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Obtención de aditivos antioxidantes para biodiésel a partir de 

lignina mediante su procesado a alta presión y temperatura en 

presencia de disolventes 

RESUMEN 

El biodiésel es un carburante de origen natural obtenido mediante una reacción de transesterificación, en 

el caso del presente trabajo de fin de grado (TFG), a partir de aceites vegetales con metanol. Las 

características necesarias para su uso en motores diésel vienen reguladas por la norma UNE-EN 14214. 

Dentro de los parámetros de calidad establecidos por dicha norma, algunos de los más importantes son la 

estabilidad a la oxidación y su comportamiento a bajas temperaturas. En muchas ocasiones, el biodiésel, 

especialmente el obtenido a partir de materias primas residuales de baja calidad, incumple los requisitos 

especificados en dicha norma. Por este motivo, es necesario el uso de aditivos. 

En el presente trabajo de fin de grado (TFG) se plantea la obtención de aditivos antioxidantes a partir de 

lejía negra, en la que está disuelta la lignina. La lignina es un polímero amorfo, orgánico, insoluble, presente 

en la naturaleza y es una fuente potencial de productos químicos, entre los que destacan los compuestos 

fenólicos, que han demostrado un comportamiento eficaz como antioxidantes para el biodiésel. 

Como parte del trabajo llevado a cabo, se ha obtenido lignina a partir de paja de cereal de cebada mediante 

un proceso tipo soda. La lejía negra ha sido tratada a alta presión y temperatura, a distintos tiempos de 

reacción y en presencia de disolventes: agua, etanol y ácido fórmico, para llevar a cabo su 

despolimerización. El producto líquido obtenido en la despolimerización se ha utilizado para aditivar el 

biodiésel. Asimismo, se ha estudiado el efecto del tiempo de reacción, la temperatura y el ratio ácido 

fórmico/etanol sobre las características del biodiésel aditivado: estabilidad a la oxidación, comportamiento 

a bajas temperaturas, punto de obstrucción de filtro frio (POFF), y la viscosidad. 

Se han obtenido buenos resultados con casi todos los productos obtenidos, llegándose a alcanzar una 

mejora de la estabilidad a la oxidación del 395% con respecto al biodiésel de aceite de girasol puro cuando 

se utilizó una temperatura de 325 ºC, un ratio ácido fórmico/etanol igual a 1 y un tiempo de reacción de 1 h 

en el procesado de la lejía negra. La estabilidad a la oxidación se ve favorecida cuando el aditivo se obtiene 

a mayor temperatura y ratio ácido fórmico/etanol. Por otra parte, el POFF mejora en los casos donde el 

aditivo se ha obtenido usando un ratio ácido fórmico/etanol de 0 y un tiempo de reacción de 1h. La 

viscosidad no se ha visto afectada por la introducción de aditivos. 
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1  Introducción y objetivos 

Actualmente la mayor parte del carburante utilizado en el sector de la automoción proviene de combustibles 

fósiles. Sin embargo, la variabilidad de los precios de estos, junto con la incertidumbre acerca del futuro de 

los suministros del petróleo y el creciente reconocimiento de su efecto negativo sobre el medio ambiente, 

han dado lugar a un interés crecente en los biocombustibles, como el biodiésel [1]. Por otra parte, las 

actuales políticas de la Unión Europea fomentan el uso de biocombustibles. Según la directiva (UE) 

2015/1513, en 2020 al menos un 7% del combustible deberá ser sustituido por biocombustible [2]. Además, 

se requiere la transición hacia biocarburantes avanzados o de segunda generación, en los que la materia 

prima utilizada no compita con la producción de alimentos (por ejemplo, sustituir gasóleo por biodiésel 

obtenido a partir de aceites residuales) [3]. 

Por las razones comentadas anteriormente, el biodiésel es una alternativa a los combustibles fósiles que 

presenta un carácter renovable y una menor emisión de gases contaminantes. El biodiésel se obtiene 

industrialmente a partir de triglicéridos (grasas animales, aceites vegetales…) mediante una reacción de 

transesterificación [4]. Las especificaciones que debe cumplir para su uso en motores diésel en la Unión 

Europea están reguladas por la norma UNE-EN 14214:2013 [5]. 

El principal problema del biodiésel para su uso como combustible de automoción es que alguna de sus 

propiedades puede no cumplir con las especificaciones de la norma UNE, especialmente la estabilidad a la 

oxidación y su comportamiento a bajas temperaturas, que se determina mediante el punto de obstrucción 

de filtro frío. Por este motivo, se hace imprescindible el uso de aditivos que mejoren estas propiedades. 

Los aditivos que se usan normalmente para mejorar la estabilidad a la oxidación son sintéticos y su coste 

es elevado. Por este motivo sería interesante poder utilizar aditivos de origen natural y con carácter 

renovable. Si bien las aminas y fenoles son los antioxidantes más comunes, son los compuestos fenólicos 

los que han demostrado una mayor efectividad en la mejora de la estabilidad a la oxidación [6]. 

En este trabajo se propone obtener aditivos para mejorar la estabilidad a la oxidación a partir de lejías 

negras, residuo principal de la industria papelera. La lejía negra contiene lignina que es un polímero natural, 

de estructura compleja y compuesto principalmente por fenoles. La lejía negra se obtuvo a partir de la 

digestión con sosa de paja de cereal de cebada (proceso semiquímico) y se sometió a distintas condiciones 

de temperatura y tiempo de reacción en presencia de disolventes bajo presión autógena, para obtener 

dichos aditivos. Con el mismo fin, se realizó de forma paralela a este trabajo de fin de grado, otro en 

presencia sólo de agua (sin disolventes), con diferentes concentraciones de lignina y temperaturas y se 

adicionaron catalizadores para unas condiciones determnadas. 

Para conseguir el objetivo global, se han planteado las siguientes tareas: 
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 Obtención de lejía negra tipo soda a partir de paja de cebada 

 Tratamiento térmico de la lejía negra a presión y temperatura para la obtención de aditivos 

antioxidantes. 

 Aditivación del biodiésel  

 Análisis de las propiedades del biodiésel: estabilidad a la oxidación, punto de obstrucción de filtro 

frío y viscosidad. 
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2  Antecedentes  

2.1  Biodiésel 

Según la Asociación de Productores de Energía Renovables (APPA), “el biodiésel es un biocarburante 

líquido que sustituye al gasóleo fósil. Se obtiene a partir de aceites vegetales frescos –de colza, soja o 

palma, entre otros– y aceites de cocina usados y grasas animales. Se utiliza en motores diésel mezclado 

con gasóleo fósil en distintas proporciones o en estado puro” [7]. 

Sus propiedades son prácticamente iguales a las del gasóleo respecto a densidad y número de cetano. 

Además, su punto de inflamación es mayor, lo que lo que supone una ventaja desde el punto de vista de la 

seguridad. Debido a que las propiedades de ambos son similares, se pueden mezclar en cualquier 

proporción e incluso sustituir el gasóleo totalmente [8], lo que disminuiría el uso de combustibles fósiles y 

las emisiones contaminantes. 

2.1.1  Producción de biodiésel 

La reacción global para la obtención del biodiésel es una reacción de transesterificación de aceites o grasas. 

Consiste en la reacción de un triglicérido con un alcohol para formar ésteres y glicerina, como puede verse 

en la Figura 1 [9]. Los alcoholes que se usan generalmente son metanol y etanol. El metanol presenta la 

ventaja de que los productos principales de reacción, los ésteres metílicos y los ácidos grasos, son poco 

miscibles, por lo que forman dos fases fácilmente separables [10]. El metanol no sólo tiene una buena 

capacidad para llevar a cabo reacción, sino que su coste es bajo. Se trabaja siempre con un exceso de 

alcohol para desplazar la reacción de equilibrio hacia la formación de producto. En la reacción de 

transesterificación se suelen utilizar catalizadores para mejorar el rendimiento y la velocidad que 

principalmente suelen ser de tipo básico (hidróxidos, N-heterocíclio NHC…), aunque también se utilizan 

algunos con carácter ácido (ZrCl4) [10] [11]. 

 

Figura 1: Reacción de transesterificación [9] 
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La transesterificación de los triglicéridos consiste realmente en tres reacciones reversibles en serie, como 

puede verse en la Figura 2. En la primera, por cada mol de triglicérido reacciona uno de metanol dando 

lugar a un diglicérido y un éster metílico. En la segunda, cada mol de diglicérido reacciona con otro de 

metanol para formar otro de éster metílico y un monoglicérido. Finalmente, en la tercera reacción se obtiene 

otro éster metílico y glicerina a partir del monoglicérido [4]. El biodiésel final consiste en la mezcla de ésteres 

metílicos. La glicerina obtenida en la tercera etapa es un subproducto del proceso. 

 

 

 

Figura 2: Reacciones en serie de transesterificación  

2.1.2  Contexto nacional e internacional 

Actualmente la mayor parte del biodiésel se produce en la Unión Europea. España es uno de los países 

que encabeza el ranking de capacidad productiva, superada sólo por Alemania en el año 2014. En la Figura 

3 puede verse el ranking de países que lideran la capacidad productiva en Europa durante los años 2012, 

2013 y 2014. 
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Figura 3: Capacidad productiva de biodiésel en la UE en los años 2012 ,2013 y 2014 [12] 

 

Figura 4: Producción de biodiésel en la UE en los años 2012 y 2013 [12] 

España tenía una capacidad productiva de 4194 miles de toneladas al año en 2013, como se muestra en 

la Figura 3, lo que supone un 18% de la capacidad productiva europea en ese año. Esto contrasta con la 

producción real de biodiésel (Figura 4), en la que España se encuentra en quinto lugar con una producción 

de 387 miles de toneladas, lo que supone tan sólo un 6% de la producción total europea de ese año. 

En la Figura 5 se muestra la contribución de la producción de biodiésel al Producto Interior Bruto (PIB) de 

España. En el año 2010 se produjo un máximo de 328 millones de euros y fue descendiendo hasta el año 

2013, en el que alcanzó un mínimo de 166.3 millones de euros. Ese año tuvieron que cerrar 15 plantas de 

producción de biodiésel. A pesar de estos datos, la capacidad instalada en 2014 subió de nuevo respecto 

al año anterior. 

El descenso de la contribución al PIB del subsector del biodiésel demuestra el deterioro de este sector en 

España. Además, a principios de 2013 el gobierno decretó una rebaja de los objetivos de utilización de 

biodiésel desde un 7,0% a un 4,1%. Esto supuso una reducción del consumo global de biocarburantes de 

un 6,5% a un 4,1% respecto al año anterior [13] [14]. 
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Figura 5: Contribución al PIB del biodiésel en términos energéticos [13] 

Actualmente la Unión Europea fomenta el uso de biocarburantes de segunda generación como el biodiésel. 

La Directiva (UE) 2015/1513 establece el objetivo 20/20/20, según el cual se pretende una reducción del 

20% de emisiones de gases de efecto invernadero, un aumento del 20% del uso de energías renovables y 

mejorar la eficiencia energética en un 20% para el año 2020, respecto 1990 [2], razón por la cual el biodiésel 

se convierte en un factor clave para el cumplimiento dicho objetivo.  

2.1.3  Propiedades del biodiésel 

Algunas propiedades del biodiésel obtenido como ésteres metílicos son más parecidas a las del gasóleo 

que a las del aceite vegetal de origen. Por esa razón es posible mezclarlo con el gasóleo en cualquier 

proporción [15]. 

Según la Unión Europea, el biodiésel debe cumplir una serie de requisitos para poder usarse como 

combustible, recogidos en la norma UNE-EN 14214:2013 [5]. En el Anexo I.1 pueden verse los valores de 

las propiedades del biodiésel requeridos por dicha norma. 

Algunas de las propiedades más importantes establecidas en esta norma son la estabilidad a la oxidación, 

el punto de obstrucción de filtro frío (POFF) y la viscosidad. 

La calidad final del biodiésel depende en gran medida de la materia prima utilizada en su producción. El 

aceite vegetal es biodegradable y, por tanto, el biodiésel también. Esta capacidad de degradarse afecta a 

su estabilidad en el tiempo y se mide en función de su estabilidad a la oxidación. Aunque puede parecer 

una ventaja medioambiental a priori, no resulta conveniente en su utilización como carburante, ya que 

impide que pueda almacenarse durante periodos prolongados después de producirse. Existen varios 

factores que pueden afectar a la estabilidad a la oxidación, como la presencia de oxígeno, el calor, el 

contenido de trazas de metales, peróxidos, la luz y, principalmente, la presencia de dobles enlaces. La 

estabilidad a la oxidación aumenta al disminuir el contenido de dobles enlaces de los ésteres metílicos, ya 
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que estos son muy reactivos con el oxígeno [16]. Por estos motivos, es necesaria la utilización de aditivos 

antioxidantes capaces de evitar o retrasar la oxidación del biodiésel. 

Otro parámetro importante es el comportamiento del biodiésel a bajas temperaturas. El punto de 

congelación del biodiésel es bastante alto y superior al diésel de petróleo, y se controla mediante diversos 

parámetros. Uno de estos parámetros es el punto de obstrucción de filtro frío (POFF), definido como la 

temperatura más baja a la que al menos 20 mL de combustible pasan por un filtro de tamiz de malla de 45 

mm y 15 mm de diámetro en 1 min con una diferencia de presión entre ambos lados de 200 mm de H2O de 

vacio [17]. Los requisitos que aparecen en la norma respecto a este parámetro hacen referencia a climas 

templados y climas árticos. Los valores de POFF para clima templado están comprendidos entre 5 y -20ºC, 

mientras que en un clima ártico están comprendidos entre -20 y -44 ºC [5]. Los valores de POFF del 

biodiésel sin tratar se encuentran entre 10 y -15 ºC. El POFF depende del grado de saturación de las 

cadenas largas. Cuanto mayor es la proporción de enlaces simples, mayor es su valor, lo que supone un 

peor comportamiento a bajas temperaturas [16]. La presencia de dobles enlaces dificulta la sólidificación 

del biodiésel, ya que a diferencia de los enlaces simples, estos tienen una movilidad restringida en el 

espacio y se obstaculiza la congelación. 

La viscosidad es una propiedad importante, ya que una alta viscosidad provoca problemas en el 

funcionamiento del motor, como una mala atomización tras la inyección en la cámara de combustión. La 

reacción de transesterificación de aceites reduce la viscosidad de los ésteres metílicos [18]. 

2.2  Estabilidad a la oxidación y necesidad del uso de antioxidantes 

Como se ha comentado, el biodiésel es más sensible a la degradación que el gasóleo debido a la presencia 

de ácidos grasos insaturados. Existen varios tipos de degradación: oxidación en presencia de oxígeno, 

degradación térmica, hidrólisis en presencia de humedad y por contaminación microbiana [19]. 

La oxidación es la que juega un papel más determinante. El proceso de oxidación del biodiésel se produce 

a través de la reacción en cadena descrita a continuación:  

Iniciación:  RH + I  R•+ IH 

Propagación:  R• + O2  ROO• (rápida) 

  ROO• + RHROOH + R• 

Terminación: R• + R• R-R Productos estables 

  ROO• + ROO•  ROO-ROO Productos estables 

Durante la etapa de iniciación, se pierde un hidrógeno del doble enlace del éster metílico (RH) por acción 

de un iniciador (I), dando lugar a la formación de un radical libre (R•). Dicho radical es muy reactivo con el 



Obtención de aditivos antioxidantes para biodiésel a partir de lignina mediante 

su procesado a alta presión y temperatura en presencia de disolventes 

Página 8 de 38 

 

oxígeno y se transforma en un radical libre de peróxido (ROO•). Aunque no es tan reactivo como R•, es 

capaz de captar otro hidrógeno del doble enlace del éster métilico (RH) para formar otro radical libre (R•) 

más un hidroperóxido (ROOH). Este radical (R•) puede seguir reaccionando con el oxígeno y continuar el 

ciclo de propagación. La etapa de terminación tiene lugar por acoplamiento de dos radicales libres R • - R•, 

ROO• - ROO• para formar productos estables. Inicialmente la concentración de ROOH es baja, pero llega 

un momento que aumenta rápidamente esto se denomina inducción, e indica el inicio del proceso de 

oxidación. [20] [6]. 

Los antioxidantes químicos inhiben el proceso de oxidación. Según el modo de hacerlo se distinguen varios 

tipos: sustancias capaces de reaccionar con el oxígeno en sistemas cerrados, agentes quelantes con iones 

metálicos y compuestos que eliminan radicales libres. Los antioxidantes secundarios, correspondientes a 

los dos primeros tipos, ralentizan el proceso de oxidación descomponiendo los hidroperóxidos para evitar 

la propagación de la reacción en cadena [19]. Los antioxidantes primarios son compuestos que reaccionan 

con los radicales libres y transforman el biodiésel en un producto termodinámicamente estable. Ejemplos 

de estos antioxidantes son compuestos como los fenoles y las aminas. En el caso del biodiésel, los fenoles 

son los antioxodantes más utilizados [6]. 

El mecanismo mediante el cual los fenoles (FH) inhiben el proceso de oxidación es el siguiente: 

ROO• + FH ROOH + F• 

ROO• + F• ROOF 

RO• + FH  ROH + F• 

RO• + F•  ROF 

La ventaja que ofrecen estos compuestos frente a otros es que son donores de hidrógeno, por lo que 

pueden detener la reacción de propagación. Además, son capaces de deslocalizar electrones, evitando que 

reaccionen con el oxígeno [19]. Algunos ejemplos de antioxidantes fenólicos usados para mejorar las 

propiedades del biodiésel son terbutil-hidroquinona (TBHQ), butil-hidroxiansol (BHA) y butil-hidroxitolueno 

(BHT). Los mejores resultados con biodiésel de origen vegetal se obtienen con TBHQ, siendo los resultados 

de BHA y BHT muy parecidos [19] [21]. 

2.3  Obtención de aditivos antioxidantes a partir de lignina 

Como se ha explicado anteriormente, los fenoles son unos antioxidantes muy efectivos. La lignina, polímero 

presente en las plantas leñosas, contiene fenoles en su estructura, por lo que representa una opción 

atractiva para la obtención de los mismos. 
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2.3.1  Generalidades de la lignina  

La lignina es uno de los principales componentes de la fibra vegetal, junto con la celulosa y hemicelulosa. 

La proporción de los tres compuestos puede variar dependiendo del tipo de planta e incluso de la zona 

considerada dentro de la misma planta [22]. 

La lignina es un heteropolímero amorfo, complejo, orgánico e insoluble. Está constituido por tres alcoholes 

diferentes, p-cumarílico, coniferílico y sinapílico, mostrados en la Figura 6 [23]. No se puede definir de forma 

clara la estructura de la lignina, ya que los alcoholes están entrelazados entre sí de forma aleatoria. La 

función principal de la lignina es proporcionar a las plantas soporte estructural, impermeabilidad y 

resistencia contra agentes microbianos y estrés oxidativo [23]. 

 

Figura 6: Componentes de la lignina [23] 

Debido a su composición, la lignina se considera una fuente potencial de productos químicos y 

combustibles. Actualmente, la mayor parte de lignina se usa para producir energía mediante su combustión. 

Menos del 5% se utiliza en la obtención de productos químicos debido a dos razones principales. La primera 

es que la estructura de la lignina es muy estable desde el punto de vista químico y, por tanto, es difícil de 

despolimerizar. Además, contiene gran cantidad de oxígeno, lo que evita que los productos puedan ser 

utilizados como combustibles líquidos tradicionales. La segunda razón es la disponibilidad de derivados del 

petróleo para producir plásticos sintéticos, polímeros fibras, etc., más fácilmente y con un mayor margen 

de beneficio económico. No obstante, la creciente preocupación por el medio ambiente, la incertidumbre 

acerca del precio de los combustibles fósiles y la creciente demanda de energía hacen crecer el interés por 

recursos renovables como la lignina [23]. 

Debido a su estructura fenólica los productos de la despolimerización de la lignina pueden usarse, entre 

otras cosas, como antioxidantes para biodiésel y este va a ser el objeto del presente trabajo. 
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2.3.2  Obtención y tipos de lejía negra 

La lejía negra, que contiene gran cantidad de lignina disuelta, se obtiene habitualmente como un 

subproducto de la producción de papel. 

Existen principalmente cuatro tipos de lejía negra según las diferentes formas de obtención de la pasta de 

papel: kraft, sulfito, soda y otras experimentales, como la Organosolv. El proceso tipo Kraft es la forma más 

frecuente de obtención de pasta de papel, aunque el proceso tipo soda es fácil de realizar a nivel de 

laboratorio y, además, la lignina no contiene azufre, a diferencia del tipo kraft y sulfito. Más información 

sobre los distintos tipos de lejía negra se encuentra en el Anexo I.2. 

2.3.3  Despolimerización 

La lignina es un polímero complejo natural constituido por diferentes grupos funcionales, lo que la convierte 

en una materia prima potencial para la obtención de compuestos químicos de alto valor añadido y de gran 

interés industrial, como fenoles, poliésteres, poliuretano y resinas epoxi. Sin embargo, su estructura es muy 

estable y la despolimerización de la misma es una difícil tarea [24]. 

Existen diferentes vías de despolimerización, entre las que destacan la solvólisis (hidrólisis si el medio es 

agua), pirólisis, despolimerización oxidativa e hidrogenólisis. 

La solvólisis es un tipo de sustitución nucleófila o reacción de eliminación, en la que el nucleófilo es una 

molécula del disolvente. Se le da diferentes nombres según el disolvente aplicado, así en el caso en que el 

disolvente es agua, se llama hidrólisis y, si es un alcohol, se llama alcohólisis [25]. Uno de los alcoholes 

más utilizados es el etanol. Se trata de un disolvente polar que además actúa como medio dispersante, 

mejorando la solubilidad de la lignina y los fenoles, formando una fase homogénea, y facilitando la 

despolimerización [26]. La hidrólisis se puede realizar en presencia de catalizadores o solamente con el 

disolvente. Como catalizador básico se puede emplear NaOH y como catalizador ácido H2SO4 [27]. 

La pirolisis es la descomposición térmica a alta temperatura en una atmósfera inerte. Mediante este proceso 

se obtiene una fase líquida, un sólido y una fase gaseosa. Los compuestos fenólicos se encuentran en la 

fase líquida o bio-oil [28].  

La despolimerización oxidativa consiste en tratar a la lignina a presiones y temperaturas moderadas en 

presencia de un agente oxidante, preferentemente O2 o aire y un catalizador de oxidación (por ejemplo, 

metiltrioxorenio) [29]. 

La hidrogenólisis o hidrogenación consiste en someter a la lignina a unas condiciones de presión y 

temperatura moderadas - altas, en presencia de H2 (o disolventes donores de hidrógeno, como puede ser 
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el ácido fórmico) en un medio acuoso. El hidrógeno generado reacciona con el oxígeno presente en la 

lignina, rompiendo los enlaces y facilitando la despolimerización [26] [29]. 

La hidrogenólisis da solución a uno de los problemas más importantes de la despolimerización: la re-

polimerización de los radicales libres formados que dan lugar a sólidos carbonosos (residuos). Esto se debe 

a que el hidrógeno es altamente reactivo, siendo capaz de reaccionar con el oxígeno e hidrogenar los 

radicales durante la reacción [30] [26]. 

El ácido fórmico es un disolvente donor de hidrógeno, que se descompone según las siguientes reacciones: 

Deshidratación  HCOOH CO + H2O 

Deshidrogenación HCOOH  CO2 + H2 

La deshidratación (1) no está favorecida en medio acuoso. La deshidrogenación (2) es la reacción que 

aporta el hidrógeno necesario para la hidrogenólisis. El ácido fórmico juega el papel de donor de hidrógeno 

in situ, generando hidrógeno atómico y dióxido de carbono [30] [26]. 
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3  Materiales y métodos  

En este apartado se van a detallar los materiales, instalaciones y procedimientos experimentales que se 

utilizaron en la realización de este trabajo de fin de grado. 

3.1  Producción de lejía negra: obtención de Lignina  

La lejía negra se ha obtenido mediante un proceso tipo soda. La paja de cereal (cebada) se digirió con una 

disolución de agua e hidróxido de sodio a una temperatura próxima a 100ºC [29] [31]. La cantidad de NaOH 

adicionada era equivalente al 9% del peso de la paja, mientras que la masa total de disolución era 15 veces 

el peso de la paja. Esta proporción ha sido optimizada en trabajos anteriores por el grupo de procesos 

termoquímicos (GPT). 

En la producción de lejía negra se utilizaron dos instalaciones diferentes: Un sistema experimental con un 

reactor discontinuo cerrado (Figura 7) al que se denominará R1, y otro sistema, con un reactor discontinuo 

abierto a la atmósfera, al que se denominará R2. 

El sistema R1 consta de 

 2 reactores de vidrio de 1200 y 800 mL de capacidad, que trabajan a presión atmosférica. 

 Agitadores Heidolph RZR 1, que permiten mantener la mezcla del reactor en continua agitación. La 

varilla de agitación se introduce en el reactor a través de uno de los orificios de su tapa de cierre. 

 Mantas calefactoras P-Selecta “Fibroman-N” con sus respectivos termómetros de contacto 

electrónico Sensoterm II, para calentar y mantener la temperatura deseada en el reactor. La sonda 

para la medida de la temperatura se introduce en el reactor a través de otro de los orificios de su 

tapa de cierre. 

 Condensadores de vidrio de tipo serpentín, refrigerados con agua mediante un baño criotermostato 

de circulación P-Selecta Frigiterm -10. El condensador se conecta a la tapa del reactor mediante 

una unión esmerilada. Permiten recuperar el metanol evaporado durante la reacción, ya que se 

trabaja a una temperatura cercana al punto de ebullición de este alcohol (65ºC). 
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Figura 7: Sistema de reacción R1 

El procedimiento seguido en el sistema experimental R1 para la obtención de aditivos fue el siguiente: 

Se adicionaron 80 y 40 g de paja en el reactor de vidrio grande y pequeño, respectivamente. Guardando la 

misma relación agua-hidróxido de sodio mencionada anteriormente, se añadieron 7,2 g de hidróxido de 

sodio y 1192,8 g de agua por 80 g de paja o 3,6 y 596,4 g de hidróxido de sodio y agua, cuando sólo se 

utilizaron 40 g de paja. Se vertió a cada uno de los reactores de vidrio la cantidad correspondiente de 

disolución y se cerró con la tapa esmerilada. Se introdujeron la sonda de temperatura en uno de los orificios, 

la varilla de agitación en el orificio central y se conectó el condensador. 

A continuación, se encendió la manta calefactora y se fijó la consigna en 98 ºC. Tras alcanzar la temperatura 

de reacción, se dejó la mezcla en agitación durante 3 horas. Una vez trascurrido el tiempo de reacción, se 

obtuvo un líquido de color negro denominado lejía negra, que contenía una parte importante de la lignina 

presente en el cereal. Trascurrido este tiempo, se apagó la manta calefactora y se dejó enfriar. Al terminar 

de enfriarse el reactor, se retiró la paja y se recogió la lejía negra. 

Por otra parte, el sistema experimental R2 consta de: 

 Una parte exterior de acero, de forma cilíndrica de 8 L de capacidad. 

 Una cesta agujereada de acero, en forma cilíndrica, y colocada en el interior donde se sitúa la paja. 

 Un agitador. 

 Una prensa manual. 
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 Una bombona de butano para calentar. 

 Un termómetro. 

El procedimiento que se siguió para la preparación de las lejías negras fue el siguiente: 

En primer lugar, se tomaron unos 500 g de paja y se lavaron con agua para eliminar posibles impurezas, 

como arena y arcilla. Después, se calcularon las cantidades de agua e hidróxido de sodio necesarias según 

la proporción anterior (7455 y 45 g, respectivamente). A continuación, se introdujo la paja en la parte interior 

del reactor y se cubrió con la disolución. Se calentó hasta unos 100 ºC comprobando la temperatura con el 

termómetro, a la vez que se mezcló con el agitador. Una vez se alcanzó la temperatura objetivo, se 

mantuvieron estas condiciones durante 3 horas. Es muy importante que la disolución cubra en todo 

momento la paja, por eso, si era necesario, se reponía el agua evaporada. 

Se dejó enfriar el reactor hasta temperatura ambiente. La paja residual se prenso con el fin de recuperar la 

mayor cantidad posible de lejía. Una vez retirada la paja, se procedió a concentrar la lejía negra desde la 

concentración de sólido inicial, que es aproximadamente de un 3%, hasta un contenido final de sólidos de 

un 15,22% (valor final medio). 

La lejía negra obtenida mediante ambos procedimientos se centrifugó a 4500 rpm durante 10 minutos para 

eliminar las impurezas y sólidos no solubles. Toda la lejía negra obtenida se mezcló, almacenó y congeló 

hasta su posterior uso, evitando así su degradación. De este modo, la lejía negra usada en todos los 

experimentos era homogénea y presentaba las mismas características. 

El sistema R1 presenta la ventaja de que mantiene en todo momento la relación agua-hidróxido de sodio. 

Además, no hay que realizar ninguna operación adicional durante el trascurso de la reacción. El sistema 

R2, abierto a la atmosfera, no conserva la relación agua-hidróxido de sodio. Requiere también una mayor 

precaución durante la extracción de la lejía negra. Sin embargo, su capacidad es mayor, y se puede obtener 

más lejía negra en una sola etapa. 

El porcentaje de sólidos de las muestras se calculó mediante la Ecuación 1. Conociendo el peso de un 

crisol, se adicionó una cantidad conocida de lejía negra y se dejó evaporar el líquido en un horno a 40ºC 

durante una noche 

% sólidos=
peso crisol después de secar - peso crisol vacío 

peso lejía negra
·100                                             (Ecuación 1) 
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3.2  Producción del aditivo 

Para la obtención de aditivos antioxidantes para biodiésel, se sometió a la lejía negra a un tratamiento a 

alta presión y temperatura, en presencia de diferentes disolventes, como agua, etanol y ácido fórmico. 

Los experimentos se realizaron en una tercera instalación experimental, R3, que incluía un reactor 

discontinuo agitado tipo autoclave preparado para trabajar a alta presión, Parr 4848, que se muestra en la 

Figura 8. El esquema de este reactor autoclave se encuentra en el Anexo II.1 La instalación experimental 

consta de los siguientes elementos: 

 Reactor tipo autoclave para trabajo a alta presión (Pmax = 350 bar, Tmax = 500 ºC). Posee un 

volumen de 500 mL y está fabricado en acero inoxidable. Dispone de un sistema propio de agitación 

y un horno incorporado. 

 Disco de ruptura, que permite el alivio de la presión del reactor si excede 310 bares y válvula de 

alivio, que permite disminuir la presión en el reactor si supera los 300 bar. 

 Módulo con control de la temperatura, control de la velocidad de agitación y pantalla para la 

visualización de la presión. 

 Electroválvula para controlar el flujo de agua de refrigeración.  

 Juntas de grafito para asegurar el buen cierre del reactor. 

 Bolsas tedlar para recogida de gases. 

 Micro-cromatógrafo de gases de la marca Agilent modelo 3000-A. 

 

Figura 8: Reactor autoclave para la despolimerización de la lignina 

En los experimentos realizados, se utilizaron siempre 100 g de lejía negra al 14% peso (obtenida mediante 

dilución de la lejía obtenida al 15,22 % de sólidos). Junto con la lejía negra se introdujeron 100 g de 

disolvente, que consistía en una mezcla de ácido fórmico y etanol en diferentes proporciones, dependiendo 
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del experimento. De esta forma, la concentración de lignina en la mezcla final sería siempre de un 7% en 

peso. Más detalles sobre la elección del disolvente y los experimentos realizados se pueden encontrar en 

el Apartado 3.3 y Anexo II.2. 

Una vez introducidos los 200 g de mezcla en el interior del reactor, se cerró y se programaron las 

condiciones de trabajo, tiempo de reacción (1, 2 ó 3 horas) y temperatura (250, 287,5 ó 325 ºC). 

Cuando finalizó la reacción se dejó enfriar el reactor durante aproximadamente 2 horas hasta alcanzar la 

temperatura ambiente. Una vez el reactor estuviese a temperatura ambiente, se observaba una presión 

residual debida a los gases formados. Estos se recogieron en una bolsa tedlar y se analizaron en un 

cromatógafo de gases (Micro-GC) marca Agilent, modelo 3000-A. Este equipo tiene dos canales de análisis 

independientes con un inyector común, dos columnas capilares (un tipo tamiz molecular y otra Plot U) y 

dos detectores de conductividad térmica (TCD). El gas portador de ambas columnas es helio. Los gases 

que se pueden analizar en este equipo son: H2, CH4, CO, CO2, C2H4, C2H6, C2H2, H2O y N2. 

A continuación, se abrió el reactor y se recogieron dos tipos de productos diferentes, denominados en este 

trabajo de fin de grado producto A y producto B. El producto A es la solución obtenida al volcar directamente 

el contenido del reactor en un vaso de precipitados. El producto B corresponde al líquido que se obtiene al 

lavar las paredes del reactor y el agitador con una mezcla de etanol y agua al 50% en peso y que contiene 

el sólido que no se ha podido recoger con el producto A. 

Una vez recuperados el producto A y el producto B, se filtraron a vacío cada uno de ellos por separado. El 

sólido filtrado del producto A se lavó sólo con agua para evitar la contaminación del producto final con 

etanol. El sólido presente en el producto B se lavó con una mezcla al 50% de etanol y agua. Los sólidos 

retenidos por el papel de filtro se secaron en un horno a 100ºC durante un día. El peso final de sólido 

recuperado corresponde al peso de los sólidos insolubles. 

Posteriormente, se determinó el contenido de sólidos solubles en ambos productos, A y B. Se depositó una 

cantidad pequeña de líquido en un crisol y se secó en un horno a 40ºC durante un día. Conociendo el peso 

del crisol vacío, el peso del líquido, y el peso tras el secado se calcula el porcentaje de sólidos solubles tras 

filtrar de igual forma que en la Ecuación 1. 

Se estudiará el posible uso como aditivo antioxidante de biodiésel de los productos A y B, una vez filtrados. 

Se han evaluado todas las cantidades de líquido y sólido recuperadas con el fin de realizar un balance de 

materia. 
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3.3  Diseño de experimentos 

En este apartado se van a describir las condiciones de operación elegidas para los experimentos de 

despolimerización de la lejía negra. 

Se estudió el efecto de la relación en peso de disolventes ácido fórmico/etanol (0-1), la temperatura (250- 

325 ºC) y el tiempo de reacción (1-3 horas) y sus posibles interacciones en las características de los aditivos 

antioxidantes para el biodiésel obtenido. Para ello se planteó un diseño de experimentos factorial a dos 

niveles y tres factores (23) con tres repeticiones en el punto central (relación ácido fórmico/etanol = 0.5, 

temperatura = 287.5 ºC, tiempo = 2 h), que permitieran evaluar el error experimental y la curvatura en los 

factores respuesta. Los experimentos realizados se muestran en la Tabla 1. La concentración de lejía negra 

se mantuvo constante en todos los experimentos, con un valor del 7% en la disolución final. Los motivos 

para la elección de los valores de las condiciones de operación se describen en el Anexo II.2. 

Tabla 1: condiciones de los experimentos para la producción de aditivos antioxidantes a partir de lejía negra 

Nº 
exp. 

Temperatura 
(ºC) 

Tiempo 
(h) 

Relación 
ác.Fórmico/Etanol 

1 250 1 0 

2 250 3 0 

3 325 1 0 

4 325 3 0 

5 250 1 1 

6 250 3 1 

7 325 1 1 

8 325 3 1 

9 287,5 2 0,5 

10 287,5 2 0,5 

11 287,5 2 0,5 

 

Con el fin de prevenir la aparición de sesgos en los resultados de los experimentos, estos se han realizado 

de forma aleatoria, siendo el orden resultante el siguiente: 1, 3, 4, 9, 2, 6, 8, 10, 7, 11 y 5. 

Como se ha comentado, toda la lejía negra utilizada procede de un mismo lote preparado del mismo modo. 

De esta forma todos los experimentos se realizan bajo condiciones experimentales lo más similares 

posibles para evitar sesgos de origen desconocido. 

También se llevaron a cabo dos experimentos adicionales. En el primero de ellos, se utilizó una relación 

ácido fórmico/etanol igual a 0 y una temperatura de reacción de 325 ºC. Una vez alcanzada la temperatura 

de reacción, se inició el enfriamiento del reactor inmediatamente, lo que corresponde a un tiempo de 

reacción de 0 h. Uno de los objetivos de este experimento era comprobar el efecto del tiempo de reacción 

en la mejora en la estabilidad a la oxidación conseguida por el aditivo en el biodiésel de aceite de girasol, 
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comparándolo con los experimentos 3 y 4. Por otro lado, ayudó a determinar cuál de los dos productos, A 

o B, servirán cómo aditivos. Este experimento se denominará experimento inicial (E0) 

En el segundo experimento adicional no se introdujo lejía negra en el reactor y fue sustituida por agua 

destilada. Se usó una relación ácido fórmico/etanol de 1 y una temperatura de 325 ºC. El objetivo en este 

caso era comprobar si las altas presiones obtenidas en el reactor en presencia de ácido fórmico eran 

debidas a la descomposición del propio ácido fórmico o a la formación de gases durante la 

despolimerización de la lignina. Debido a un aumento excesivo de la presión que podría dar lugar a 

problemas de seguridad, el experimento se interrumpió antes de 1 h. 

3.4  Preparación del biodiésel aditivado 

En este apartado se va a describir el procedimiento seguido para aditivar el biodiésel y prepararlo para los 

análisis descritos en el Apartado 3.5 . El biodiésel usado para comprobar el efecto del producto A o B se 

realizó con anterioridad al presente TFG. Para su producción se parte de aceite de girasol con una acidez 

inferior al 0,5% en peso y se lleva a cabo la reacción de transesterificación con un exceso de metanol. El 

procedimiento para la producción de biodiésel viene descrito en el Anexo II.3. 

En primer lugar, se pesaron unos 50 g de producto líquido A o B, después del filtrado, y se secaron casi 

completamente en un rotavapor a 60 ºC y 0,1 bar de presión durante aproximadamente una hora y media. 

Para evitar que el líquido entrase en ebullición de forma muy rápida y pasase al matraz receptor, primero 

se estableció una consigna de 40 ºC, y se dejó a esta temperatura hasta que el líquido dejó de hervir. 

Entonces se subió la temperatura lentamente hasta 60 ºC. 

Una vez eliminado el disolvente casi completamente, se le adicionó la cantidad de biodiésel 

correspondiente, calculada con la Ecuación 2, y se mantuvo unos 15 minutos en el rotavapor a 60ºC y 0,1 

bar de presión. La norma UNE-EN 14214:2013 [5] especifica que el contenido de esteres metílicos de 

ácidos grasos (FAME) debe ser al menos de un 96,7 %. En el presente TFG se adicionó un 3% de producto 

A o B (filtrado) como posible aditivo, para respetar dicha norma. 

masabiodiésel=
97

3
masaA ó B·%sólidos                                                                                            (Ecuación 2) 

El producto A o B (filtrado) y el biodiésel se mezclaron con agitación y sin calentamiento durante unos 40 

minutos. En caso de que dichos productos se quedasen adheridos a las paredes del matraz, se introducía 

en un baño de ultrasonidos. La mezcla final se centrifugó durante 15 minutos a 4000 rpm para eliminar 

cualquier resto que no se hubiera disuelto en el biodiésel. Es importante señalar que parte de los 

compuestos presentes en los productos líquidos de la despolimerización no eran solubles en el biodiésel y 

fueron son separados en la centrifuga. Por este motivo, la concentración final de aditivo (producto A o B 
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filtrado) en el biodiésel era inferior al 3% inicial, aunque no se puedo cuantificar de forma exacta. Finalmente 

se comprobó que la cantidad de agua contenida en el biodiésel aditivado estuviese por debajo del límite de 

500 ppm, establecido en la norma UNE-EN 14214:2013 [5], con un valorador culombimétrico Karl-fischer 

MEttler-Toledo C20. Si el contenido de agua estaba por encima de este valor y no cumplía la norma (en 

ningún caso se cumplió a la primera), se volvía a poner en el rotavapor para eliminar el agua sobrante 

durante unos 40 minutos a 60ºC. Tras este tiempo, se comprobó de nuevo la cantidad de agua. El proceso 

se repitió hasta que el valor obtenido estuvo en el rango establecido en la norma. 

3.5  Análisis realizados al biodiésel 

Al biodiésel de aceite de girasol antes y después de ser aditivado se le realizaron los siguientes análisis: 

 Estabilidad a la oxidación (OXY), con el equipo Oxidation Stability Tester PetroOXY.  

 Punto de obstrucción de filtros frío (POFF), con un instrumento automático FPP 5GS, modelo 

V22101.  

 Viscosidad cinemática, con un viscosímetro capilar cinemático de vidrio de la marca Cannon-

Fenske (T-845).  

 Contenido de agua (en ppm), con el equipo valorador culombimétrico Karl-Fischer, Mettler-Toledo 

modelo C20. 

Los métodos y equipos utilizados se describen en detalle en el Anexo II.4 de este trabajo. 
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4  Resultados  

4.1  Características de los productos de la despolimerización 

Después del tratamiento de despolimerización de la lejía negra en el reactor a presión, se forman tres fases 

diferenciadas: líquido, sólido y gas.  

El líquido representa la mayor proporción de producto en el reactor. Como se ha comentado, durante los 

experimentos se obtuvieron dos fracciones distintas: producto A y producto B. El porcentaje de sólidos 

solubles e insolubles de ambos productos se muestran en el Anexo III.1.1. 

A continuación, se muestra la Tabla 2 con los rendimientos a producto A, a sólidos solubles e insolubles 

totales (considerando los sólidos contenidos tanto en A como en B), a gases y el cierre de balance de 

materia. 

Tabla 2: Rendimientos y cierre del balance de materia 

Nº exp. Rto. a producto A Rto a sól. 
 solubles 

Rto a sól. 
 Insolubles 

Rto a gases Cierre de balance materia 

1 93,97% 6,05% 0,29% 0,29% 94,64% 

2 95,10% 6,45% 0,40% 0,38% 95,69% 

3 94,23% 10,54% 0,63% 0,42% 94,73% 

4 93,69% 8,48% 0,49% 0,25% 94,14% 

5 81,02% 5,55% 0,57% 12,78% 94,06% 

6 79,32% 5,17% 0,78% 14,86% 94,29% 

7 74,77% 4,75% 0,70% 18,32% 93,26% 

8 66,63% 4,11% 0,89% 22,33% 89,24% 

9 83,95% 5,31% 0,66% 7,26% 91,31% 

10 85,29% 5,27% 0,39% 9,15% 94,53% 

11 83,47% 5,69% 0,37% 11,34% 95,16% 

 

Los rendimientos a cada una de las fases, i, se calculan dividiendo la masa de cada uno de los productos 

por la masa de disolución inicial mediante la siguiente ecuación: 

η
i
=

mi

mentra

                                                                                                                                       (Ecuación 3)  

El porcentaje de cierre del balance de materia se ha calculado dividiendo la masa de los productos 

procedentes del reactor, es decir, el producto A, los sólidos recuperados en B y el producto gaseoso, por 

la masa inicial de disolución alimentada al reactor, usando la siguiente ecuación: 

BM=
Masa Prod. A+Sólido recuperado en el lavado (B)+Masa fase gas

Masa inicial
·100                             (Ecuación 4) 
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Se observa que, en todos los casos, excepto en el experimento 8, el cierre de balance de materia es 

superior al 90%. Esto implica que durante la operación se pierde menos de un 10% de la materia alimentada 

al reactor. Se trata de un error experimental dentro de márgenes aceptables, considerando que se trabaja 

con disolventes volátiles como el etanol y parte del líquido formado puede quedarse en el reactor o en el 

equipo de filtración y no se contabiliza. 

Con objeto de conocer la influencia de las condiciones de operación (temperatura, tiempo de reacción y 

relación ácido fórmico/etanol) y sus posibles interacciones sobre los diferentes rendimientos, se realizó un 

análisis (ANOVA) con un nivel de confianza del 95% utilizando el software Design Expert. Los resultados 

se muestran con detalle en el Anexo III.1.2. 

Puede observarse en la Tabla 2, que el rendimiento al producto A es muy elevado, superior en todos los 

casos al 74%. Se deduce, por tanto, que la mayor parte del material introducido en el reactor se recupera 

en forma de producto A. En los casos donde el ratio ácido fórmico/etanol es 1 (Figura 19, Anexo III.1.2), el 

rendimiento al producto A disminuye considerablemente debido a una mayor formación de gases. El 

aumento de temperatura también disminuye el rendimiento a A, aunque en menor medida. 

Los sólidos obtenidos en el reactor se clasifican en solubles e insolubles. El rendimiento a sólidos solubles 

varía entre un 5% y un 11,2%, mientras que el rendimiento a sólidos insolubles no supera el 1%. Los sólidos 

solubles pueden incluir compuestos que podrían mejorar la estabilidad a la oxidación del biodiésel, mientras 

que los sólidos insolubles son considerados residuos. Un rendimiento a sólidos solubles mayor es 

considerado, en principio, un resultado favorable.  

Según el análisis ANOVA que se muestra el Anexo III.1.2 (Figura 20) de este proyecto, la formación de 

sólidos solubles depende de todas las variables estudiadas (tiempo de reacción, temperatura y ratio ácido 

fórmico/etanol) y sus interacciones. El ratio ácido fórmico/etanol y su interacción con la temperatura son los 

factores con mayor efecto en la concentración final de sólidos solubles. Los sólidos insolubles se recuperan 

por filtrado del producto A y la disolución de lavado (producto B). El análisis ANOVA (Anexo III.1.2, Figura 

21), demostró que sólo el ratio ácido fórmico/etanol ejercía un efecto significativo desde el punto de vista 

estadístico sobre la formación de sólidos insolubles. La presencia de ácido fórmico favorecía la formación 

de dichos sólidos insolubles. Este resultado contrasta con los resultados presentados por otros autores [30] 

[26]. Según la literatura, el uso de ácido fórmico evita la re-polimerización de la lignina, disminuyendo la 

formación de residuos carbonosos. Puesto que el rendimiento a sólidos insolubles es siempre menor del 

1%, una recuperación más o menos eficiente del sólido podría alterar significativamente el valor del 

rendimiento. Por ello, la tendencia no es totalmente clara.  

De los datos mostrados en la Tabla 2, se puede concluir que la presencia de ácido fórmico (ratio ácido 

fórmico/etanol mayor) aumenta significativamente a la formación de gases. Cuando el ratio ácido 

fórmico/etanol es igual a 0, el rendimiento a gases es muy bajo y no supera el 0.5%. Sin embargo, con un 
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ratio ácido fórmico/etanol igual a 1, se alcanzan valores del 22.3%. En presencia de ácido fórmico, se 

observa también un efecto positivo de la temperatura. Al aumentar la temperatura, aumenta la formación 

de gases. 

En la Tabla 3 se muestra la composición de los gases obtenidos en cada uno de los experimentos, además 

de la composición del experimento adicional denominado blanco fórmico (BF). En la última columna, se 

muestra la presión residual en el reactor cuando este se enfriaba a temperatura ambiente después del 

experimento, debida a la formación de gases incondensables durante el proceso. 

En el experimento 8, se pudo observar en el cromatógrafo la señal del CO2. Sin embargo, debido a que la 

concentración era muy elevada, muy por encima del valor de calibración, el cromatógrafo fue incapaz de 

evaluar su porcentaje. 

Es importante señalar, que en muchos de los experimentos aparecía el pico correspondiente al oxígeno, 

pero al no estar calibrado, no se puede conocer su concentración. Por esa razón todos los análisis 

realizados por el cromatógrafo sólo pueden considerarse semicuantitativos y, tanto los porcentajes como 

como el peso molecular medio obtenido a partir de ellos, son una estimación. 

Para estimar el porcentaje de gases producidos en la reacción, se tomó el porcentaje dado por el 

cromatógrafo de cada uno de los compuestos, a excepción del N2 y O2, y se normalizó a 100.  
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Tabla 3: Composición de la fase gas y presión residual en el reactor después del experimento 

Nº de 
exp. 

 
H2 

 
CH4 

 
CO 

 
CO2 

 
C2H4 

 
C2H6 

 
C2H2 

Pfinal 
(bar) 

1 6,73% 3,46% 15,99% 72,07% 1,33% 0,19% 0,24% 0,4 

2 2,79% 1,19% 12,43% 83,16% 0,29% 0,08% 0,06% 0,7 

3 43,17% 4,44% 2,01% 46,94% 2,80% 0,64% 0,01% 2,2 

4 85,08% 0,24% 0,00% 11,91% 1,03% 0,24% 0,00% 5,2 

5 17,85% 0,00% 21,52% 60,62% 0,02% 0,00% 0,00% 64 

6 14,09% 0,04% 22,68% 62,90% 0,20% 0,04% 0,00% 70,6 

7 13,92% 0,01% 6,65% 79,36% 0,06% 0,01% 0,00% 81 

8 - - - - - - - 84,3 

9 27,01% 0,05% 39,81% 32,88% 0,23% 0,05% 0,00% 45,8 

10 17,41% 0,02% 28,32% 53,99% 0,09% 0,02% 0,00% 47,1 

11 12,33% 0,01% 10,45% 77,16% 0,06% 0,01% 0,00% 50,7 

BF 10,71% 0,00% 4,40% 84,84% 0,05% 0,00% 0,00% - 

 

Como se explicó en el apartado 3.3 , se realizó un experimento adicional, denominado blanco fórmico (BF), 

a una temperatura de 325 ºC y un ratio ácido fórmico/etanol igual a 1. No se utilizó lejía negra, sino que fue 

sustituida por agua. El objetivo era determinar si la mayor formación de gases en presencia de ácido fórmico 

es debida a la descomposición de este gas o a la reacción con la lejía negra, así como conocer la 

composición de los gases formados.  

Como se ha visto en los resultados mostrados en la Tabla 2, la presencia de ácido fórmico aumenta el 

rendimiento a gases considerablemente. Esto puede deberse a la descomposición del ácido fórmico. Como 

se ha explicado en el Apartado 2.3.3 , el ácido fórmico puede descomponerse siguiendo dos rutas 

principales: la deshidratación (Reacción 1) y la deshidrogenación (Reacción 2). Como casi el 50% del medio 

de reacción es agua, el equilibrio de la reacción de deshidratación se ve desplazado hacia la formación de 

ácido fórmico. Además, en el experimento blanco fórmico (BF) se puede observar que la cantidad de CO 

formada es muy inferior a la de CO2, por lo que se confirma que la principal ruta de descomposición del 

ácido fórmico es la deshidrogenación. 

Los gases formados en los experimentos con un ratio ácido fórmico/etanol igual a 1 están compuestos 

principalmente por CO2, H2 y CO. El CO puede obtenerse por la deshidratación del ácido fórmico o la 

descomposición de la lignina. En la reacción de deshidrogenación se desprenden los mismos moles de 

CO2 que de H2. Sin embargo, la cantidad de H2 obtenida es mucho menor que la de CO2 (Tabla 3). Esto es 
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debido a que el hidrógeno reacciona con los enlaces de la lignina evitando la re-polimerización, objetivo 

fundamental de la adición del ácido fórmico. 

En la Figura 9 se ha representado la presión en el reactor en función del tiempo de reacción durante el 

experimento denominado BF y en los experimentos 7 y 8 de la Tabla 1, en los que se utilizó el mismo ratio 

fórmico/etanol y la misma temperatura de reacción. 

 

Figura 9: Variación de la presión con el tiempo de reacción para los experimentos 7, 8 y el blanco con fórmico 

 

La evolución de la presión con el tiempo sigue una tendencia similar en los tres experimentos, tanto con 

lejía negra como sin ella, lo que parece confirmar que las altas presiones detectadas en presencia de ácido 

fórmico son debidas a su descomposición a esa temperatura y no a la descomposición de la lignina.  
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4.2  Características del biodiésel aditivado 

4.2.1  Estabilidad a la oxidación  

En principio, tanto el producto A como el B, una vez filtrados para eliminar los sólidos insolubles, podrían 

ser potencialmente utilizados como aditivos antioxidantes para biodiésel. Por este motivo, se realizó en 

primer lugar una prueba para comprobar si ambos tenían un efecto positivo en la estabilidad a la oxidación 

de un biodiésel preparado a partir de aceite de girasol. En este ensayo se utilizaron los productos A y B 

filtrados obtenidos durante el experimento a tiempo de reacción cero (Experimento Inicial), explicado en el 

apartado 3.3 de esta memoria. 

Se prepararon los aditivos y se dopo el biodiésel tal y como se describe en el apartado de Materiales y 

métodos y se midió la estabilidad a la oxidación de cada una de las muestras pro duplicado en un equipo 

Oxidation Stability Tester PetroOxy, descrito en el Anexo II.3.1. En el mismo día se midió la estabilidad a la 

oxidación del biodiésel puro sin aditivar que se utilizó en la preparación, denominada OXYblanco, y la del 

biodisel aditivado, denominada OXYmuestra. Como la estabilidad a la oxidación del biodiésel dopado puede 

alcanzar valores de estabilidad a la oxidación diferentes debido a pequeñas variaciones en el biodiésel 

original, para comparar los resultados obtenidos con los diferentes aditivos preparados se calculó el 

porcentaje de mejora mediante la siguiente fórmula:  

% Mejora en la estabilidad a la oxidación=
OXYmuestra-OXYblanco

OXYblanco

 · 100                                      (Ecuación 5) 

La Tabla 4 muestra los resultados de estabilidad a la oxidación del biodiésel aditivado con el producto A y 

el producto B del experimento inicial, así como la del biodiésel puro. 

Tabla 4: Estabilidad a la oxidación del barrido 

 OXY blanco (min) OXY muestra (min) Mejora % 

Producto A 12,20 31,22 ± 0,23 155,86 ± 1,91% 

Producto B 12,20 13,24 ± 0,30 8,52 ± 2,43% 

 

La mejora obtenida en la estabilidad a la oxidación con el producto A fue mucho mayor que con el líquido 

de lavado o producto B. Además, en todos los casos la concentración de sólidos solubles en A es también 

muy superior. Por tanto, en el resto de experimentos sólo se utilizó como aditivo el producto A. 

En la Tabla 5 se muestran los resultados de estabilidad a la oxidación del biodiésel aditivado y sin aditivar 

del resto de experimentos. 

 



Obtención de aditivos antioxidantes para biodiésel a partir de lignina mediante 

su procesado a alta presión y temperatura en presencia de disolventes 

Página 26 de 38 

 

 

Tabla 5: Estabilidad a la oxidación del biodiésel sin y con aditivo junto con el porcentaje de mejora 

Nº exp. OXYblanco(min) OXYmuestra(min) % Mejora 

1 16,60 15,86 ± 0,07 -4,46 ± 0,43% 

2 12,53 17,58 ± 0,18 40,30 ± 1,47% 

3 16,60 41,33 ± 0,24 148,98 ± 1,45% 

4 10,93 28,12 ± 0,23 157,27 ± 2,07% 

5 14,66 17,99 ± 0,48 22,71 ± 3,28% 

6 14,66 19,57 ± 0,37 33,49 ± 2,51% 

7 11,96 59,21 ±0,32 395,03 ± 2,66% 

8 11,90 47,05 ±0,30 295,34 ± 2,56% 

9 12,53 55,74 ± 0,04 344,81 ± 0,28% 

10 11,05 51,40 ± 0,37 365,11 ± 3,39% 

11 11,90 44,10 ± 0,80 270,55 ± 6,71% 

 

El objetivo principal de este trabajo era conseguir un aditivo que permitiera aumentar la estabilidad a la 

oxidación del biodiésel derivado de aceite de girasol hasta los límites establecidos en la norma UNE-EN 

14214:2013 [5]. Según dicha norma, la estabilidad a la oxidación a 110ºC debe ser mayor a 8 h, 

determinada usando el método Rancimat. En el presente trabajo, este análisis se ha realizado con el equipo 

Oxidation Stability Tester PetroOXY, cuyas principales ventajas son un tiempo de análisis inferior y una 

menor dispersión de los resultados. En un trabajo previo del GPT [32], se estableció una relación lineal 

entre los valores de estabilidad a la oxidación obtenidos por ambos métodos.  

Rancimat (min)= (31,89 - 20,63·f)·PetroOXY(min) + (-214,65 + 319,68·f)                                  (Ecuación 6) 

Donde f es igual a 0 si no se ha utilizado ningún aditivo e igual a 1 si el biodiésel ha sido aditivado. 

Para que la estabilidad a la oxidación se encuentre por encima del límite establecido en la norma UNE-EN 

14214:2013 [5] (8 h mediante el método Rancimat), el valor obtenido en el equipo PetroOXY debe ser 

superior a 33,30 min, calculado a partir de la Ecuación 6. En el trabajo de Botella y cols. [32], se determinó 

también que este valor se modifica si se desea asegurar el cumplimiento de la norma con un intervalo de 

confianza del 95%, debiendo ser el valor e estabilidad a la oxidación obtenido con el método PetroOXY 

superior a 46,6 min cuando se añade aditivo a la muestra. Como se puede observar el biodiésel preparado 

tiene una estabilidad a la oxidación, según el equipo PetroOXY, que oscila entre 10,93 y 16,60, muy por 

debajo de dicho valor. Por este motivo, es necesario utilizar aditivos que mejoren esta propiedad. En la 

Figura 10 se muestra la estabilidad a la oxidación del biodiésel antes y después de ser aditivado con los 

productos obtenidos en cada uno de los 11 experimentos realizados. Se ha señalado con una línea verde 

el tiempo de estabilidad a la oxidación mínimo requerido por la norma calculado con la Ecuación 6, y con 
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una línea morada el tiempo necesario para que se cumpla la norma considerando un nivel de confianza del 

95%. 

 

 

Figura 10: Estabilidad a la oxidación del biodiésel de aceite de girasol sin aditivar y aditivado. 

Puede verse en la Figura 10 como el aditivo obtenido en los experimentos 3, 7, 8, 9,10 y 11 consigue 

aumentar el valor de la estabilidad a la oxidación por encima de los 33,30 minutos. Si se considera el 

intervalo de confianza del 95%, se llegaría a superar el límite establecido en la norma UNE-EN 14214:2013 

[5] en los experimentos 7, 8, 9 y 10. Cabe destacar que, en todos los casos, excepto en el experimento 1, 

se observa un aumento de la estabilidad a la oxidación después de la adición del aditivo. El aditivo obtenido 

en el experimento 3 aumenta la estabilidad a la oxidación del biodiésel por encima del límite de la norma, 

mientras que el aditivo del experimento 4 no lo hace (calculado con la Ecuación 6) a pesar de que el 

porcentaje de mejora es mayor en este último. Esto es debido a que el biodiésel de partida en el caso 4 

presentaba una estabilidad a la oxidación muy baja. 

Para conocer la influencia de los de parámetros de operación (temperatura, tiempo de reacción y relación 

ácido fórmico/etanol) y sus interacciones sobre la estabilidad a la oxidación, se realizó un análisis (ANOVA) 

con un nivel de confianza del 95% utilizando el software Design Expert. 

Mediante el análisis ANOVA se ha determinado que la temperatura y el ratio ácido fórmico/etanol son los 

factores que influyen significativamente en el valor final de la estabilidad a la oxidación, además de su 
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interacción. El tiempo de reacción, por su parte, no afecta desde un punto de vista estadístico a la misma. 

La mejora en la estabilidad a la oxidación aumenta al incrementar la temperatura y el ratio ácido 

fórmico/etanol. Como puede verse en la Figura 11, a baja temperatura (250 ºC), el ratio ácido fórmico/etanol 

no afecta al porcentaje de mejora, obteniéndose prácticamente el mismo valor con y sin ácido fórmico en 

la mezcla inicial. Sin embargo, a temperaturas elevadas (325 ºC), se observa una clara diferencia en el 

porcentaje de mejora de la estabilidad a la oxidación trabajando con distintos ratios ácido fórmico/etanol, 

siendo mayor cuando R es igual a 1. Del análisis estadístico se ha obtenido el siguiente modelo en 

parámetros codificados: 

%Mejora de la estabilidad a la oxidación= +136,08 + 113,07·T- 50,56·R + 45,47·T·R               (Ecuación 7) 

Debido al efecto de curvatura detectado, esta ecuación no sería adecuada para predecir los valores de 

porcentaje de mejora, pero permite tener una idea de cuáles son los factores más influyentes. A pesar de 

que el modelo lineal no sería válido, el coeficiente de regresión posee un valor de 0.9267. Se puede 

observar como dos de los puntos intermedios, correspondientes a los experimentos 9 y 10, tienen valores 

de mejora de la estabilidad a la oxidación muy similares. Sin embargo, en el caso del experimento 11, dicho 

valor se desvía, obteniéndose un coeficiente de variación en el punto central de 22,78 %. 

 

Figura 11: Mejora de la estabilidad a la oxidación vs temperatura para los diferentes ratios ácido fórmico/etanol. 

 

Como se ha comentado, además de los experimentos mostrados en la Tabla 5, se llevó a cabo otro 

experimento utilizando un tiempo de reacción de 0 h, 325ºC y un ratio ácido fórmico/etanol igual a 0, 

denominado experimento inicial, para determinar el efecto del tiempo de reacción. Los resultados obtenidos, 

presentados en la Tabla 6 se compararon con los de los experimentos 3 y 4, realizados a la misma 

temperatura y con el mismo ratio ácido fórmico/etanol a distintos tiempos.  
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Tabla 6: Comparación de la mejora de la estabilidad a la oxidación  

Nº exp. OXY Blanco OXY Muestra Mejora % 

Exp. inicial 11,86 31,22 ± 0,18 149,12 ± 1,86 

3 16,60 41,33 ± 0,24 148,98 ±1,45 

4 10,93 28,12 ± 0,23 157,27 ±2,07 

 

En los tres casos, la mejora en la estabilidad a la oxidación era muy similar, por lo que se demuestra la 

escasa influencia del tiempo de reacción en el resultado final, confirmando los resultados del análisis 

ANOVA plasmado en el modelo de la Ecuación 7. 

En resumen, el tratamiento del biodiésel con aditivos obtenidos de la despolimerización de la lejía negra 

resulta muy efectivo para mejorar su estabilidad a la oxidación. La mejora de esta propiedad es mayor si 

en el proceso de despolimerización se usa ácido fórmico y se realiza a mayor temperatura, mientras que el 

tiempo de reacción no parece tener ninguna influencia. 

4.2.2  Punto de obstrucción de filtro frio (POFF) 

Otra propiedad muy importante del biodiésel es el punto de obstrucción de filtro frío (POFF). Aunque la 

mejora del POFF no es el objetivo principal del presente trabajo, es necesario comprobar si la presencia de 

los aditivos afecta a otras propiedades del biodiésel. 

El POFF del biodiésel aditivado con el producto A (filtrado) obtenido en cada uno de los experimentos de 

la Tabla 1 se muestra en la Tabla 7. Además, se midió el POFF del biodiésel sin aditivar, encontrándose 

un valor de -3 ºC. 

Tabla 7: POFF del biodiésel aditivado 

Nº exp.  POFF 

1 -8 

2 -3 

3 -6 

4 -3 

5 -3 

6 -2,5 

7 -2,5 

8 -3 

9 -3 

10 -4 

11 -3 

 

Como se puede ver, todos los valores de POFF están próximos al del biodiésel sin aditivar, a excepción de 

los experimentos 1 y 3. Se puede observar que esta propiedad mejora significativamente al mezclar el 
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biodiésel con el producto A obtenido en estos experimentos. Ambos se realizaron a un tiempo de reacción 

bajo (1h) y en ausencia de ácido fórmico (R=0). 

Para conocer la influencia de los parámetros de operación y sus posibles interacciones sobre el POFF del 

biodiésel aditivado, se realizó un análisis de varianza ANOVA de los resultados obtenidos. Las variables de 

operación de las que depende el POFF son el ratio ácido fórmico/etanol y el tiempo de reacción, así como 

la interacción de estos dos factores. Como se puede observar en la Figura 12, para un ratio ácido 

fórmico/etanol de 1 (R=1), el valor del POFF no está afectado por la temperatura. Sin embargo, para un 

ratio ácido fórmico/etanol de 0 (R=0), se aprecia que a menor temperatura de reacción, el POFF presenta 

un valor más bajo y, por lo tanto, es mejor en términos de uso del biodiésel. La ecuación del modelo obtenido 

en términos codificados es la siguiente: 

POFF = -3,88 + t +·1,13·R -·t·R                                                                                                   (Ecuación 8) 

Este modelo no presenta curvatura y sigue una tendencia lineal, con un coeficiente de regresión de 0,8996. 

Respecto a las tres repeticiones en el punto intermedio, el valor del POFF para los experimentos 9 y 11 es 

el mismo, mientras que para el experimento 10 es un grado inferior, siendo el coeficiente de variación un 

18,71%. 

 

Figura 12: POFF vs. tiempo de reacción para diferentes ratios ácido fórmico/etanol 

 

Resumiendo, el valor del POFF mejora a bajos tiempos de reacción cuando el ratio ácido fórmico/etanol es 

0. Sin embargo, no se ve afectado por la temperatura cuando dicho ratio es 1. 
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4.2.3  Viscosidad 

La viscosidad es otra propiedad importante del biodiésel que puede influir en el funcionamiento del motor. 

Según la norma UNE-EN 14214:2013 [5], este parámetro debe estar comprendido entre 3,5 y 5 mm2/s a 

40ºC. En la Tabla 8 se muestran los valores de viscosidad obtenidos. Como se puede observar, el valor de 

viscosidad se encuentra en el rango deseado en todos los biodiésel dopados preparados. 

Tabla 8: Resultados del análisis de la viscosidad 

Nº exp.  Viscosidad (mm2/s) 

1 4,2525 

2 4,2975 

3 4,485 

4 4,2225 

5 4,2525 

6 4,275 

7 4,255 

8 4,2825 

9 4,3275 

10 4,200 

11 4,2825 

 

Tras el análisis de varianza ANOVA se deduce que ninguno de los factores estudiados tiene un efecto 

significativo desde el punto de vista estadístico en el rango elegido. La viscosidad del biodiésel sin aditivar 

es 4,252 mm2/s. Este valor se encuentra dentro del rango de error de las medidas realizadas con el biodiésel 

aditivado 4,2848 ± 0,075 mm2/s 

Las diferencias observadas pueden deberse a errores en el análisis (ya que como indica en el Anexo II.3.3, 

se cronometraba manualmente el tiempo que tardaba el fluido en pasar por un capilar), la dispersión del 

aparato y pequeñas diferencias en el biodiésel original.  

La viscosidad apenas cambia respecto al biodiésel original ya que el aditivo representa sólo un 3% de la 

mezcla. 

4.2.4  Cantidad de agua 

Otro factor importante es la cantidad de agua contenida en el biodiésel ya que su presencia puede producir 

reacciones de emulsión. Según la norma UNE-EN 14214:2013 [5], no debe exceder las 500 ppm. Los 

resultados finales se muestran en la Tabla 9. 
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Tabla 9: Resultado del análisis de la cantidad de agua 

Nº exp.  Ppm de agua 

1 496,4 

2 463,0 

3 412,0 

4 267,1 

5 362,0 

6 368,6 

7 355,9 

8 147,6 

9 445,2 

10 464,7 

11 135,2 
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5  Conclusiones 

En el presente trabajo se prepararon distintos aditivos para mejorar la estabilidad a la oxidación de un 

biodiésel de aceite de girasol a partir del tratamiento a alta presión y temperatura de lejía negra (lignina). 

Se sometió a la lejía negra, obtenida mediante un proceso tipo soda a partir de paja de cebada, a distintas 

condiciones de operación: temperatura (250-325 ºC), tiempo de reacción (1-3 h) y ratio másico ácido 

fórmico/etanol (0-1). El producto obtenido de la despolimerización se ha usado como aditivo para el 

biodiésel Las principales conclusiones que se pueden extraer son: 

 El tratamiento a alta presión y temperatura resulta efectivo para la despolimerización de la lignina. 

 En presencia de ácido fórmico, aumenta considerablemente la presión en el reactor y, por tanto, el 

rendimiento a gases, que es mayor a altas temperaturas. Esto se debe a la descomposición del 

ácido fórmico, que cumple su función como donor de hidrógeno. 

 En todos los casos, el mayor rendimiento es a producto líquido, siendo los sólidos solubles disueltos 

en él suficientes para aditivar el biodiésel y obtener excelentes resultados en la mayoría de los 

casos. El rendimiento a sólidos insolubles, en principio residuo, no supera el 1% por lo que el efecto 

de los disolventes etanol y ácido fórmico es eficiente. 

 Los mayores valores de mejora de la estabilidad a la oxidación se obtienen con aditivos preparados 

a alta temperatura (325 ºC) y un ratio ácido fórmico/etanol igual a 1. El tiempo de reacción no tiene 

influencia sobre las propiedades del aditivo respecto a la mejora de la estabilidad a la oxidación. El 

mejor resultado ha sido el experimento realizado a 325 ºC, 1 hora de reacción y ratio ácido 

fórmico/etanol igual a 1, obteniendo una mejora de un 395% respecto al biodiésel original y 

superando ampliamente el límite exigido por la norma UNE-EN 14214. 

 Los aditivos preparados a partir de lejía negra no afectan negativamente al valor del POFF sino 

que, en algunos casos, lo mejoran. Esta propiedad mejora al disminuir el tiempo de reacción y el 

ratio ácido fórmico/etanol. El experimento en el que se ha obtenido un mejor resultado, -8 ºC, se 

realizó a 250ºC, 1 h de reacción y un ratio ácido fórmico/etanol de 0. En este caso se consiguió una 

mejora del POFF, pero se produjo un empeoramiento de la estabilidad a la oxidación. 

 La viscosidad no se ve afectada por ninguno de los factores estudiados. El valor está siempre 

dentro de los límites establecidos y apenas difiere del valor del biodiésel original.  
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6  Trabajos futuros 

 Analizar los líquidos para determinar exactamente que compuestos son los responsables de las 

mejoras obtenidas. 

 Completar el diseño de experimentos para dar una explicación a la excesiva curvatura hallada. 

 Estudiar la estabilidad a la oxidación de las muestras preparadas para el presente trabajo a lo largo 

del tiempo. 

 Realizar un análisis cualitativo y cuantitativo de las muestras sólidas obtenidas de los experimentos. 

 Con las mejores condiciones de temperatura, tiempo, temperatura y ratio ácido fórmico/etanol 

obtenidas en el presente trabajo (325 ºC, 1h y 1), realizar un estudio en presencia de catalizadores 

como zeolitas o MOF. 

 De igual forma, a partir de las mejores condiciones realizar un estudio con lignina obtenida en un 

proceso tipo Kraft. 
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Anexo I Antecedentes  

I.1 Características del biodiésel 

Las características que debe tener el biodiésel para su uso en motores diésel en la Unión Europea están 

recogidas en la norma UNE-EN 14214:2013 [5] y se muestran en la siguiente tabla. 

Tabla 10: Requisitos del biodiésel 

Propiedad Unidades 
Límites 

Mínimo Máximo 

Contenido en FAME % (m/m) 96,5 - 

Densidad a 15 ºC kg /m3 860 900 

Viscosidad a 40 ºC mm2/s 3,5 5 

Punto de inflamación ºC 101 - 

Numero de cetano - 51 - 

Corrosión de la lámina de cobre (3h a 50ºC) clasificación clase1 

Estabilidad a la oxidación (a 110ºC) h 8 - 

Índice de acidez mg KOH/g - 0,5 

Índice de yodo g yodo/100 g - 120 

Ester de metilo de ácido linolénico % (m/m) - 12 

Ésteres de metilo polinsaturados % (m/m) - 1 

Contenido en metanol % (m/m) - 0,2 

Contenido en monogliceridos % (m/m) - 0,7 

Contenido en digliceridos % (m/m) - 0,2 

Contenido en trigliceridos % (m/m) - 0,2 

Glicerol libre  % (m/m) - 0,02 

Glicerol total  % (m/m) - 0,25 

Contenido en agua  % (m/m) - 500 

Contaminación total mg/Kg - 24 

Contenido en cenizas sulfatadas mg/Kg - 0,02 

Contenido en azufre % (m/m) - 10 

Metales del grupo I (Na+K) mg/Kg - 5 

Metales del grupo II (Ca+Mg) mg/Kg - 5 

Contenido en fósforo mg/Kg - 4 

 

Respecto a los valores del POFF la norma UNE-EN 14214:2013 [5] distingue dos casos: en primer lugar, 

requisitos del POFF en el caso de usar biodiésel al 100% como combustible de motores diésel y para 

equipos de calefacción y en segundo lugar requisitos como componente en mezclas en combustible 

biodiésel. 

En el caso de usar biodiésel puro, a su vez se diferencia según el clima: clima templado donde los valores 

del POFF deben estar comprendidos entre 5 y -20 ºC y clima frio donde los valores del POFF deben estar 
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entre -20 y -44ºC. En el caso de usar el biodiésel como componente de un carburante los valores deben 

comprenderse entre 13 y -10 ºC. El valor exacto del POFF vendrá determinado por el país donde se vaya 

a usar el biodiésel. 

I.2 Obtención y tipos de lejías negras 

A continuación, se describen la obtención y tipos de liejía negra y, en consecuencia, de lignina, 

mencionados en el Apartado 2.3.2  

El proceso de obtención de pasta al sulfito era el más utilizado hace 80 años. Este proceso consiste en 

digerir la madera a 140-170ºC con una disolución acuosa de sulfito o bisulfito de sodio, amonio, magnesio 

o calcio. De esta forma se separa la lignina de los carbohidratos. Tras el proceso, alrededor del 4-8 % del 

azufre se incorpora a la molécula de lignina. Por eso, esta es soluble en agua en todo el rango de pH e 

insoluble en disolventes orgánicos. Asimismo, viene acompañado de diversos productos de la degradación 

(azúcares) y tiene un elevado peso molecular [31].  

El proceso Kraft es la forma más frecuente de obtención de pasta de papel. Casi el 80% se obtiene de esta 

forma [33]. El proceso consiste en someter la materia prima (madera) a un calentamiento a 170 ºC durante 

2 horas en presencia de sulfuro de sodio e hidróxido de sodio. La lejía negra obtenida contiene lignina y 

hemicelulosa. Para separar la lignina basta con bajar el pH de la lejía para que precipite. Esta lignina 

contiene entre un 1,5 y un 3 % de azufre. Además, tiene bajos niveles de contaminantes de azúcares y 

cenizas y un bajo peso molecular [31]. 

La desventaja de estos dos tipos de lignina es que contienen azufre. Por eso ha crecido el interés en otras 

fuentes de lignina tales como los procesos tipo soda o Organosolv. 

El proceso Organosolv consiste en la separación de la celulosa, hemicelulosa y lignina mediante la 

utilización de disolventes orgánicos, normalmente alcoholes orgánicos de bajo peso molecular. El proceso 

se puede realizar en medio ácido o básico a una temperatura de 140-200ºC. Debido a la novedad de este 

proceso, solo se realiza actualmente a escala de laboratorio [31]. 

El proceso tipo soda de obtención de lignina se ha usado de forma tradicional en fibras no madereras tales 

como paja de cereal. El proceso consiste en digerir la paja en una disolución acuosa de hidróxido de sodio. 

Como la paja contiene fibras con una estructura más accesible, la temperatura puede ser próxima a la de 

ebullición el agua (99ºC). Es muy similar al tipo Kraft. La lignina tipo soda es insoluble en agua, tiene bajos 

niveles de azúcares y contaminantes y posee un bajo peso molecular [31]. 

Las principales ventajas del proceso tipo soda es que la lignina no contiene azufre, lo que proporciona 

ventajas en aplicaciones en las que la estabilidad térmica es importante y se evitan las emisiones sulfurosas 
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indeseadas. Además, es un proceso fácil de realizar en el laboratorio, ya que no son necesarias condiciones 

extremas. La desventaja de este método es que no extrae la lignina de las fibras madereras, sólo de la 

paja. 
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Anexo II Materiales y métodos 

II.1 Producción del aditivo: Esquema del reactor 

HORNO

 

TC

PT

Nitrógeno

Agua de refrigeración

Venteo

Bomba de vacio

 

  
Figura 13: Esquema del sistema de reacción R3 
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II.2 Diseño de experimentos: elección de las condiciones de operación 

En este trabajo se deseaba estudiar el efecto de tres factores, relación ácido fórmico/etanol, temperatura y 

tiempo de reacción, sobre las propiedades (estabilidad a la oxidación, POFF y viscosidad) de un aditivo 

antioxidante para biodiésel. Para ello se planteó un diseño factorial a dos niveles y tres factores 23 con tres 

repeticiones el punto central. A cada uno de los factores considerados le corresponden 2 niveles (alto y 

bajo). De esta forma, se puede estudiar el comportamiento de las distintas propiedades en el espacio de 

diseño. 

La elección del ácido fórmico como disolvente se debe a que es el ácido orgánico más simple, y actúa como 

donor de hidrógeno, evitando la re-polimerización de la lignina [26] [29] [30]. El etanol es capaz de disolver 

tanto la lignina como los fenoles, lo que facilita la reacción de despolimerización [26]. Honkanen [25] estudió 

la despolimerización de la lignina en presencia a ácido fórmico y etanol utilizando dos valores de ratio ácido 

fórmico/etanol: 0,44 y 0,91. Observó que el uso del ácido fórmico favorece esta reacción y es aplicable en 

la industria incluso a bajas temperaturas (250ºC) sin necesidad de catalizador. En el presente TFG se quiere 

comprobar el efecto de la solvólisis (despolimerización en presencia de agua y etanol) y el efecto del ácido 

fórmico sobre el sistema. Por eso los valores elegidos del ratio ácido fórmico/etanol varían entre 0 y 1 (0.5 

en el punto central). 

La temperatura a la que se produce la degradación de la lignina está alrededor de 280 ºC [34]. Honkanen 

[25] realizó experimentos de despolimerización de lignina entre 250 y 300 ºC. A estas temperaturas 

consiguieron obtener monómeros (fenoles) de la lignina. Beauchet y cols. [35] llevaron a cabo la 

despolimerización de la lignina en presencia de metanol, ácido acético y ácido fórmico, a tres temperaturas 

diferentes: 270, 290 y 315 ºC, obteniendo el mayor rendimiento a monómeros (fenoles) trabajando a la 

mayor temperatura. Takuya, y cols. [36] estudiaron la despolimerización de la lignina entre 200 y 350 ºC. 

Estos autores observaron que el rendimiento a fenoles aumentaba entre 200 y 300 ºC y disminuía de 300 

a 350 ºC. Como en la literatura se han conseguido buenos rendimientos a fenoles trabajando a 

temperaturas por debajo de la temperatura de la descomposición de la lignina, se eligió como temperatura 

inferior en este estudió 250 ºC, Otros autores observaron que los rendimientos a fenoles eran mayores 

cuando se aumentaba la temperatura, por lo que se eligieron 325 ºC como la temperatura superior del 

estudio, Estas temperaturas se encuentran muy por debajo del límite del reactor (500 ºC), permitiendo 

trabajar con seguridad durante los experimentos. 

El tiempo de reacción representa el tiempo al que va estar sometida la lignina a temperatura y presión para 

conseguir su despolimerización y la formación de fenoles. Onwudili y cols. [30] realizaron la 

despolimerización de la lignina en presencia de ácido fórmico (y en algunos casos también un catalizador 

de Pd/C) durante tiempos comprendidos entre 1 y 6 h. Las mayores conversiones del ácido fórmico se 

obtuvieron a mayor tiempo de reacción, sin embargo, a este tiempo, también se obtuvo el mayor 
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rendimiento a residuos sólidos y gases y menos a líquido. Takuya, y cols. [36] realizaron experimentos 

entre 0,5 y 8 h obteniendo el mayor rendimiento a fenoles a las 3 h. En este TFG se ha elegido un tiempo 

de reacción entre 1 y 3 h ya que son tiempos cercanos a los nombrados anteriormente y que no resultan 

excesivos (ya que en este caso hay un calentamiento previo y enfriamiento posterior). 

II.3 Producción de biodiésel 

Como se ha mencionado en el Apartado 3.4 el biodiésel fue producido con anterioridad al presente trabajo 

de fin de grado y el procedimiento que se describe a continuación fue utilizado en trabajos anteriores [37]. 

Para la producción de biodiésel se emplea aceite de girasol con una acidez inferior al 0,5% en peso. En la 

reacción de transesterificación se usó metanol de pureza mayor al 99,8% (de la marca PANREAC) e 

hidróxido de potasio en pellets de pureza 85% (Carlo Erba Reagents), como catalizador del proceso. Para 

el lavado del biodiésel se utiliza ácido sulfúrico con una pureza del 96%.  

El aceite usado como materia prima en la preparación del biodiésel suele contener ácidos grasos libres. La 

acidez es el parámetro que mide la cantidad de ácidos grasos libres [38]. Para que tenga lugar la reacción 

completa de esterificación, la acidez debe ser menor al 3% [15]. Los ácidos grasos libres pueden consumir 

parte de la base empleada como catalizador por reacciones de neutralización, generando jabones y agua 

[38]. 

La producción de biodiésel se lleva a cabo en el sistema de reacción R1 mostrado en la Figura 7. El 

procedimiento seguido en la preparación del biodiésel fue el siguiente: 

En cada de uno de los reactores de vidrío se le introducen 300 y 200 g (en el grande y el pequeño, 

respectivamente) de aceite de girasol. A continuación, se cierran con las tapas esmeriladas y se introducen 

las varillas de agitación y las sondas de temperatura. En la apertura superior se conectan los 

condensadores. 

Una vez montado el sistema, se enciende la manta calefactora y se fija la consigna en 60º.Cuando la 

temperatura alcanza unos 45 ºC, se adiciona una mezcla compuesta por 110 g de metanol y 5 g de hidróxido 

de potasio, que actua como catalizador. Se trabaja con un exceso de metanol (relación molar metanol:aceite 

6:1) para favorecer el desplazamiento del equilibrio de la reacción de transesterificación hacia la formación 

de ésteres metílicos. Para asegurar la conversión completa del aceite se selecciona un tiempo de reacción 

de 3 horas. 

Una vez trascurrido este tiempo, se apaga la manta calefactora y se deja enfriar hasta temperatura 

ambiente. Posteriormente, se vierte el producto obtenido en un embudo de decantación. Se observa una 

separación clara en dos fases. La fase pesada, recogida en la parte inferior, corresponde a la glicerina, 
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mientras que el biodiésel, menos denso, permanece en la parte superior, tal y como se muestra en la Figura 

14. 

 

Figura 14: Biodiésel y glicerina 

Para eliminar el exceso de metanol del biodiésel, se calienta a 45 ºC y 0,1 bar de presión en un rotavapor 

durante aproximadamente 45 minutos. Posteriormente, para eliminar los jabones convertidos en ácidos 

grasos debido a un pH ácido del agua, se lava el biodiésel con agua caliente acidulada con unas gotas de 

ácido sulfúrico, manteniendo una relación másica agua-biodiésel 1:1. La mezcla se agita y se deja en un 

embudo de decantación para que se separasen las dos fases: la fase superior corresponde al biodiésel y 

la fase inferior está compuesta de agua y los jabones eliminados del biodiésel. Este proceso se repite varias 

veces hasta que la parte acuosa queda trasparente (4-5 lavados). 

La presencia de agua favorece la saponificación y la emulsión del biodiésel. La primera reduce la conversión 

a ésteres metílicos, mientras que la segunda dificulta la separación y purificación del producto. Como 

consecuencia, disminuye el rendimiento del proceso [15] [38]. Por este motivo, se debe eliminar cualquier 

resto de agua procedente de la etapa de lavado. La mezcla se lleva a un rotavapor durante unos 90 minutos 

a 60ºC y 0,1 bar de presión. La norma UNE-EN 14214:2013 [5] especifica que el contenido de agua en el 

biodiésel no debe superar las 500 ppm. El proceso se repite tantas veces como sea necesario hasta que el 

contenido en agua del biodiésel está por debajo del valor especificado en la norma. 



Obtención de aditivos antioxidantes para biodiésel a partir de lignina mediante 

su procesado a alta presión y temperatura en presencia de disolventes 

Página VIII de XVI 
 

II.4 Análisis realizados al biodiésel 

II.4.1 Estabilidad a la oxidación (OXY)  

La estabilidad a la oxidación del biodiésel se mide en un equipo Oxidation Stability PetroOXY, que se 

muestra en la Figura 15. 

 

Figura 15: equipo Oxidation Stability PetroOXY 

Este equipo permite envejecer artificialmente las muestras para evaluar la estabilidad a la oxidación. Para 

realizar el análisis se introducen 5 mL de muestra en el equipo. El equipo aumenta su presión hasta 700 

kPa en atmósfera de oxígeno y se calienta hasta 140ºC. Debido al consumo de oxígeno por parte de la 

muestra, la presión disminuye. Esta pérdida de presión es registrada y se muestra en la pantalla. El análisis 

termina cuando la caída de presión alcanza el 10%, tiempo denominado como “tiempo de inducción”. 

Esta medida se realiza una vez al biodiésel puro sin aditivar y dos veces la muestra de biodiésel aditivado 

para calcular la desviación estándar. 

II.4.2 Punto de obstrucción de filtro frío (POFF) 

El punto de obstrucción de filtro frio (POFF) se mide en un instrumento automático FPP 5GS, modelo 

V22101, que puede verse en la Figura 16. Este equipo realiza el análisis según la norma estadounidense 

ASTM D95.  
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Figura 16: Equipo FPP 5GS 

Para la medición se añaden unos 45 mL de biodiésel en un vaso de cristal (que viene incluido en el equipo) 

hasta una marca roja. Se introduce el vaso por la parte superior junto con un soporte. Se introduce una 

unidad de filtrado que a su vez se introduce en un tubo de aspiración, también se introduce una sonda de 

temperatura. 

La muestra se succiona progresivamente para que atraviese un filtro de malla metálica a la vez que se 

enfría. El instrumento mide el tiempo que tarda el biodiésel en ascender y descender a través del filtro. La 

medición finaliza cuando el biodiésel tarda más de 60 segundos en atravesar el filtro, debido a su 

congelación. 

Este análisis se realizó dos veces a cada experimento. 

II.4.3 Viscosidad cinemática  

La viscosidad cinemática se mide con un viscosímetro de vidrio de la marca Cannon-Fenske (T-845), 

mostrado en la Figura 17. 
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Figura 17: Viscosímetro capilar cinemático de vidrio y baño de agua para su medida a 40ºC 

La viscosidad cinemática del biodiésel se mide según el procedimiento descrito en la norma UNE-EN ISO 

3104. Con un cronómetro se mide el tiempo que tarda el biodiésel en recorrer una distancia marcada en el 

capilar del viscosímetro, sumergido en un baño de agua a 40 ºC. El tiempo medido debe corregirse 

aplicando un factor de corrección suministrado por el fabricante de 0,0075 cSt/s (mm2/s2). 

La viscosidad de todas las muestras de biodiésel aditivado se midieron una vez, tras haber comprobado 

con una de las muestras que la medida era reproducible y los valores eran muy cercanos a los del biodiésel 

original. 

II.4.4 Contenido de agua 

Para conocer el contenido de agua en el biodiésel se utiliza un valorador culombimétrico Karl-Fischer, 

Mettler Toledo modelo C20, que se muestra en la Figura 18. Este equipo se utiliza para análisis de muestras 

con un bajo contenido en agua, comprendido entre 1 ppm y un 5% en masa. 

 

Figura 18: Valorador culombimétrico Karl-Fischer 
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Este análisis se basa en la oxidación del dióxido de azufre con yodo en una disolución de hidróxido metálico. 

El equipo hace una valoración dosificando un reactivo yodado hasta consumir toda el agua. Cuando 

consume toda el agua detecta el yodo libre en la disolución y se da por terminada la valoración. La Ecuación 

es la siguiente: 

H2O + I2 + SO2 + CH3OH + 3RN  [RNH]SO4CH3 + 2[RNH]I 

Para medir la cantidad de agua, primero se deja calibrar el equipo. Se toman unos 0,5 g de biodiésel 

mediante una jeringuilla, se mete esa cantidad por la parte superior del equipo y se indica la cantidad exacta 

adicionada. Cuando el equipo finaliza la reacción redox, muestra el resultado en pantalla. 

Este análisis se realizó tantas veces como fuera necesario hasta que la cantidad de agua fue inferior a 500 

PPM. 
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Anexo III Resultados 

III.1 Características de los productos de la despolimerización 

III.1.1 Productos A y B 

A continuación, se muestran dos tablas que muestran los contenidos de los sólidos en los productos A y B 

correspondientes al Apartado 4.1 . 

Tabla 11: Contenido de sólidos solubles e insolubles en el producto A 

Nº exp. % sólido insoluble  % sólido soluble  

1 0,135% 6,20% 

2 0,414% 6,58% 

3 0,661% 11,1% 

4 0,489% 8,87% 

5 0,700% 6,54% 

6 0,960% 6,39% 

7 0,898% 6,16% 

8 1,266% 5,82% 

9 0,777% 6,22% 

10 0,454% 6,07% 

11 0,349% 6,50% 

 

Tabla 12: Contenido de sólidos solubles e insolubles en el producto B 

Nº exp. % sólido insoluble % sólido soluble 

1 0,231% 0,307% 

2 0,010% 0,315% 

3 0,015% 0,168% 

4 0,033% 0,305% 

5 0,003% 0,221% 

6 0,031% 0,149% 

7 0,032% 0,165% 

8 0,077% 0,407% 

9 0,018% 0,173% 

10 0,005% 0,138% 

11 0,089% 0,299% 

 

Se puede observar como el contenido de sólidos en el producto A es mayor que en el B, ya que el producto 

A contiene etanol y no es necesario adicionar más para disolver y/o arrastrar los sólidos puesto que el 
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etanol contiene una gran parte de los compuestos solubles en el mismo. Por otra parte, tanto en el producto 

A como en el B el porcentaje de sólidos solubles es mayor, lo que, en principio, es bueno. 

III.1.2 Análisis ANOVA  

Como se comentaba en el Apartado 4.1 en este trabajo se realizó un análisis ANOVA con el fin de conocer 

el efecto de los tres factores estudiados (temperatura, tiempo de reacción y ratio ácido fórmico/etanol) en 

el rendimiento al producto A, a los sólidos solubles e insolubles y a gases.  

En la Figura 19 se ha representado el rendimiento al producto A frente a la temperatura para los distintos 

ratios ácido fórmico/etanol. Como puede verse, para un ratio ácido fórmico/etanol de 0 (R=0), el rendimiento 

al producto A permanece prácticamente invariable al aumentar la temperatura. Sin embargo, en presencia 

de ácido fórmico (R = 1), el rendimiento al producto A disminuye considerablemente. La ecuación del 

modelo obtenido en términos codificados es la siguiente: 

Rto a A = 84,84 -2,51·T -9,41·R -2.22·T·R                                                                                  (Ecuación 9) 

Este modelo no presenta curvatura y su coeficiente de regresión es 0,9555. Por tanto, este modelo 

matemático sirve para predecir el comportamiento del rendimiento al producto A cuando se varían las 

condiciones de operación. Los valores del rendimiento al producto A en el punto central son muy similares, 

con un coeficiente de variación de un 2.94%. Se puede concluir que existe repetitividad en este parámetro.  

 

Figura 19: Rendimiento a producto A frente a la temperatura para los ratios ácido fórmico/etanol 0 y 1 

La Figura 20 muestra el rendimiento a sólidos solubles frente a la temperatura para los diferentes tiempos 

de reacción. Para un ratio ácido fórmico/etanol igual a 0 (R=0), un aumento de la temperatura implica un 

aumento del rendimiento a sólidos solubles. Cuanto mayor es el tiempo de reacción, menor es el aumento 
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del rendimiento observado. Por el contrario, en el caso de R=1 no se observan diferencias significativas en 

el valor del rendimiento cuando aumenta el tiempo de reacción y disminuye ligeramente al aumentar la 

temperatura. La ecuación del modelo en términos codificados es la siguiente: 

Rto a sólidos solubles = 6,39 +0,58·T -0,33·t -1,49·R -0,34·T·t -1.05·T·R+ 0,28·T·t·R            (Ecuación 10) 

Este modelo presenta curvatura por lo que la ecuación matemática obtenida no sirve para predecir el 

comportamiento del rendimiento a sólidos solubles pero si para conocer las tendencias al modificar los 

distintos factores estudiados. Cabe destacar que su coeficiente de regresión es 0,9950. Respecto a las 

repeticiones del punto intermedio, se obtuvieron valores muy similares y su coeficiente de variación es de 

un 3,76%, por lo que se puede concluir que existe repetitividad en el rendimiento a sólidos solubles. 

 

Figura 20: Rendimiento a sólido soluble frente a la temperatura para los distintos tiempos de reacción y diferentes ratios ácido 
fórmico/etanol 

 

El rendimiento a sólidos insolubles frente al ratio ácido fórmico/etanol se muestra en la Figura 21. La 

ecuación del modelo en términos codificados es la siguiente 

Rto sólidos insolubles = 0,59 + 0,14·R                                                                                    (Ecuación 11) 

Únicamente el ratio ácido fórmico/etanol afecta al valor del rendimiento a sólidos insolubles. Cuanto mayor 

es dicho ratio, mayor cantidad de sólidos se forma. Aunque este modelo no presenta curvatura, su 

coeficiente de regresión es muy bajo, 0,4873. Por tanto, no sirve para predecir el comportamiento del 

rendimiento en el rango de condiciones estudiadas. Como se ve en la Figura 21, dos de los valores 

obtenidos en los ensayos bajo las condiciones del punto central son muy similares (correspondientes a los 

experimentos 10 y 11), mientras que el tercer punto se aleja considerablemente. El coeficiente de variación 

en este caso es 25,8%, lo que indica una repetitividad baja. Cabe destacar que el rendimiento a solidos 
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insolubles es inferior al 1% y que, como se señala en el Apartado 4.1 , una pequeña pérdida de sólido no 

contabilizado en el reactor o en el sistema de filtrado puede afectar considerablemente al porcentaje final. 

 

Figura 21: Rendimiento a sólido insoluble frente al ratio ácido fórmico/etanol 

 

Tras el análisis ANOVA, puede concluirse que los factores que afectan de forma significativa al rendimiento 

a fase gas son la temperatura y el ratio ácido fórmico/ etanol. Como se aprecia en la Figura 22 para un ratio 

ácido fórmico/etanol igual a 0 (R=0), la temperatura apenas tiene influencia y el rendimiento a gas es 

siempre muy bajo, menor de 0.5%. En presencia de ácido fórmico (R = 1), un aumento de la temperatura 

implica un aumento importante del rendimiento a fase gas. En el punto central (R = 0.5), el rendimiento a 

gas también se ve incrementado. La ecuación del modelo codificada es la siguiente: 

Rto a fase Gas = 8,71+1,63·T+8,36·R+1,63·T·R                                                                      (Ecuación 12) 

El modelo es lineal y la curvatura no es significativa. Además, el coeficiente de regresión es 0,9701 y, 

consecuentemente, el modelo predice el comportamiento adecuadamente en el espacio de trabajo. En este 

caso, las tres repeticiones del punto intermedio no ofrecen valores tan cercanos como en los casos 

anteriores y el coeficiente de variación es 19,87%. 
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Figura 22: Rendimiento a fase gas frente a temperatura para los diferentes ratios ácido fórmico/etanol 
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