDE: Entorno de programación para placas Arduino que permite
escribir código en C++, compilar y subir binarios a la placa Arduino.

Vim: Editor de texto basado en Vi. Se ha usado para el código C.

9

Figura 1: Diagrama de componentes y conectores.

2. Análisis

La fase de análisis determina el alcance del proyecto y las funcionalidades
que va a presentar el sistema una vez completado. En el anexo se encuentra una
tabla con los requisitos funcionales (Anexo 1).

3. Diseño

Conociendo las funcionalidades que va a cumplir el proyecto se procedió al
diseño de alto nivel de la arquitectura y la organización del sistema.

3.1. Arquitectura del sistema

El sistema está compuesto por tres partes diferenciadas: los sensores, el
cliente y el servidor (Figura 1). En la sección de los sensores se encuentra el
controlador de los sensores que se encarga de recoger de forma periódica la in-
formación de cada uno de los sensores para tenerla actualizada y unificada en un
solo lugar. El cliente lee los datos dados por el controlador de los sensores y los
prepara para ser enviados encapsulándolos en el protocolo DNP3 y finalmente
enviándolos al servidor. El servidor recibe mensajes DNP3 que ha de descom-
poner para poder leer los datos de los sensores, comprueba que los valores son

10

Figura 2: Diagrama de despliegue.

correctos y en caso de que no lo sean responde al cliente con una orden que
permita corregir los valores.

El diagrama de despliegue muestra el despliegue f́ısico de cada una de las
partes que componen el proyecto incluyendo algunos de los sensores utilizados
(Figura 2).

11

4. Estudio del protocolo DNP3

4.1. Caracteŕısticas del protocolo DNP3

DNP3 (Distributed Network Protocol 3) es un protocolo industrial para co-
municaciones entre equipos inteligentes, estaciones controladoras y componentes
de sistemas SCADA. Es un protocolo ampliamente utilizado en el sector eléctrico
y de tratamiento de ĺıquidos, de gran difusión en toda América.

Los sistemas que usan este protocolo se diferencian normalmente en dos: el
máster y los outstation.

El máster es la máquina encargada de recopilar toda la información de las
diferentes outstations y es usada por los equipos de gestión para visualizar
la información, agruparla, analizarla o reenviarla a otro sistema.

El outstation o RTU (Remote Terminal Unit) es la máquina encargada
de coger los datos directamente del sistema eléctrico o de agua, transfor-
mar estos datos a datos DNP3 correctos, empaquetarlos en el mensaje y
enviarlos al máster.

El protocolo DNP3 presenta importantes funcionalidades que lo hacen más
robusto, eficiente y compatible que otros protocolos más antiguos pero también
hacen que sea más complejo [2].

4.2. Metodoloǵıa del análisis

DNP3 es propiedad de DNP Users Group. Aunque su uso es libre, la docu-
mentación oficial es de pago y no ha podido ser accedida para la realización de
este TFG. La documentación pública disponible solo ofrece información super-
ficial, sin detalles sobre la estructura del protocolo. Hemos suplido esta falta de
información recurriendo a técnicas de ingenieŕıa inversa.

Para ello se han utilizado el analizador de paquetes Wireshark, que es capaz
de detectar los paquetes que se env́ıan y descomponerlos para comprender en
detalle los valores de cada campo, y el simulador gratuito OpenDNP3. Estable-
ciendo una conexión entre un máster y un outstation creados con el simulador
y usando Wireshark para observar los paquetes se obtiene una idea de cómo se
estructura el protocolo y la utilidad de los campos [3].

Sin embargo, las tramas emitidas por el simulador son poco variadas y de
tamaño pequeño, y no se utilizan todos los rangos de los campos sino solo unos
pocos valores. Por esta razón, para comprender el protocolo completamente hizo
falta crear un cliente DNP3 de prueba que se conectase al servidor del simulador
y comenzar a iterar entre diferentes valores para cada campo y seguir usando
ingenieŕıa inversa con Wireshark para descubrir el significado de cada valor.

4.3. Estructura del protocolo

La especificación DNP3 divide el protocolo en tres capas según el modelo
OSI: Nivel de enlace, nivel de aplicación y nivel de transporte. Realmente no

12

Figura 3: Composición de tramas DNP3.

cumple con todas las especificaciones del modelo OSI y a d́ıa de hoy se suele
implementar sobre TCP/IP.

La estructura en capas sigue el siguiente esquema (Figura 3):

Los mensajes a nivel de aplicaciones son denominados fragmentos. El
tamaño máximo de un fragmento está establecido en 2014 bytes.

Los mensajes a nivel de transporte son denominados segmentos. El tamaño
máximo de un segmento es de 291 bytes.

Los mensajes a nivel de enlace son denominados tramas.

Cuando se transmiten datos desde un outstation hacia un máster, estos pasan
por varias fases antes de ser encapsulados completamente.

Si el conjunto de datos es mayor que el tamaño máximo del nivel de
aplicación. Es necesario dividir los datos.

Añadir la cabecera del nivel de aplicación a todos los fragmentos.

Si el fragmento es mayor que el tamaño máximo del nivel de transporte,
es necesario dividir los fragmentos.

Añadir la cabecera del nivel de transporte a todos los segmentos.

Usando CRC 16 bit DNP [4], cada 16 bytes se insertan 2 bytes de CRC
usando los 16 bytes previos para el cálculo.

13

Figura 4: Object header.

Figura 5: Link layer header.

Añadir la cabecera del nivel de enlace. Las tramas ya están listas para ser
enviadas.

4.3.1. Objetos

Los datos que se env́ıan a través de mensajes DNP3 están encapsulados
en el interior de objetos. Un objeto es un conjunto de datos que mantienen
caracteŕısticas comunes y están identificados por el Object Type Field (Figura
4).

Object Type Field: (2 bytes) El primer byte indica de que grupo forma
parte el objeto y el segundo byte, la variación de este.

Qualifier Field: (1 byte) Indica la estructura de los datos que llegan. En
nuestro caso para simplificar, solo usaremos el valor 0x07 que establece
que el Range Field es de un solo byte y que indica el número de objetos
de forma numeral (otras formas de hacerlo son con rangos o con ı́ndices).

Range Field: (1-2 bytes) Indica el número de objetos en este grupo.

En el caso de esta aplicación se usan los objetos y variaciones visibles en el
cuadro 1.

4.3.2. Capa de enlace

Este nivel está formado por una cabecera de 10 bytes en 6 campos distintos
(Figura 5).

Start: (2 bytes) Con valor fijo en hexadecimal, el primer campo es 0x05
y el segundo 0x64, permite a los sistemas detectar el mensaje que llega
como DNP3

Length: (1 byte) Tamaño del mensaje. Este valor no tiene en cuenta los
campos Start y Length ni los CRCs.

14

Cuadro 1: Objetos implementados
Objeto Variación Descripción Tamaño
1 1 Binary Input 1 bit
1 2 Binary Input Status 1 byte
10 1 Binary Output 1 bit
10 2 Binary Output Status 1 byte
30 1 32 bit Analog Input Quality 5 bytes
30 2 16 bit Analog Input Quality 3 bytes
30 3 32 bit Analog Input 4 bytes
30 4 16 bit Analog Input 5 bytes
40 1 32 bit Analog Output Status 5 bytes
40 2 16 bit Analog Output Status 3 bytes
40 3 32 bit Analog Output 4 bytes
40 4 16 bit Analog Output 2 bytes
70 1 File Object Identifier 1 byte
100 1 Short Floating Point 1 byte
100 2 Long Floating Point 2 bytes
100 2 Extended Floating Point 4 bytes
110 1 Octet String 1 byte

Figura 6: Link layer control byte.

Control: (1 byte) Código de control. Permite fijar los servicios, el sentido
de flujo y el tipo de comunicación (Figura 6).

Destino: (2 bytes) Contienen un valor que identifica a la maquina con la
que se comunica.

Origen: (2 bytes) Contiene un valor que identifica a la máquina que env́ıa
este mensaje.

CRC: (2 bytes) Código de detección de errores 16 bit CRC DNP. Se calcula
con los 8 bytes de los campos anteriores y el polinomio x16 + x13 + x12

+ x11 + x10 + x8 + x6 + x5 + x2 + 1.

4.3.3. Capa de transporte

Consiste en un solo byte situado después de la cabecera de enlace y contiene
los siguientes campos (Figura 7).

15

Figura 7: Transport layer header.

Figura 8: Application layer.

Figura 9: Application header.

FIN: (1 bit) Bit a 1 indica que el segmento actual es el último de todos
los enviados.

FIR: (1 bit) Bit a 1 indica que el segmento actual es el primero de todos
los enviados.

SEQUENCE: (6 bits) Indica el número de orden del segmento enviado.

4.3.4. Capa de aplicación

La trama de esta capa que aparece a continuación de la capa de transporte
está compuesta únicamente por tres campos (Figura 8):

Application Control: (1 byte) que está compuesto por los siguientes sub-
campos.

• FIN: (1 bit) Bit a 1 indica que el segmento actual es el último de
todos los enviados.

• FIR: (1 bit) Bit a 1 indica que el segmento actual es el primero de
todos los enviados.

• Confirmed: (1 bit) Indica si el segmento ha de ser confirmado, es decir
si el receptor del mensaje a de mandar un mensaje DNP3 de vuelta
mostrando que lo ha recibido

• Unsolicited: (1 bit) Indica si el segmento que se env́ıa no ha sido
pedido por el máster si no que se ha enviado de forma esporádica.

16

• Sequence: (4 bits) Indica el número de orden del segmento enviado.

Function Code: (1 byte) Código de la función.

Internal Indications: (2 bytes) Código usado solo en la respuesta del outsta-
tion al máster con diferentes bits que indican el estado actual del sistema
(Problemas, sincronización, overflow, configuración corrupta...).

Object Type Field: (2 bytes) El primer byte indica de que grupo forma
parte el objeto y el segundo byte, la variación de este.

Qualifier Field: (1 byte) Indica la estructura de los datos que llegan. En
nuestro caso para simplificar, solo usaremos el valor 0x07 que indica que el
Range Field sea de un solo byte e indique el número de objetos de forma
numeral (otras formas de hacerlo son con rangos o con ı́ndices).

Range Field: (1-2 bytes) Indica el número de objetos en este grupo.

A partir de aqúı se colocan los datos. El tamaño de los datos enviados de-
pende del Object Type y del Range Field. Una vez acaba el objeto actual, se
transmite el siguiente, comenzando con los tres campos anteriores. Conviene
notar que cada 16 bytes de la capa de aplicación hay que insertar 2 bytes de
CRC, lo que incluye también a las cabeceras de la capa de aplicación. Ha de
haber también un CRC final aunque el tamaño de los datos previos sea menor
a 16 bytes.

17

Figura 10: Diagrama de clases de la implementación DNP3.

5. Implementación del protocolo DNP3

La ejecución comienza en dnp con la función main, es la encargada de tratar
los argumentos y ejecutar el servidor máster o el cliente outstation.

Tanto outstation como máster tienen una estructura similar. Ambos comien-
zan leyendo el fichero de configuración que define valores a nivel de enlace, el
puerto de conexión, y valores de la aplicación que establecen la frecuencia de
env́ıo. Una vez configurados crean un socket TCP para leer y escribir sobre él, el
máster llama a la función loop y el outstation a la función del ejecutivo ćıclico.

Estas funciones se encargan de iniciar el servicio DNP. A partir de aqúı la
estructura del código es similar en ambas máquinas pero la funcionalidad es
la opuesta. El outstation, mediante el ejecutivo ćıclico, se encarga de obtener
valores y de componer mensajes, el máster por su parte, los descompone y los
analiza.

18

El outstation inicia el ejecutivo ćıclico y recibe los valores de los sensores
ya encapsulados en objetos DNP3. El siguiente paso es dividir los datos de los
sensores si superan el tamaño máximo de la capa de aplicación. A continuación,
se incluye la cabecera de la capa de aplicación y se comprueba que no sobrepasa
el tamaño máximo de la capa de transporte, si lo supera se divide de nuevo.
Tras asegurar que los segmentos tienen un tamaño valido, se añade la cabecera
de la capa de transporte a todos ellos. Tanto la cabecera de aplicación como
la de transporte contienen valores que informan del orden del segmento para la
correcta recepción de la trama completa.

En este momento el outstation tiene preparada una trama a nivel de trans-
porte que aún requiere cambios. Cada 16 bytes se calcula un CRC DNP de 16
bits y se insertan estos dos bytes después de los 16 bytes. Por último se añade
la cabecera de enlace dejando el mensaje listo para ser enviado hacia el máster.

El máster por su parte hace lo mismo que el outstation pero en orden inverso.
Elimina la cabecera de enlace y los CRC, comprobando que estos últimos sean
correctos. En caso de no serlos se deniega el mensaje completo y se espera a que
llegue un nuevo mensaje. Se elimina la cabecera de transporte pero con atención
a los valores de secuencia que contienen, que ayudan para reensamblar la trama
de objetos en el orden original. Lo mismo ocurre con la cabecera de aplicación.
El resultado final es una trama de objetos DNP3. El máster llama a la función
que descompone los objetos y los env́ıa al script IFTT para ser analizados, en
caso de que algún valor no entre dentro de los rangos aceptables se enviará al
outstation una respuesta DNP3 con órdenes para los sensores.

5.1. Libreŕıa de configuración

Se usan varios ficheros de configuración en el sistema, accediéndose a ellos
mediante la libreŕıa libconfig [5]. Al iniciar el servicio DNP3 tanto el máster
como el outstation necesitan leer sus ficheros de configuración. Estos ficheros
de configuración difieren para el máster y el outstation y definen ip, puerto,
intervalo entre env́ıo de tramas y parámetros que se usaran en los campos de la
capa de enlace DNP3.

El conjunto de sensores también tiene sus propios ficheros de configuración.
Existen dos ficheros. Uno de ellos contiene todos los sensores que se pueden
utilizar, estén instalados o no en el sistema actual, y define la cantidad de
variables y el tipo de cada variable que env́ıa cada sensor. El otro fichero de
configuración solo contiene el nombre de los sensores que se están usando en ese
momento.

El uso de estos ficheros de configuración hace que sea trivial añadir nuevos
sensores. Solo es necesario añadir la definición del sensor al primer fichero, definir
el tipo de objeto DNP3, variación y el número de datos que se reciben en cada
muestreo.

19

Figura 11: Establecimiento de una sesión TLS.

5.2. Criptograf́ıa TLS

La aplicación diseñada hace uso de criptograf́ıa TLS para la comunicación
entre outstation y máster. TLS es un protocolo de criptograf́ıa basado en SSL
que se emplaza sobre el protocolo TCP en la capa OSI de transporte [6].

Se usa OpenSSL para facilitar la integración de la capa de criptograf́ıa. El uso
de la criptograf́ıa en la aplicación es opcional, pudiéndose cambiar el fichero de
configuración para evitar su utilización, pero el uso de criptograf́ıa es recomen-
dado.

Cuando ambos sockets han sido generados usando OpenSSL es el cliente out-
station quien comienza la comunicación. Lo hace especificando una lista de con-
juntos de cifrados, métodos de compresión y la versión del protocolo SSL/TLS
más alta permitida. El servidor responde eligiendo los parámetros a partir de
las opciones del cliente. Tras esto se intercambian los certificados, generalmente
X.509, que autentican a ambas partes. Por último, el cliente y el servidor ne-
gocian una clave secreta simétrica que se ha originado con el algoritmo Diffie-
Hellman. A partir de este momento ambos extremos son capaces de enviar las
tramas DNP3 cifradas.

5.3. Ejecutivo ćıclico

El proceso outstation ha de realizar varias tareas que se ejecutan debiendo
cumplir un periodo de tiempo. Existen dos tipos de tareas que conforman el
ejecutivo ćıclico.

20

Algoritmo 1: Algoritmo ejecutivo ćıclico.

1 function task cycle(mcd, mcm, timecycle, tasklist, dnp3period)
2 step = mcm;
3 while always do
4 timeleft = time compare(timecycle);
5 if !is time zero(timeleft) then
6 clock nanosleep(CLOCK MONOTONIC, TIMER ABSTIME,

timeleft, NULL);

7 end
8 for i in sensorlist.length do
9 if step % sensorlist[i].period == 0 then

10 get sensor data(sensorlist[i].id, message);
11 end

12 end
13 if step % dnp3period == 0 then
14 send dnp3(message);
15 receive dnp3 response();

16 end
17 step -= mcd;
18 if step ≤ 0 then
19 step = mcm;
20 end
21 add seconds(timecycle, mcd);

22 end

Las tareas de tipo sensor se encargan de leer los valores de un sensor realizan-
do una comunicación Modbus con la placa Arduino que, una vez ha identificado
la petición que ha recibido, selecciona el valor y lo devuelve al outstation donde
la propia tarea lo encapsula en un objeto DNP3. Todas tienen el mismo nivel
de prioridad y se ejecutan en el orden que han sido declaradas en el fichero de
configuración. Hay dos ficheros de configuración que son utilizados para poder
editar y añadir nuevas tareas de tipo sensor.

El primer fichero de configuración, sensors.cfg, contiene todos los sen-
sores que se han implementado y que pueden o no ser usados en el sistema,
además se encarga de definir el tipo de sensor del que se trata con una descrip-
ción y con el tipo de objeto DNP3 en el que se va a encapsular. El segundo,
sensors used.cfg, determina los sensores que se van a usar en el sistema actual
y el periodo de la tarea que lee el valor del sensor.

El otro tipo de tareas son las que denominamos tareas de comunicación.
Constan de dos tareas ya definidas, la escritura de los mensajes DNP3 que van
a ser enviados al máster y la lectura de las respuestas que llegan del máster.
Estas dos tareas tienen su periodo definido en el fichero de configuración del
proceso outstation.

21

El ejecutivo ćıclico encargado de organizar y ejecutar cada una de las tareas
cumpliendo sus periodos es un ejecutivo soft real-time, por lo que se aligeran
las constricciones de tiempo. Se permite que alguna tarea sobrepase su deadline
ya que no es un sistema cŕıtico. Como reloj se usa CLOCK MONOTONIC para las
mediciones de tiempo, es un reloj absoluto que garantiza su valor linealmente
incremental durante casi 50 años.

El ejecutivo usa el Algoritmo 1. Los valores mcd y mcm representan el máxi-
mo común divisor y el mı́nimo común múltiplo de los periodos de las tareas que
se han seleccionado en el fichero de configuración sensors used.cfg. Tanto mcd
como mcm, al existir las restricciones establecidas en el fichero de configuración,
tendrán siempre un valor de segundos. A continuación se describen funciones
relevantes del ejecutivo.

clock gettime(clockid t clk, struct timespec *t): Asigna el valor del reloj al
struct timespec *t. En este ejecutivo se usa el reloj CLOCK MONOTONIC.

clock nanosleep(clockid t clock id, int flags, const struct timespec *re-
quest, struct timespec *remain): Suspende la ejecución del thread que
llama a la función durante el tiempo req usando el reloj establecido en
clock id que en este caso será el reloj usado en la función clock gettime().
Se usa el flag TIMER ABSTIME y el parámetro remain es NULL.

time compare(struct timespec *t): Compara el valor del parámetro *t con
el valor del reloj en el momento actual obtenido con clock gettime(), de-
volviendo un struct timespec con la diferencia entre ambos.

add seconds(struct timespec *t, int sec): Añade a *t el valor de sec.

is time zero(struct timespec *t): Devuelve uno si *t tiene un valor igual
o menor a cero, devuelvo cero si el tiempo es mayor.

Para que el ejecutivo ćıclico cumpla las restricciones tiempo real de las tareas,
debe de lanzar una nueva instancia de cada una de acuerdo con su periodo, y
de modo que finalice antes del siguiente. Para ello se ha tomado como tiempo
de ejecución de cada tarea (C) el WCET (Worst Case Execution Time) de la
misma, usando una función que devuelve un valor temporal con precisión de
nanosegundos antes y después de la ejecución de la tarea (Cuadro 2). El tiempo
de ejecución de las tareas de tipo sensor es el mismo ya que solo se encargan de
obtener el valor del sensor en la placa Arduino, que al tener los valores de los
sensores guardados en memoria, no necesita calcularlos cada vez que se realiza
una petición. Se ha utilizado el contexto de la instalación realizada en la planta
depuradora de viñedos Pago de Aylés.

Se ha incluido un diagrama que muestra la organización de la ejecución de
tareas en el marco temporal (Figura 12).

22

Cuadro 2: Tareas del ejecutivo ćıclico en Pago de Aylés
Tarea C(ms) T(ms) D(ms)
Caudaĺımetro 12 2000 2000
Detector mov. 12 2000 2000
Nivel ĺıquido 12 2000 2000
Sensor PH 12 4000 4000
Anemómetro 12 8000 8000
Veleta 12 8000 8000
Humedad 12 8000 8000
Temperatura 12 8000 8000
Escribir DNP3 19 2000 2000
Leer DNP3 104 2000 2000

Figura 12: Ejecutivo ćıclico Pago de Aylés.

5.4. Script IFTTT

La lógica que permite reaccionar ante ciertos valores de los sensores está
basada en la tecnoloǵıa IFTTT (If This Then That) en la que existe un script
o receta que contiene unas instrucciones simples que ejecutan una acción según
los valores de entrada. Existe un único script que está implementado en BASH
ejecutado a través del código C del máster DNP3. En el caso del script que
funciona en este sistema los parámetros de entrada son pares ı̈d de sensor val-
or muestreado”, tras ser analizado por el script la salida será un par ı̈d de sensor
código de acción”que será encapsulado en un mensaje DNP3 para ser devuelto
al outstation como respuesta.

La principal ventaja de usar este método en lugar de incluir la funcionalidad
en el programa principal es que no hace falta recompilar el sistema entero cada
vez que sea necesario cambiar algún elemento en la lógica, ni detener el sistema
para usar nuevos valores, ya que es editable en tiempo de ejecución.

23

Algoritmo 2: Extracto de script IFTT.

1 if [$sensor == ”a”] then
2 #sensor de nivel
3 if $value -lt 20 then
4 #nivel alto
5 #desactivar bomba de ĺıquido
6 echo ”c 0”

7 end
8 if $value -gt 100 then
9 #nivel bajo

10 #activar bomba de ĺıquido
11 echo ”c 1”

12 end

13 end

Figura 13: Campos del protocolo Modbus.

6. Sensores

6.1. Arduino Due

La placa Arduino Due contiene una CPU ARM Cortex-M3 de 32 bits con
una frecuencia de 84 MHz. Los pines I/O permiten una tensión máxima de 3,3V
que es diferente del resto de Arduinos disponibles ya que funcionan a 5V.

El lenguaje de programación usado para la placa Arduino es C++. Se ha
utilizado el Arduino IDE para programar sobre la placa haciendo uso de las
libreŕıas de terceros TimeLib y TimeAlarms para la implementación de valores
históricos de los sensores.

La comunicación entre el GuruPlug outstation y la placa Arduino Due se
realiza mediante un cable USB usando el protocolo de comunicación Modbus
(Figura 13). Modbus es un protocolo simple pero robusto para comunicaciones
en puertos serial compuesto por cuatro campos: La dirección del dispositivo al
que se dirige la acción, el código de función que especifica el tipo de acción, un
conjunto de datos y por ultimo dos bytes de CRC [8].

Existen dos tipos de comunicación.

Lectura: El outstation realiza una petición y el código de función Modbus
contiene un código que corresponde con la lectura de un sensor. El Arduino
verifica que es un mensaje Modbus correcto y comprueba el CRC, tras esto

24

comprueba cual es el sensor al que se ha realizado la petición y coge el
valor correspondiente de la posición de memoria donde está almacenado
el valor. Compone un mensaje Modbus y lo devuelve al outstation por el
USB.

Escritura: El outstation env́ıa un mensaje por el Modbus con un código de
función que corresponde al de la escritura de un sensor. Tras verificarse
que el mensaje es correcto, se comprueba cual es la posición de memoria en
la que está el registro del sensor sobre el que se va a actuar y se sobrescribe
usando el valor del campo Data del mensaje Modbus.

Inicialmente la comunicación serial del Arduino a través del USB es lenta es-
tando siempre por encima del segundo, para mejorar la velocidad de las comuni-
caciones es necesario cambiar dos valores en la placa Arduino. Las funciones de
lectura del serial tienen como estándar un timeout de un segundo que garantiza
que el mensaje a leer va a llegar de forma completa y que no se va a detener
la lectura cuando aún faltan datos por llegar. Se ha reducido este timeout a
un milisegundo, esto es posible cambiando el valor de Serial.setTimeout y
haciendo que antes de realizar una lectura se compruebe que se han recibido
en el serial tantos bytes como tamaño tiene el mensaje de Modbus que se está
usando. El otro cambio que mejora la velocidad de la comunicación es aumentar
la velocidad de la transmisión de datos al serial, inicialmente el valor son 9600
bps y se ha cambiado a 115200 bps.

El código consiste en una función de setup que activa los pines a los que
están conectados los sensores, prepara las interrupciones e inicializa variables
necesarias para la ejecución. Una vez acaba la ejecución de la función setup se
inicia la función loop que se ejecuta de forma continua y permanente, desde aqúı
se llama al resto de funciones necesarias para el muestreo de los sensores.

6.2. Caudaĺımetro

El modelo FS300A G3/4.es un caudaĺımetro simple que funciona por el efecto
Hall al producirse una corriente en presencia de un electroimán perpendicular
que rota empujado por el flujo del interior del caudaĺımetro. Tiene tres cables,
el rojo contiene la tensión de 5V para alimentar el caudaĺımetro, el amarillo es
el cable de salida que sacará 5V cada vez que se reproduzca el efecto Hall y por
último el cable negro que funciona como tierra.

La implementación se ha realizado mediante interrupciones, cada vez que
llega un flanco de subida del sensor la interrupción ejecuta una función que
aumenta el valor de una variable. El muestreo se realiza cada segundo, existe
un timeout preparado para que después de un segundo ejecute una función que
calcule el número de litros que han pasado por el caudaĺımetro según el número
de interrupciones usando la siguiente ecuación.

Caudal =
Interrupciones ∗ 60

5,5Q

25

Usando la libreŕıa para Arduino TimeAlarm se ha implementado un histórico
de los datos del caudaĺımetro, pudiéndose observar el caudal de las últimas horas.

6.3. Anemómetro

El anemómetro 6410 Davis Vantage Pro 2 tiene dos funcionalidades, medir
la velocidad del viento y con la veleta medir la orientación desde la que sopla el
viento.

Para la velocidad del viento se usan interrupciones en el flanco de subida
que aumentan el valor de una variable. Debido a la variabilidad del viento que
cambia continuamente de velocidad, el muestreo se realiza cada 10 segundos para
aumentar la fiabilidad de la medición. Para convertir los pulsos de la interrupción
en velocidad real del viento existe una ecuación del fabricante que produce
millas por hora, para convertirlo a metros por segundo es necesaria añadir otra
operación de división a la fórmula del fabricante.

V elocidad =
Pulsos∗2,25

Periodo

0,44704

La veleta devuelve un entero entre 0 y 360 siendo 180 el soporte de la veleta
por lo que para obtener un valor correcto es necesario instalar la veleta en una
pared que apunte al norte o si no es posible usar un offset para corregir el valor.

6.4. Detector de movimiento

El PIR HC-SR501 es un detector de movimiento preparado para placas Ar-
duino con dos potenciómetros para regular la sensibilidad y el tiempo de ac-
tivación tras detectar movimiento. Existe un jumper que permite cambiar la
modalidad de disparo, disparo repetido en el que la señal está constantemente
alternando o disparo único en el que la señal permanece activada. Requiere 5V
de alimentación, un cable a tierra y el cable de señal con salida a 5V que deberá
ser convertido a 3,3V para el Arduino Due.

Cada vez que el dispositivo detecta movimiento, se dispara una interrupción
en el Arduino que aumenta la variable que contiene el número de detecciones,
GuruPlug lee los datos cada 10 segundos.

6.5. Sensor de humedad y temperatura

El sensor DHT22 permite medir simultáneamente la humedad y la temper-
atura debiendo dejar más de dos segundos entre lecturas. Tiene cuatro pines:
El pin de alimentación de 5V, pin de salida de datos a 5V, un pin cuyo uso no
es necesario para este proyecto y por último el pin final para tierra.

En el código hace falta usar la libreŕıa cactus io DHT22 que se encarga de
facilitar la lectura de los valores del sensor. Es necesario inicializar el sensor con
la función dht.begin() y a partir de ah́ı usar las funciones disponibles para leer
los valores del sensor, teniendo en cuenta siempre, que el sensor está preparado

26

para solo actualizarse cada dos segundos por lo que al realizar lecturas con
intervalos menores se recibe el mismo valor.

6.6. Sensor de ultrasonidos

El sensor de ultrasonidos HC-SR04 para Arduino mide la distancia a la que
se encuentra un objeto o ĺıquido. Tiene un rango mı́nimo de dos cent́ımetros y
un máximo de cuatro metros [9].

Tiene cuatro pines para conexiones, uno de alimentación de 5v, uno para
tierra, un pin de trigger y otro de echo, estos dos últimos pines son el que se
usa para realizar la petición de medición de distancia y la señal que avisa de la
recepción del ultrasonido respectivamente.

El sensor funciona de la siguiente manera, hay un emisor de ultrasonidos
y un receptor de ultrasonidos, cuando el sensor recibe una señal en el pin de
trigger, este env́ıa el ultrasonido. El ultrasonido rebotará contra alguna superficie
y volverá al sensor donde será detectado por el receptor de ultrasonidos que
activará el pin de echo.

En el código del Arduino es necesario llamar a una función de libreŕıa que
mide el tiempo que tarda hasta que llega la señal de echo. Con el tiempo y
conociendo la velocidad del sonido en el aire podemos calcular la distancia del
objeto sobre el que ha rebotado el ultrasonido

27

Figura 14: Diagrama de Gantt del proyecto.

7. Gestión del proyecto

Como se expuso previamente se ha utilizado una metodoloǵıa ágil para la
realización del proyecto. A continuación se muestra en detalle la planificación
del proyecto, las horas de trabajo y las herramientas utilizadas para la admin-
istración y gestión del trabajo.

7.1. Planificación

El proyecto comenzó el d́ıa 15 de febrero de 2016, principalmente definiendo
los objetivos y las funcionalidades a ser desarrolladas. Acabada esta fase pre-
liminar se comenzó con el análisis del proyecto para realizar posteriormente un
primer diseño.

Las iteraciones en las que se realizan análisis, diseño, implementación, prue-
bas y documentación concluyen el d́ıa 29 de julio. Tras las iteraciones se dedicó
un tiempo a acabar la memoria que ya se hab́ıa comenzado previamente y dejarla
preparada para el depósito (Figura 14).

7.2. Tiempo dedicado

Para la realización del proyecto se han invertido unas 392 horas, estas in-
cluyen las fases de análisis, diseño, implementación y documentación (Figura
15).

7.3. Herramientas de gestión

Se han utilizado las siguientes herramientas para administrar y gestionar la
elaboración del proyecto.

28

Figura 15: Tiempo dedicado por tarea.

GitLab. Es una plataforma de desarrollo colaborativo para alojar proyec-
tos en un servidor privado de la empresa usando el sistema de control de
versiones Git. Se ha usado para almacenar el código del proyecto.

Google Drive. Servicio de alojamiento de archivos donde se ha almacenado
documentación sobre el proyecto.

Gantt Project. Herramienta para crear diagramas de Gantt.

draw.io. Herramienta hospedada en una página web que permite realizar
diagramas de todo tipo incluyendo diagramas UML.

29

8. Conclusiones

Una vez finalizado el proyecto, se realizan las valoraciones sobre el desarrollo
y el resultado obtenido del proyecto.

8.1. Resultados

Con el proyecto acabado se ha conseguido implementar el sistema diseñado
cumpliendo con todas las especificaciones definidas al comienzo del proyecto. El
sistema final permite obtener datos de sensores y dispositivos, comunicarlos con
el protocolo DNP3 y TLS a un máster que monitoriza y analiza los datos y que
es capaz de responder ante valores impropios de los dispositivos enviando una
respuesta que corrige el funcionamiento de los dispositivos y sensores.

Se ha desarrollado un ejecutivo ćıclico soft real-time que obtiene las tareas
de un fichero de configuración y que permite cambiar las tareas sin necesidad
de recompilar el código.

Por último se ha implementado una comunicación Modbus con una placa
Arduino para obtener los valores de los sensores que también han sido progra-
mados y calibrados.

8.2. Lecciones aprendidas

Durante el desarrollo del proyecto se han aprendido lecciones que serán útiles
para futuros proyectos.

Documentarse minuciosamente antes de implementar: Usando libreŕıas en
ocasiones la solución parece simple y obvia, pero en varias ocasiones ha
ocurrido que ha sido necesario cambiar la implementación de la libreŕıa
tras comprobar que la implementación inicial no daba el resultado esper-
ado y la documentación ya explicaba el posible problema.

Realizar pruebas completas al finalizar cada funcionalidad: En alguna
ocasión después de implementar una funcionalidad simple las pruebas re-
alizadas no cubŕıan todos los casos y poco después habiendo avanzado a
otras funcionalidades, la funcionalidad inicial falló en un caso especial que
no se hab́ıa comprobado.

Metodoloǵıa de ingenieŕıa inversa: Previamente a este proyecto nunca
hab́ıa intentado usar ingenieŕıa inversa. Al principio la investigación fue
lenta, pero con organización y con una metodoloǵıa establecida se aumentó
la productividad.

8.3. Conclusión personal

El proyecto ha requerido bastante organización, especialmente debido a la
envergadura que tiene ya que hasta ahora nunca hab́ıa realizado un proyecto tan
grande, no solo ha sido un proyecto de desarrollo de software sino que también

30

ha requerido implementar sensores f́ısicos. Además el proyecto requeŕıa que se
ejecutase en los GuruPlug ARM por lo que ha sido necesario crear un entorno de
compilación cruzada con BuildRoot para poder ejecutar el código en máquinas
ARM.

He aprendido a usar tecnoloǵıas y libreŕıas que no conoćıa pero también he
mejorado mi conocimiento de otras que ya conoćıa como el lenguaje de progra-
mación C, que aunque ya lo hab́ıa usado varias veces, nunca lo hab́ıa hecho a
este nivel de profundidad.

Además me he tenido que desenvolver en un entorno laboral real. Aunque el
proyecto ha sido individual, he debido de colaborar con compañeros para ciertas
tareas y cada pocas semanas mostrar como avanzaba el proyecto a mi director
de TFG.

Por último, la realización del proyecto me ha aportado madurez, capaci-
dad organizativa y la paciencia para enfrentarme a nuevos proyectos de gran
envergadura.

8.4. Futuro del proyecto

Este proyecto de SCADA con comunicación DNP3 ha sido completado y
ya está preparado para ser incluido en una instalación industrial, de hecho la
parte de Arduino y sensores ya forma parte de la instalación de la depuradora
de Aylés.

No obstante, es posible ampliar el proyecto añadiendo nuevos objetos DNP3,
nuevos sensores u otras funcionalidades que se crean adecuadas. El protocolo
DNP3 está preparado para transmitir cualquier tipo de dato que sea necesario.

31

Bibliograf́ıa

[1] J. Thomas, How to Set Up Buildroot/QEMU/ARM Cross-
Development Environment, 28 Febrero 2010, [En ĺınea],
http://processors.wiki.ti.com/images/f/f5/Aaa.pdf

[2] V. Prakash, Advantages of the DNP3 Communications Protocol in
Water and Wastewater Telemetry Systems, Enero de 2012, [En ĺınea],
http://www.automation.com/pdf articles/1261002 DNP3WaterWastewaterWP.pdf

[3] Citrix, How to Decrypt SSL and TLS Traffic Using Wireshark, 25 Noviembre
2015, [En ĺınea], http://support.citrix.com/article/CTX116557

[4] J. McFadyen, Calculating a CRC in DNP3.0 proto-
col, 1 Noviembre 2000, [En ĺınea], https://www.experts-
exchange.com/questions/11722859/Calculating-a-CRC-in-DNP3-0-
protocol.html

[5] Mark A. Linder, A Library For Processing Struc-
tured Configuration Files, 16 Mayo 2015, [En ĺınea],
http://www.hyperrealm.com/libconfig/libconfig manual.html

[6] OpenSSL Validation Services, Inc., OpenSSL FIPS Object Module v2.0,
10 Mayo 2016, [En ĺınea], https://www.openssl.org/docs/fips/UserGuide-
2.0.pdf

[7] E. Oswald, What is IFTTT and How Does It Work?, 30 Junio 2016, [En
ĺınea], http://www.digitaltrends.com/cool-tech/what-is-ifttt-and-how-does-
it-work/

[8] Modicon, Modicon Modbus Protocol Reference Guide, Junio 1996, [En ĺınea],
http://modbus.org/docs/PI MBUS 300.pdf

[9] L. Llamas, Medir distancia con arduino y sensor de ultrasonidos, 16 Ju-
nio 2015, [En ĺınea], http://www.luisllamas.es/2015/06/medir-distancia-
con-arduino-y-sensor-de-ultrasonidos-hc-sr04/

32

Anexos

33

1. Anexo 1

Cuadro 3: Requisitos funcionales
Código Requisito funcional
RF1 El sistema estará compuesto por tres sistemas empotrados distintos: El

Arduino, el GuruPlug con funcionalidad outstation y el GuruPlug con
funcionalidad máster. Un arduino está conectado a un sólo GuruPlug con
funcionalidad outstation y varios Guruplug con funcionalidad outstation
pueden estar conectados a un Guruplug con funcionalidad máster.

RF2 La comunicación entre el máster y el outstation se realizará mediante el
protocolo DNP3 sobre TCP/IP.

RF3 La comunicación entre la Placa Arduino y el GuruPlug outstation se
realizará usando el protocolo Modbus.

RF4 La comunicación DNP3 podrá opcionalmente realizarse de forma encrip-
tada usando el protocolo de seguridad TLS.

RF5 El arduino se encargará de controlar las comunicaciones con los sensores,
muestreando los valores según el tipo de sensor y recolectando todos los
valores en la memoria del arduino para después poder enviárselos al
GuruPlug outstation.

RF6 El GuruPlug outstation se encargará de comunicarse con el Arduino
mediante el protocolo modbus para coger los datos, empaquetará los
datos en un mensaje DNP3 y los enviará al GuruPlug máster, cuando
reciba una respuesta del máster, el GuruPlug outstation se encargará de
analizarla y realizar las acciones necesarias en los sensores.

RF7 El GuruPlug máster recibirá el mensaje DNP3 del GuruPlug outstation,
procesará la información recibida y devolverá una respuesta al GuruPlug
outstation.

RF8 Al recibir un mensaje DNP3, el máster ha de ejecutar un script basado
en tecnoloǵıa IFTTT que permita comprobar que el rango de los datos
recibidos es válido. Generará una respuesta que contendrá únicamente
la palabra response.en caso de ser todos los valores válidos. Si se ha
detectado un valor inadecuado se añadirá además una acción que los
sensores/actuadores deberán realizar para corregir el valor inadecuado
componiéndose de la siguiente manera ı̈d del sensor código de acción”.

RF9 Tanto el máster como el outstation tendrán su propio fichero de config-
uración que permita variar el comportamiento del sistema: Uso o no de
criptograf́ıa, puertos e ips en los que se realizará la conexión o frecuencia
de envió de mensajes DNP3.

RF10 Existirán dos ficheros de configuración para los sensores. El primero de-
fine los sensores que han sido preparados para poder ser utilizados, con-
tienen una descripción del sensor y define el objeto y variación que se
usará para transmitir el valor en la comunicación DNP3. El segundo
fichero de configuración define los sensores que se van a utilizar en el
sistema actual y el periodo de muestreo de cada sensor.

34

