Trabajo Fin de Grado

Diseno e implementacion de un sistema de
control para un quadcopter

Design and Implementation of a control sytem to a quadcopter

Autor/es

Rubén Abad Torrén

Director/es

José Luis Villroel Salcedo

EINA
2015/2016

RESUMEN

En el siguiente documento se aborda el desarrollo e implementacion del sistema de control
de una aeronave no tripulada del tipo quadcoptero (o dron), también se estudiaran e
implementaran los algoritmos de sensado de la orientacién, asi como los procesos de fusion
sensorial para la navegacion.

El control deberéa ser capaz de lograr que la aeronave obtenga la orientacion de forma estable
en un tiempo de respuesta menor a un segundo, asi como de variar el empuje perpendicular
aportado, para ello se sensa la posicion y se actlia en cada propulsor.

Para lograr dicho propdsito se modelara el sistema mediante ecuaciones diferenciales, para
posteriormente identificar las constantes, una vez obtenido el modelo, se calcularan los
parametros del control elegido.

También se implementan las tareas y procesos necesarios para la operacion de la aeronave,
la comunicacién con la emisora y la emisién de la telemetria.

La ejecucion simultanea de las tareas correrd sobre un sistema en tiempo real, asi como la
gestion de los periféricos.

MASTER

w
Q
2
U
~
O
3
c
©
W
Q
2
N
W
Q
(%)
O
<
<
=

Ingenieria y Arquitectura

.ﬁl Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompafiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. Ruben Abad Torren

J

con n? de DNI 73205858-D en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado en Ingenieria Electrénica y Automatica , (Titulo del Trabajo)

Disefio e implementacion de un sistema de control para un guadcopter

)

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 24 de Junio de 2016

K Abad

Fdo: Rubén Abad Torrén

iNDICE DE CONTENIDOS

1. INTRODUGCCIONcoooieieieiieieieee ettt ettt ettt ettt s ettt s st s et es sttt s s, 3
1.1, ESTADO DEL ARTE ..uiiiiiececeeieiet ettt ettt sttt s st s st et s s st s s 3
1.2, REQUISITOS ..ottt ettt ettt sttt et s e s et et s s s et et s s st e st s s e 3

2. ESTRUCTURA Y FUNCIONAMIENTOcoouiiitiiiiiecietetetee ettt as s 4
2.1. TEORIA DE FUNCIONAMIENTOoiiiiiiieieietetete e e te ettt s s s sttt seseanans 4
2.2. ESTRUCTURA & ACTUADOREScocooiiuiuiteteieeee ettt ettt as s 4

3. DISENO ARQUITECTUAL ..ecuiuiuiieietieeeeee ettt eaet e ss e s s s st es et e s et et e s et e e st esesesesesneeans 5

A, CONTROL ..ottt ettt e e et ettt e et et s s s e et et et et es s aes et et et ennssaetesesas s nanses s 6
4.1. MODELADO MATEMATICO DEL CONJUNTOcoouiuiuiteecececececceeee ettt 6

4.1.1. MODELADO DEL MOTORceuiiiiiiitiecteteteteeeeeeeeiete ettt s sttt en s eae s st s s e senas 6
4.1.2. IDENTIFICACION DEL MOTOR. ...coooiuiuiieieiieeeeeeeeieieteeeeeae ettt es st s s 6
4.1.3. MODELADO DE LA ESTRUCTURAciiiiiiteeeteeet ettt ettt nn s s 7
4.1.4. MODELADO DEL SISTEMA COMPLETO ...c.ciiiiiiieeeeeteeeeeeetee et n s 7
41.5. IDENTIFICACION DEL SISTEMA COMPLETO......cocooiiiiiiiiieieteeteieeeveseaeaeeeses s 8
A.2. CONTROL ...oviieeeieeieie ettt ettt ettt s sttt s s e et et et et s sa e s et et et n s s et e s es s nanseaesas 9
421, TECNICAS DE CONTROL ...ovoviuieiieieeeeeeteteeeee ettt en e esesn s saens 9
42.2. TOPOLOGIA DE CONTROL UTILIZADAooiieeeeeeeeeeeeeeeeeeee e 10
423, LAZO DE REALIMENTACIONccciuiiiiiiieieiiiieeeeeetetet ettt 11
424, CALCULOS DEL CONTROLoviiieitceeieieeeeceee ettt s sttt n s s 12

B, SENSOREScooiiieeeeeete ettt ettt ettt ettt ettt ettt ettt ettt n s 13

5.1. SENSORES ORIENTACIONocooiiiiiiieieeeeeeeeteeee et s e s s s sttt eeeeeens 13
51.1. ACELEROMETRO.....ciitititieieieieeeee oottt en s st et ettt et sne 13
512, GIROSCOPO.......co ittt ettt n s sttt ettt sene 13
SR T =1 LU N RO 13
51.4. ALGORITMO DE FUSION SENSORIAL.cocoeuiueeeeeieeeieeeeeeeeeesesesesesenesesesesesesesaseseaeaeeen 14

5.2. TRATAMIENTO DE LA SENAL OBTENIDA DE LOS SENSORES.ccoeoiiiiciieiciereeeeeveve, 15

6. ESTRUCTURA HARDWAREcocviiiiieiectete ettt ettt s st en s 17
6.1. DISPOSITIVOS HARDWAREc.ceuitiieiteteteteseseeeieie et esesseeae e se s s sasae et es s asesenasaesesas 17
6.1.1. PROCESADOR PRINCIPALcococvitiiiiiiitititeteietetete ettt 17
6.1.2. PROCESADOR AUXILIARocooiiiiiiiiieiiteieieeee e en s s s s s s 17
B.1.3. SENSORESocoititctetetctcececece ettt ettt ettt ettt n e s e s st ettt s ettt seee 17

6.2. DESARROLLO DE LA ELECTRONICA ASOCIADA...........cooteuiteieeeeeeeeieeieeeeesase e, 18
6.2.1. DISENO SOBRE PLACA DE DESARROLLO........c.cceeuiiiiiieiieiiieiieieeeee et 18
6.2.2. DISENO DE PCB DE LA VERSION FINAL......ccooootetiuiieieteeieeeetceeee et 18

7. ESTRUCTURA SOFTWAREcouiuiiiiictete ettt sttt s s sasae et n et e st es s st s s s naeae 18
7.1. ESTRUCTURA DEL RTOS EN UPROCESADOR PRINCIPALcccoovueierereeeecesieeereseeeae e, 18
740, TAREAS ...ttt ettt ettt ettt en e 19

7.2. ESTRUCTURA DEL UPROCESADOR AUXILIARc.cocuiueueteeceeecceeeeeeeeeeeeteie e 21
7.2.1. SISTEMA DE DESACTIVACION DE EMERGENCIA.ccoiuiuieeeeeeeeeeeeeeeeeeeeeeee e 21
7.2.2. RECEPCION DE RADIO & SENSADO DE BATERIAc.cooiuiuiieieeeeceeeeeeeeeeee e 21

8. WUELO: ...ttt ettt a et a et e s e e e ettt ettt ettt eenanas 21
8.1. PRUEBAS DE VUELO......oiiiieeeeeeeeeeeeeeeete et s s s st eanansnananas 21
0. CONCLUSIONESooieieietieeeeeceee ettt et ettt s sttt n st e st s s st es s s neeen 23
10. REFERENCIAS & BIBLIOGRAFIAcoooiiieeeeeeeeeeeeeeeeeeeeeeeeeee e n s s 24
TN N =5 1 TR 24
A. CALCULOS SISTEMA OPERATIVOcooiiiieeeieeeeeeeeeeeeeee e s e s 24
B. (07 \Wo1U] @10l N 1 0] U 25
C. ESQUEMATICOS DE LAS PCBi....covvviececeeieteieeeeeeeeee ettt es s as s, 26
D. PROGRAMACIONcooooieieiieeeieeeeeecee ettt ettt s s et es s an s enanaeen 31

1.

INTRODUCCION

1.1. ESTADO DEL ARTE

El campo de las aeronaves no tripuladas ha experimentado un crecimiento exponencial, se ha
pasado de proyectos militares de millones de ddlares a juguetes de apenas 10€.

Hace unos afos Unicamente fuerzas militares disponian de “drones”, cuya finalidad consistia en el
espionaje y bombardeo tactico, evitando la posible captura de un piloto por el derribo de la
aeronave.

Hoy en dia, su uso esta mucho mas extendido, si bien siguen usandose los drones militares, el
desarrollo de drones para usos civiles esta en pleno auge, dandose el caso de que muchos
paises han debido legislar este tipo de aparato, asi como su utilizacion.

Si bien existe otra filosofia de “drone”, basada en helicoptero, con la capacidad de mantenerse
estatico en un punto del espacio, es este tipo de aeronave la mas usada tano por profesionales,
como por el aficionado, tareas como la fotografia o captura de video pueden hacerse ahora desde
planos aéreos, asi como la inspeccidn de edificios y pequefias areas de terreno.

Ante este auge, existen en el mercado distintos fabricantes, que proporcionan desde el sistema al
completo, hasta las distintas partes mecanicas, asi como el control, del mismo modo existen
también proyectos de cédigo abierto con tal fin.

1.2. REQUISITOS

e El control debera ser capaz de lograr que la aeronave obtenga una orientacién de forma
estable en un tiempo de respuesta menor a un segundo, asi como de variar el empuje
aportado.

e Sensado de la ubicacién y orientacion de la aeronave, para la realimentacidn del control.

e Implementan las tareas y procesos necesarios para el pilotaje de la aeronave, la
comunicacion con la emisora y la emision de la telemetria.

e Coste: requisito comun a todos los proyectos, se debe mantener el coste lo mds bajo posible,
sin que ello implique la pérdida de funcionalidades.

e Compactoy ligero: La naturaleza del sistema impone que el control ni puede ser pesado, lo
que dispara el consumo de los motores para mantener el vuelo, ni voluminoso. Lo que
disminuye la aerodinamica del dron.

e Modular: un disefio que permita afiadir y quitar funcionalidades, lo que permite exportar el
disefio a proyectos similares

2. ESTRUCTURA Y FUNCIONAMIENTO

2.1. TEORIA DE FUNCIONAMIENTO

El principio de funcionamiento de la aeronave se basa en variar el empuje de cada propulsor.
Ubicando los ejes de referencia, tal y como muestra la Figura 1 se obtiene las siguientes
aceleraciones angulares:

e Ladiferencia de empuje entre Q0 y Q2 produce una aceleracién angular sobre el eje YB.
e Ladiferencia de empuje ente Q1 y Q3 produce una aceleracion angular sobre el eje Xb.

e Ladiferencia de empuje de Q0 mas Q2 entre Q1 mas Q3 produce una aceleracion angular sobre el eje Zb.

Estas fuerzas son producidas por dos fendmenos. Para el empuije vertical (flechas de la Figura 1),
se usa el empuje producido por la rotacion de la hélice en el fluido que es el aire. Dado que al
rotar, el motor genera un par contrario a la rotacion de la hélice, (Tercera ley de Newton o Principio
de Accion y Reaccibn), por este motivo se genera un momento en el eje Zb, que proporciona la
rotacion en dicho eje, siendo necesario que haya el mismo nimero de motores rotando en un
sentido que en el otro, para mantener el equilibrio.

Es decir, la diferencia de velocidad de

rotacion de entre los motores situados en

los extremos de cada brazo del mismo eje LEFT FRONT
produce rotacién en dicho eje (X e Y), la Q QO
diferencia de velocidad (Teniendo en cuenta 2

el signo) produce la rotacién en torno al eje
REAR RIGHT

. Q Qg
El empuje total se corresponde con la suma 1
del empuje individual de cada motor.

Figura 1. Ejes de referencia, sentido de giro de los
motores y empujes

2.2. ESTRUCTURA & ACTUADORES

La eleccién de la estructura no es un aspecto critico del sistema, una vez escogido el tamafio
aproximado de la aeronave, asi como su numero de impulsores, debiendo tenerse en cuenta como
parametros para su eleccion el peso y la rigidez. Se opta por una estructura “Q450”, que posee un
tamafio estandar de 45cm entre ejes, 4 motores, la rigidez y un peso apropiado

La tecnologia de los motores es BLDC, dado la potencia que son capaces de desarrollar aun para
su reducido peso y tamafio, un motor BLDC tiene un disefio similar a un motor trifsico, si bien la
conmutacion de corriente por los devanados se realiza de forma electronica, amén de ser siempre
positiva.

Puesto que los motores escogidos son del tipo BLDC, por ser los adecuados para este propésito
se requiere de un ESC (Electronic Speed Controller), que basicamente es un inversor trifasico
definido positivo. Todos tienen un comportamiento similar, por lo que Unicamente se requiere que
sean capaces de aportar la corriente necesaria, y que el firmware se “Simonk”. Dado que tiene una
tasa de muestreo interna de hasta 400Hz. Para comandar el ESC, se le aplica una sefial de
minimo 1ms (Potencia cero), a 2ms (Potencia maxima). Siendo estas las entradas del sistema.

Como se desea un comportamiento pausado en lugar de uno agresivo (usados en acrobacias), se
escogen motores de bajo Kv, y hélices grandes, aptas para “bajas” rpm. Asi se escogen motores
Sunnysky x2212 KV980, hélices de 1045 (10” de radio, 4.5” de paso”) y una bateria de 3 celdas
con una capacidad de 2200mAh.

3. DISENO ARQUITECTUAL

El sistema (como se describié anteriormente) consta de una estructura en forma de cruz con un
actuador en el extremo de cada eje, por medio de un ESC usando un PWM se controla el actuador.

Fijados al chasis se encuentran los sensores necesarios para medir la orientacion de la aeronave, asi
como su velocidad angular, ambas usadas para la realimentacién del control, la comunicacién entre el
control y los sensores se realiza via 12C.

El controlador dispondra de un radio enlace via UART de tecnologia Bluetooth, para la emisién de la
telemetria, de ser necesario aumentar la distancia podria cambiarse la tecnologia de comunicacion
siempre que use protocolo UART.

El control dispone de un microprocesador auxiliar, este procesador lee los PWM del receptor de Radio de
la Emisora trasmitiéndolos al procesador principal via I12C, sin embargo su funcion principal reside en
desactivar el procesador principal, como funcién de seguridad. Para dicho propdsito activa el pin de
reset.

El enlace para pilotar el quadcopero corre a cargo de la emisora Turgnigy 9XR Pro, con 8 canales de
datos, emitiendo sobre la banda de 2.4Ghz, garantizando la conexiéon a mas de un kilémetro.

Enlace Bluetooth

UART

GPIO

Emisora Radio-Contral

|2C Reset

Receptor Radio-Control

Procesador Auxiliar

Figura 2. Arquitectura de conexionado.

4. CONTROL

En primer lugar se procedera al modelado matematico del conjunto, tras lo cual se procedera a la
identificacién de las constantes de las ecuaciones de modelado.

4.1. MODELADO MATEMATICO DEL CONJUNTO

Para el modelado matematico, el modelo se dividira en dos subconjuntos, el motor pese a ser
un BLDC, puede modelarse como un motor de corriente continua clasico?, que se puede modelar
como un sistema de primer orden, (si se desprecia la inductancia del bobinado).

El comportamiento dindmico del chasis puede modelarse mediante las ecuaciones de Newton-
Euler.

4.1.1.Modelado del motor

Ecuacion del motor en el campo transformado de Laplace, en la forma estandar:

Vipm _ Km
Accion 1 +Tm*5

, Siendo Ty, el retraso caracteristico del motor.

Como el empuje del motor es cuadrético con la velocidad de rotacion, sera necesaria una
linealizacion:

Ko X K" Kn
141, 1+,

Fotor = Tpm X K, =

Siendo lea proporcién de velocidad y el empuje en Newton.

4 1.2 .ldentificacién del motor.

La identificacion del motor consta de dos apartados, el primero donde analizaremos la
respuesta dindmica, midiendo la velocidad del motor, analizando el tiempo que le cuesta
alcanzar el permanente con el cambio de entrada. Esta identificacion puede obviarse porque al
analizar el sistema completo el polo mas rapido sera el correspondiente al motor.

Figura 3. Evolucion de las rpm del motor a distintas acciones.

t AN857 “Brushless DC Motor Control Made Easy” de Microchip

. . . . pe ., . ., i .
La siguiente identificacién es la ganancia del motor Km' la relacién de ﬁ, se procede a medir
la fuerza ejercida por el motor a diferentes valores de entrada, obtenido los siguientes resultados:

- Goodness of fit:

* Fws.D SSE: 0.0848

untitled fit 1| _ R-zquare: 0,995

Adjusted R-square: 0,9937
RMSE: 0.1456

Figura 4. Aproximacién lineal
i de larelacion de F/ Accion

300 400 500 600 700 800

La TF sistema tiene un comportamiento practicamente lineal, con un valor de correlaciéon R de
0.99.

4.1.3.Modelado de la estructura

A partir de las ecuaciones de Newton-Euler:

OISR

Siendo T® el momento angular, al ser proporcional a la fuerza, se modela el sistema en funcién
de la fuerza, modificandose la ganancia del sistema, afiadir un rozamiento viscoso y linealizar el
sistema, la ecuacion de rotacién de un eje es:

FXL—fx0=Ix6
En modelado de Laplace:
Kq
0 =——k—
s(s+Tq)
4.1.4.Modelado del sistema completo

Multiplicando las dos ecuaciones anteriores, normalizando la funcién obtenida queda:

0 = Km x Kq
s+ Tm)(s+Tg)

Donde T4, es el polo correspondiente al motor, y ’l'q es el polo correspondiente a la rotacion de
la estructura.

Y el modelado del sistema mediante variables de estado:

8000

6000

4000

-2000

-4000

-6000
0

L 0,0,0,0,0%% 0,00,
]q1))))) ']ql)))) _ O’ O' 0’0
. 1;0’0;0’0’0;()!0'0!0 0,0,0,0
[Oy -1 Kql R 0,0,0,0
) 0; O’_’O; 0’0’0;_;010 x P
Oy Jq2 Jq2 0, 0,0,0,0
éy Ol O’ 1; O’ 0’ O; O’ 0; 010 0 0’ 0’ 0’0
o —1 Kq3 Y 010;010
6, | 10,0,0,0—,0,00—>,0/ | & Km —Km vl
i |_ Ja3 Ja3 6 —,0——,0 U2
92 O’ Ol O’ Ol O’ OI_IOl 0;0 QZ Km —Km U4
APl Jm AF1 0,~—,0,——
AF?2 0,0,0,0,0,0,0,_,0;0 Km —Km Km —Km
AF3 Jm AFS Y o =
: - F Jm’ Jm "Jm’ Jm
‘FtOtal‘ Ol O’ Ol O’ Ol Ol O’ O'HIO - total” Km Km Km Km
0,0,0,0,0,0,0,0,0,—
Jm

4.1.5.Identificacion del sistema completo

Para la identificacion del sistema se ancla el chasis a una estructura metalica que permite la
libre rotacion en torno a un Unico eje.

Para ello se generan sefiales aleatorias cuadradas con un determinado margen espectral, se han
generado varios espectros para buscar la mejor respuesta y varias sefiales dentro de cada
espectro para comprobar que dan resultados similares.

El propio algoritmo arranca la tarea de identificacion de la aeronave, recepciona y almacena la
respuesta emitida por la aeronave. Con esto obtenemos el vector de entrada al sistema, y el
vector de salida. Introduciendo los datos en la herramienta obtenemos la siguiente respuesta

Measured and simulated model output

=

I I T I

P2 7721

o

L ok L L

Figura 5. Respuesta sistema real e identificados, con valores identificacos cercanos al 80%

—_— K i et g o — |

Resultando la ecuacion global entorno a un eje:
0.009637 * 1.89310976

0 =
$(0.09639 * s + 1)(0.8613 * s + 1)

4.2. CONTROL

4.2.1.Técnicas de Control

Pueden abarcarse dos puntos de vista para la implementacién del control, al ser un sistema
MIMO, (Multiple Inputs Multiple Outputs), puede optarse por implementar un control por eje, con
bucles de control independientes, o modelar un control que contemple todos los bucles.

4.2.1.1. Modelado por controles independientes

Con la trasformada de la funcion de transferencia al plano Z, la ecuacién pasa a ser un
conjunto de sumas y restas de las entradas y salidas actuales y pasadas multiplicadas por
unas constantes.

Disponen de una Unica entrada asi como de una Unica salida, por lo que no es el idéneo para
sistemas MIMO (Multiple Inputs Multiple Outpus), si bien siempre puede aplicarse el teorema
de la superposicion.

4.2.1.2. Control en variables de estado

Se basa en la conversién de una ecuacién diferencial de orden superior o conjunto de ellas,
(admite sistemas MIMO) en un sistema de ecuaciones diferenciales de primer orden.

Estas ecuaciones pueden escribirse en forma matricial, en funcién a un vector de las variables
del sistema, llamado variables de estado, por estar compuesto por las variables del sistema
que determinan su estado (tales como posicion o velocidad).

Los polos del sistema (correspondientes a las soluciones de las ecuaciones diferenciales)
pueden calcularse como los valores propios de la ecuacion, lo que proporciona una potente
herramienta matematica para el estudio de control. Al estar todo el sistema descrito en forma
de matrices facilita en gran manera la simulacion del sistema, permitiendo un incorporar
elementos como estimador de estado y perturbaciones.

Como el sistema es MIMO, y se desea incorporar funciones como el estimador de
perturbaciones, esta sera la técnica escogida, ademas, esta implementacion permite conocer
el estado del sistema de todo momento, ya que las variables que lo definen estan
almacenadas en el vector.

wir Xl | XIFh ¥ir)

PLANTA

_ Figura 6. Esquema del lazo de
Kk #— qalimentacion del control en
variables de estado

4.2.2.Topologia de control utilizada

4.2.2.1. Estimador de estado y perturbaciones

En lugar la técnica de la integracion del error para la correccion de las perturbaciones, asi
como garantizar que el permanente alcanza la referencia, se opta por implementar un
estimador de perturbaciones. El estimador de perturbaciones se basa en comparar la medida
real del sistema, con la medida que ha simulado en funcién a las ecuaciones que definen el
sistema, con esta comparacion, es capaz de calcular la magnitud de la perturbacion para
posteriormente corregirla.

Esta técnica evita los principales problemas tipicos de la accién integral, como la saturacion de
los actuadores sin previo aviso, o el wind-up, ademas de que la estimacién es mas rapida que
la integracién del error.

Concretamente en un sistema de este tipo resulta interesante saber el estado de cada motor (
como la perdida de empuje), asi como el punto de trabajo en el que esta, dado que la
saturacién conlleva a la pérdida del control, y en este caso muy posiblemente a colisionar la
aeronave con el suelo. Conociendo la perturbacién de cada motor el sistema podria avisar de
una inminente perdida de un motor.

Otra funcion del estimador de perturbaciones es corregir las no linealidades del modelo, que
estimara como perturbaciones.

Esta técnica precisa de un modelado del sistema muy preciso, de lo contrario el
comportamiento del sistema puede interpretarse como perturbaciones, descontrolando el
sistema.

De forma idéntica al estimador de perturbaciones, mientras el sistema sea observable se
pueden estimar variables de estado, esto permite aplicar una filtracion a la sefial medida, (no
usado en este proyecto), o conocer el valor de aquellas variables de estado que no son
medidas, (en este caso el empuje de los motores)

! A/'\': |
< | |

]

Figura 7. Esquema de control con estimador de estados

o

Observador de estado de orden completo

11

4.2.2.2. Integrador de perturbaciones

Como alternativa al estimador de perturbaciones, se ha implementado la accién integral
para corregir perturbaciones, similar a la clasica implementacion, en lugar de integrar la
accion, se integra una variable intermedia, de esta manera, si bien el comportamiento idéntico,
de esta manera es posible conocer el valor de la perturbacion que se esta corrigiendo.

Tiene las desventajas de un menor tiempo de respuesta, y los problemas asociados al integral,
y la ventaja de que su sencillo funcionamiento es independiente de otro pardmetro que no sea
el error medido. Se contempla su uso en el caso de que el modelo nos sea lo bastante preciso
como para que estimador de perturbaciones funcione correctamente.

4.2.2.3. Pre alimentador de perturbaciones

Las perturbaciones que pueden ser calculadas y predichas, tales como el peso de la bateria
el salir de la posicion de equilibrio, los efectos giroscopicos (no contemplados en este
proyecto)..., se prealimentaran, haciendo su impacto nulo, y no siendo necesario estimarlas o
integrarlas.

4.2 3.Lazo de realimentacion

Se podria usar Matlab para calcular la matriz de realimentacion para ubicar los polos en las
posiciones deseadas (en funcion de unos pardmetros de respuesta deseados), una opcién
perfectamente valida para sistemas mas simples, con parametros mejor definidos y salidas mas
estables.

Dada la naturaleza de la planta del sistema a controlar, se opta por ubicar los polos de una
forma manual, ya que la matriz de realimentacion obtenida de Matlab realimenta todos los
estados, cosa no idonea en este sistema, al no saber la exactitud del modelo y el dificil ajuste a
mano que supone.

Usando una estructura mas simple, el ServoControl podemos ubicar los polos con Unicamente
dos lazos de realimentacion, dependientes cada uno de una Unica variable de estado,
(Realmente podrian usarse tres, para acelerar la respuesta del motor).

Esta topologia si permite un facil ajuste a mano por tener Gnicamente dos parametros a variar,
con comportamientos radicalmente distintos, la ganancia proporcional aumenta la accién
aplicada en funcion del error, la ganancia de la velocidad reduce a la accién en funcién de la
velocidad del sistema. Basicamente, la ganancia de la velocidad se opone a todo movimiento, y
la proporcional encara al sistema hacia la referencia. Esto permite respuestas rapidas sin
oscilaciones, ya que al desaparecer la accion integral con la reduccién del error, el sistema se
frena por la accion de la ganancia de la velocidad.

G_eje oL

G motor

Y

Integrator Scope

Kv

Kp

Figura 8. Esquema Servo-Control en un eje

L =

12

[
[
[

Existen 4 actuadores en total, para los ejes X, e Y la accion se reparte entre los 2 motores
enfrentados, 0y 2 para el eje X, 1y 3 para el eje Y, para el eje Z, (tanto rotacional como para el
empuje) se usan los 4 motores, de ahi los factores de divisién en las constantes, asi como su
signo, en funcién de su aporte a la accién.

Para su implementacién mediante variables de estado se incorporaran las constantes del lazo
a la matriz de realimentacion y a la matriz de pre alimentacion. Quedando el sistema
(excluyendo el estimador o integrador de perturbaciones):

| Bk

T

La

p(k)
r(k) -] uk) x,(k)=C x(k)

Sistema

x(k)

Figura 9. Esquema Pre alimentacion

Quedando la matriz de realimentacion y prealimentacion:

Evl/2, Epl/2, o, a, Evijfa, Ep3/4, Epr, a, 0, 0]
a, 0, Ew2/f2, Kp2/2, -Ev3/f4, -Ep3/4, a, Epr, o, 0]
-Ewl/2, -Epl/2, a, 0, FEw3i/jf4, FEp3i/f4, a, a, Epr, 0]
o, 0, -Ev2/2, -Ep2/2, -Ev3/ /4, -Ep3/4, o, o, o, 011
Epl/2, o, Ep3f4, 1]
[0, Ep2/2, -Ep3/f4, 1]
[-Epl/2, 0, Ep3if4, 11
[0, -Ep2/2, -Ep3/f4, 1 1]

Dado que la accion se aplica en varios motores, la constante del lazo se divide por ese
numero de motores, asi como por el signo de la aplicacién para esa accién.

4.2 .4 .Célculos del control

Los calculos de las constantes se realizan en funcion de F(s)= r . 1+KK ’
las ecuaciones del Servo-Control, mostradas en la Figura 10. T+ —s+1
S . . iy : KK KK
La realizacién de los célculos, la simulacién del sistema y del : ’

eje estan en los anexos KK
— r
o, .

El polo mas rapido se desprecia por tener una dinamica mas con 1+ KK
de cinco veces mas rapida al otro polo. &= .

2 /KKt

Figura 10. Ecuaciones ajuste
Servo Control en sistema de
segundo orden con integrador

5.

13

SENSORES

En todo sistema de control, algo tan importante como el propio sistema de compensacién de la
planta, es el sensado de las variables a controlar, puesto que una incorrecta medicién conllevara a
una incorrecta respuesta del controlador, asi como una sefial de salida pobre comprometera la
respuesta de todo el sistema.

Como se vio durante el modelado matematico del sistema, existen 4 magnitudes fisicas a medir en
las variables de estado, posicién angular, velocidad angular, Fuerza y RPM.

Dada la necesidad de reducir el peso, todos los sensores estaran basados en tecnologia MEMS, La
tecnologia MEMS se basa en el micro mecanizado del silicio, lo que confiere tamafios micrométricos
y por ende poco peso, suele basarse en la variacién de la capacitancia de un condensador
mecanizado por una fuerza externa a él.

Los sensores a utilizar son un girdscopo, para la medicién de la velocidad angular, un acelerémetro,
el cual es el capaz de medir las fuerzas que actlan en el sistema y una brdjula que realmente mide
campos magnéticos. Todos ellos dan la medicién respecto en los tres ejes, es decir en forma de
vector, las RPM no se mediran, dado que no son fundamentales para el lazo de control, y se
procedera a su estimacion.

5.1. SENSORES ORIENTACION

La orientacion se mide en se compone de la orientacion respecto del eje z del plano suelo
(YAW) y la inclinacién del chasis respecto del plano suelo (PITCH y ROLL).

5.1.1.Acelerémetro

Como la gravedad es Unica e inamovible, con una orientacion perpendicular al plano
terrestre, puede ser usada para calcular la orientacién del chasis respecto al plano terrestre.

La gravedad es una fuerza, y por ende proporcional a la aceleracién, pude medirse con un
acelerémetro. Sin embargo el acelerometro es extremadamente sensible a las vibraciones, por lo
gue queda imposibilitado su uso exclusivamente para calcular la posicién, dado que el sistema
sobre el que se monta genera mucho ruido mecanico (vibracion) de alta frecuencia. Otro
problema asociado al acelerémetro es que mide cualquier tipo de aceleracién, no Unicamente la
gravedad, por lo que la aparicion de otras fuerzas (siempre que el sumatorio de fuerzas que
actlan sobre la aeronave no sea igual a 0), conlleva al falseamiento de la medida.

5.1.2.Giréscopo

El uso de un giréscopo, si bien no aporta la medicion del angulo, si lo hace de la velocidad,
por lo que integrando esta velocidad se obtiene el angulo girado desde el instante en que
comienza la integral, por lo que se obtiene el angulo girado desde el punto inicial, no el absoluto,
Unicamente coincidiran si el angulo inicial es 0.

Al igual que todo sensor, el giréscopo acontece de errores en la medida, tales como no
linealidad, o un valor de offset, que es una componente de continua (producida por efectos no
ideales de la propia electrénica del sensor), es este insignificante valor de offset el que nos
causa problematica con la técnica de la integracion, al ser integrado, produce una salida lineal
dependiente con el tiempo, causando un efecto deriva en el sensor, midiéndose una pequefia
rotacion con el tiempo, aun estando el sensor completamente estético.

5.1.3.Brajula

Conocido como magnémetro, usando el efecto hall es capaz de sensar la magnitud de un
campo magnético en los tres ejes cardinales, por lo que pude ser usado para medir la orientacion

14

usando el campo magnético terrestre, que si bien no es tan Unico e inamovible como la
gravedad, es lo suficientemente estatico para ser usado.

La problematica de referenciar una orientacién usando un campo magnético es la variacion de
este, dado que si bien la emision es estable, el flujo magnético en un punto del espacio es
dependiente de la reluctancia del espacio que lo rodea. Por lo que la rotar la aeronave, y por
tanto el chasis varia la reluctancia de los tres ejes espaciales del sensor, esto puede paliarse
aplicando factores de correccién para la rotacién del sensor en la estructura, pero no cuando lo
gue varia es el entorno.

Otro problema es el hecho de que las corrientes generan campos magnéticos, dada la
naturaleza de impulsion eléctrica de la aeronave, es bastante factible la aparicion de ruido en la
medida provocada por accién de los motores eléctricos.

5.1.4 Algoritmo de fusién sensorial.

La solucién para calcular la orientacion deja de ser trivial, siendo necesario un algoritmo que
fusione los sensores para paliar los desventajas que poseen por separado, obteniendo una
medicién de las variables precisa, absoluta, y libre de ruido.

Existen multiples algoritmos de fusién sensorial, de varias eficiencias y costos computaciones,
sin embargo todos comparten con mas o menos acierto la misma idea, estimar la posicion
mediante la integracion, corrigiendo posteriormente con el acelerémetro y la brdjula.

5.1.4.1. Filtro Complementario:

El disefio mas simple de todos, calcula la posicion mediante la integracion y mediante la
accion de la gravedad (campo magnético para eje Z), a cada una de estas estimaciones se le
asigna un tanto por uno, (estas constantes suman uno, de ahi complementario), es decir, la
salida es un media ponderada entre el angulo integrado por el giroscopio y el angulo medido
por el acelerémetro.

Angle=a-(Angulo +Velocidad Angular -dt)+(1-a)-angulo acelerometro
Un filtro muy simple y con un redimiento bastante pobre.

5.1.4.2. Filtro de Kalman:

Especificamente desarrollado para la fusion sensorial en los afios 60, este algoritmo ha
sido ampliamente usado para la navegacion de vehiculos y guia de misiles espaciales, también
permite estimar las variables no medibles, y es excelente frente al ruido blanco, es recursivo,
por lo que se ajusta a las variaciones del sistema, es polivalente y puede adaptarse para
cualquier sistema.

Su funcionamiento consiste en un estimador en el que la K de realimentacién se calcula en
funcién de las varianzas de los ruidos, es decir calcula cuanto de precisa es la medicion
respecto de la simulacién. Dando como salida una medida entre ambos valores aportando peso
a cada una en funcion de lo precisa y probable que es.

Sus inconvenientes son que se precisa de un modelo matematico preciso, asi como de
potencia de célculo, dado que es computacionalmente complejo y pesado.

15

5.1.4.3. Algoritmo de Mahony:

Especificamente desarrollado para la navegacion, es un algoritmo para la estimacion de la
actitud y rumbo (AHRS), una solucion intermedia a las anteriores, se basa en el célculo de la
posicion mediante el giréscopo y la posterior correccion con los otros sensores.

Utiliza la matriz de cosenos directores (DCM), aunque también existe la posibilidad de realizarlo
con quaternios, lo que permite obtener la orientacion del sistema en cualquier sistema de
coordenadas con unas pocas operaciones.

El algoritmo se basa en rotar dicha matriz en funcién del angulo que se estima que se ha
rotado integrando la velocidad, para dicha rotacién el algoritmo establece que se use una
aproximacion, sin embargo una opciéon mas precisa, aunque algo mas costosa
computacionalmente, es usar la matriz de rotacion respecto de un vector. El vector de rotacion
corresponde a las medidas del giréscopo en x,y,z, por lo que solo debe convertirse el vector en
unitario y obtener su magnitud (ahi radica el aumento computacional) , una vez obtenida la
matriz de rotacién, se multiplica por la DCM del momento anterior, (obteniendo por las
propiedades de las matrices de rotacién) la nueva DCM.

El algoritmo corrige los errores numéricos detectando la perdida de ortogonalidad de la DCM,
para corregirla posteriormente. Tras lo cual corrige la posicion mediante un PI, usando como
referencia las medidas obtenidas del acelerémetro y de la brdjula.

Este es el algoritmo escogido, ya que ofrece un filtrado muy robusto, es independiente del
sensor, a nivel computacional es bastante mas liviano que el filtro de Kalman, y Gnicamente
dispone de dos parametros, su ajuste se preve un facil ajuste, parametro muy deseable, debido
a que el ajuste se realizara de forma experimental.

5.2. TRATAMIENTO DE LA SENAL OBTENIDA DE LOS SENSORES

Si bien el giréscopo es mucho menos sensible a las vibraciones mecénicas que el giréscopo,
esto no indica que sea inmune. En la mayoria de sistemas de este tipo, un amortiguador mecanico
sirve para este proposito (montar el sistema sobre silent-blocks), también al usarse un sistema que
calcula la posicién basadndose en la integracién de la velocidad, el ruido blanco tiene un impacto
minimo. Sin embargo el esquema de control que se usara (explicado en la seccién 6.1.4) se usa la
medicion de la velocidad directamente, por lo que es necesario una medicion libre de ruido para
que el control no se vea afectado.

Tras analizar la sefial de la velocidad, puede apreciarse un ruido senoidal, con una frecuencia
aproximada de 100Hz, una frecuencia relativamente baja dadas las revoluciones a los que los
motores funcionan, asi como las conmutaciones eléctricas de los motores, por lo que
posiblemente sea la frecuencia de resonancia de la estructura.

Para lograr limpiar la medida, se debe utilizar algun filtro. Como la frecuencia de respuesta del
sistema es inferior, un filtro paso bajo es una opcién valida dado que las frecuencias mayores
nunca tendran una magnitud considerable, por lo que un filtro pasa banda es innecesario. La
problemética de este filtro es que la frecuencia de corte no es lejana a la de respuesta del sistema,
debe buscarse un filtro que no atenue las frecuencias correspondientes al funcionamiento del
sistema, pero lo mas alejada posible de la frecuencia del ruido. Se debe escoger una ancho de
banda que no limite el tiempo de respuesta del sistema.

Otra gran ventaja de la incorporar el filtro es la eliminacion de datos espureos, asi como de su
impacto negativo para el control. Experimentalmente se ha determinado que un filtro de 20Hz de
orden 4, topologia chebisev, proporciona una medida limpia de ruido, con un retraso aceptable,
entendiendo como aceptable un retraso equivalente un periodo de muestreo del control, por lo que
el sistema controla con la posicidn anterior, que puede parecer mucho, pero es inferior a 5ms vy la
dinamica del sistema, este retraso no afecta al control, podria haberse usado el filtrado solo para

la velocidad, eliminando de esta manera el retraso en el sensado de la posicion (al ser integrada
no le afecta el ruido blanco), pero experimentalmente no se aprecié retraso significativo, por lo que
se descarto.

La sefial original puede verse en la Figura 11, tras pasar por el filtro anteriormente descrito, la
sefial queda apta para ser usada por el control, el efecto del filtro puede apreciarse en la Figura
12.

P | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figura 11. Medidas del gir6scopo IMU9250 sin procesar

120

40— —

E | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figura 12. Medidas del gir6scopo IMU9250 filtradas vy convertidas a grados/sequndo

16

6. ESTRUCTURA HARDWARE

6.1. DISPOSITIVOS HARDWARE

6.1.1.Procesador principal

Dada el esquema de control utilizado, asi como el procesado de sefial de los filtros,
se pude deducir que la implementacion del controlador estara caracterizada por un alto
costo computacional.

Como también se aprecia, (y detalla mas adelante), para implementar todos los
procesos periédicos se opta por el uso de un Sistema Operativo en Tiempo Real (RTOS).

A nivel de periféricos, es necesario al menos 4 PWM, un I12C y una UART.

El microprocesador escogido ha sido el TM4C123GH6PM de Texas Instruments, que
redne todos los anteriores requisitos:

e Arquitectura ARM Cortex M4-F: Microprocesador ARM de la gama de alto desempefio (100
MIPS @80 Hz), equipado con unidad de coma flotante de 32 bits.

e Funciones de DSP: lo que permite realizar calculos numéricos en pocos ciclos de reloj.

e Periféricos: 16 PWM, 4 SPI, 4 12C, 8 UART, 2 CAN y USB.

e TI-RTOS: Sistema Operativo en Tiempo Real desarrollado por ti para sus integrados.

e Tiva Launchpad: Placa de desarrollo de bajo costo con JTAG integrado.

Dada la cantidad de periféricos se implemetaran dos 12C, una para sensores, y otra
para lo demas. Asi como 3 UART para telemetria y usos futuros.

6.1.2.Procesador Auxiliar

Dado que las funciones que realiza ni son criticas en tiempo, ni revisten costo
computacional, se opta por un procesador simple y de bajo coste, que disponga de al menos 8
GPIO, y un 12C.

El uprocesador escogido es el Atmega8 que cumple los requisitos, se ha optado por este
modelo que es pin a pin compatible con los modelos mas potentes de la misma familia, por si en
un futuro fuera necesaria mas potencia de calculo.

6.1.3.Sensores

Todos los sensores utilizados (excepto el US), estan basados en la tecnologia MEMS por el
poco peso y reducido tamafio que poseen, también son digitales con un bus de comunicaciones
12C.

El sensor digital incorpora el conversor ADC, lo que evita que el ruido electromagnético se
superponga a la sefal de salida, al ser digitales también son configurables en cuanto al muestreo
y sensibilidad. El interfaz 12C permite conectar hasta 255 dispositivos en un mismo bus,
consistente en dos lineas (SCL y SDA), por lo que se ahorran pines en el procesador principal.

Los modelos usados son el MPU-6050 del fabricante Invesense, consistente en acelerémetro y
Giréscopo, y como brijula la HMC5883L de HoneyWell.

17

También se ha trabajado con el MPU-9250 de Invesense, que incorpora los tres sensores en un
Unico integrado.

6.2. DESARROLLO DE LA ELECTRONICA ASOCIADA

Ha sido necesario el desarrollo de circuiteria adicional, los esquematicos se encuentran en
los anexos.

6.2.1.Disefio sobre placa de desarrollo

Se ha desarrollado una PCB donde se inserta la placa de desarrollo “Tiva Launchpad”, la
funcion de esta PCB, es dar tanto apoyo mecanico a la placa de desarrollo para fijarla al chasis
de la aeronave, como para ubicar la circuiteria adicional requerida:

e Microprocesador Auxiliar
e (Circuiteria de alimentacién
e Conectores para los sensores

e (Circuiteria de los buses de comunicacién

6.2.2.Disefio de PCB de la versién final

Tras comprobar el correcto funcionamiento del montaje en la placa de desarrollo se
implementa la misma circuiteria en una PCB, prescindiendo esta vez de la placa de evaluacion y
desarrollando una placa de control completa, que no necesita de ninglin elemento externo para
el control, se han afiadido los sensores de orientacién, consistentes en un Unico integrado.

Eliminando todos los elementos no necesarios (conectores, pulsador, JTAG), se obtiene una
PCB cuadrada de 5cm de lado, reduciendo de esta manera el peso, tamafio, y coste de la placa
controladora.

También se han afiadido conexiones a periféricos no usados con vistas a futuros desarrollos.

7. ESTRUCTURA SOFTWARE

18

7.1. ESTRUCTURA DEL RTOS EN pyPROCESADOR PRINCIPAL

Se adopta una planificacion de tareas basada en prioridades estaticas, dado que el plazo de
respuesta es igual al periodo, la técnica empleada sera Rate Monotonic, ordenando la prioridad de
las tareas en funcién de su periodicidad, usando la técnica de techo de prioridad para minimizar el
efecto de la inversion de prioridad.

Se ha evitado el uso de variables globales en la medida de lo posible, sustituyéndolas por
variables protegidas por “Mutex” (mecanismo de exclusion mutua), evitando colisiones entere
tareas que comparten datos. Unicamente los “handlers” de las tareas y periféricos, y variables
relacionadas con interrupciones (dado que estas no pueden hacer uso de las “Mutex”), sin
embargo estas todas estas son variables del tamafio de palabra del procesador, por lo que sus
instrucciones son atdmicas, anulando la posibilidad de error.

Para transferencia de datos sin interés global (séase comunicacion punto a punto) entre tareas se
hace uso de los “Mailbox”

Para la sincronizacion de tareas tanto periddicas como en el arranque se utiliza la funcion de
“Semaphore”, activadas por temporizadores software (en el caso de la activaciéon periédica).

La comprobacion de que el sistema cumple plazos, asi como las capturas del tiempo de ejecucién
de las tareas se detallan en los anexos, para dichos calculos se asume un tiempo despreciable de
blogueo por acceso a variables compartidas, dado el escaso tamafio de estas, y por la velocidad
interna del bus del procesador, el bus compartido si se ha contemplado como bloqueo.

7.1.1.Tareas

Las tareas y su descripcion se listan por orden de prioridad

7.1.1.1. LecturalMU

T=1ms, C =0.080ms

La funcién de esta tarea consiste en leer los datos de los sensores de orientaciéon
(giréscopo, acelerémetro, brijula), sean o no parte de un mismo integrado.

Tras leer los datos estos son filtrados mediante el filtro anteriormente descrito en la seccién
4.1 Sensores Orientacién, también se les aplica una rotacion para obtener la medida en
base a los ejes referencia del chasis, para esto se usan las propiedades de la matriz de
rotacion, para finalmente almacenar el dato en la variable protegida.

El periodo de esta tarea es de 2ms, para permitir filtrados de hasta 200Hz, las funciones de
DSP anteriormente descritas consiguen reducir considerablemente el tiempo de la ejecucion
de los 6 filtros, y por ende el de la tarea que se ejecuta 500 veces por segundo.

7.1.1.2. AHRS

T=2ms, C=0.413ms

La tarea ejecuta el algoritmo de fusidn sensorial anteriormente descrito a razén de
200Hz, un tiempo lo suficientemente pequefio para mantener una medida discreta muy
similar a la continua, sin ser demasiado pequefio para producir errores por diferencia de
tamafio en la coma flotante.

Para la ejecucién del algoritmo, la tarea obtiene los datos AHRS anteriores, y las medidas
mas recientes del IMU, tras esto las procesa para obtener la nueva medida y la almacena.

7.1.1.3. Control

T =5ms, C =0.400ms

Tarea principal del sistema en la que se ha implementado el algoritmo de control y
estimacion, en funcioén de los pardmetros del sistema ejecuta el método de control escogido,
asi como el estimador de variables y perturbaciones. Por la propia estructura del control, es
la tarea computacionalmente mas pesada.

Adicionalmente también trasmite via UART la telemetria consistente en las variables de
estado del sistema, perturbaciones estimadas, medidas de los sensores, referencias de
entrada, y acciones aplicadas a cada motor.

7.1.1.4. Medida Altura

T =50ms, C =0.050ms

Tarea consistente en lanzar un pulso al sensor de US e iniciar el contador de tiempo
asociado, asi como de iniciar la medida de presién del barébmetro, tras lo que entra en

19

estado inactivo el tiempo que el sensor necesita para sensar la presion atmosférica, tras lo

gue se activa para leer y procesar la media, almacenandola.

La tarea no se encarga de la recepcion del eco del sensor (si lo hubiere), eso es gestionado
mediante interrupcion.

7.1.1.5. Coordinador

T =25ms, C =0.030ms

La tarea encargada de comunicarse con el microprocesador auxiliar par obtener via
12C las medidas del receptor.

Tras esto determina que actuacién debe tener la aeronave, configurando los parametros
para el control, gestionar los modos de funcionamiento, y activar o desactivar las tareas en

consecuencia

7.1.1.6. Identifi

cacion

Ejecucion exclusiva, no en el ciclo inicial. Unicamente usada para la identificacion del

sistema.

Tarea que lee a través de la UART una secuencia de datos correspondientes a las acciones

a aplicar en los motores, almacenandolas en la memoria dinamica.

Tras la recepcion aplica a los motores la accién requerida, enviando por la UART la

velocidad sen

L

<
Parametros del
Sistema

Variables Globales

Altura & Presion]
k

sada.

NS

20

/

-

-

Lectura IMU
L T=1ms C=0.080 ms

p
AHRS
L T=2ms C=0.400ms

Control
L T=5ms C=400ms

(Coordinador
T=25ms C=0.030ms
L

o

p
Calculo Altura
L T =5%0ms C=0.050ms

Tareas

L

P ———————
l Lecturas IMLU '

Angulos & DCM

Variables Estado

Referencia

L e

(Pertubaciones

Servidores

Figura 13. Esquema de Tareas y recursos compartidos del Sistema Operativo.

7.2. ESTRUCTURA DEL pPROCESADOR AUXILIAR

La inclusion de un microprocesador auxiliar no surge por la necesidad de paralelizar tareas
para aliviar al principal, su inclusién es debida a un aspecto de seguridad.

7.2.1.Sistema de desactivacién de emergencia.

Si bien el procesador principal cuenta con dispositivos de proteccion, tales como un
WatchDog, no se puede garantizar la no existencia de errores.

Pese a que estos aspectos han sido tenidos en cuenta durante el desarrollo, y ante la
imposibilidad de demostrar que no existe error, por improbable que sea, o un error de hardware
debido a factores externos como el ruido (méas improbable aun), se ha optado por usar un
microprocesador externo, con una programacion “simple” (y por ende, menos propensa a
errores), consistente en un bucle eterno que detenga el sistema en caso de error, como es
habitual en los sistemas de robética.

Asi pues, este micro activa el reset en el microprocesador principal cuando pierde en enlace de
radio. Lo que se consigue analizando la trama PWM de la siguiente manera:

Con la recepcion del primer flanco de la sefial, se resetea un contador descendente, el valor de
este contador es mayor que la distancia periddica entre tramas de 20ms, por lo que nunca
llegara a O mientras reciba la sefial del receptor, si esta se pierde, al llegar a 0 ejecuta la rutina
que resetea el micro principal activando el correspondiente pin

7.2.2.Recepcioén de radio & sensado de bateria

Dado que la sefial de radio es mecanismo de activacién, se ha implementado que sea este
procesador quien capture la sefial PWM periddica del receptor, asi como los niveles de tension
de las diferentes celdas de la bateria.

Con esto evitamos el uso de pines en el microprocesador principal, asi como las interrupciones
gue generarian, lo que penalizaria la ejecucién debido a la segmentacién del procesador.

En contra, el micro principal lee los valores recibidos del receptor del micro auxiliar a través de
una comunicacion 12C.

8. VUELO:

21

8.1. PRUEBAS DE VUELO

Tras los ajustes pertinentes, se determina que el estimador de perturbaciones no es lo
suficientemente preciso, por lo que puede estimar las perturbaciones, pero no corregirlas,
desestabilizando el sistema.

Por ese motivo se emplea el integrador de perturbaciones en el bucle de control, logrando asi un
error de permanente nulo, como se aprecia en las imagenes obtenidas de la telemetria:

40

| L |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figura 14. Captura de telemetria, Referencia en azul, Posicion angular en verde

Con una perturbacién estimada (incluyendo la pre alimentacion) de:

| | | | |
0 1000 2000 3000 000 5000 6000 7000 8000 9000 10000

Figura 15. Captura de telemetria, Perturbacién modelada como fuerza en el gje.

22

Problemas que sobre el modelo tedrico nunca se predijeron, tales como:

e Ruido en los sensores, producido por las vibraciones mecanicas que llevo a reenfocar todo el
algoritmo de sensado, fijacion del sensor..., con el consecuente retraso de todo el proyecto.

e Cambio en el control, en un principio se pretendia usar un joystick con enlace de Bluetooth, lo
que termino por descartarse dado el alcance del mismo, como por su incapacidad de mandar
datos en tiempos fijos.

e Recableado completo del sistema, los grandes picos de corriente de los motores llegan a
inducir tensiones en los cableados de control asi como en la propia referencia del motor, lo
que producia que los motores tuvieran comportamientos erraticos.

e Efecto suelo y otros efectos no lineales, sobre todo a bajas rpm, muy lejos de la zona
linealizada, lo que produce que la aeronave tenga un comportamiento mas oscilante.

e Necesidad de una completa telemetria, para identificar las causas del mal funcionamiento del
sistema, o de la dinamica del mismo, gracias a la cual se pudo descubrir el ruido y como
afectaba al control.

e Fallos de montaje, como orientacion incorrecta del sensor, cableados incorrectos, o cables
demasiado largos que acabaron enganchandose en las hélices, todos ellos concluyendo en un
violento impacto contra el suelo.

e Inexperiencia en el pilotaje, lo que complico las pruebas de vuelo, asi como la extraccion de
conclusiones.

e Micro Auxiliar de seguridad, tras un bloqueo del TI-RTOS

9. CONCLUSIONES

Tras el desarrollo del control, y visto el comportamiento del mismo, se puede deducir que para este
método de control es imprescindible, sobre todo en lo referente al estimador, que el modelo sea lo mas
exacto posible, es necesaria una identificacién mas precisa de lo que se obtiene en la estructura, quizas
una identificacién en vuelo seria lo mas preciso, compensando las perturbaciones para hacer mas
precisa la identificacion.

Salvando ese obstaculo, o sustituyéndolo por el integrador de perturbaciones, el control Servo-Control ha
demostrado ser valido para este tipo de aplicacién, precisando de Unicamente la velocidad y posicién del
eje, que pueden medirse directamente, no siendo necesaria la implementacién en variables de estado
sino desea el estimador.

Para esta aplicacién, una medida limpia de ruido en la velocidad es determinante.

El algoritmo de AHRS, junto con el filtrado de los sensores, logra una medida limpia de la ubicacién y
velocidad del sistema, consiguiendo eliminar los efectos de deriva.

El proyecto no esté cerrado, pueden seguirse afiadiendo funcionalidades, como el control de posicién en
el espacio cartesiano, el control de altura..., podria mejorarse el sistema de control usando ESC que
realimenten las revoluciones de los motores, o re-identificar el sistema con los datos obtenidos durante el
vuelo.

23

10. REFERENCIAS & BIBLIOGRAFIA

e “INGENIERIA DE CONTROL MODERNA 52 ED”, Katsuhiko Ogata.

e “SISTEMAS DE CONTROL EN TIEMPO DISCRETO”, Katsuhiko Ogata.

e “COMPLEMENTARY FILTER DESIGN ON THE SPECIAL ORTHOGONAL GROUP”, Robert Mahony, Tarek
Hamel, Jean-Michel Pflimlin.

e “MODELLING, IDENTIFICATION AND CONTROL OF A QUADROTOR HELICOPTER”, Tommaso Bresciani.

11. ANEXOS

A. CALCULOS SISTEMA OPERATIVO

Para el céalculo de los tiempos de ejecucion del sistema, se contemplan como despreciables
el tiempo de acceso a las variables compartidas, dada la frecuencia de trabajo del procesador,
asi como el tamafio de las mismas.

El bus 12C compartido se contempla como recurso compartido, el tiempo de acceso a los
datos se ha contabilizado fuera del tiempo de ejecucién de la tarea, dado que el procesador
puede atender otras tareas. Se ha modelado como retraso fijo, al que se le afiade el retraso
producido por que una tarea de menos prioridad este usando el recurso compartido, lo cual se

calcula en funcién del periodo de ambas tareas.

Tarea Lectura IMU

e T=D=1ms, C=0.080ms

e Retraso propio de acceso al 12C de 0.6ms y por otras tareas de menor prioridad de 0.1ms.

iectura mu = Crectura mu + biectura imu 12¢ + brzc = 0.080ms + 0.6ms + 0.Ims = 0.78ms < 1ms

Tarea AHRS
e T=D=2ms, C=0.400ms

PLectura IMU PCélculo Altura

Aaprs = ([] (Ciectura mu) + []bIZC) + Caprs =

PAHRS PAHRS

2 % (0.08ms) + 1 * (0.1ms) + 0.4ms = 0.66ms < 2ms

Tarea Control
e T=D=5ms, C=0.600ms

PLectura IMU PCélculo Altura PAHRS

dcontrot = ([] (Ciectura mu) +] biyc) +] Canrs + Ceontror =

PControl PControl PTarea Control

5% (0.08ms) + 1 x (0.1ms) + 2 * 0.4ms + 0.4ms = 1.7ms < 5ms

Tarea Coordinador

e T=D=25ms, C=0.030ms

24

_ PLectura IMU
dCoorclinador - ([P i (Clectura IMU +
Coordinador

[M] bIZC) + [%] CAHRS + [M] CControl + CCoordinador = 25« (OOSmS) +1x

Pcoordinador Pcoordinador Pcoordinador

(0.1ms) + 12+ 0.4ms + 5= 0.4ms + 0.03ms = 8.93ms < 25ms

Tarea Calculo Altura

e T=D=50ms, C=0.050ms

e Retraso propio de acceso al I12C de 0.6ms

_ | Precturaimu PAHRS Pcontrol
dCélculo Altura — [P | Clectura IMU + Prs CAHRS + Prs CCantrol +
Célculo Altura Calculo Altura Calculo Altura

[Ccoordinador
Pcaiculo Altura

0.4ms + 2 % 0.03ms + 0.050ms + 0.1ms = 18.21ms < 50ms

] CCoordinador + CCélculo Altura + bCélculo Altura12¢ = 50 = (O-OBmS) + 25 0.4ms + 10 =

Con lo que queda demostrado que todas las tareas cumplen plazos.

B. CALCULOS CONTROL

Extracto del fichero .m de Matlab

% Probar distintas ganancias para el observador sin la ralimentacion de los motores

Em = ;% Fuerzal(N) / Lccion (microseg)

E = / H % Angulo (grados) / Accion (microseq) % Angulo (grados) / Accion (microseq)
Kg = K / Em % Angulo (grados) Fuerza (N)

Hg2z = K * J Em; % Angulo (grados) / Fuerza (H)

Jgl = H

Jg2 = H

Jg3 = H

Jm = H

fAproximamos sistema de segundo orden con:

T muestreo =

Evl
vz
Ev3

25

Wn*2*Jgl/K;
Wnh2*Jg2 /K
Wnt2*«Jg3/ (K * ¥

(Z*chi#Wn - 1) /
(Z%chi#Wn - 1) [/ K:
(Z%chi*Wn - 1) /

Figura 16. Respuesta al escaléon del
sistema en Simulink

1 2 3 4
+3.3V
A P3 6
P1 +VBUS +33V ADO_ [+VBUS PB6 MOPWMO [,
a @ AN 7Y [2 +3.3V P4 +3.3V P5 2
PB5_MOPWM3 | L [[
PBO UIRX | 2 15 PDO0 33V |||'GND R LR &ND |5z ser 3 oD | 3 E: g
PBL ULTX | , 1, PDL FResl SResl PB3 SDA | . PB2 SCL | 3 PB2 SCL | 3 = PWMO
PEA12C2 SCL | . ¢ PD2 1K |1K PB3 SDA | — PBISDA |, GND P7
PE5 12C2 SDA | 2 2 PD3_BUZZER B3_SDA IMU GND +VBUS PB7 MOPWML [,
PB4 MOPWMZ| ; 3, PEL TX 7 BAROMETRO BRUJULA 5
PA5 SSIO TX | o g PE2 2
PA6_CE 5 @ PE3 PB2_SCL +3.3V P13
PA7_IRQ o o PF1 [P16 = PWMIL
ADO [2 12C1 SCL PE4 12C2 SCL a GND P8
Header 10X2A 2 12C1 SDA___PE5_I2C2 SDA 2 +VBUS PB5 MOPWM3 [,
= Header 3 12C_AUX g
GND
= PWM2
P2 | GND P9
PF2 +VBUS P17 +VBUS PB4_MOPWM2
PF3 é ﬂ PB2 SCL|||'GND 4 A %
PB3 SDA | 5 3 PEO RX 7 PD7 Trigger | +3.3V 2
PCARX 4 | , 1, PFO PD6_Echo [&
PC5 TX 4 | = 1= RST [A = PWM3
PC6 3 B PB7_MOPWM1 R9 GND
PC7 7 17 PB6_MOPWMO =i =i Header 4 Resl
PD6 Echo | 5 1o PA4_SSI0_RX GND GND 1K
PD7_Trigger 9 19 PA3_SSI0_FSS RST
PF4 W o PA2_SSI0_CLK GND-|||—| P14 +VBUS P18 +VBUS P19 +VBUS P20
1 RS 2 1, & 1y & 1,
Header 10X2A ABUS—————— 15 RST_sw R8 3 3 2 2
PB0_UIRX [& RoST 2N3904 1 . .
PB1_U1Tx [% 1K — VCC —= VvCC —= VCC
GND GN GND
Bluetooth
GND
P11
PELTX7 [,
PEORX 7 |,
a VR1 +3.3V
vin Vout | Header 2
GND
+VBUS g +C1
2NB906 Volt Re Cap Poll +VBUS 5 VCC BAT
100pF POWER
R5 GND = ;
Resl GND
1K Header 2
R_GND
PDO 3.3V R6 Q2
2N3904 P15 Resl
Resl R7 0
1K PD3 BUZZER R 1 = =
Resl | & GND GND_BAT
1K
= Header 2
GND =
GND Title . .
Esquematico Placa Prototipo - Soporte
Size Number Revision
A4
Date: 23/06/2016 [Sheet of
File: C:\Users\..\PlacaSoporte_v2.SchDoc | Drawn By:
1 2 3 4

5_VCC_BAT
o —
P_BATERIA ol o
S |
| |
“dNos s s sv)c(c
12C1 SCL 2K |22K 5-VC_C[-BATR 13 bl
12C1_SDA o
es.
vac"cl- BAT] U4 " L o | = 1K LED2 —
+ Ve ADCE <5 onoear | &5 L E GND_BAT
vCce ADC7 % o
10K 12 VCC
18 3 22K 12 ve 12vCe
AVCC PCO (ADCO) _4 N, 5.VCC_BAT A
PC1 (ADC1) ™ R14
20 5 PWR_SW 38 |
AREF PC2 (ADC2) = | o=
PC3 (ADC3) [2SRST SW T 2 Resl
7 12C1_SDA 105 o ol a 1K LED2 —
PC4 (ADCAISDA) =5 5 ET—SeL 10K 9| z GND_BAT
PC5 (ADC5/SCL) keSS0 3 © - -
PC6 (RESET) 2l RSTR L , =
= o> o | GNDBAT
30 GND_BAT 1 o 2 PWR
PDO (RXD) <y 511> & PWR SW U2 5 VCC BAT
PD1(TXD) <% 3] 2 g 7 VCC i 3
PD2 (INTO) (<& 3 2 IN ouT {
PD3 (INT1) 4 1 GND
PD4 (XCK/TO) i2 515 € 19 3
9 6 = 0.33uF 0.1uF
PD5 (T1) i 7 6 GND_BAT ~
PD6 (AINO) <¥7 g1 7 N
PD7 (AIN1) 8 mc7goscT L
12 PWM_AUX CHANNELS GND_BAT
PBO (ICP1) <3~ Header 8x3
PB1(OCIA) iy 1
PB2 (SSIOC1B) iz oSt 2
PB3 (MOSI/OC2) (< YIED) 3 5 VCC_BAT
. PB4 (MISO) (<12 Soa
= GND PB5 (SCK) |2
51— GND PBG (XTALLTOSCL) =iz
GND PB7 (XTAL2/TOSC2)
= ATmegaBA AU P_ICP 5 VCC BAT
GND_BAT = MOSI 1,
L-—¢ RsTR | ° 4
c16 5 6
XTAL ——c17 ﬁ/ﬁgo 7 8 ' =
22pF 22pF 9 10 SW-DpST GND_BAT
Header 5X2H = =
L GND_BAT CRRIEA
GND_BAT
Title o Q
Esquematico Placa Prototipo - Procesador Aux
Size Number Revision
A4
Date: 23/06/2016 [Sheet of
File: C:\Users\..\uC_Aux.SchDoc | Drawn By:
2 3 4

5V_VCC 3.3_VCC 5V_VCC JTAG
5V_VCC_frq A R1 P4 5V_VCC T a2 ™S P_l2C
1K U7RX 1 2 u7Tx ‘|' 3 4 TCK 12C0_SCL [4
+c1 +c2 1 3 2 5 6 TDO 12C0 SDA | 5
Cap Cap Poll olo | xalS IRQSPIO | 7 ¢ CLK_SPI 0 2 B TDIO
220uF 100nF o e o) P I [el CESPIO | . o FSS SPI 0 9 @ RST_SW Header 2
<7Bl5E2[@| 3|3lsls = TXSPIO | o 4o RX_SPI 0 P_I2C
8 11 N s Sls GND_BAT 1 Header 5X2 I2c1SCL__ [
Y] e Header 5X2 = IcisoA |,
= GND
3.3_VCC_micro NP Slel@lelziN@lsl 2952185l TMAC123GHEPM Header 2
— . I P1
VAT 1933988 Propidam P2 TRIGGER
2 ceesmeas ocoooaacn 12C0_SDA 5v_VCC ECHO | £
| L 5V_VCC 33 yCC 200 SCL_] 5 2
56 | vbpe pco |22 TCK L S 4
C3=—C4 =—C5=—C6 250 [pC1 |BL_TMS |
uF___p.2uF_J100nF_[100pF pCz | B0__TDIO ol o PWM2 = Header 4
26 | \op pC3 | 49_TDO [= Header 4 GND
= 3.3_VCC_micro 42| oo pCs |16 RO SPI 0 = a o GND
GND Q | v pCs |15 PHAL GND z 0, |1 PWMO
5| \bp pCe | L4__PHBI c >5[PWML
3.3_VCC_micro R_RST1 pC7 |18 _CESPIO 33 PWM2 P5 P_QEI2
Q 10K, RST SW_38 | oo p PWM3 uitx [, PHA1 [
1 i "SWITCHL 32 | o e PDo 6L PWMO 33 VCC _UIRX | 4 PHBL [5
R_Wakel SWITCHL _ 33 62 PWML A
10K —————— HIB TM4C123GH6PM PD1 63 ECHO 12 Header 2
PD2 1
X0SC0 34 | yosco D3 b4 TRIGGER usB
S1 XOSCL 36 | Yosct pDs _43__USB DM q = Header 4
— 0SCo 40 44__USB PM GND
TS-1170S-WP e E— PDg 53 PHA? ;
: : PD7 10 PHB2 Header 2
12
39 gmg P QEI
= 55 PHA2 [
GND = 270 [5V_VCC PHB2 [&
GND
35 Header 2
GNDX TONHO LSTONAO
3 | GNDA Prafrate ot {rafe Farea J:_ o w
= [PWM1
o|dlo|o|e] o|o|w|~|w|e GND o o
b £ 4 1 JR] zZ O, 1L PWM4 5V_VCC 5V_VCC 5V_vCC
slelelz gggo_w o >2 2 PWM5
«lolale 3 PWM6
EEE 2RI i 4 PWM7
g D1 W D2 W o3
\ALED2 \ALED2 \ALED2
0sco
1 5V_VCC_F 33.VCC SR3 SR4 < R5
C7 ~ VR1 5V_VCC_F $Resl SResl SResl
10pF 2N3906 Vi VR2 3.3_VCC_micro 1K 1K 1K
cIve ol in Vout -
= T XTAL GND +cg +Co Vin Vout
GND clo Volt Reg Cap Pol1~T~Cap Poll GND +c11 +Cc12 LED o RS, p'Q2 Lep1R7, Q3 LED 2R8 P Q4
osct | 10pF 1UF 100nF Volt Reg Cap Pol1~T~Cap Resl N Resl N Res1 N,
1uF 100nF 1K 1K 1K
PDO_3.3V = = = 1 1 1
X0SCO GND GND GND = = = = = =
I GND GND GND GND GND GND
C13 o 3.3/\: SV;’%(mlcro
10pF | 3.3_VCC A 3.3_VCC_micro A Title 29 q q q
=2 A Ril 0" R12 Esquematico Placa Final - Principal
= o[2L Resl 1 Resl _ _
GND Cl14 1K LED2 = 1K LED2 — Size Number Revision
X0SC1 10pF GND GND A
Date: 23/06/2016 [Sheet of
File: C:\Users\..\Esquematico_V1.SchDoc | Drawn By:

1 2 ‘ 3 ‘ !

33.vCC

J—(317 —T—ClS —T—Clﬁ

22nF | 10nF 100nF e, ®
1T u?
= - o GYRO/ACCEL/COMPASS/9-AX1S
GND S 3
S
1 23 12C0_SCL
— FSYNC SCLK f————
W | e soasost | 2412C0 SDA R133.3_XCC
c18 ADO/MISO S 3 vYWWA
2L 1 aux_pa 9
Cap 7] aux_cL s |22 R
100nF - ;NT | 12 Resl
= g 1K
GND ©
] GND
=
GND
Title ,
Esquematico Placa Final - Sensor
Size Number Revision
A4
Date: 23/06/2016 [Sheet of
File: C:\Users\..\Sensores.SchDoc | Drawn By:
2 4

1 2 3 4
5_VCC_BAT

P7 &

o o
> | > |
— NS 2 = 2 @ 5.5;
12C1 SCL 2K |22K 5-VC_C[-BATR 5 bl
S 'I| 12C1_SDA N
5 VCC BAT U3 - Resl (s —|—:
T, 6 19 %o - 1K =
4 vee ADCE - 2 l5 GND_BAT
vce ADC7 kS b vee 1
18 | avee pco(ADCO) B3 — ¢ |¥K 12V
(ADEO) 24 5.VCC_BAT Vo4
PC1 (ADC1) R19
20 5 PWR SW 45
AREF PC2 (ADC2) (2 PWR SW 5o
6 RST IC_ 38 < — ResT
PC3 (ADC3) (28 RSTIC_ N es —_
27_12C1 SDA |10Kks & ol o LED2 =
PC4 (ADCA/SDA) [<ise— 55 10K ||IGND_BAT ol = 1K GND BAT
PC5 (ADCB/SCL) i5e—rc= S| © L 1
PC6 (RESET) (2 RSTR l T
0 1 8 g - PWR1
PDO (RXD) <ty 211> G PWR SW U4 5V E
PD1(TXD) <35 2 3 PRVEE
PD2 (INTO) =t 1 3 2 IN ouT {
PD3 (INT1) 4 1 —L GND
PD4 (XCKIT0) <t 515 _—l_— 19 20
9 6 = 0.33uF 0.1uF
PD5 (T1) wtfy = 6 = ~
PD6 (AINO) 7
PD7 (AIN1) [t 8 g MC7805CT —;—
AT ey » Header 3 —
14
PB2 (SSIOC1B) iz VIGS] 2
PB3 (MOSI/OC2) 3 5 VCC_BAT
16 MISO
. PB4 (MISO) (ip SEK
= GND PB5 (SCK) sl ——==%
57— GND PB6 (XTALLTOSCY) mte—— R22
GND PB7 (XTAL2/TOSC2) 100 &=
= = ICSP 5 VCC BAT i
GNDTBAT ATmega8A-AU MOSI 5) RST R) o
= a Y3 2 a & J—C21 TS-1170S-WP c
I | RST R
C22 D SCK 6 5 0.1uF
XTAL —=cC23 ViSO 8 7 =
22pF 22pF 10 9 GND_BAT
5v_VCC Header 5X2H = =
5 VCC_BAT P11 = CRRIS A CND-BAT
M GND_BAT
Header 2
R23
Resl
0
GND_BAT GND Title 5
Esquematico Placa Final - Procesador Aux
Size Number Revision
A4
Date: 23/06/2016 [Sheet of
File: C:\Users\..\uC_Aux.SchDoc | Drawn By:
1 2 3 4

/*

* AHRS.c

*

* Created on: 22/12/2015
* Author: Ruben

*/

#include "AHRS.h"
#include "Servidores.h"

void Compensacion_Sensor_magnetico(tpAHRS *AHRS){
//Rota el eje magnetico para alinearlo con el suelo, usando la ultima referencia ROLL
PITCH
float32_t mag_x;
float32_t mag_y;
float32_t cos roll;
float32_t sin_roll;
float32_t cos pitch;
float32_t sin_pitch;

cos_roll = arm _cos_f32(AHRS->Roll);

sin_roll arm_sin_f32(AHRS->Roll);
cos_pitch = arm_cos_T32(AHRS->Pitch);
sin_pitch = arm_sin_f32(AHRS->Pitch);
// Rotamos

mag_Xx = AHRS->Vector_Magnetico[0O] * cos_pitch + AHRS->Vector_Magnetico[l] * sin_roll *
sin_pitch + AHRS->Vector_Magnetico[2] * cos_roll * sin_pitch;
mag_y = AHRS->Vector_Magnetico[1] * cos_roll - AHRS->Vector_Magnetico[2] * sin_roll;
AHRS->Orientacion_YAW = atan2(-mag_y, mag_X);

}

void Actualizar_Matriz_DCM(tpAHRS *AHRS){
float32_t Velocidad Total[3] = {0, 0, 0};

float32_t Rot_matriz[3][3] = {0, O, O, O, O, O, O, O, O};
arm_matrix_instance f32 Rotacion = {3, 3, (float32_t *)Rot matriz};

float32_t Aux_matriz[9] = {0, O, O, O, O, O, O, O, 0};
arm_matrix_instance_f32 Aux = {3, 3, Aux_matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[(O];
Velocidad _Total[1] = AHRS->Vector_ Velocidad_Angular[1] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

Rot_matriz[O][0O]

Rot_matriz[O][1] = -AHRS->Periodo_Muestreo*Velocidad Total[2];//-z
Rot_matriz[O][2] = AHRS->Periodo_Muestreo*Velocidad_Total[1];//y

Rot matriz[1][0] = AHRS->Periodo Muestreo*Velocidad Total[2];//z

Rot _matriz[1][1] = ;

Rot_matriz[1][2] = -AHRS->Periodo_Muestreo*Velocidad Total[0];//-x
Rot_matriz[2][0] = -AHRS->Periodo_Muestreo*Velocidad_Total[1];//-y
Rot _matriz[2][1] = AHRS->Periodo Muestreo*Velocidad Total[0];//x

Rot _matriz[2][2] = ;

arm_mat_mult_f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_FT32(Aux.pData, AHRS->DCM.pData, 9);

}

void Actualizar_Matriz_DCM_V2(tpAHRS *AHRS){
float32_t Velocidad Total[3] {0, 0, 0};
float32_t Vector_ Rotacion[3] {0, 0, O};

float32_t Angulo_Rotacion = 0O;
float32_t Seno = 0;
float32_t Coseno = 0;

float32_t Rot_matriz[3][3] = {0, O, O, O, O, O, O, O, O};

arm_matrix_instance 32 Rotacion = {3, 3, (float32_t *)Rot matriz};
float32_t Aux matriz[9] = {0, 0, O, O, , 03};
arm_matrix_instance_f32 Aux = {3, 3, Aux

matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[0];
Velocidad_Total[1] = AHRS->Vector_Velocidad_Angular[1l] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

//Velocidad absoluta

arm_sqrt_f32((Velocidad_Total[0]*Velocidad_Total[0O] +

Velocidad_Total[1]*Velocidad_Total[1] +
Velocidad_Total[2]*Velocidad_Total[2]), &Angulo_Rotacion);

//Normalizamos vector rotacion
it (Angulo_Rotacion !=

arm_scale_f32(Velocidad_Total, 1/Angulo_Rotacion, Vector_Rotacion, 3);
}

//Pasamos de velocidad a angulo
Angulo_Rotacion = Angulo_Rotacion*AHRS->Periodo_Muestreo;

Coseno = arm_cos_f32(Angulo_Rotacion);
Seno = arm_sin_f32(Angulo_Rotacion);

Rot _matriz[O0][0] = Coseno + Vector_Rotacion[0]*Vector_ Rotacion[0]*(1 - Coseno);
Rot_matriz[O][1] = Vector_Rotacion[0]*Vector_Rotacion[1]*(1 - Coseno) -
Vector_Rotacion[2]*Seno;

Rot_matriz[O][2] = Vector_Rotacion[0]*Vector_Rotacion[2]*(1 - Coseno) +
Vector_Rotacion[1]*Seno;

Rot_matriz[1][0] = Vector_Rotacion[1]*Vector_Rotacion[0]*(1 - Coseno) +
Vector_Rotacion[2]*Seno;

Rot_matriz[1][1] = Coseno + Vector_Rotacion[l]*Vector_ Rotacion[1]*(1 - Coseno);

Rot _matriz[1][2] Vector_Rotacion[1]*Vector_ Rotacion[2]*(1l - Coseno) -
Vector_Rotacion[0]*Seno;
Rot_matriz[2][0] = Vector_Rotacion[2]*Vector_Rotacion[0]*(1 - Coseno) -
Vector_Rotacion[1]*Seno;

Rot _matriz[2][1] = Vector_Rotacion[2]*Vector_Rotacion[1]*(1 - Coseno) +
Vector_Rotacion[0]*Seno;
Rot_matriz[2][2] = Coseno + Vector_Rotacion[2]*Vector_ Rotacion[2]*(1 - Coseno);

arm_mat_mult f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_Ff32(Aux.pData, AHRS->DCM.pData, 9);

}

void Normalizar DCM(tpAHRS *AHRS){
float error = 0;

float32_t Vector_ Aux[3] = {0, 0, 0};

float32_t Matriz_Ortogonal[3][3] = , 0, 0, 0, O, O, 0, O};

arm_dot_prod_f32(&AHRS->DCM_matriz[0][0], &AHRS->DCM_matriz[1][0], 3, &error);
error *= - ;

arm_scale_f32(&AHRS->DCM_matriz[1][0], error, Vector Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[0][0], Vector_Aux, &Matriz_Ortogonal[0O][0], 3); //Vector
X ortogonal

arm_scale_f32(&AHRS->DCM_matriz[0][0], error, Vector Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[1][0], Vector_Aux, &Matriz_Ortogonal[1][0], 3); //Vector
Y ortogonal

//Producto Cruz

}

Matriz_Ortogonal
Matriz_Ortogonal

(21001

[O1[~]
Matriz_Ortogonal[2][1]
[O1LO]

171

Matriz_Ortogonal
Matriz_Ortogonal

[O1[1] * Matriz_Ortogonal[1][2] -
(11011
Matriz_Ortogonal[0][2] * Matriz_Ortogonal[1][0] -
(11071
[O1LO]

X 1l

* 1l

Matriz_Ortogonal
Matriz_Ortogonal[
Matriz_Ortogonal [0][1]

Matriz_Ortogonal
Matriz_Ortogonal * Matriz_Ortogonal[1][1] -
Matriz_Ortogonal[1][0 1;

*

arm_dot_prod_f32(&Matriz_Ortogonal[0][0], &Matriz_Ortogonal[0][0], 3, &error);

error = *(- error);
arm_scale_f32(&Matriz_Ortogonal[0][0], error, &AHRS->DCM _matriz[O0][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[1][0], &Matriz_Ortogonal[1][0], 3, &error);

error = *(- error);
arm_scale_f32(&Matriz_Ortogonal[1][0], error, &AHRS->DCM matriz[1][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[2][0], &Matriz_Ortogonal[2][0], 3, &error);

error = *(- error);
arm_scale_f32(&Matriz_Ortogonal[2][0], error, &AHRS->DCM _matriz[2][0], 3);

void Correccion_deriva(tpAHRS *AHRS){

}

float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, O};

//ROLL PITCH

//faltaria filtrar???

//Producto cruz

error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];

error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][O] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2]:;

error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp Roll Pitch, AHRS->Correccion_Proporcional,

arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_lIntegral,

//YAW

arm_scale_f32(&AHRS->DCM_matriz[2][0],

AHRS->DCM_matriz[0] [0]*arm_sin_f32(AHRS->Orientacion_YAW) -
AHRS->DCM_matriz[1][0]*arm_cos_ T32(AHRS->Orientacion_YAW), error, 3);

arm_scale_f32(error, AHRS->Kp_Yaw, Aux, 3);
arm_add_f32((float32_t *)Aux, AHRS->Correccion_Proporcional,
AHRS->Correccion_Proporcional, 3);

arm_scale_f32(error, AHRS->Ki_Yaw, Aux, 3);

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_lIntegral,

void Correccion_deriva NO_YAW(tpAHRS *AHRS){

float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, O};

//ROLL PITCH

//faltaria filtrar???

//Producto cruz

error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];

error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][O] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2]:;

error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp Roll Pitch, AHRS->Correccion_Proporcional,

arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);

)

)

)

)

-3-

}

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_lIntegral,

void Angulos_ Euler(tpAHRS *AHRS){

}

AHRS->Pitch = -asin(AHRS->DCM_matriz[2][0]);

AHRS->Roll = atan2(AHRS->DCM_matriz[2][1],AHRS->DCM_matriz[2][2]);

AHRS->Yaw = atan2(AHRS->DCM_matriz[1][0],AHRS->DCM_matriz[O][O]D);

void ResetDCM(){

}

tpLecturas_IMU Lecturas_IMU = {0, O, O,
tpLecturas_Brujula Lecturas Brujula = {0, 0, 0};

float32_t DCM_matriz[3][3] = {1, O, O, O, 1, O, O, O, 1};
float32_t Roll = 0;

float32_t Pitch = 0O;

float32_t Yaw = 0;

float32_t sin_Roll =
float32_t cos Roll =
float32_t sin_Pitch
float32_t cos Pitch
float32_t sin_Yaw = 0;
float32_t cos Yaw = 0O;

Leer_servidor_Lecturas_IMU(&Lecturas_IMU);
Leer_servidor_Lecturas Brujula(&Lecturas Brujula);

Pitch = -atan2(Lecturas_IMU.Valor.x_acel, sqrt(Lecturas_IMU.Valor.y acel *
Lecturas_IMU.Valor.y acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));
Roll = atan2(Lecturas_IMU.Valor.y acel, sqrt(Lecturas_IMU.Valor.x acel *

Lecturas_IMU.Valor.x_acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));

sin_Roll = arm_sin_f32(Roll);
cos_Roll = arm _cos_f32(Roll);
sin_Pitch = arm_sin_f32(Pitch);
cos_Pitch = arm_cos_f32(Pitch);

Yaw = -atan2(Lecturas_Brujula.Valor_Magnetismo_y * cos Roll -

Lecturas_Brujula.Valor.Magnetismo_z * sin_Roll, Lecturas Brujula.VvValor._Magnetismo x *
cos_Pitch + Lecturas_Brujula.Valor_Magnetismo_y * sin_Roll * sin_Pitch +

Lecturas_Brujula.Valor._Magnetismo_z * cos_Roll * sin_Pitch);
sin_Yaw = arm_sin_f32(Yaw);
cos_Yaw = arm_cos_f32(Yaw);

DCM_matriz[O][0O]
DCM_matriz[O]
DCM_matriz[

cos_Pitch*cos_Yaw;
cos_Yaw*sin_Roll*sin_Pitch - cos Roll*sin_Yaw;
sin_Roll*sin_Yaw + cos_Roll*cos_Yaw*sin_Pitch;

DCM_matriz[

1

1 cos_Pitch*sin_Yaw;
DCM_matriz[1]

1

1

cos_Roll*cos_Yaw + sin_Roll*sin_Pitch*sin_Yaw;
cos_Roll*sin_Pitch*sin_Yaw - cos_Yaw*sin_Roll;

DCM_matriz[

DCM_matriz[
DCM_matriz[2]
DCM_matriz[2][2]

-sin_Pitch;
cos_Pitch*sin_Roll;
cos_Roll*cos_Pitch;

[1]
[]
O]
[1]
[]
O]
[1]

Escribir_servidor_DCM((float32_t*)DCM_matriz);
Escribir_servidor_ RPY(&Roll, &Pitch, &Yaw);

void Algortimo_DCM_MAG(tpAHRS *AHRS){

Compensacion_Sensor_magnetico(AHRS);
Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS) ;
Correccion_deriva(AHRS);
Angulos_Euler(AHRS);

)

3
void Algortimo_DCM_NO_YAW(tpAHRS *AHRS){

Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS);
Correccion_deriva NO_YAW(AHRS);
Angulos_Euler(AHRS);

/*

* AHRS.c

*

* Created on: 22/12/2015
* Author: Ruben

*/

#include "AHRS.h"
#include "Servidores.h"

void Compensacion_Sensor_magnetico(tpAHRS *AHRS){
//Rota el eje magnetico para alinearlo con el suelo, usando la ultima referencia ROLL
PITCH
float32_t mag_x;
float32_t mag_y;
float32_t cos roll;
float32_t sin_roll;
float32_t cos pitch;
float32_t sin_pitch;

cos_roll = arm _cos_f32(AHRS->Roll);

sin_roll arm_sin_f32(AHRS->Roll);
cos_pitch = arm_cos_T32(AHRS->Pitch);
sin_pitch = arm_sin_f32(AHRS->Pitch);
// Rotamos

mag_Xx = AHRS->Vector_Magnetico[0O] * cos_pitch + AHRS->Vector_Magnetico[l] * sin_roll *
sin_pitch + AHRS->Vector_Magnetico[2] * cos_roll * sin_pitch;
mag_y = AHRS->Vector_Magnetico[1] * cos_roll - AHRS->Vector_Magnetico[2] * sin_roll;
AHRS->Orientacion_YAW = atan2(-mag_y, mag_X);

}

void Actualizar_Matriz_DCM(tpAHRS *AHRS){
float32_t Velocidad Total[3] = {0, 0, 0};

float32_t Rot_matriz[3][3] = {0, O, O, O, O, O, O, O, O};
arm_matrix_instance f32 Rotacion = {3, 3, (float32_t *)Rot matriz};

float32_t Aux_matriz[9] = {0, O, O, O, O, O, O, O, 0};
arm_matrix_instance_f32 Aux = {3, 3, Aux_matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[(O];
Velocidad _Total[1] = AHRS->Vector_ Velocidad_Angular[1] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

Rot_matriz[O][0O]

Rot_matriz[O][1] = -AHRS->Periodo_Muestreo*Velocidad Total[2];//-z
Rot_matriz[O][2] = AHRS->Periodo_Muestreo*Velocidad_Total[1];//y

Rot matriz[1][0] = AHRS->Periodo Muestreo*Velocidad Total[2];//z

Rot _matriz[1][1] = ;

Rot_matriz[1][2] = -AHRS->Periodo_Muestreo*Velocidad Total[0];//-x
Rot_matriz[2][0] = -AHRS->Periodo_Muestreo*Velocidad_Total[1];//-y
Rot _matriz[2][1] = AHRS->Periodo Muestreo*Velocidad Total[0];//x

Rot _matriz[2][2] = ;

arm_mat_mult_f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_FT32(Aux.pData, AHRS->DCM.pData, 9);

}

void Actualizar_Matriz_DCM_V2(tpAHRS *AHRS){
float32_t Velocidad Total[3] {0, 0, 0};
float32_t Vector_ Rotacion[3] {0, 0, O};

float32_t Angulo_Rotacion = 0O;
float32_t Seno = 0;
float32_t Coseno = 0;

float32_t Rot_matriz[3][3] = {0, O, O, O, O, O, O, O, O};

arm_matrix_instance 32 Rotacion = {3, 3, (float32_t *)Rot matriz};
float32_t Aux matriz[9] = {0, 0, O, O, , 03};
arm_matrix_instance_f32 Aux = {3, 3, Aux

matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[0];
Velocidad_Total[1] = AHRS->Vector_Velocidad_Angular[1l] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

//Velocidad absoluta

arm_sqrt_f32((Velocidad_Total[0]*Velocidad_Total[0O] +

Velocidad_Total[1]*Velocidad_Total[1] +
Velocidad_Total[2]*Velocidad_Total[2]), &Angulo_Rotacion);

//Normalizamos vector rotacion
it (Angulo_Rotacion !=

arm_scale_f32(Velocidad_Total, 1/Angulo_Rotacion, Vector_Rotacion, 3);
}

//Pasamos de velocidad a angulo
Angulo_Rotacion = Angulo_Rotacion*AHRS->Periodo_Muestreo;

Coseno = arm_cos_f32(Angulo_Rotacion);
Seno = arm_sin_f32(Angulo_Rotacion);

Rot _matriz[O0][0] = Coseno + Vector_Rotacion[0]*Vector_ Rotacion[0]*(1 - Coseno);
Rot_matriz[O][1] = Vector_Rotacion[0]*Vector_Rotacion[1]*(1 - Coseno) -
Vector_Rotacion[2]*Seno;

Rot_matriz[O][2] = Vector_Rotacion[0]*Vector_Rotacion[2]*(1 - Coseno) +
Vector_Rotacion[1]*Seno;

Rot_matriz[1][0] = Vector_Rotacion[1]*Vector_Rotacion[0]*(1 - Coseno) +
Vector_Rotacion[2]*Seno;

Rot_matriz[1][1] = Coseno + Vector_Rotacion[l]*Vector_ Rotacion[1]*(1 - Coseno);

Rot _matriz[1][2] Vector_Rotacion[1]*Vector_ Rotacion[2]*(1l - Coseno) -
Vector_Rotacion[0]*Seno;
Rot_matriz[2][0] = Vector_Rotacion[2]*Vector_Rotacion[0]*(1 - Coseno) -
Vector_Rotacion[1]*Seno;

Rot _matriz[2][1] = Vector_Rotacion[2]*Vector_Rotacion[1]*(1 - Coseno) +
Vector_Rotacion[0]*Seno;
Rot_matriz[2][2] = Coseno + Vector_Rotacion[2]*Vector_ Rotacion[2]*(1 - Coseno);

arm_mat_mult f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_Ff32(Aux.pData, AHRS->DCM.pData, 9);

}

void Normalizar DCM(tpAHRS *AHRS){
float error = 0;

float32_t Vector_ Aux[3] = {0, 0, 0};

float32_t Matriz_Ortogonal[3][3] = , 0, 0, 0, O, O, 0, O};

arm_dot_prod_f32(&AHRS->DCM_matriz[0][0], &AHRS->DCM_matriz[1][0], 3, &error);
error *= - ;

arm_scale_f32(&AHRS->DCM_matriz[1][0], error, Vector Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[0][0], Vector_Aux, &Matriz_Ortogonal[0O][0], 3); //Vector
X ortogonal

arm_scale_f32(&AHRS->DCM_matriz[0][0], error, Vector Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[1][0], Vector_Aux, &Matriz_Ortogonal[1][0], 3); //Vector
Y ortogonal

//Producto Cruz

}

Matriz_Ortogonal
Matriz_Ortogonal

(21001

[O1[~]
Matriz_Ortogonal[2][1]
[O1LO]

171

Matriz_Ortogonal
Matriz_Ortogonal

[O1[1] * Matriz_Ortogonal[1][2] -
(11011
Matriz_Ortogonal[0][2] * Matriz_Ortogonal[1][0] -
(11071
[O1LO]

X 1l

* 1l

Matriz_Ortogonal
Matriz_Ortogonal[
Matriz_Ortogonal [0][1]

Matriz_Ortogonal
Matriz_Ortogonal * Matriz_Ortogonal[1][1] -
Matriz_Ortogonal[1][0 1;

*

arm_dot_prod_f32(&Matriz_Ortogonal[0][0], &Matriz_Ortogonal[0][0], 3, &error);

error = *(- error);
arm_scale_f32(&Matriz_Ortogonal[0][0], error, &AHRS->DCM _matriz[O0][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[1][0], &Matriz_Ortogonal[1][0], 3, &error);

error = *(- error);
arm_scale_f32(&Matriz_Ortogonal[1][0], error, &AHRS->DCM matriz[1][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[2][0], &Matriz_Ortogonal[2][0], 3, &error);

error = *(- error);
arm_scale_f32(&Matriz_Ortogonal[2][0], error, &AHRS->DCM _matriz[2][0], 3);

void Correccion_deriva(tpAHRS *AHRS){

}

float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, O};

//ROLL PITCH

//faltaria filtrar???

//Producto cruz

error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];

error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][O] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2]:;

error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp Roll Pitch, AHRS->Correccion_Proporcional,

arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_lIntegral,

//YAW

arm_scale_f32(&AHRS->DCM_matriz[2][0],

AHRS->DCM_matriz[0] [0]*arm_sin_f32(AHRS->Orientacion_YAW) -
AHRS->DCM_matriz[1][0]*arm_cos_ T32(AHRS->Orientacion_YAW), error, 3);

arm_scale_f32(error, AHRS->Kp_Yaw, Aux, 3);
arm_add_f32((float32_t *)Aux, AHRS->Correccion_Proporcional,
AHRS->Correccion_Proporcional, 3);

arm_scale_f32(error, AHRS->Ki_Yaw, Aux, 3);

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_lIntegral,

void Correccion_deriva NO_YAW(tpAHRS *AHRS){

float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, O};

//ROLL PITCH

//faltaria filtrar???

//Producto cruz

error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];

error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][O] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2]:;

error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp Roll Pitch, AHRS->Correccion_Proporcional,

arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);

)

)

)

)

-3-

}

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_lIntegral,

void Angulos_ Euler(tpAHRS *AHRS){

}

AHRS->Pitch = -asin(AHRS->DCM_matriz[2][0]);

AHRS->Roll = atan2(AHRS->DCM_matriz[2][1],AHRS->DCM_matriz[2][2]);

AHRS->Yaw = atan2(AHRS->DCM_matriz[1][0],AHRS->DCM_matriz[O][O]D);

void ResetDCM(){

}

tpLecturas_IMU Lecturas_IMU = {0, O, O,
tpLecturas_Brujula Lecturas Brujula = {0, 0, 0};

float32_t DCM_matriz[3][3] = {1, O, O, O, 1, O, O, O, 1};
float32_t Roll = 0;

float32_t Pitch = 0O;

float32_t Yaw = 0;

float32_t sin_Roll =
float32_t cos Roll =
float32_t sin_Pitch
float32_t cos Pitch
float32_t sin_Yaw = 0;
float32_t cos Yaw = 0O;

Leer_servidor_Lecturas_IMU(&Lecturas_IMU);
Leer_servidor_Lecturas Brujula(&Lecturas Brujula);

Pitch = -atan2(Lecturas_IMU.Valor.x_acel, sqrt(Lecturas_IMU.Valor.y acel *
Lecturas_IMU.Valor.y acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));
Roll = atan2(Lecturas_IMU.Valor.y acel, sqrt(Lecturas_IMU.Valor.x acel *

Lecturas_IMU.Valor.x_acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));

sin_Roll = arm_sin_f32(Roll);
cos_Roll = arm _cos_f32(Roll);
sin_Pitch = arm_sin_f32(Pitch);
cos_Pitch = arm_cos_f32(Pitch);

Yaw = -atan2(Lecturas_Brujula.Valor_Magnetismo_y * cos Roll -

Lecturas_Brujula.Valor.Magnetismo_z * sin_Roll, Lecturas Brujula.VvValor._Magnetismo x *
cos_Pitch + Lecturas_Brujula.Valor_Magnetismo_y * sin_Roll * sin_Pitch +

Lecturas_Brujula.Valor._Magnetismo_z * cos_Roll * sin_Pitch);
sin_Yaw = arm_sin_f32(Yaw);
cos_Yaw = arm_cos_f32(Yaw);

DCM_matriz[O][0O]
DCM_matriz[O]
DCM_matriz[

cos_Pitch*cos_Yaw;
cos_Yaw*sin_Roll*sin_Pitch - cos Roll*sin_Yaw;
sin_Roll*sin_Yaw + cos_Roll*cos_Yaw*sin_Pitch;

DCM_matriz[

1

1 cos_Pitch*sin_Yaw;
DCM_matriz[1]

1

1

cos_Roll*cos_Yaw + sin_Roll*sin_Pitch*sin_Yaw;
cos_Roll*sin_Pitch*sin_Yaw - cos_Yaw*sin_Roll;

DCM_matriz[

DCM_matriz[
DCM_matriz[2]
DCM_matriz[2][2]

-sin_Pitch;
cos_Pitch*sin_Roll;
cos_Roll*cos_Pitch;

[1]
[]
O]
[1]
[]
O]
[1]

Escribir_servidor_DCM((float32_t*)DCM_matriz);
Escribir_servidor_ RPY(&Roll, &Pitch, &Yaw);

void Algortimo_DCM_MAG(tpAHRS *AHRS){

Compensacion_Sensor_magnetico(AHRS);
Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS) ;
Correccion_deriva(AHRS);
Angulos_Euler(AHRS);

)

3
void Algortimo_DCM_NO_YAW(tpAHRS *AHRS){

Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS);
Correccion_deriva NO_YAW(AHRS);
Angulos_Euler(AHRS);

#ifndef
#define

#define
#define
#define

#define

#define
#define
#define

#define
#define
#define

#define
/*

Kpl
Kp2
Kp3

Kv1l
Kv2
Kv3

*/

/*
#define
#define

#define
#define
*/

#define
#define

#define
#define

#define
#define

#define
#define

const float32_t F matriz[] = {

QUADROTOR_V1_3_ 1 FUNCIONES_TRANSFERENCIA H_
QUADROTOR_V1_3_1_FUNCIONES_TRANSFERENCIA H_

Jgl
Jqg2
Jg3
Jdm

Km

0.8613
0.8613
0.8613
0.096369

0.009637

K sistema 1.8931

K_dg

Wn

K_sistema/Km;

10;

Wn_2 10;

chi

1;

Kpr 0.0

Kpl
Kv1l

Kp2
Kv2
Kpl
Kv1l

Kp2
Kv2

Kp3
Kv3

Ki

Wn~2*Jql/K;
wn"2*3g2/K;
Wn”"2*Jq3/K2;

(2*chi*Wn - 1) / K;
(*chi*Wn - 1) / K;
(2*chi*Wn - 1) / K2;

15.0
2.5

15.0
2.5

15.0
2.5

0.02

Ki_EST 2

0.994211639269529,
01
1.108053901852224,
0.004985515097154,
O’
0.002796838162984,

[cjoloooloh NoloNoNe

//Fuerza(N)

0,
0,

0,
1.000000000000000,
0,

1.10805390185222

OM~MAOOO

-000000000000000,

0.99421163926952

0
0
0
9
0
0

/ Accion (microseqg)

0,
0,

O’

0,
0,

0,
0.994211639269529,

0,

0,
0.004985515097154,

O’

0.002796838162984,

0,

O’

0.166208085277834,
O’

-

0, 0.004985515097154, 1.000000000000000,

o, o, 0.000419525724448, 0,
0, 0, 0,

0, 0, 0,

0.949439085978879, 0,

O’ O’

0, 0, 0,

0, 0, 0,

0, 0.949439085978879, o, 0,
O’ O’ O’

0, 0, 0,

0, 0, 0.949439085978879, 0,
0, 0, 0,

O’ O’ O’

o, o, o, 0.949439085978879

}:
const arm_matrix_instance_f32 F = {10, 10, (float32_t *)F _matriz};

const float32_t G matriz[] = {

0.000279686718516044, 0,

-0.000279686718516044, o,

0.000000468381516574, o,

-0.000000468381516574, o,
0, 0.000279686718516044, 0,
-0.000279686718516044,
o, 0.000000468381516574, o,

-0.000000468381516574,
0.000041953007777407, -0.000041953007777407, 0.000041953007777407,
-0.000041953007777407,
0.000000070257227486, -0.000000070257227486, 0.000000070257227486,
-0.000000070257227486,

0.000487255528421544, 0,
-0.000487255528421544, o,
o, 0.000487255528421544, o,

-0.000487255528421544,
0.000487255528421544, -0.000487255528421544, 0.000487255528421544,
-0.000487255528421544,
0.000487255528421544, 0.000487255528421544, 0.000487255528421544,
0.000487255528421544
}:
const arm_matrix_instance 32 G = {10, 4, (float32_t *)G_matriz};

const float32_t Gp_matriz[] = {

-0.029022176872060, 0, 0, 0,
-0.000048602419485, 0, o0, o,
0, -0.029022176872060, 0, 0,
0, -0.000048602419485, 0, 0,
0, 0, -0.004353326530809, 0,
0, 0, -0.000007290362923, 0,
-0.050560914021121, 0, 0, 0,
0, -0.050560914021121, 0, 0,
0, 0, -0.050560914021121, 0,
0, 0, 0, -0.050560914021121
}:
const arm_matrix_instance_f32 Gp = {10, 4, (float32_t *)Gp_matriz};
const float32_t K 4 matriz[] = { Kv1/2.0, Kpl/2.0, o, o, Kv3/4.0,
Kp3/4.0, Kpr/2.0, 0, Kpr/4.0, Kpr/4.0,
0, 0, Kv2/2.0, Kp2/2.0, -Kv3/4.0,
-Kp3/74.0, o, Kpr/2.0, -Kpr/4.0,
Kpr/4.0,
-Kv1/2.0, -Kpl/2.0, 0, 0, Kv3/74.0,

Kp374.0, -Kpr/2.0, o, Kpr/4.0, Kpr/4.0,

-2-

0, 0, -Kv2/2.0, -Kp2/2.0, -Kv3/4.0,
-Kp3/74.0, 0, -Kpr/2.0, -Kpr/4.0,
Kpr/4.0 };
const arm _matrix_instance f32 K 4 = {4, 10, (float32_t *)K 4 matriz};
const float32_t K 3 matriz[] = { Kvl/2, Kpl/2, 0, 0, Kv3/4,
Kp3/4, 0, 0, 0, 0,
0, 0, Kv2/2, Kp2/2, - Kv3d/4,
-Kp3/4, 0, 0, 0, 0,
-Kvl/2, -Kpl/2, 0, 0, Kv3/4,
Kp3/4, 0, 0, 0, 0,
0, 0, -Kv2/2, -Kp2/2, - Kv3d/4,
-Kp3/4, 0, 0, 0, 0 ¥}
const arm_matrix_instance 32 K 3 = {4, 10, (float32_t *)K 3 matriz};
/*
const float32_t K pre 4 matriz [] = { Kpl/2.0, 0, Kp3/74.0,
Kpr/4.0*(1.0+1.0/(Km*Kpr)),
0, Kp2/2.0, -Kp3/4.0,
Kpr/4.0*(1.0+1.0/(Km*Kpr)),
-Kp1/2.0, 0, Kp3/74.0,
Kpr/74.0*(1.0+1.0/(Km*Kpr)),
0, -Kp2/2.0, -Kp3/4.0,
Kpr/4.0*(1.0+1.0/ (Km*Kpr)) 3}
*/
const float32_t K _pre 4 matriz [] = { Kpl/2.0, 0, Kp3/4.0, 0,
0, Kp2/2.0, -Kp3/4.0, 0,
-Kp1/2.0, 0, Kp3/4.0, 0,
0, -Kp2/2.0, -Kp3/4.0, 0 F;
const arm_matrix_instance_f32 K_pre_4 = {4, 4, (float32_t *)K pre_4 matriz};
const float32_t K pre 3 matriz [] = { Kpl/2, o, Kp3/74, 1,
0, Kp2/2, -Kp3/4, 1,
-Kpl/2, 0, Kp3/4, 1,
0, -Kp2/72, -Kp3/4, 1 3}
const arm_matrix_instance_f32 K_pre_3 = {4, 4, (float32_t *)K pre_3 matriz};

const float32_t Lo_per_matriz[] = {

0.198434923933560,

-0.027653725397731,

09
0.001086363950669,

-0.024043417453002,

0,
-0.005045608483105,
-0.041854699495902,
01
-0.005309682991509,
0.201894030185689,
O’
-0.002378769745064,
-0.002107845235214,
0,

0.003865396849945,

-0.005326913222497,

0,
0.037373088816668,
0.012867191640016,
01
-0.000255055739259,
0.033213986376183,
O’
0.000379721483837,
0.021199489086857,
0,
0.021869479811627,

-0.006363850507977,

-0.040303351039343,

09
0.188835322750985,

-0.020908295732614,

0,
-0.048871496093713,

0.044350331784821,
01
-0.023052431159453,

-0.019095064558748,

O’
-0.002178446370954,

0.111605875609966,
0,
-0.011754342406059,

0.035796312502292,

0,
0.008171926131680,
0.003870818022841,
01
0.049442260602111,
-0.001506645855643,
O’
0.022713862804404,
0.258298575110510,
0,
0.001408963971122,

-0.007659457807024,
0.032195672338781,

0, -0.119404737466306,
-0.016657957077870,

-0.011056332513453,

o, 0.001170982384024,

0.157744315915222,
-0.024550313312358,

0, 0.016240261993865,

-0.007214113163155,

-0.004329015112383,

0, 0.004022347367876,
0.002055236651581,
0.002983178665231,

o, 0.004293308919750,

-0.008725820535339,

0.207633665528118,

0, -0.002449943423081,
-0.000749832805752,
-0.007501931764926,

0, -0.065266474827869,

0.037401895624638,
0.025470558191721,

0, 0.001253319942105,

-0.000356562869897,

-0.036706281736491,

o, 0.033732925270074,
-0.000641233000648,

-3-

3

const arm _matrix_instance 32 Lo per

0.010283330987783,
0,

-0.030403824233784,
0,

{10, 10, (Fl

const float32_t Lp_matriz[] = {

-0.009898280860548,
o, 0.217541943060802

oat32_t *)Lo_per_matriz};

-0.105325610557535, -0.002714467035512, 0.0,
0.0, 0.0, 0.0,
0, 0, 0, 0.0,
0.0, -0.0, -0.105325610557535,
-0.002714467035512, -0.0, -0.0,
0, 0, 0, -0.0,
0.0, -0.0, -0.0,
-0.0, -0.105325610557535, -0.002714467035512,
0, 0, 0, -0.0,
-0.0, -0.0, 0.0,
-0.0, 0.0, 0.0,
0, 0, 0, -0.278795314926213
/*
-0.105325610557535, 0.002714467035512, 0.008732682462314,
0.002559603908597, 0.014552758777108, 0.000528954644569,
0, 0, 0, 0.102919655628366,
0.008312078498193, -0.003819091813717, -0.075060605398528,
-0.002074987127944, -0.019057795543476, -0.005361511672757,
0, 0, 0, -0.001723807565582,
0.004362113688891, -0.013310664761345, -0.004605587466494,
-0.014805749036137, -0.378215610185594, 0.031471607720973,
0, 0, 0, -0.048012960151969,
-0.055502910072872, -0.000414764856061, 0.005678012486231,
-0.012687401959021, 0.057454318249112, 0.016414143824185,
0, 0, 0, -0.278795314926213
*/
}:
const arm_matrix_instance_f32 Lp = {4, 10, (float32_t *)Lp_matriz};
const float32_t La_matriz[] = {
/*
-51.883366192798583, 0, -25.941683096399295, -25.941683096399299,
0, -51.883366192798583, 25.941683096399295, -25.941683096399299,
51.883366192798583, 0, -25.941683096399302, -25.941683096399302,
0, 51.883366192798583, 25.941683096399302, -25.941683096399302
*/
-51.883366192798583, 0, 0, O,
0, -51.883366192798583, 0, O,
51.883366192798583, o0, 0, O,
0, 51.883366192798583, 0, O
}:

const arm_matrix_instance_f32 La = {4, 4, (float32_t *)La matriz};

//Parametros Filtros
#define Kc 1
#define numero_muestras_filtro _media 5

#define Kp_ROLLPITCH 0.00005
#define Ki_ROLLPITCH 0.00000001
//#define Kp_YAW 0.00005
//#define Ki_YAW 0.00000001

#define Kp_YAW 0.00005

#define Ki_YAW 0.00000001

//50Hz

/*

#define num_etapas_Filtro_ Vel 2

const float32_t Coeficientes Filtro Vel Valores[5*num_etapas Filtro_ Vel] = {
0.361615673042922, 2*0.361615673042922, 0.361615673042922, 0, -0.446462692171690,
0.259891532474145, 2*0.259891532474145, 0.259891532474145, 0, -0.0395661298965801}%};
*/

#define num_etapas_Filtro Per 2

const float32_t Coeficientes Filtro_Pre Valores[5*num _etapas Filtro Per] = {
0.361615673042922, 2*0.361615673042922, 0.361615673042922, 0, -0.446462692171690,
0.259891532474145, 2*0.259891532474145, 0.259891532474145, 0, -0.0395661298965801%};

//Filtro 20Hz

#define num_etapas_ Filtro_ Vel 2

const float32_t Coeficientes Filtro_Vel Valores[5*num_etapas Filtro Vel] = {
0.00376220298169900, 2*0.00376220298169900, 0.00376220298169900, 1.89341560102250,
-0.908464412949295, 0.00353349592337797, 2*0.00353349592337797, 0.00353349592337797,
1.77831348813944, -0.792447471832947%;

#define num_etapas_Filtro Acel 2

const float32_t Coeficientes Filtro_Acel Valores[5*num_etapas Filtro Acel] = {
0.00376220298169900, 2*0.00376220298169900, 0.00376220298169900, 1.89341560102250,
-0.908464412949295, 0.00353349592337797, 2*0.00353349592337797, 0.00353349592337797,
1.77831348813944, -0.792447471832947%;

#define Coeficientes Filtro Mag Valores {0, 0.0425, 0.0367, 1.565, -0.6442}%}
#define num_etapas_Filtro Mag 1

/*
#define num_etapas_ Filtro Per 2
const float32_t Coeficientes Filtro Pre Valores[5*num_etapas Filtro_Per] = {

0.0779563405164626, 2*0.0779563405164626, 0.0779563405164626, 1.32091343081943,
-0.632738792885277, 0.0618851952997645, 2*0.0618851952997645, 0.0618851952997645,
1.04859957636261, -0.296140357561670 };

*/

//10Hz

/*

#define num_etapas_Filtro Per 2

const float32_t Coeficientes Filtro Per Valores[5*num_etapas Filtro Per] = {

0.0218838519679430, 2%0.0218838519679430, 0.0218838519679430, 1.70096433194353,
-0.788499739815298, 0.0190368315878239, 2*0.0190368315878239, 0.0190368315878239,
1.47967421693119, -0.555821543282489};

*/

#endif /* QUADROTOR_V1_3_1_FUNCIONES_TRANSFERENCIA H_ */

#ifndef PARAMETROS_DEF
#define PARAMETROS_DEF

#include "arm_math._.h"
#define Frecuencia_CPU (uint32_t)30000000UL

#define BAUD_RATE_9600 (uint32_t)9600UL
#define BAUD RATE_ 115200 (uint32_t)115200UL
#define BAUD_RATE_128000 (uint32_t)128000UL
#define BAUD_RATE_460800 (uint32_t)460800UL
#define BITRATE SPI (uint32_t)1000000UL

//Integrado AUX
#define Dir_AUX 0x01

//Parametros Tareas

#define PRIORIDAD Leer_ IMU 10
#define PERIODO_Leer_ IMU 1
#define Timeout _Clk_Leer_IMU 1

#define PRIORIDAD Calculo AHRS 9
#define PERIODO_Calculo_AHRS 2
#define Timeout CIk Calculo AHRS 250

#define PRIORIDAD Control 8
#define PERIODO_Control 5
#define Timeout CIk Control 5

#define PRIORIDAD_ Ildentificacion 8
#define PERIODO_Ildentificacion 5
#define Timeout_Clk_ldentificacion 5

#define PRIORIDAD_ Coordinador 7
#define PERIODO_Coordinador 25
#define Timeout CIk Coordinador 25

#define PRIORIDAD Calculo Altura 6
#define PERIODO_Calculo_Altura 60
#define Timeout CHlk Calculo Altura 60

//Parametros Funcionamiento

#define numCanales 8

#define ticks_arranque vuelo 3*1000/PERIODO_Coordinador
#define Numero Muetras calibracion_ IMU 1000

#define Numero_Muetras_calibracion_Brujula 100

#define Longitud_buffer 9000

#define Num_intentos_conexion_Ildentificacion 5

typedef enum {VUELO, ESPERA, ERROR, IDENTIFICACION, CALIBRACION, DEBUG, ERROR_CONEXION}
tpEstado_Sistema;

//typedef enum {IDENTIFICACION_EJE, IDENTIFICACION_MOTOR,
IDENTIFIACION_NULA}tpEstado_ldentificacion;

typedef enum {NO_TELEMETRIA, TELEMETRIA_CONTROL, TELEMETRIA_YPR, TELEMETRIA_IMU,
TELEMETRIA_BRUJULA}tpModoTelemetria;

typedef enum {CORREGIR_PERTURBACIONES, NO_CORREGIR_PERTURBACIONES, INTEGRAR_PERTURBACIONES,
INTEGRAR_PERTURBACIONES_ESTIMADAS}tpModoPerturbaciones;

typedef enum {ANGULOS_4, ANGULOS 3, ANGULOS_1, EMPUJE}tpModo_Control;

typedef enum {PARADA_EMER, ESTABILIZACION_EMER, ATERIZAJE_EMER, NO_WATCHDOG}tpModoWatchdog;
typedef enum {CALIBRACION_COMPLETA_IMU, CALIBRACION_GIROSCOPO, CALIBRACION_ACELEROMETRO,
NO_CALIBRAR_IMU}tpModoCalibracionIMU;

typedef enum {START = "#", FINAL = "*", IDENTIFICAR ="1", CALIBRAR = "C", TELEMETRIA = "T",
DATO_ANTERIOR = OxFF } tpOrden;

typedef enum {TELE O, TELE 1, TELE 2, TELE 3, TELE 4} tplnfoTelemetria;

// TELE_O Telemetria Control, Sin perturcaciones, control 3 Angulos

// TELE_ 1 Telemetria Control, perturcaciones, control 3 Angulos

// TELE 2 Telemetria Control, perturcaciones integradas estimadas, control 3 Angulos

// TELE 3 Telemetria Control, perturcaciones integradas, control 3 Angulos

-

// TELE 4 Telemetria Control, EMPUJE

typedef struct{
uint8 t Inicio;
uint8 _t InfoTelemetria;
intl6é_t Referencia[4];
uintlé _t Accion[4];
intl6é_t Variables Estado[10];
intl6_t Perturbaciones[4];
uintl6é_t Altura_Barometrica;
uintlé _t Altura_US;
intlée_t Acel[3];
intlé_t Gyro[3];
intl6é_t Magnetics[3];
uint8_t Final;
}tpTelemetria_Control;

typedef struct{
uint8_t Inicio;
intlé t Yaw;
intlé_t Pitch;
intl6é_t Roll;
uint8_t Final;

}tpTelemetria YPR;

typedef struct{
tpOrden Inicio;
uintle_t Acel[3];
uintl6é_t Gyro[3];
uintl6é_t Mag[3];
tpOrden Final;

}tpTelemetria IMU;

typedef struct{
float32_t Yaw offset;
float32_t Pitch_offset;
float32_t Roll _offset;
}tpPuntolnicial;

//VALORES MAXIMOS

#define Angulo_Maximo 30.0//°

#define Velocidad_Angular_Maxima 10.0 //°/s
#define Valor_Empuje Maximo 800

#define Valor_Fuerza Maximo 2.0

#define Valor_perturbacion_Motor MAX 5.0
#define Valor_perturbacion_Motor_MIN 0.0

//VALORES CONVERSION Q_16
#define Angulo Max_Q16 180.0
#define Velocidad Max_Q16 1000.0
#define F_Max_Q16 100.0

//TIMEOUTS
#define Timeout UART_BLUETOOTH_ Lectura 10

//TAREAS
#define nTokenslniciales 0 O
#define nTokenslniciales 1 1

//Parametros Ultrasonido US

#define Pulso_arranque us 10 //us

#define Distancia MAX us 4 //m

#define Velocidad_Sonido 340 // m/s
#define Max_pulso_us 25000 // (4.25 metros)
#define Min_pulso _us 120 // 2 cm

typedef enum{INT_TRIGGER, INT_LLEGADA}tpIntUS;

//Parametros Motor

#define Offset rpm 1174
#define Accion_Maxima 1000
#define Accion_Minima 100

#define Pulso_minimo_PWM_motor 1000U
#define Pulso_maximo_PWM_motor 2000U

//Parametros Chasis
#define MasaQuadrotor 0.9 //Kg
#define Pert Fuerza Bateria 0.3 //N

#endi

/*

AHRS como tarea

Todos Sensores IMU en una tarea.

Telemetria sensores sin filtrar. paso de dato con buzon

Afiadida correcccion de posicion mediante rotacion de la medidas, con calculo de matriz al
inicio del ciclo

Sincronizacion de arranaque cambiada, las tareas inician su propio clock excepto el IMU
IMU->Se calibra, Guarda la primera lectura, Inicio AHRS , Tarea ciclico.
*Reset de los parametros, Guarda la primera
lectura, Inicio Coordinador , Tarea ciclico.

Arranca WD, SYNCRO, Tarea ciclico.

*/

/* PARAMETROS CONFIGURACION */
#define Estimador_Parcial
//#define Filtro_Perturbaciones
#define Filtrado Vel IMU

#define IMU_MPU9250
//#define IMU_MPU6050
//#define GYRO_L3G4200
//#define COMPASS_HMC5883L
#define BAR_BMP280
//#define Sensor_RPM

//#define MAG

/* XDCtools Header files */
#include <xdc/std.h>

#include <xdc/cfg/global_h>
#include <xdc/runtime/System.h>
#include <xdc/runtime/Error._h>
#include <xdc/runtime/Memory.h>
//#include <xdc/runtime/lHeap.h>

/* BIOS Header files */

#include <ti/sysbios/BIOS_h>

#include <ti/sysbios/Knl/Task.h>

#include <ti/sysbios/Knl/Clock.h>

#include <ti/sysbios/Knl/Semaphore.h>
#include <ti/sysbios/Knl/Mailbox.h>
#include <ti/sysbios/Knl/Swi.h>

#include <ti/sysbios/gates/GateMutexPri.h>
#include <ti/sysbios/hal/Timer.h>

#include <ti/sysbios/hal/Hwi.h>

/* TI-RTOS Header files */
#include <ti/drivers/GP10.h>
#include <ti/drivers/Z12C.h>
#include <ti/drivers/PWM.h>
#include <ti/drivers/UART.h>
#include <ti/drivers/SPI.h>
#include <ti/drivers/Watchdog.h>

/* Periphals libraries */
#include <driverlib/eeprom.h>

/* Board Header file */
#include ""Quad_Board.h"
#include "arm_math.h"

#include "Parametros.h"

#include ""Funciones_Transferencia.h"
#include "AHRS.h"

#include "Sensores.h"

#include "Servidores.h"

//#include "Transmisores.h"

Y 4 AR Variables. . . . e e e e e e e m e e e a e //
//...Sistema....//
Ptr Datos;

tpCalibracion_Receptor Calibracion_Receptor = { //POENR PROTEGIDO???
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, ¥

}1

{.Rango_Salida = {-1, 1},
.Rango_Entrada = {966, ¥

}1

{.Rango_Salida = {0, 1},
.Rango_Entrada = {966, b

}s

{.Rango_Salida = {-1, 1},
.Rango_Entrada = {966, b

},

{.Rango_Salida = {-1, 1},
.Rango_Entrada = {966, }

}1

{.Rango_Salida = {-1, 1},
.Rango_Entrada = {966, ¥

}1

{.Rango_Salida = {-1, 1},
.Rango_Entrada = {966, b

}s

{.Rango_Salida = {-100, 3,
.Rango_Entrada = {966, 3

}

};

tpCalibracion_IMU Calibracion_IMU = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-Correccion_Alineamiento_matriz = {1, 0, 0, 0, 1, 0, O, O, 1%},
.Correccion_Alineamiento.numCols =
.Correccion_Alineamiento.numRows = 3,
.Correccion_Alineamiento.pData = Calibracion_IMU.Correccion_Alineamiento_matriz,
-.Giro = { , 0, 0}

};

tpCalibracion Brujula Calibracion Brujula = {0, 0, 0, 0, 0, O};
tpModoCalibracionIMU ModoCalibracionIMU = CALIBRACION_COMPLETA IMU;
//CALIBRACION_COMPLETA IMU;

tpEstado_Sistema Estado Sistema = ESPERA;
tpEstado_Sistema Estado_Sistema Anterior = ESPERA;

tpModoTelemetria ModoTelemetria = TELEMETRIA CONTROL;
tpInfoTelemetria InfoTelemetria = TELE_O;

const tpOrden START _FRAME = START;

const tpOrden FINAL_FRAME = FINAL;

tpModo_Control Modo Control = ANGULOS 3;

tpModo_Control Modo_Control _Anterior = ANGULOS 3;
tpModoPerturbaciones ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
//NO_CORREGIR_PERTURBACIONES;

tpModoWatchdog ModoWatchdog = PARADA EMER;

//..._.SENSORES..../7/

#ifdeft IMU_MPU9250
tpIMU9250 IMU9250 = {
.Direccion_IMU
-Direccion_MAG
-SMPLRT_DIV = 0O,
.Ganancia_Acel = Gain_Acel 16G,

DIR_O_IMU_MPU9250,
Dir_MAG_MPU9250,

.Sensibilidad Acel = / ,
-Ganancia_Gyro = Gain_Gyro_500,
-Sensibilidad_Giroscopo = / ,
.Sensibilidad Brujula = / ,

.DLPF_CFG_ACEL
.DLPF_CFG_GYRO

DLPF_CFG_ACEL_NO,
DLPF_CFG_GYRO_NO

3
#endif

#ifdef IMU_MPU6050

tpIMUG050 IMUBO50 = {
.Direccion = Dir_0_IMU_MPU6050,
.SMPLRT DIV = 0O,
.DLPF_CFG = DLPF_CFG 1,
.Ganancia_Gyro = Gain_Gyro_500,
-.Ganancia_Acel = Gain_Acel 16G,

-Sensibilidad_Giroscopo = / ,
.Sensibilidad_Acel = /

};

#endif

#ifdef GYRO_L3G4200

tpGiroscopo_ L3G4200 Giroscopo L3G4200 = {
.Direccion = Dir_1 L3G4200,
-Ganancia = dps_2000,
-Sensibilidad_Giroscopo = /
.ODR = ODR_800_Hz,
-.BDU = BDU_Continuo,
-Modo = Bypass,
-.BLE = BLE_Big_Endian,
.BW_LPF = LPF1_1,
-BW_HPF = HPF_O,
-HPF_activar = HPF_No_Filtro,
-HPF_modo = HPF_Normal,
-.Modo_Filtro = Filtrado LPF2

}:

#endif

#ifdef COMPASS_ HMC5883L

tpHMC5883L Brujula HMC5883L = {
-Angulo_Rotacion = 0,
.Ganancia = Gauss_1 3,
-Modo_Operacion = Continuo,
-Modo_Medida = Normal,
-Muestras_Media = MEDIA 4,
.ODR = ODR_75 Hz,
-Velocidad_I12C = 12C_400_Khz,
.Sensibilidad = S 1

};

#endif

#ifdef BAR_BMP280

tpBarometro_BMP280 Barometro BMP280 = {
.Direccion = BMP_280 DIR O,
-Modo = Mode_Normal,
.Oversampling Presion = x16,
-Oversampling_Temperatura = x16,
-t _sampling = ms05

};

#endif

//. Variabl
float32_t P

es del sistema...//
osicion_inicial = 0;

uintlé_t Altura US mm = O;
uintlé_t Altura_Presion_mm ;

float32_t G

/... ... Ide
uint32_t nD
uint32_t Pu
uintlé_t nD

ravedad;

ntificacion.......... //
atos_ldentifiacion = 0;
ntoTrabajo_motor = 0O;
atos_leidos = 0;

//uintl6_t Ticks_por_RPS = 0O;

PWM_Handle
PWM_Handle
PWM_Handle
PWM_Handle

PWM_Params
PWM_Params
PWM_Params
PWM_Params

12C_Handle
12C_Handle

12C_Params

//12C_Param

UART_Handle
//UART_Hand
UART_Handle
UART_Handle

UART_Params
UART_Params
UART_Params

/... ... SPI
//tp _nRF24L
//SP1_Param

Timer_Handl
Timer_Param

//. .. . WATCH
Watchdog_ Ha
Watchdog_Pa

// .. _BUZON.
Mai Ibox_Han
Mai Ibox_Par

/*
Mai Ibox_Han
Mai Ibox_Han
Mai Ibox_Par
*/

PARAMS_PWMO;
PARAMS_PWM1;
PARAMS_PWM2;
PARAMS_PWM3;

12C_PRINCIPAL;
12C_AUX;

PARAMS_12C;

S PARAMS_12C_AUX;

UART_USB;
le UART_BT_MANDO;
UART_BT_TELEMETRIA;
UART_AUX;

PARAMS_UART_USB;
PARAMS_UART_BT_TELEMETRIA;
PARAMS_UART_AUX;

...NRF24L01...... //
01 nRF24L01;
s PARAMS_SPI_O;

e US Timer;
s PARAMS US Timer;

DOG. e iieeaan //
ndle WatchDog O;
rams PARAMS WatchDog O;

dle Buzon_ Lecturas_IMU;
ams PARAMS_Buzon;

dle Buzon_Calibracion_IMU;
dle Buzon_Calibracion Brujula;
ams PARAMS Buzon_Calibracion;

Task Params Parametros_Tarea;
Semaphore_Params Parametros_Semaforo;
Clock Params Parametos_Clock;

//....CONTROL....//

Task_Handle TASK Control;
Semaphore_Handle SEMAPHORE_ Control;
Clock _Handle CLOCK_Control;

//..._ALTURA_US..//

Task _Handle TASK Calculo_Altura;
Semaphore_Handle SEMAPHORE_Calculo_Altura;
Clock Handle CLOCK Calculo_ Altura;

//....Leer IMU.._.//

Task Handle TASK Leer_ IMU;
Semaphore_Handle SEMAPHORE Leer_ IMU;
Clock Handle CLOCK Leer_ IMU;

//...Calculo AHRS....//

Task _Handle TASK Calculo_AHRS;
Semaphore_Handle SEMAPHORE_Calcullo_AHRS;
Clock Handle CLOCK Calculo_AHRS;

//..._ldentificacion...... //

Task_Handle TASK ldentificacion;
Semaphore_Handle SEMAPHORE_ Identificacion;
Clock Handle CLOCK_Identificacion;

//...._Coordinador...... //

Task_Handle TASK_Coordinador;
Semaphore_Handle SEMAPHORE_Coordinador;
Clock Handle CLOCK Coordinador;

Y 7 A FUNCIONES. . . .o oo

void Rotacion_X(arm_matrix_instance f32 *Matriz,
void Rotacion_Y(arm_matrix_instance_ f32 *Matriz,
void Rotacion_Z(arm_matrix_instance f32 *Matriz,

float32_t Giro, bool Radianes);
float32_t Giro, bool Radianes);
float32_t Giro, bool Radianes);

void Rotacion_ZYZp(arm_matrix_instance 32 *Matriz, float32_t Giro[3], bool Radianes);
void Rotacion_zXY(arm_matrix_instance f32 *Matriz, float32_t Giro[3], bool Radianes);
//void Rotacion_XYZ(arm_matrix_instance 32 *Matriz, float32_t Giro[3], bool Radianes);

//. WATCHDOG - - - - o i e e e e e e e e e e e

void FuncionWatchDog();

void Reestablecer_Conexion();
//.._.Control...._. //

void Control(UArg arg0, UArg argl);

void CLK_Control();

/7. US. ..., //

void ISR _Timer_USQ;

void ISR_GPI10_USQ);

void Calculo_Altura(UArg arg0, UArg argl);
void CLK_Calculo_AlturaQ);
//....leer_IMU...//

void Lectura Datos IMU(UArg arg0O, UArg argl);
void CLK Lectura_Datos IMUQ);
//....Calculo AHRS...//

void Calculo AHRS(UArg argO, UArg argl);
void CLK_Calculo AHRSQ);
//..._ldentificacion...... //

void ldentificacion(UArg arg0O, UArg argl);
void CLK_ldentificacion();

#ifdeT Sensor_RPM

void ISR_GPI0_RPMQ);
#endi

//...._Coordinador...... //
void Coordinador(UArg arg0, UArg argl);
void CLK_Coordinador();

*/
int main(void){
Error_init(&eb);

/* Call board init functions */
QUAD_BOARD_initGeneral();
QUAD_BOARD_initGPIOQ);
QUAD_BOARD_initPWMQ);
QUAD_BOARD_initl2CQ);
QUAD_BOARD_initSPI(Q);
QUAD_BOARD_initUARTQ);
QUAD_BOARD_initWatchdog();

/7. ... SERVIDORES. //
Iniciar_Servidores();

GP10_write(QUAD_BOARD_LED_RED, 1);
GP10_write(QUAD_BOARD_LED_GREEN, 0);
GP10_write(QUAD_BOARD_LED BLUE, 0);

PWM_Params_init(&PARAMS_ PWMO)
PARAMS_ PWMO.period =
PARAMS_PWMO.dutyMode = PWM DUTY_TIME;
PWM_Params_init(&PARAMS PWMl)
PARAMS PWM1.period =

PARAMS PWM1.dutyMode = PWM DUTY_TIME;
PWM_Params_init(&PARAMS PWM2)
PARAMS PWM2.period =

PARAMS PWM2.dutyMode = PWM DUTY_TIME;
PWM_Params_init(&PARAMS PWM3)
PARAMS PWM3.period =
PARAMS_PWM3.dutyMode = PWM_DUTY_TIME;

PWMO
PWM1
PWM2
PWM3

PWM_open(QUAD_BOARD_PWMO, &PARAMS_PWMO) ;
PWM_open(QUAD_BOARD_PWM1, &PARAMS_PWM1);
PWM_open(QUAD_BOARD_PWM2, &PARAMS_PWM2);
PWM_open(QUAD_BOARD_PWM3, &PARAMS_PWM3);

/*
PWM_setDuty(PWMO, Pulso_maximo_PWM_motor);
PWM_setDuty(PWM1, Pulso_maximo_PWM_motor);
PWM_setDuty(PWM2, Pulso_maximo_PWM_motor);
PWM_setDuty(PWM3, Pulso_maximo_PWM_motor);
*/
PWM_setDuty(PWMO, 0);
PWM_setDuty(PWM1, 0);
PWM_setDuty(PWM2, 0);
PWM_setDuty(PWM3, 0);
// ... 12C., //
12C_Params_init(&PARAMS_12C);
PARAMS 12C.bitRate = 12C_400kHz;
PARAMS_12C.transferMode = 12C_MODE_BLOCKING;
PARAMS 12C.transferCallbackFxn = NULL;

12C_PRINCIPAL = 12C_open(QUAD_BOARD_12C0, &PARAMS_12C);

// 12C_Params_init(&PARAMS_12C_AUX);

// PARAMS 12C.bitRate = 12C_400kHz;
// PARAMS 12C.transferMode = 12C_MODE_BLOCKING;
// PARAMS 12C.transferCallbackFxn = NULL;

12C_AUX = 12C_open(QUAD_BOARD_12C2, &PARAMS_12C);

UART_Params_init(&PARAMS_UART_BT_TELEMETRIA);
PARAMS_UART_BT_TELEMETRIA.baudRate = BAUD_RATE_460800;
PARAMS_UART_BT_TELEMETRIA.datalLength = UART_LEN_8;
PARAMS_UART_BT_TELEMETRIA.parityType = UART_PAR_NONE;
PARAMS_UART BT_TELEMETRIA.stopBits = UART_STOP_ONE;
PARAMS_UART BT_TELEMETRIA.readEcho = UART_ECHO OFF;

PARAMS_UART_BT_TELEMETRIA. readReturnMode = UART_RETURN_FULL;
PARAMS_UART_BT_TELEMETRIA.writeDataMode = UART_DATA BINARY;
PARAMS_UART_BT_TELEMETRIA.readDataMode = UART_DATA_BINARY;
PARAMS_UART_BT_TELEMETRIA.readMode = UART_MODE_BLOCKING;
PARAMS_UART_BT_TELEMETRIA.writeMode = UART_MODE_BLOCKING;
PARAMS_UART_BT_TELEMETRIA.writeTimeout = BI10S_WAIT_FOREVER;
//PARANMS_UART_BT_TELEMETRIA.readTimeout = BIOS_NO WAIT;
PARAMS_UART_BT_TELEMETRIA.readTimeout = ;

UART_BT_TELEMETRIA = UART_open(QUAD_BOARD_UART5 BT TELEMETRIA,
&PARAMS_UART BT TELEMETRIA);

SP1_Params_init(&PARAMS_SPI_0);

PARAMS_SPI1_O.transferMode = SPI1_MODE_BLOCKING;
PARAMS _SPI_O.transferTimeout = BIOS_WAIT_FOREVER;
PARAMS_SPI_0O.mode = SPI_MASTER;
PARAMS_SPI_O.bitRate = BITRATE_SPI;
PARAMS_SPI1_O.dataSize = 8;

PARAMS SPI1_O.frameFormat = SPI_POLO PHAO;

NRF24L01.SP1 = SPI_open(QUAD_BOARD_SPI0, &PARAMS_SPI_0);
NRF24L01.PIN_CE = QUAD_BOARD_SPI_CE;
NRF24L01.PIN_CSN = QUAD_BOARD_SPI_CSN;

NRF24L01.PIN_IRQ = NULL;

*/

//. ... WATCHDOG - - - - - i e e i e e e e e o //
Watchdog_Params_init(&PARAMS_ WatchDog 0);
PARAMS WatchDog_ O.callbackFxn = FuncionWatchDog;
PARAMS WatchDog_ 0.debugStal IMode = Watchdog DEBUG_STALL_ON;
PARAMS WatchDog_ O.resetMode = Watchdog RESET_ OFF;

//. ... BUZON. .. oo //

/*
Mai lbox_Params_init(&PARAMS Buzon_Calibracion);
Buzon_Calibracion_IMU = Mailbox create(sizeof(tpLecturas_ IMU), 1,
&PARAMS Buzon_Calibracion, &eb);
Buzon_Calibracion Brujula = Mailbox_create(sizeof(tpLecturas Brujula), 1,
&PARAMS Buzon_Calibracion, &eb);

*/

Mai lbox_Params_init(&PARAMS Buzon);
#ifdef IMU_MPU9250
Buzon_lLecturas_IMU
#endif
#ifdeft IMU_MPU9250
Buzon_Lecturas_IMU
#endif

Mailbox_create(sizeof(tpLecturas_IMU), 1, &PARAMS Buzon, &eb);

Mailbox_create(sizeof(tpLecturas 9DOF IMU), 1, &PARAMS Buzon, &eb);

Timer_Params_init(&PARAMS US Timer);
PARAMS US Timer.period = Pulso_arranque_us; //Para una distancia MAX de 4 metros (aprox)

-7-

PARAMS_US_Timer.periodType = Timer_PeriodType MICROSECS;
PARAMS US Timer.runMode = Timer_RunMode ONESHOT;
PARAMS US Timer.startMode = Timer_StartMode USER;

US Timer = Timer_create(5, ISR _Timer_US, &PARAMS US Timer, &eb);

/o INTERRUPCIONES . .« oo i i e e e e e e e e e eeaaaas //
GP10_setCal lback(QUAD_BOARD_ECHO, ISR_GPIO_US);
GP10_enablelnt(QUAD_BOARD_ECHO);

#ifdef Sensor_ RPM
GP10_setCal Iback(QUAD_BOARD_RPM, ISR_GPIO_RPM);
GP10_enablelnt(QUAD_BOARD _RPM);

#endif

//....Control....//
Task Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD Control;
Parametros_Tarea.stackSize = ;
TASK_Control = Task create(Control, &Parametros Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode BINARY;
SEMAPHORE_Control = Semaphore_create(nTokenslniciales 0, &Parametros_Semaforo, &eb);

Clock Params_init(&Parametos_Clock);

Parametos_Clock.period = PERIODO_Control;

Parametos_Clock.startFlag = false;

CLOCK_Control = Clock_create(CLK_Control, Timeout Clk_Control, &Parametos Clock, &eb);

//.... Altura..//
Task Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD Calculo Altura;
Parametros_Tarea.stackSize = ;
TASK_Calculo_Altura = Task create(Calculo_Altura, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);

Parametros_Semaforo.mode = Semaphore_Mode_ BINARY;

SEMAPHORE_Calculo_Altura = Semaphore_create(nTokenslIniciales 0, &Parametros_Semaforo,
&eb);

Clock Params_init(&Parametos_Clock);

Parametos_Clock.period = PERIODO_Calculo_ Altura;

Parametos_Clock.startFlag = false;

CLOCK _Calculo_Altura = Clock create(CLK Calculo_Altura, Timeout Clk Calculo Altura,
&Parametos_Clock, &eb);

//....Leer_IMU...//
Task Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD Leer_ IMU;
Parametros_Tarea.stackSize = ;
TASK_Leer_IMU = Task create(Lectura_Datos_ IMU, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_ BINARY;
SEMAPHORE_Leer_IMU = Semaphore_create(nTokenslniciales_0, &Parametros_Semaforo, &eb);

Clock Params_init(&Parametos_Clock);

Parametos_Clock.period = PERIODO_Leer_IMU;

Parametos_Clock.startFlag = true;

CLOCK Leer_IMU = Clock_create(CLK Lectura Datos IMU, Timeout Clk Leer_ IMU,
&Parametos_Clock, &eb);

//...Calculo AHRS....//
Task Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD Calculo AHRS;

-8-

TASK_Calculo_AHRS = Task create(Calculo_AHRS, &Parametros Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode BINARY;
SEMAPHORE_Calculo_AHRS = Semaphore_create(nTokenslniciales 0, &Parametros_Semaforo, &eb);

Clock Params_init(&Parametos_Clock);

Parametos_Clock.period = PERIODO_Calculo_ AHRS;

Parametos_Clock.startFlag = false;

CLOCK_Calculo_AHRS = Clock_create(CLK _Calculo_AHRS, Timeout Clk_Calculo_AHRS,
&Parametos_Clock, &eb);

// ... _ldentificacion...... //
Task Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD ldentificacion;
Parametros_Tarea.stackSize = ;
TASK_Ildentificacion = Task create(ldentificacion, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);

Parametros_Semaforo.mode = Semaphore_Mode BINARY;

SEMAPHORE_Identificacion = Semaphore_create(nTokenslIniciales 0, &Parametros_Semaforo,
&eb);

Clock Params_init(&Parametos_Clock);

Parametos_Clock.period = PERIODO_ Identificacion;

Parametos_Clock.startFlag = false;

CLOCK Identificacion = Clock create(CLK ldentificacion, Timeout Clk ldentificacion,
&Parametos_Clock, &eb);

Task Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD Coordinador;
TASK_Coordinador = Task create(Coordinador, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_ BINARY;
SEMAPHORE_Coordinador = Semaphore_create(nTokensIniciales 0, &Parametros_Semaforo, &eb);

Clock Params_init(&Parametos_Clock);

Parametos_Clock.period = PERIODO_Coordinador;

Parametos_Clock.startFlag = false;

CLOCK_Coordinador = Clock _create(CLK Coordinador, Timeout Clk_Coordinador,
&Parametos_Clock, &eb);

/*
PWM_setDuty(PWMO, Pulso_minimo_PWM_motor + Accion_Maxima);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor + Accion_Maxima);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor + Accion_Maxima);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor + Accion_Maxima);
while(GP10_read(QUAD_BOARD_SW2));
PWM_setDuty(PWMO, Pulso_minimo_PWM_motor + Accion_Minima);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor + Accion_Minima);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor + Accion_Minima);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor + Accion_Minima);
while(1GP10_read(QUAD_BOARD_SW2));

*/

/*

PWM_setDuty(PWMO, Accion_Maxima
PWM_setDuty(PWM1, Accion_Maxima
PWM_setDuty(PWM2, Accion_Maxima
PWM_setDuty(PWM3, Accion_Maxima
while(GP10_read(QUAD_BOARD_SW2));
PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);

Pulso_minimo_PWM_motor);
Pulso_minimo_PWM_motor);
Pulso_minimo_PWM_motor);
Pulso_minimo_PWM_motor);

+ 4+ + +

-9-

PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);
while(1GP10_read(QUAD_BOARD_SW2));
*/

//1Iniciamos la matriz de correccion
Rotacion_zXY(&Calibracion_IMU.Correccion_Alineamiento, Calibracion_IMU.Giro, false);

while(GP10_read(QUAD_BOARD_SW2));

/* Start BIOS */
BIOS start();

return (0);

}
L1177 77/777/777/777777/7777/777/77/7/77/7/777/7777/
/1717777777777
void FuncionWatchDog(){
float32_t Referencia[4] = {0, 0, 0, 0};
Uulnt Key, Key2, Key3;

Key = Task _disable();
Key2 = Hwi_disable();
Key3 = Swi_disable();

Watchdog_clear(WatchDog_0);

switch(Estado_Sistema){
case VUELO:
case ESPERA:
default:
Estado Sistema Anterior = Estado Sistema;
Modo_Control_Anterior = Modo_Control;

Estado_Sistema = ERROR_CONEXION;

GP10_write(QUAD BOARD LED RED, 0);

GP10_write(QUAD BOARD_LED_ GREEN, 0);

GPI10_write(QUAD_BOARD LED BLUE, 0);
break;

}

switch(ModoWatchdog){
case PARADA EMER:
GPI0_write(QUAD_BOARD_LED_RED, 1);
GP10_write(QUAD_BOARD_LED_GREEN, 0);
GP10_write(QUAD_BOARD_LED_BLUE, 0);

//Stop a todos los clocks y tareas
Clock_stop(CLOCK_ Control);
Semaphore_reset(SEMAPHORE_Control, 0);

Clock _stop(CLOCK lIdentificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);

PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

while(1);
//System_exit(0);

//break;

case ESTABILIZACION_EMER:
GP10_toggle(QUAD_BOARD_LED_RED);
GPI10_toggle(QUAD_BOARD_LED_GREEN) ;
GP10_toggle(QUAD BOARD LED BLUE);

Modo_Control = ANGULOS 4;
memcpy(Direccion_servidor_Referencia(), Referencia, sizeof(Referencia));

-10-

break;

}

Swi_restore(Key3);

Hwi_restore(Key2);

Task_restore(Key);
}

void Reestablecer_Conexion(){

Modo_Control = Modo Control Anterior;
Estado_Sistema =

switch(Estado_Sistema){
case VUELO:
GPI10_write(QUAD_BOARD_LED_RED,

GPI10_write(QUAD_BOARD_LED_ GREEN,
GP10_write(QUAD_BOARD_LED BLUE,

break;
case ESPERA:
GP10_write(QUAD BOARD LED RED,

GP10_write(QUAD_BOARD_LED GREEN,
GP10_write(QUAD_BOARD_LED BLUE,

break;

}
}

Estado_Sistema Anterior;

);

);
);

);

);
);

void Rotacion X(arm_matrix_instance f32 *Matriz, float32_t Giro, bool Radianes){

float32_t Seno = 0;
float32_t Cos = 0;

float32_t Aux Matriz[9] = {
arm_matrix_instance_ f32 Aux

float32_t Matriz_Rotacion_Matriz[9] = {0,
arm_matrix_instance 32 Matriz_Rotacion

if(Radianes){ Giro = Giro *
arm_sin_cos_T32(Giro, &Seno, &Cos);
Matriz_Rotacion.pData[0]

Matriz_Rotacion.pData[4] = Cos;
Matriz_Rotacion.pData[5] = -Seno;
Matriz_Rotacion.pData[7] = Seno;
Matriz_Rotacion.pData[8] = Cos;

arm_copy_Ff32(Matriz->pData, Aux.pData,
Aux.numCols = Matriz->numCols;
Aux.numRows = Matriz->numRows;

/P1; }

,0,0};

= {Matriz->numRows, Matriz->numCols, Aux Matriz};

.0}

, Matriz_Rotacion_Matriz};

= {3.

*Matriz->numCols);

arm_mat_mult_f32(&Aux, &Matriz_Rotacion, Matriz);

}

void Rotacion_Y(arm_matrix_instance f32 *Matriz, float32_t Giro, bool Radianes){

float32_t Seno = 0;
float32_t Cos = 0;

float32_t Aux Matriz[9] = {
arm_matrix_instance_f32 Aux

float32_t Matriz_Rotacion Matriz[9]

arm_matrix_instance_f32 Matriz_Rotacio

if(Radianes){ Giro = Giro *
arm_sin_cos_T32(Giro, &Seno, &Cos);

Matriz_Rotacion.pData[0] = Cos;
Matriz_Rotacion.pData[2] = Seno;
Matriz_Rotacion.pData[4] = 1;
Matriz_Rotacion.pData[6] = -Seno;
Matriz_Rotacion.pData[8] = Cos;

= {Matriz->

/Pl; }

,0,0%};
numRows, Matriz->numCols, Aux_ Matriz};
’ ’ ’ ’ ’ ’ ’ ’ };

= {3, 3, Matriz_Rotacion_Matriz};

-11-

arm_copy_TFf32(Matriz->pData, Aux.pData, 3*Matriz->numCols);
Aux.numCols = Matriz->numCols;
Aux.numRows = Matriz->numRows;

arm_mat_mult_f32(&Aux, &Matriz_Rotacion, Matriz);

}

void Rotacion_Z(arm_matrix_instance f32 *Matriz, float32_t Giro, bool Radianes){
float32_t Seno = 0;
float32_t Cos = 0;

,0,0,0,0,0,0,0};

= {Matriz->numRows, Matriz->numCols, Aux Matriz};

{ ,0,0,0,0,0,0};
n

{3, 3, Matriz_Rotacion_Matriz};

float32_t Aux Matriz[9] = {
arm_matrix_instance_f32 Aux

float32_t Matriz_Rotacion Matriz[9] =
arm_matrix_instance f32 Matriz_Rotacio

if(Radianes){ Giro = Giro * /Pl; }
arm_sin_cos_T32(Giro, &Seno, &Cos);

Matriz_Rotacion.pData[0] = Cos;
Matriz_Rotacion.pData[l] = -Seno;
Matriz_Rotacion.pData[3] = Seno;
Matriz_Rotacion.pData[4] = Cos;
Matriz_Rotacion.pData[38] = 1;

arm_copy_TFf32(Matriz->pData, Aux.pData, 3*Matriz->numCols);
Aux.numCols = Matriz->numCols;
Aux.numRows = Matriz->numRows;

arm_mat_mult_f32(&Aux, &Matriz_Rotacion, Matriz);

}

/*

void Rotacion_ZYZp(arm_matrix_instance 32 *Matriz, float32_t Giro[3], bool Radianes){
float32_t Aux Matriz[9] = {1,0,0,0,1,0,0,0,1%};
arm_matrix_instance f32 Aux = {Matriz->numRows, Matriz->numCols, Aux Matriz};
float32_t Aux Matriz2[9] = {1,0,0,0,1,0,0,0,1%};
arm_matrix_instance 32 Aux2 = {Matriz->numRows, Matriz->numCols, Aux Matriz2};
float32_t Aux Matriz3[9] = {1,0,0,0,1,0,0,0,1%;
arm_matrix_instance f32 Aux3 = {Matriz->numRows, Matriz->numCols, Aux_Matriz3};

Rotacion_Z(&Aux, Giro[0], Radianes);
Rotacion_Y(&Aux2, Giro[1l], Radianes);
arm_mat_mult f32(&Aux, &Aux2, &Aux3);
Rotacion_Z(&Aux, Giro[2], Radianes);
arm_mat_mult f32(&Aux3, &Aux, Matriz);
}
*/
void Rotacion_zZXY(arm_matrix_instance f32 *Matriz, float32_t Giro[3], bool Radianes){

Matriz->pData[0]
Matriz->pData[1]
Matriz->pData[2]
Matriz->pData[3]
Matriz->pData[4]
Matriz->pData[5]
Matriz->pData[6]
Matriz->pData[7]
Matriz->pData[8]

Rotacion_Z(Matriz, Giro[0O], Radianes);
Rotacion_X(Matriz, Giro[1l], Radianes);
Rotacion_Y(Matriz, Giro[2], Radianes);

}
void Rotacion_ZYZp(arm_matrix_instance 32 *Matriz, float32_t Giro[3], bool Radianes){

Matriz->pData[0]
Matriz->pData[1]

-12-

Matriz->pData[2]
Matriz->pData[3]
Matriz->pData[4]
Matriz->pData[5]
Matriz->pData[6]
Matriz->pData[/]
Matriz->pData[8]

Rotacion_Z(Matriz, Giro[0O], Radianes);
Rotacion_Y(Matriz, Giro[1l], Radianes);
Rotacion_Z(Matriz, Giro[2], Radianes);

//....Leer_IMU...//
void Lectura Datos IMU(UArg arg0, UArg argl){

#ifdef IMU_MPU6050

tpLecturas_IMU Lecturas_IMU = {O, 0, O, 0, O, O, O};
#endif
#ifdef IMU_MPU9250

tpLecturas_9DOF IMU Lecturas 9DOF IMU = {O, O, 0, O, O, O, O, O, O, OF;
#endif
#ifdef GYRO_L3G4200

tpLecturas_Giroscopo Lecturas_Giroscopo = {0, 0, 0, 0};
#endif
#ifdef COMPASS HMC5883L

tpLecturas Brujula Lecturas_Brujula;
#endif

float32_t Lecturas_matriz[3];
float32_t Lecturas_Corregidas matriz[3];

arm_matrix_instance 32 Lecturas = {3, 1, Lecturas_matriz};
arm_matrix_instance_f32 Lecturas_Corregidas = {3, 1, Lecturas_Corregidas_matriz};

float32_t aux;
uintlé_t nMuestras = 0O;

tpTelemetria IMU Telemetria IMU = {
-Inicio = START_FRAME,
-Final = FINAL_FRAME

¥

#ifdef Filtrado Vel IMU
float32_t Estado_filtro_ Vel X[4*num_etapas_Filtro_Vel];
float32_t Estado_ filtro Vel Y[4*num_etapas Filtro Vel];
float32_t Estado filtro Vel Z[4*num_etapas Filtro Vel];
#endif

float32_t Estado_filtro_Acel X[4*num_etapas_Filtro_Acel];
float32_t Estado Filtro Acel Y[4*num_etapas_Filtro_Acel];
float32_t Estado filtro Acel Z[4*num_etapas Filtro_Acel];

#ifdef Filtrado Vel IMU
arm_biquad_casd dfl_inst 32 Filtro Vel X = {num _etapas Filtro Vel, Estado filtro Vel X,
(float32_t *)Coeficientes Filtro Vel Valores};

-13-

arm_biquad_casd_dfl_inst 32 Filtro Vel Y = {num _etapas Filtro Vel, Estado filtro Vel Y,
(float32_t *)Coeficientes Filtro Vel Valores};
arm_biquad_casd dfl_inst 32 Filtro Vel Z = {num _etapas Filtro Vel, Estado filtro Vel Z,
(float32_t *)Coeficientes Filtro Vel Valores};

#endif

arm_biquad _casd dfl_inst 32 Filtro_ Acel X = {num_etapas_Filtro_ Acel,
Estado Filtro Acel X, (Float32_t *)Coeficientes Filtro_Acel Valores};
arm_biquad_casd_dfl_inst 32 Filtro_Acel Y = {num_etapas_Filtro_Acel,
Estado filtro_Acel_Y, (float32_t *)Coeficientes Filtro_Acel_Valores};
arm_biquad_casd dfl_inst 32 Filtro Acel Z = {num_etapas_Filtro_ Acel,
Estado Ffiltro Acel Z, (Float32_t *)Coeficientes Filtro_Acel Valores};

Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);

//1Inicializamos el filtro

#ifdef Filtrado Vel IMU
arm_Ffill_f32(, Estado_filtro Vel X, 4*num_etapas_Filtro Vel);
arm_Fill_f32(, Estado_filtro Vel Y, 4*num_etapas Filtro Vel);
arm_fill_f32(, Estado_filtro_Vel_Z, 4*num_etapas_Filtro_Vel);

#endif

arm_Fill_f32(, Estado_filtro Acel X, 4*num_etapas Filtro Acel);
arm_Fill_f32(, Estado_filtro Acel Y, 4*num_etapas Filtro Acel);
arm_Fill_f32(, Estado_filtro_ Acel _Z, 4*num_etapas_Filtro_Acel);

#ifdef IMU_MPUG050
Iniciar_IMU_MPU6050(12C_PRINCIPAL, IMU6050);
#endi

#ifdef IMU_MPU9250
Iniciar_IMU_MPU9250(12C_PRINCIPAL, 1IMU9250);
#endi

#ifdef GYRO_L3G4200
Iniciar_Giroscopo L3G4200(12C_PRINCIPAL, Giroscopo_L3G4200);
#endif

#ifdef COMPASS HMC5883L
Iniciar_Brujula HMC5883L(12C_PRINCIPAL, Brujula HMC5883L);
#endif

//. ... Calibracion....media......... //
GP10_write(QUAD BOARD LED RED, 0);
GPI10_write(QUAD_BOARD_LED GREEN, 1);
GP10_write(QUAD BOARD LED BLUE, 1);

Datos = Memory_ alloc(NULL, Numero_Muetras_calibracion_IMU*4, 0, &eb);
#ifdef IMU_MPU6050

if(ModoCalibracionIMU == CALIBRACION_ACELEROMETRO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){
for(nMuestras=0; nMuestras<Numero_ Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0S WAIT_FOREVER);
Leer_IMU_MPU6050(12C_PRINCIPAL, IMU6050, &Lecturas IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.x_acel;
Task _sleep(PERIODO Leer_IMU);
s
arm_mean_Tf32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Acel _x);
Calibracion_IMU.Media Acel x = (intl6é_t)Calibracion_IMU.Des _est Acel x;
arm_std_f32((float32_t*)Datos, Numero_ Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Acel x);

for(nMuestras=0; nMuestras<Numero_ Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0S WAIT_FOREVER);

-14-

Leer_IMU_MPU6050(12C_PRINCIPAL, IMU6050, &Lecturas IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.y acel;
Task_sleep(PERIODO_Leer_IMU);
}
arm_mean_Tf32((Ffloat32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Acel_y);
Calibracion_IMU.Media Acel y = (intl6é_t)Calibracion_IMU.Des _est Acel y;
arm_std_f32((float32_t*)Datos, Numero_ Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Acel _y);

for(nMuestras=0; nMuestras<Numero_ Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);
Leer_IMU_MPU6050(12C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.z_acel;
Task_sleep(PERIODO_Leer_IMU);

}

arm_mean_Tf32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Acel_2z);

Calibracion_IMU.Media Acel z = (intl6é_t)Calibracion_IMU.Des_est Acel z;

Gravedad = sqrt(pow(Calibracion_IMU.Media Acel x,2) +

pow(Calibracion_IMU.Media_Acel_y,2) + pow(Calibracion_IMU._Media_Acel_z,2));

Calibracion_IMU_Media_Acel_z -= (intl6_t)sqgrt(pow(Calibracion_IMU_Media_Acel x,2) +

pow(Calibracion_IMU.Media Acel _y,2?) + pow(Calibracion_IMU.Media Acel _z,2));

arm_std_f32((float32_t*)Datos, Numero_ Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Acel _z);

}

if(ModoCalibracionIMU == CALIBRACION_GIROSCOPO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_ IMU){
for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);
Leer_IMU_MPUBO50(12C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.x vel;
Task_sleep(PERIODO_ Leer_IMU);
}
arm_mean_Tf32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Vel Xx);
Calibracion_IMU_.Media_ Vel _x = (intl6_t)Calibracion_IMU.Des_est Vel x;
arm_std_ f32((float32_t*)Datos, Numero Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Vel Xx);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);
Leer_IMU_MPUBO50(12C_PRINCIPAL, IMUB050, &Lecturas_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.y vel;
Task_sleep(PERIODO_Leer_IMU);

}

arm_mean_Tf32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Vel y);

Calibracion_IMU_.Media_ Vel _y = (intl6_t)Calibracion_IMU.Des_est Vel y;

arm_std_ f32((float32_t*)Datos, Numero Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Vel y);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);
Leer_IMU_MPUBO50(12C_PRINCIPAL, IMUB050, &Lecturas_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.z_vel;
Task_sleep(PERIODO_Leer_IMU);

}

arm_mean_Tf32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Vel 2z);

Calibracion_IMU_.Media Vel _z = (intl6_t)Calibracion_IMU.Des_est Vel z;

arm_std_ f32((float32_t*)Datos, Numero Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Vel 2z);

}

Escribir_servidor_Lecturas_IMU(&Lecturas_IMU);
#endif

-15-

#ifdeft IMU_MPU9250

if(ModoCalibracionIMU == CALIBRACION_ACELEROMETRO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){
for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BIOS WAIT_FOREVER);
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.x_acel;
Task_sleep(PERIODO_Leer_IMU);
}
arm_mean_Tf32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Acel x);
Calibracion_IMU_Media_Acel_x = (intl6_t)Calibracion_IMU.Des_est_Acel_x;
arm_std_ f32((float32_t*)Datos, Numero Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Acel Xx);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.y acel;
Task_sleep(PERIODO_Leer_IMU);

}

arm_mean_Tf32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Acel _y);

Calibracion_IMU_Media_Acel_y = (intl6_t)Calibracion_IMU.Des_est_Acel_y;

arm_std_ f32((float32_t*)Datos, Numero Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Acel y);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0OS WAIT_FOREVER);
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.z_acel;
Task_sleep(PERIODO_ Leer_IMU);

}

arm_mean_Tf32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Acel _2z);

Calibracion_IMU_Media_Acel_z = (intl6_t)Calibracion_IMU.Des_est _Acel_z;

Gravedad = sqrt(pow(Calibracion_IMU.Media Acel x,2) +

pow(Calibracion_IMU.Media Acel_y,?) + pow(Calibracion_IMU.Media Acel _z,2));

Calibracion_IMU.Media Acel _z -= (intl6_t)sqgrt(pow(Calibracion_IMU.Media_ Acel x,2) +

pow(Calibracion_IMU_Media_Acel_y,?) + pow(Calibracion_IMU_Media_Acel_z,2));

arm_std_ f32((float32_t*)Datos, Numero Muetras_calibracion_IMU,

&Calibracion_IMU.Des _est Acel _2z);

}

if(ModoCalibracionIMU == CALIBRACION_GIROSCOPO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){
for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BI0S_WAIT_FOREVER);
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.x vel;
Task_sleep(PERIODO_Leer_IMU);
}
arm_mean_T32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Vel Xx);
Calibracion_IMU.Media Vel _x = (intl6_t)Calibracion_IMU.Des_est Vel x;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Vel x);

for(nMuestras=0; nMuestras<Numero_ Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((Float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.y vel;
Task_sleep(PERIODO_Leer_IMU);

}

arm_mean_*¥32((Float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Vel_y);

-16-

Calibracion_IMU_.Media Vel _y = (intl6_t)Calibracion_IMU.Des_est Vel y;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est Vel y);

for(nMuestras=0; nMuestras<Numero_ Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BI0S_WAIT_FOREVER);
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.z_vel;
Task_sleep(PERIODO_ Leer_IMU);

}

arm_mean_T32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des _est Vel 2z);

Calibracion_IMU_Media_Vel_z = (intl6é_t)Calibracion_IMU.Des_est Vel _z;

arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,

&Calibracion_IMU.Des_est Vel 2z);

}

Escribir_servidor_Lecturas_ IMU_9DOF(&Lecturas_ 9DOF_IMU);
#endif

Memory free(NULL, Datos, Numero_Muetras calibracion_IMU*4);

PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

//ARRANCA LA TAREA DE AHRS
Semaphore_post(SEMAPHORE_Calculo_AHRS);

GPI10_write(QUAD_BOARD_LED RED, 1);

GP10_write(QUAD_BOARD_LED_GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);

while(1){
Semaphore_pend(SEMAPHORE Leer_ IMU, BI0S WAIT_FOREVER);

#ifdef IMU_MPU6050
Leer_IMU_MPUB050(12C_PRINCIPAL, IMUB050, &Lecturas_IMU);

//. Offset._//

Lecturas_IMU.Valor.x _vel -= Calibracion_IMU.Media_ Vel Xx;
Lecturas_IMU.Valor.y vel -= Calibracion_IMU.Media_Vel y;
Lecturas_IMU.Valor.z_vel -= Calibracion_IMU_Media Vel _z;

Mai lbox_pend(Buzon_Lecturas_ IMU, NULL, BIOS _NO WAIT);
Mai lbox_post(Buzon_Lecturas_IMU, &Lecturas_ IMU, BIOS NO_WAIT);

// . _Filtrado...Lectura...IMU.......... //

aux = (Float32_t)Lecturas_IMU.Valor.x acel;
arm_biquad_cascade dfl f32(&Filtro_Acel X, &aux, &Lecturas _matriz[0], 1);
aux = (float32_t)Lecturas_IMU.Valor.y acel;
arm_biquad_cascade_dfl_f32(&Filtro_Acel Y, &aux, &Lecturas _matriz[1l], 1);
aux = (Float32_t)Lecturas_IMU.Valor.z_acel;
arm_biquad_cascade dfl f32(&Filtro Acel Z, &aux, &Lecturas matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &lLecturas,
&Lecturas_Corregidas);

Lecturas_IMU._Valor.x_acel
Lecturas_IMU.Valor.y acel
Lecturas_IMU.Valor.z_acel

(intl6_t)lLecturas_Corregidas _matriz[0];
(intl6_t)lLecturas_Corregidas_matriz[1];
(intl6_t)lLecturas_Corregidas matriz[2];

#ifdef Filtrado Vel IMU
aux = (float32_t)Lecturas_IMU.Valor.x_ vel;
arm_biquad_cascade dfl f32(&Filtro Vel X, &aux, &lLecturas matriz[0], 1);
aux = (Float32_t)Lecturas_IMU.Valor.y vel;

-17-

arm_biquad_cascade dfl_f32(&Filtro Vel Y, &aux, &lLecturas matriz[1l], 1);
aux = (float32_t)Lecturas_IMU.Valor.z_vel;
arm_biquad_cascade dfl f32(&Filtro Vel Z, &aux, &lLecturas matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &Lecturas,
&Lecturas_Corregidas);

Lecturas_IMU.Valor.x_ vel
Lecturas_IMU.Valor.y vel
Lecturas_IMU.Valor.z_vel

(intl6_t)lLecturas_Corregidas _matriz[0];
(intl6_t)lLecturas_Corregidas matriz[1];
(intl6_t)lLecturas_Corregidas_matriz[2];

#endif
Escribir_servidor_Lecturas_ IMU(&Lecturas_IMU);
#endif

#ifdef IMU_MPU9250
Leer_IMU_MPU9250(12C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);

//. .Offset..//

Lecturas_9DOF_IMU.Valor.x vel -= Calibracion_IMU.Media_ Vel Xx;
Lecturas_9DOF_IMU.Valor.y vel -= Calibracion_IMU.Media_Vel_y;
Lecturas 9DOF_IMU.Valor.z_vel -= Calibracion_IMU.Media Vel z;

Mai lbox_pend(Buzon_Lecturas_IMU, NULL, BIOS _NO _WAIT);
Mai lbox_post(Buzon_Lecturas_ IMU, &Lecturas 9DOF IMU, BIOS_NO WAIT);

//. _Filtrado...Lectura.._.IMU..._ _...... //

aux = (Float32_t)Lecturas_ 9DOF_IMU.Valor.x_acel;

arm_biquad_cascade dfl_f32(&Filtro_Acel X, &aux, &Lecturas _matriz[0], 1);
aux = (float32_t)Lecturas_9DOF_IMU.Valor.y acel;
arm_biquad_cascade dfl f32(&Filtro Acel Y, &aux, &Lecturas matriz[1l], 1);
aux = (Float32_t)Lecturas 9DOF_IMU.Valor.z_acel;
arm_biquad_cascade dfl_ f32(&Filtro_Acel Z, &aux, &Lecturas matriz[2], 1);

arm_mat_mult f32(&Calibracion_IMU.Correccion_Alineamiento, &Lecturas,
&Lecturas_Corregidas);

Lecturas_ 9DOF_IMU.Valor.x_acel
Lecturas_9DOF_IMU.Valor.y acel
Lecturas_9DOF_IMU.Valor.z_acel

(intl6_t)lLecturas_Corregidas_matriz[0];
(intl6_t)lLecturas_Corregidas matriz[1];
(intl6_t)lLecturas_Corregidas _matriz[2];

#ifdef Filtrado Vel IMU
aux = (Float32_t)Lecturas_9DOF_IMU.Valor.x_vel;
arm_biquad_cascade dfl f32(&Filtro Vel X, &aux, &Lecturas matriz[0], 1);
aux = (float32_t)Lecturas_9DOF_IMU.Valor.y vel;
arm_biquad_cascade_dfl_f32(&Filtro_ Vel Y, &aux, &lLecturas matriz[1l], 1);
aux = (Float32_t)Lecturas_9DOF_IMU.Valor.z_vel;
arm_biquad_cascade dfl f32(&Filtro Vel Z, &aux, &lLecturas matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &lLecturas,
&Lecturas_Corregidas);

Lecturas_ 9DOF_IMU.Valor.x_ vel
Lecturas_9DOF_IMU.Valor.y vel
Lecturas_9DOF_IMU.Valor.z_vel

(intl6_t)lLecturas_Corregidas _matriz[0];
(intl6_t)lLecturas_Corregidas_matriz[1];
(intl6_t)lLecturas_Corregidas matriz[2];

#endif
Escribir_servidor_Lecturas_ IMU_9DOF(&Lecturas_ 9DOF_IMU);
#endif

#ifdef GYRO_L3G4200
Leer_Giroscopo_L3G4200(12C_PRINCIPAL, Giroscopo_L3G4200, &lLecturas_Giroscopo);

#endif

#ifdef ROT_GYRO
Lecturas_Giroscopo_Rotadas.Valor.x_vel = -lLecturas_Giroscopo.Valor.y vel *
Rot_sin_giro + Lecturas_Giroscopo.Valor.x vel * Rot cos giro;
Lecturas_Giroscopo_ Rotadas.Valor.y vel = Lecturas_Giroscopo.Valor.x_vel *

-18-

Rot_sin_giro + Lecturas_Giroscopo.Valor.y vel * Rot _cos giro;
Lecturas_Giroscopo_Rotadas.Valor.z_vel = Lecturas_Giroscopo.Valor.z_vel;
#endif

#ifdef GYRO_L3G4200
Escribir_servidor_Lecturas_Giroscopo(&Lecturas_Giroscopo);
#endifT

#ifdef COMPASS HMC5883L
Leer_Brujula_HMC5883L(12C_PRINCIPAL, Brujula HMC5883L, &Lecturas_Brujula);
//Vailbox_post(Buzon_Calibracion Brujula, &lLecturas Brujula, BI0S_NO WAIT);
Escribir_servidor_Lecturas Brujula(&Lecturas Brujula);

#endif

#ifdef IMU_MPU6050
switch(ModoTelemetria){
case(TELEMETRIA_IMU):
Telemetria_IMU_Acel[0O]
Telemetria IMU.Acel[1]
Telemetria IMU.Acel[2]

Lecturas_IMU.Valor.x_acel;
Lecturas_IMU.vValor.y_acel;
Lecturas_IMU.Valor.z_acel;

#ifdef GYRO_L3G4200
Telemetria IMU.Gyro[O]
Telemetria IMU.Gyro[1]
Telemetria_ IMU.Gyro[2]

Lecturas_IMU.Valor.x vel;
Lecturas_IMU.Valor.y vel;
Lecturas_IMU.Valor.z_vel;

#endif
Telemetria_ IMU.Mag[0] = Lecturas_Brujula.Valor._Magnetismo_X;
Telemetria_ IMU.Mag[1] = Lecturas_Brujula.Valor._.Magnetismo_y;
Telemetria_ IMU_Mag[2] = Lecturas_Brujula.Valor_Magnhetismo_ z;
UART _write(UART_BT_TELEMETRIA, &Telemetria_ IMU, sizeof(Telemetria_ IMU));
break;
}
#endif

#ifdet IMU_MPU9250
switch(ModoTelemetria){
case(TELEMETRIA_IMU):
Telemetria_IMU_Acel[O]
Telemetria IMU.Acel[1]
Telemetria_ IMU.Acel[2]

Lecturas_ 9DOF_IMU.Valor.x_acel;
Lecturas_9DOF_IMU.Valor.y acel;
Lecturas_9DOF_IMU.Valor.z_acel;

Telemetria_IMU._Gyro[O]
Telemetria IMU.Gyro[1]
Telemetria_ IMU.Gyro[2]

Lecturas 9DOF_IMU.Valor.x_vel;
Lecturas_9DOF_IMU.Valor.y vel;
Lecturas_9DOF_IMU.Valor.z_vel;

Telemetria_IMU_Mag[0] = Lecturas_9DOF_IMU.Valor.x_mag;
Telemetria_ IMU.Mag[1] = Lecturas_9DOF_IMU.Valor.y mag;
Telemetria_ IMU.Mag[2] Lecturas_9DOF_IMU.Valor.z_mag;
UART_write(UART_BT_TELEMETRIA, &Telemetria_IMU, sizeof(Telemetria_IMU));

break;

#endif

}

void CLK_ Lectura_ Datos IMUQO{
Semaphore_post(SEMAPHORE_ Leer_IMU);
}

//....Calculo AHRS. //
void Calculo_AHRS(UArg arg0, UArg argl){

#iftdef IMU_MPUB0O50
tpLecturas_IMU Lecturas_IMU;
#endif
#ifdef IMU_MPU9250
tpLecturas_9DOF_IMU Lecturas_9DOF_IMU;
#endif

-19-

#ifdef GYRO_L3G4200

tpLecturas_Giroscopo Lecturas_Giroscopo;
#endif
#ifdef COMPASS_HMC5883L

tpLecturas_Brujula Lecturas_Brujula;
#endif

static tpAHRS AHRS = {
.DCM_matriz = {1, 0, 0, 0, 1, 0, O, O, 1},
.DCM = {3, 3, (float32_t *)AHRS.DCM_matriz},
-Kp_Roll_Pitch = Kp_ROLLPITCH,
-Ki_Roll_Pitch = Ki_ROLLPITCH,
-Kp_Yaw Kp_YAW,
-Ki_Yaw = Ki_YAW,
.Periodo_Muestreo = PERIODO Calculo AHRS /

Semaphore_pend(SEMAPHORE Calculo_AHRS, BIOS WAIT_FOREVER);

Clock_start(CLOCK_Calculo_AHRS);
Semaphore_pend(SEMAPHORE_Calculo_AHRS, BI10S_WAIT_FOREVER);

ResetDCM();
Leer_servidor_DCM((Ffloat32_t*)AHRS.DCM_matriz);
Leer_servidor_RPY(&AHRS.Roll, &AHRS.Pitch, &AHRS.Yaw);

Semaphore_post(SEMAPHORE_Coordinador);
while(1){
Semaphore_pend(SEMAPHORE_Calculo_AHRS, BI0S_WAIT_FOREVER);
#ifdef IMU_MPU6050
Leer_servidor_Lecturas_IMU(&Lecturas_IMU_Control);
#endif
#ifdeft IMU_MPU9250
Leer_servidor_Lecturas_ IMU_9DOF(&Lecturas_9DOF_IMU);
#endif
#ifdef GYRO_L3G4200
Leer_servidor_Lecturas_Giroscopo(&Lecturas_Giroscopo_Control);
#endif
#ifdef COMPASS HMC5883L
Leer_servidor_Lecturas Brujula(&Lecturas Brujula control);
#endif

//._ACEL..//
#ifdeft IMU_MPU6050

AHRS .Vector_Aceleracion_lineal[0]
AHRS _.Vector_Aceleracion_lineal[1]
AHRS .Vector_Aceleracion_lineal[2]

Lecturas_IMU.Valor.x_acel;
Lecturas_IMU.Valor.y_acel;
Lecturas_IMU.Valor.z_acel;

#endif

#ifdef IMU_MPU9250
AHRS .Vector_Aceleracion_lineal[0]
AHRS .Vector_Aceleracion_lineal[1]
AHRS.Vector_Aceleracion_lineal[2]

Lecturas_9DOF_IMU.Valor.x_acel;
Lecturas_9DOF_IMU.Valor.y acel;
Lecturas_9DOF_IMU.Valor.z_acel;

#endif
//..GYRO..//

#ifdeft IMU_MPU6050
AHRS .Vector_Velocidad Angular[0] =
CONVERTIR_A_RADIANES((Float32_t)Lecturas_IMU.Valor.x vel /
IMUB050.Sensibilidad_Giroscopo);
AHRS .Vector_Velocidad_Angular[1] =
CONVERTIR_A_RADIANES((Ffloat32_t)Lecturas_IMU.Valor.y vel /
IMUB050.Sensibilidad_Giroscopo);
AHRS .Vector_Velocidad_Angular[2] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_IMU_.Valor.z_vel /
IMUB050.Sensibilidad_Giroscopo);

#endif

-20-

#ifdeft IMU_MPU9250
AHRS .Vector_Velocidad Angular[0] =
CONVERTIR_A_RADIANES((Float32_t)Lecturas_9DOF_IMU.Valor.x vel /
IMU9250.Sensibilidad_Giroscopo);
AHRS .Vector_Velocidad_Angular[1] =
CONVERTIR_A RADIANES((Float32_t)Lecturas_9DOF_IMU._Valor.y_vel /
IMU9250.Sensibilidad_Giroscopo);
AHRS .Vector_Velocidad_Angular[2] =
CONVERTIR_A RADIANES((Float32_t)Lecturas 9DOF_IMU.Valor.z_vel /
IMU9250.Sensibilidad_Giroscopo);

#endif

#ifdef GYRO_L3G4200
AHRS.Vector_Velocidad Angular[0] =
CONVERTIR_A_RADIANES((Float32_t)Lecturas_Giroscopo_Control.Valor.x vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo);
AHRS .Vector_Velocidad_Angular[1] =
CONVERTIR_A_RADIANES((Ffloat32_t)Lecturas_Giroscopo_Control.valor.y vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo);
AHRS .Vector_Velocidad_Angular[2] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_Giroscopo_Control.Valor.z_vel /
Giroscopo_L3G4200.Sensibilidad _Giroscopo);

#endif

//...BRUJULA...//
#ifdef COMPASS_ HMC5883L
AHRS .Vector_Magnetico[0]
AHRS .Vector_Magnetico[1]
AHRS .Vector_Magnetico[2]

Lecturas_Brujula control.Valor.Magnetismo_x;
Lecturas_Brujula_control_Valor_Magnetismo_y;
Lecturas_Brujula_control_Valor_Magnetismo_z;

#endi

#ifdef MAG
Algortimo_DCM_MAG(&AHRS) ;
#else
Algortimo_DCM_NO_YAW(&AHRS);
#endif
Escribir_servidor DCM((Ffloat32_t*)AHRS.DCM_matriz);
Escribir_servidor RPY(&AHRS.Roll, &AHRS.Pitch, &AHRS.Yaw);

}

void CLK_Calculo AHRS(O{
Semaphore_post(SEMAPHORE_Calculo_AHRS);
ks

//....Coordinador...... //

void Coordinador(UArg arg0, UArg argl){

tpOrden Orden = DATO_ANTERIOR;

uintlé t i = 0;

tpLectura_Radio Lectura_ Radio;

12C_Transaction 12C_Transmision;

bool estado Transmision = false;
12C_Transmision.slaveAddress = Dir_AUX;
12C_Transmision.writeBuf = NULL;
12C_Transmision.writeCount = 0;
12C_Transmision.readBuf = &lLectura_Radio;
12C_Transmision.readCount = sizeof(Lectura_Radio)-1;

static uint8_t Temporizador_Ticks = ticks_arranque_vuelo; //3seg
float32_t Canal[8];

float32_t Referencia[4] = {0, 0, 0, 0};
float32_t Angulos[3] = {0, 0, 0};

-21-

Semaphore_pend(SEMAPHORE_Coordinador, BI0S_WAIT_FOREVER);

WatchDog 0 = Watchdog_open(QUAD_BOARD_ WATCHDOGO , &PARAMS WatchDog 0);
Watchdog_clear(WatchDog_0);

Clock_start(CLOCK_Coordinador);

estado_Transmision = 12C_transfer(12C_AUX, &l12C_Transmision);

while(!(estado_Transmision && Lectura Radio.Canal PWM[2] < N{
Semaphore_pend(SEMAPHORE_Coordinador, BI0S WAIT_FOREVER);
estado_Transmision = 12C_transfer(12C_AUX, &12C_Transmision);
if(Lectura_Radio.Error_conexion = 0){

Watchdog_clear(WatchDog_0);
¥

}

while(1){
Semaphore_pend(SEMAPHORE_Coordinador, BI0S WAIT_FOREVER);

estado_Transmision = 12C_transfer(12C_AUX, &12C _Transmision);
// Lectura_Radio.Canal_PWM[7] =
Lectura_Radio.Canal PWM[6];///////////7/////////7////7////////7//////////////////////7////77777/
/

if(estado_Transmision && Lectura_Radio.Error_conexion != 0){
Watchdog_clear(WatchDog_0);

Canal[0] = ((Lectura_Radio.Canal PWM[O] -
Calibracion_Receptor[0]-Rango_Entrada[0]) * (
Calibracion_Receptor[0]-Rango_Salida[l] -
Calibracion_Receptor[0]-.Rango_Salida[0]) 7 (
Calibracion_Receptor[0]-Rango Entrada[l] -
Calibracion_Receptor[0]-Rango_Entrada[0]) +
Calibracion_Receptor[0]-Rango_Salida[0]);
Canal[1] = ((Lectura_Radio.Canal PWM[1] -
Calibracion_Receptor[1]-Rango_Entrada[0]) * (
Calibracion_Receptor[1]-Rango_Salida[l] -
Calibracion_Receptor[1]-Rango_Salida[0]) 7/ (
Calibracion_Receptor[1].-Rango Entrada[l] -
Calibracion_Receptor[1]-Rango_Entrada[0O]) +
Calibracion_Receptor[1]-Rango_Salida[0]);
Canal[2] = ((Lectura_Radio.Canal_PWM[2] -
Calibracion_Receptor[2].-Rango_Entrada[0]) * (
Calibracion_Receptor[2]-Rango_Salida[l] -
Calibracion_Receptor[2]-Rango_Salida[0]) 7 (
Calibracion_Receptor[2].-Rango_Entrada[1l] -
Calibracion_Receptor[2].Rango_Entrada[0]) +
Calibracion_Receptor[2]-.Rango_Salida[0]);
Canal[3] = ((Lectura_Radio.Canal_PWM[3] -
Calibracion_Receptor[3]-Rango_Entrada[0]) * (
Calibracion_Receptor[3]-Rango_Salida[1l] -
Calibracion_Receptor[3]-Rango_Salida[0]) 7 (
Calibracion_Receptor[3]-Rango_Entrada[l1l] -
Calibracion_Receptor[3]-Rango_Entrada[O0]) +
Calibracion_Receptor[3].Rango_Salida[0]);
Canal[4] = ((Lectura_Radio.Canal PWM[4] -
Calibracion_Receptor[4]-Rango_Entrada[0]) * (
Calibracion_Receptor[4]-Rango_Salida[l] -
Calibracion_Receptor[4]-Rango_Salida[0]) 7 (
Calibracion_Receptor[4]-Rango_Entrada[l] -
Calibracion_Receptor[4]-Rango_Entrada[0]) +
Calibracion_Receptor[4]-Rango_Salida[0]);
Canal[5] = ((Lectura_Radio.Canal PWM[5] -
Calibracion_Receptor[5]-Rango_Entrada[0]) * (

-22-

Calibracion_Receptor[5]-Rango_Salida[l] -
Calibracion_Receptor[5]-Rango_Salida[0]) 7/ (
Calibracion_Receptor[5]-Rango Entrada[l] -
Calibracion_Receptor[5]-Rango_Entrada[0]) +
Calibracion_Receptor[5]-Rango_Salida[0]);
Canal[6] = ((Lectura_Radio.Canal_PWM[6E] -
Calibracion_Receptor[6]-Rango _Entrada[0]) * (
Calibracion_Receptor[6]-Rango_Salida[l] -
Calibracion_Receptor[6]-Rango_Salida[0]) 7 (
Calibracion_Receptor[6]-Rango_Entrada[l1l] -
Calibracion_Receptor[6].Rango_Entrada[0]) +
Calibracion_Receptor[6]-Rango_Salida[0]);
Canal[7] = ((Lectura_Radio.Canal_PWML7] -
Calibracion_Receptor[7]-Rango_Entrada[0]) * (
Calibracion_Receptor[7]-Rango_Salida[1] -
Calibracion_Receptor[7]-Rango_Salida[0]) 7 (
Calibracion_Receptor[7]-Rango_Entrada[l1l] -
Calibracion_Receptor[7]-Rango_Entrada[0O]) +
Calibracion_Receptor[7]-Rango_Salida[0]);

/e PULSADORES - « « - - e e cee e e e e e e e e e 7/
iF(1GP10_read(QUAD_BOARD_SW2)){
while('GP10_read(QUAD_BOARD_SW2));

switch(Estado_Sistema){
case ESPERA:

break;
case DEBUG:
Estado Sistema = CALIBRACION;

GP10_write(QUAD_BOARD_LED_RED, 0);
GP10_write(QUAD_BOARD_LED_GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 1);

Calibracion_Receptor[0]-Rango_Entrada[O]
Calibracion_Receptor[0]-Rango_Entrada[1]
Calibracion_Receptor[1]-Rango_Entrada[O]
Calibracion_Receptor[1]-Rango Entrada[1]
Calibracion_Receptor[2]-Rango_Entrada[0O]
Calibracion_Receptor[2]-Rango_Entrada[1]
Calibracion_Receptor[3]-Rango_Entrada[O]
Calibracion_Receptor[3]-Rango Entrada[1]
Calibracion_Receptor[4]-Rango_Entrada[O]
Calibracion_Receptor[4]-Rango_Entrada[1]
Calibracion_Receptor[5]-Rango_Entrada[O]
Calibracion_Receptor[5]-Rango _Entrada[1]
Calibracion_Receptor[6]-Rango_Entrada[O]
Calibracion_Receptor[6]-Rango_Entrada[1]
// Calibracion_Receptor[7].Rango_Entrada[0]
Calibracion_Receptor[7].-Rango_Entrada[l] = 1500;

break;
case CALIBRACION:
Estado Sistema = ESPERA;

GP10_write(QUAD BOARD LED RED, 1):
GPI10_write(QUAD_BOARD_LED GREEN, 1):
GP10_write(QUAD_BOARD_LED BLUE, 0);

break;
}
/f. . STICK_IZQUIERDA
NEGAT IV . - oo e e e e e e e e e e e e e accacaacaacaacaacaaaaaaaaann
}else if((Canal[0] <= -0.9) && (Canal[2] <)) 2
if (Temporizador Ticks-- == 0){

-23-

switch(Estado_Sistema){
case DEBUG:
//resetear variables
break;
case ESPERA:
Estado_Sistema = DEBUG;

GP10_write(QUAD _BOARD_LED RED, 1);
GP10_write(QUAD BOARD_LED GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 1);
break;
case VUELO:
Estado_Sistema = ESPERA;

Clock _stop(CLOCK Control);
Semaphore_reset(SEMAPHORE_Control, 0);

PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

GP10_write(QUAD_BOARD_LED RED, 1);
GPI10_write(QUAD_BOARD_LED GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);

break;
}
}
1/ oo STICK_1ZQUIERDA
o0 1S N N 1N //
}else if((Canal[0] >=) && (Canal[2]) <) {
if (--Temporizador_Ticks == 0){
switch(Estado_Sistema){
case DEBUG:
Estado _Sistema = ESPERA;
GP10_write(QUAD_BOARD_LED RED, 1);
GP10_write(QUAD_BOARD_LED_GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);
Leer_servidor_RPY(NULL, NULL, &Posicion_inicial);
Posicion_inicial = CONVERTIR_A GRADOS(Posicion_inicial);
break;
case ESPERA:
Estado_Sistema = VUELO;
GP10_write(QUAD BOARD LED RED, 0);
GP10_write(QUAD_BOARD_LED_GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);
Clock_start(CLOCK_Control);
Resetear_servidor_Perturbaciones_Estimadas();
break;
¥
/). STICK DERECHA
NEGAT IV . o o e e e e e e d e e e e c e ca e e e cacaaaaa e e e aaaaaaaann //
Yelse if((Canal[3] <= -) && (Canal[2]) <) {
if (--Temporizador_Ticks == 0){
switch(Estado_Sistema){
case DEBUG:
break;
case ESPERA:
//RESET

-24-

Leer_servidor_RPY(&Angulos[1], &Angulos[0], &Angulos[?]);

//Iniciamos la matriz de correccion

Calibracion_IMU.Giro[1] -= CONVERTIR_A GRADOS(Angulos[0]);
Calibracion_IMU.Giro[2] -= CONVERTIR_A_ GRADOS(Angulos[1]);

Rotacion_zXY(&Calibracion_IMU.Correccion_Alineamiento,

Calibracion_IMU.Giro, false);
GP10_write(QUAD_BOARD_LED _RED, 0);
GP10_write(QUAD_BOARD_LED_GREEN, 0);
GP10_write(QUAD BOARD LED BLUE, 1);
Task_sleep(250);

ResetDCM();
GP10_write(QUAD_BOARD_LED RED, 1);

GP10_write(QUAD_BOARD_LED_GREEN, 1);
GPI10_write(QUAD_BOARD_LED BLUE, 0);

break;
¥
Temporizador _Ticks =
/.. STICK DERECHA
POSITIVO. ..o ii e

Yelse if((Canal[3] >=

it (--Temporizador_Ticks

) && (Canal[2]) <

ticks_arranque_vuelo;

==){

switch(Estado_Sistema){

case DEBUG:

Estado_Sistema = IDENTIFICACION;
GP10_write(QUAD BOARD LED RED, 1);
GP10_write(QUAD _BOARD_LED_GREEN, 0);
GP10_write(QUAD BOARD LED BLUE, 1);

Orden = START;

UART write(UART_BT_TELEMETRIA, &Orden,
Orden = IDENTIFICAR;

UART _write(UART_BT_TELEMETRIA, &Orden,
Orden = FINAL;

UART write(UART_BT_TELEMETRIA, &Orden,

UART read(UART_ BT _TELEMETRIA, &Orden,
Watchdog_clear(WatchDog 0);
Jwhile(Orden = IDENTIFICAR && ++i <

Num_intentos_conexion_Ildentificacion);

if(Orden == IDENTIFICAR){

UART_read(UART_BT_TELEMETRIA, &nDatos_ldentifiacion,

)

)
)
)

);

UART_read(UART_BT_TELEMETRIA, &PuntoTrabajo_motor ,4);

Datos = Memory_alloc(NULL, nDatos_ ldentifiacion*2,
for(i=0; i<nDatos_ldentifiacion; i++){
UART_read(UART_BT_TELEMETRIA, (intl6_t *)Datos

Watchdog_clear(WatchDog 0);
}

UART_read(UART_BT_TELEMETRIA, &Orden,

if(Orden == FINAL){

)

, &eb);

-25-

//

nDatos_leidos

Clock _start(CLOCK_Ildentificacion);

Yelse{

Estado_Sistema

= ESPERA;

GPI10_write(QUAD_BOARD_LED RED, 1);
GP10_write(QUAD_BOARD_LED GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);

}
Yelse{

Estado_Sistema =

ESPERA;

GP10_write(QUAD_BOARD_LED RED, 1);
GP10_write(QUAD_BOARD_LED GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);

switch(Estado_Sistema){
case VUELO:

if(Canal[7] < -){
Estado Sistema Anterior =
Estado_Sistema = ERROR;

Temporizador_Ticks = ticks_arranque_vuelo;

//.._ERROR....//

Estado_Sistema;

GP10_write(QUAD_BOARD_LED_RED, 1);
GP10_write(QUAD_BOARD_LED_GREEN, 0);
GP10_write(QUAD_BOARD_LED BLUE, 0);

//Stop a todos los clocks

Clock_stop(CLOCK_ Control);

y tareas

Semaphore_reset(SEMAPHORE_Control, 0);
Clock _stop(CLOCK lIdentificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);

//Parada_motores

PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

¥

else if((Canal[7] > -) &&
ANGULOS_3; ModoPerturbaciones
= TELE_1; }

else if((Canal[7] > -) &&

ANGULOS_3; ModoPerturbaciones
InfoTelemetria = TELE_2;}

else if((Canal[7] > -) &&
ANGULOS_3; ModoPerturbaciones
= TELE_3;}

else if((Canal[7] >) &&

ANGULOS_3; ModoPerturbaciones
InfoTelemetria = TELE O;}
else if((Canal[7] >) &&
ANGULOS_3; ModoPerturbaciones
InfoTelemetria = TELE_O;}
else if((Canal[7] >)
ANGULOS_3; ModoPerturbaciones
InfoTelemetria = TELE_O;}

switch(Modo_Control){
case ANGULOS_3:

(Canal[7] <= -)){ Modo_Control =
= CORREGIR_PERTURBACIONES; InfoTelemetria
(Canal[7] <= -)){ Modo_ Control =

= INTEGRAR_PERTURBACIONES_EST IMADAS;

(Canal[7] <=)){ Modo_Control =
= INTEGRAR_PERTURBACIONES; InfoTelemetria
(Canal[7] <=)){ Modo_Control =

= NO_CORREGIR_PERTURBACIONES;

(Canal[7] <=
= NO_CORREGIR_PERTURBACIONES;

{ Modo_Control

= NO_CORREGIR_PERTURBACIONES;

)){ Modo_Control

-26-

Referencia[0] = Canal[1] * Angulo_Maximo;
Referencia[l] = Canal[3] * Angulo_Maximo;
Referencia[2] = Canal[0] * Angulo_Maximo;
Referencia[3] = Canal[2] * Valor_Empuje_ Maximo;

break;

case ANGULOS 4:
Referencia[0] = Canal[1] * Angulo_Maximo;
Referencia[l] = Canal[3] * Angulo_Maximo;
Referencia[2] = Canal[0] * Angulo_Maximo;
Referencia[3] = Canal[2] * Valor_Fuerza_Maximo;

break;

case EMPUJE:
Referencia[0] = Canal[1] * Angulo_Maximo;
Referencia[l] = Canal[3] * Angulo_Maximo;
Referencia[2] = Canal[0] * Angulo_Maximo;
Referencia[3] = Canal[2] * Valor_Empuje_ Maximo;

break;

}
Escribir_servidor_Referencia(Referencia, NULL);
break;

case CALIBRACION:

Calibracion_Receptor[0].-Rango_Entrada[0]
Calibracion_Receptor[0]-Rango_Entrada[O]
Calibracion_Receptor[0]-Rango_Entrada[0];
Calibracion_Receptor[0]-Rango_Entrada[1]
Calibracion_Receptor[0]-Rango Entrada[1]
Calibracion_Receptor[0]-Rango _Entrada[1];
Calibracion_Receptor[1]-Rango_Entrada[O]
Calibracion_Receptor[1]-Rango_Entrada[O]
Calibracion_Receptor[1].-Rango Entrada[0];
Calibracion_Receptor[1]-Rango_Entrada[1]
Calibracion_Receptor[1]-Rango_Entrada[1]
Calibracion_Receptor[1]-Rango_Entrada[1];
Calibracion_Receptor[2].-Rango_Entrada[0]
Calibracion_Receptor[2]-Rango_Entrada[O]
Calibracion_Receptor[2]-Rango_Entrada[0];
Calibracion_Receptor[2]-Rango_Entrada[1]
Calibracion_Receptor[2]-.Rango Entrada[1]
Calibracion_Receptor[2].-Rango_Entrada[1];
Calibracion_Receptor[3]-Rango_Entrada[O]
Calibracion_Receptor[3]-Rango_Entrada[O]
Calibracion_Receptor[3]-Rango_Entrada[0];
Calibracion_Receptor[3]-Rango_Entrada[1]
Calibracion_Receptor[3]-Rango_Entrada[1]
Calibracion_Receptor[3]-Rango_Entrada[1];
Calibracion_Receptor[4]-Rango_Entrada[0O]
Calibracion_Receptor[4]-Rango_Entrada[O]
Calibracion_Receptor[4]-Rango_Entrada[0];
Calibracion_Receptor[4]-Rango_Entrada[1]
Calibracion_Receptor[4]-Rango_Entrada[1]
Calibracion_Receptor[4]-Rango_Entrada[1];
Calibracion_Receptor[5]-Rango_Entrada[O]
Calibracion_Receptor[5]-Rango_Entrada[O]
Calibracion_Receptor[5]-Rango_Entrada[0];
Calibracion_Receptor[5]-Rango_Entrada[1]
Calibracion_Receptor[5]-Rango_Entrada[1]
Calibracion_Receptor[5]-Rango_Entrada[1];
Calibracion_Receptor[6]-Rango_Entrada[0]
Calibracion_Receptor[6]-Rango_Entrada[O]
Calibracion_Receptor[6]-Rango_Entrada[0];
Calibracion_Receptor[6]-Rango_Entrada[1]
Calibracion_Receptor[6]-Rango_Entrada[1]
Calibracion_Receptor[6]-Rango_Entrada[1];
// Calibracion_Receptor[7]-Rango_Entrada[0] = Lectura_Radio.Canal_ PWM[7]
Calibracion_Receptor[7].Rango_Entrada[0] ? Lectura_ Radio.Canal PWM[7]
Calibracion_Receptor[7].Rango_Entrada[0];
// Calibracion_Receptor[7]-Rango_Entrada[l] = Lectura_Radio.Canal_PWM[7]

Lectura_Radio.Canal_ PWM[O]
Lectura_Radio.Canal_ PWM[O]

-~

Lectura_Radio.Canal_PWM[O]
Lectura_Radio.Canal_ PWM[O]

-~

Lectura_Radio.Canal_ PWM[1]
Lectura_Radio.Canal_PWM[1]

N

Lectura_Radio.Canal_ PWM[1]
Lectura_Radio.Canal_PWM[1]

~J

Lectura_Radio.Canal_ PWM[2]
Lectura_Radio.Canal_ PWM[Z2]

-~

Lectura_Radio.Canal_PWM[Z2]
Lectura_Radio.Canal_ PWM[Z2]

-~

Lectura_Radio.Canal_ PWM[3]
Lectura_Radio.Canal_PWM[3]

)

Lectura_Radio.Canal_ PWM[3]
Lectura_Radio.Canal_ PWM[3]

~J

Lectura_Radio.Canal_ PWM[4]
Lectura_Radio.Canal_ PWM[4]

-~

Lectura_Radio.Canal_PWM[4]
Lectura_Radio.Canal_ PWM[4]

-~

Lectura_Radio.Canal_ PWM[5]
Lectura_Radio.Canal_PWM[5]

N

Lectura_Radio.Canal_ PWM[5]
Lectura_Radio.Canal_PWM[5]

~J

Lectura_Radio.Canal_ PWM[6]
Lectura_Radio.Canal_ PWM[6]

-~

Lectura_Radio.Canal_PWM[G]
Lectura_Radio.Canal_ PWM[6]

-~

N

\%

N

\

N

\%

N

\

N

\%

N

\

N

\%

N

\Y

-27-

Calibracion_Receptor[7]-Rango_Entrada[l] ? Lectura Radio.Canal PWM[7] :
Calibracion_Receptor[7]-Rango_Entrada[1];

break;

case ERROR:

/*
ModoPerturbaciones

*/

if (Canal[7] > -83.2){ //..FIN_ERROR..//
Estado_Sistema = ESPERA;

GP10_write(QUAD_BOARD_LED_RED, 1);
GP10_write(QUAD_BOARD_LED_GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);

}

if((Canal[7] > -83.2) && (Canal[7] < -50.0)){ Modo_Control = ANGULOS 3;
= Perturbaciones_Seleccionada; InfoTelemetria = TELE_O; }

else if((Canal[7] > -50.0) && (Canal[7] < -16.6)){ Modo_Control =
ANGULOS 4; ModoPerturbaciones = Perturbaciones_Seleccionada;
InfoTelemetria = TELE 1;}

else if((Canal[7] > -16.6) && (Canal[7] < 16.6)){ Modo_Control =
EMPUJE; ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria
= TELE_O;}

else if((Canal[7] > 16.6) && (Canal[7] < 50.0)){ Modo_Control
ANGULOS 3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE _2;}

else if((Canal[7] > 50.0) && (Canal[7] < 83.2)){ Modo_Control
ANGULOS 4; ModoPerturbaciones = NO _CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_3;}

else if((Canal[7] > -83.2)){ Modo_Control = EMPUJE; ModoPerturbaciones =
NO_CORREGIR_PERTURBACIONES; InfoTelemetria = TELE 4;}

break;

case ESPERA:
case DEBUG:

/*

if(Canal[7] < -83.2){ //...ERROR....//
Estado_Sistema = ERROR;

GPI10_write(QUAD_BOARD_LED RED, 1);
GPI10_write(QUAD_BOARD_LED_GREEN, 0);
GP10_write(QUAD_BOARD_LED BLUE, 0);

//Stop a todos los clocks y tareas

Clock _stop(CLOCK Control);
Semaphore_reset(SEMAPHORE_Control, 0);
Clock_stop(CLOCK_ ldentificacion);
Semaphore_reset(SEMAPHORE_ldentificacion, 0);

//Parada_motores

PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

}
else if((Canal[7] > -83.2) && (Canal[7] < -50.0)){ Modo_Control =

ANGULOS_3; ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria = TELE O; }

*/

else if((Canal[7] > -50.0) && (Canal[7] < -16.6)){ Modo_Control =
ANGULOS 4; ModoPerturbaciones = Perturbaciones_Seleccionada;
InfoTelemetria = TELE_1;}

else if((Canal[7] > -16.6) && (Canal[7] < 16.6)){ Modo_Control =
EMPUJE; ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria
= TELE_O;}

else if((Canal[7] > 16.6) && (Canal[7] < 50.0)){ Modo_Control
ANGULOS_3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE 2;}

else if((Canal[7] > 50.0) && (Canal[7] < 83.2)){ Modo_Control
ANGULOS_4; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_3;}

else if((Canal[7] > 83.2)){ Modo_Control = EMPUJE; ModoPerturbaciones =
NO_CORREGIR_PERTURBACIONES; InfoTelemetria = TELE O;}

break;

-28-

}

void CLK_Coordinador(){
Semaphore_post(SEMAPHORE_Coordinador);

¥
//. .. .1ldentificacion...... //
void ldentificacion(UArg arg0, UArg argl){

ulnt Key;
tpLecturas_IMU Lecturas_IMU;
intlé_t Aux;

// uint32_t Rpm;

GP10_enablelnt(QUAD_BOARD_RPM);

while(1){
Semaphore_pend(SEMAPHORE ldentificacion, BIOS WAIT_FOREVER);

Aux = *((intl6_t *)Datos + nDatos leidos);

PWM_setDuty(PWMO, PuntoTrabajo motor + Aux/2 + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, PuntoTrabajo motor - Aux/2 + Pulso_minimo_PWM_motor);
nDatos_leidos++;

Leer_servidor_Lecturas_IMU(&Lecturas_IMU);
Key Hwi_disable();

// Rpm (uint32_t)(Frecuencia CPU / Ticks por RPS *60);
Hwi_restore(Key);

UART write(UART_BT_TELEMETRIA, &lLecturas_ IMU,);
// UART write(UART_BT _TELEMETRIA, &Rpm, sizeof(Rpm));

if((nDatos_leidos == nDatos_ldentifiacion) || (Estado_Sistema == ESPERA)){
Clock _stop(CLOCK ldentificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);
nDatos_ leidos = 0O;

Memory_ free(NULL, Datos, nDatos_ ldentifiacion*2);
PWM_setDuty(PWMO, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

Estado_Sistema = ESPERA;

GP10_write(QUAD_BOARD_LED_RED, 1);
GP10_write(QUAD_BOARD_LED_GREEN, 1);
GP10_write(QUAD_BOARD_LED BLUE, 0);

}

void CLK_ldentificacion(){
Semaphore_post(SEMAPHORE ldentificacion);

b
#ifdef Sensor_ RPM
void ISR_GPI0_RPM(UArg arg0){
static uint32_t Tick _anterior = 0;

Ticks_por_RPS = Clock _getTicks() - Tick_anterior;
s
#endif
//. .. Altura............. //

void ISR_GPI10_US(UArg arg0){
ulnt Key;

-29-

}

GP10_clearInt(QUAD_BOARD_ECHO);

iT(GP10_read(QUAD_BOARD_ECHO) == 0){
Key = Hwi_disable();
Timer_stop(US_Timer);
Altura_US mm = (Timer_getPeriod(US Timer) - Timer_getCount(US_Timer))/380* /2 ;
//microsegondos
Hwi_restore(Key);
Yelse{
Key = Hwi_disable();
Timer_setPeriodMicroSecs(US_Timer, (uint32_t)Max_pulso_us);
Timer_start(US_Timer);
Hwi_restore(Key);

void ISR_Timer_USQ{

¥

if(Timer_getPeriod(US_Timer) == 800){
GPI10_write(QUAD_BOARD_TRIGG, 0);
+
else{
Altura_US_mm = :
+

void Calculo Altura(UArg argO, UArg argl){

//
//

/*

*/

/*

uint Key;

uint32_t Presion_lInicial = 0;

tpLecturasBarometro LecturasBarometro;
tpLecturasBarometro_ BMP280 LecturasBarometro_BMP280;
float32_t Temperatura = 0;

Iniciar_Barometro(12C_PRINCIPAL, Direccion_Barometro, &lLecturasBarometro);

Iniciar_Medida Temp_ Barometro(12C_PRINCIPAL, Direccion_Barometro, &lLecturasBarometro);
Task _sleep(5);

Leer_Temp_Barometro(12C_PRINCIPAL, Direccion_Barometro, &lLecturasBarometro);
Iniciar_Medida Temp Barometro(12C_PRINCIPAL, Direccion_Barometro, &lLecturasBarometro);
Task_sleep(26);

Leer_Presion_Barometro(12C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);

Presion_Inicial = LecturasBarometro.Presion;
Iniciar_Barometro BMP280(12C_PRINCIPAL, &Barometro BMP280, &lLecturasBarometro BMP280);

Clock_start(CLOCK_Calculo_Altura);
while(1){
Semaphore_pend(SEMAPHORE Calculo_ Altura, BIOS WAIT_FOREVER);
//. .. US....//
GPI10_write(QUAD_BOARD_TRIGG, 1);
Timer_setPeriodMicroSecs(US_Timer, (uint32_t)Pulso_arranque_us);
Key = Hwi_disable();
Timer_start(US_Timer);
Hwi_restore(Key);

Leer_Barometro BMP280(12C_PRINCIPAL, &Barometro BMP280, &lLecturasBarometro BMP280);
Temperatura = Conversion_Temperatura(&LecturasBarometro_BMP280);
Altura_Presion_mm = Conversion_Altura(Temperatura, &lLecturasBarometro BMP280);

//.._Barometro....//

Iniciar_Medida Temp Barometro(12C_PRINCIPAL, Direccion_Barometro, &lLecturasBarometro);
Task_sleep(b);

Leer_Temp_Barometro(12C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);
Iniciar_Medida Temp Barometro(12C_PRINCIPAL, Direccion_Barometro, &lLecturasBarometro);

-30-

Task_sleep(26);
Leer_Presion_Barometro(12C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);

Altura_Presion_mm = 4433000 * (1 - pow(LecturasBarometro.Presion / Presion_lInicial
, 1/5.255));

*/

}

void CLK_Calculo_Altura(Q{
Semaphore_post(SEMAPHORE Calculo_Altura);
}

void Control(UArg arg0, UArg argl){

}

#ifdef IMU_MPU6050
tpLecturas_IMU Lecturas_IMU_Control;
#endif
#ifdeft IMU_MPU9250
tpLecturas_9DOF IMU Lecturas_ 9DOF_ IMU_Control;
#endif
tpLecturas_Giroscopo Lecturas_Giroscopo_control;

tpLecturas Brujula Lecturas Brujula control;

tpAHRS AHRS = {
-DCM_matriz = {1, 0, 0, O, 1, 0, O, O, 1},
.DCM = {3, 3, (float32_t *)AHRS.DCM matriz},
-Kp_Roll_Pitch = Kp_ROLLPITCH,
-Ki_Roll_Pitch = Ki_ROLLPITCH,
-Kp_Yaw = Kp_YAW,
-Ki_Yaw = Ki_YAW,
-Periodo_Muestreo = PERIODO_Control /

}:

tpTelemetria YPR Telemetria YPR = {
-Inicio = START_FRAME,
.Final = FINAL_FRAME

3

tpTelemetria_Control Telemetria_Control = {
-Inicio = START_FRAME,
-Final = FINAL_FRAME

};

float32_t Ref matriz[4] = {0, 0, 0, O};
arm_matrix_instance_f32 Ref = {4, 1, Ref_matriz};
float32_t Accion_matriz[4] , 0, O};

:{,
arm_matrix_instance_f32 Accion = {4, 1, Accion_matriz};

float32_t Variables_medidas matriz[10] = {0, O, O, O, O, O, O, O, O, OF};
arm_matrix_instance_f32 Variables_medidas = {10, 1, Variables medidas_matriz};

float32_t Variables predichas_matriz[10] = {0, 0, 0, O, O, O, O, O, 0, O};
arm_matrix_instance_f32 Variables predichas = {10, 1, Variables predichas matriz};
float32_t Variables_estimadas matriz[10] = {0, 0, O, O, , , 03};
arm_matrix_instance_f32 Variables_estimadas = {10, 1, Variables estimadas matriz};

float32_t Perturbaciones_estimadas_matriz[4] = {
arm_matrix_instance f32 Perturbaciones estimadas
Perturbaciones_estimadas _matriz};

Il -
e

float32_t Perturbaciones_calculadas matriz[4] = {0, 0, 0, O};
arm_matrix_instance_f32 Perturbaciones_calculadas = {4, 1,
Perturbaciones_calculadas _matriz};

-31-

float32_t Aux_Matriz[100];

arm_matrix_instance_f32 Aux = {10, , Aux_Matriz};

float32_t Aux2 Matriz[100];

arm_matrix_instance_¥32 Aux2 = {10, , Aux2_Matriz};

float32_t Var_Est Aux[10] = {0, O, 0O, O, O, O, O, O, O, O};

#ifdef Filtro Perturbaciones

float32_t Estado filtro Per O[4*num_etapas Filtro Per];
float32_t Estado Filtro Per_1[4*num_etapas_ Filtro_ Per];
float32_t Estado filtro Per_2[4*num_etapas Filtro_ Per];
float32_t Estado_ filtro_Per_3[4*num_etapas Filtro_Per];

arm_biquad_casd _dfl_inst 32 Filtro Per 0 = {num _etapas_ Filtro_Per,
(float32_t *)Coeficientes Filtro Pre_Valores};
arm_biquad_casd_dfl_inst 32 Filtro Per_1 = {num_etapas Filtro_Per,
(float32_t *)Coeficientes Filtro Pre_Valores};
arm_biquad_casd _dfl_inst 32 Filtro Per 2 = {num _etapas_ Filtro_Per,
(float32_t *)Coeficientes Filtro Pre_Valores};
arm_biquad_casd_dfl_inst 32 Filtro Per_3 = {num_etapas Filtro_Per,
(float32_t *)Coeficientes Filtro Pre_Valores};

Estado filtro Per_ O,
Estado filtro Per 1,
Estado filtro Per_2,
Estado filtro Per_3,
//Inicializamos el filtro

arm_Fill_f32(, Estado_filtro Per O,
arm_Fill_f32(, Estado_filtro Per_1,

arm_Fill_f32(, Estado_filtro Per 2,
arm_Fill_f32(, Estado_filtro Per_3,

*num_etapas_Filtro_Per);
*num_etapas_Filtro Per);
*num_etapas_Filtro Per);
*num_etapas_Filtro _Per);

#endi

while(1){
Semaphore_pend(SEMAPHORE _Control, BIOS WAIT_FOREVER);

#ifdef IMU_MPU6050
Leer_servidor_Lecturas_IMU(&Lecturas_IMU_Control);

#endif

#ifdeft IMU_MPU9250

Leer_servidor_Lecturas IMU_9DOF(&Lecturas_9DOF_IMU_Control);

#endif

Leer_servidor_Lecturas_Giroscopo(&Lecturas_Giroscopo_control);
Leer_servidor_Lecturas Brujula(&Lecturas Brujula_control);
Leer_servidor_Referencia(Ref _matriz, NULL);

Ref _matriz[2] = Posicion_inicial + Ref matriz[2]; //CGiro no absoluto +- posicion
inicial;

Leer_servidor_ DCM((float32_t*)AHRS.DCM matriz);
Leer_servidor_ RPY(&AHRS.Roll, &AHRS.Pitch, &AHRS.Yaw);

Leer_servidor_Perturbaciones_Estimadas(Perturbaciones_estimadas.pData);

..... Sensado. .Variables.....//

//Ajuste posicion inicial//
Variables_medidas.pData[l] =
Variables_medidas.pData[3] =
Variables_medidas.pData[5] =

Normalizar_Grados(CONVERTIR_A GRADOS(AHRS.Pitch));
Normalizar_Grados(CONVERTIR_A GRADOS(AHRS.Roll));
Normalizar_Grados(CONVERTIR_A GRADOS(AHRS.Yaw));

#ifdeft IMU_MPU9250

Variables_medidas.pData[0] (float32_t)Lecturas_9DOF_ IMU Control.valor.y vel /
IMU9250.Sensibilidad_Giroscopo;
Variables medidas.pData[2] = (float32_t)Lecturas 9DOF_ IMU_Control_Valor.x vel /
IMU9250.Sensibilidad_Giroscopo;
Variables_medidas.pData[4] = (float32_t)Lecturas_ 9DOF IMU Control.valor.z vel /
IMU9250.Sensibilidad_Giroscopo;

#endif

#ifdeft IMU_MPUG050

Variables medidas.pData[0] = (float32_t)Lecturas_IMU_Control.VvValor.y vel /

-32-

IMUB050.Sensibilidad_Giroscopo;
Variables _medidas.pData[2] = (float32_t)Lecturas_IMU_Control.Valor.x_vel /
IMU6050.Sensibilidad_Giroscopo;
Variables _medidas.pData[4] = (float32_t)Lecturas_IMU_Control.Valor.z_vel /
IMUB050.Sensibilidad_Giroscopo;

#endif

#ifdef GYRO_L3G4200
Variables_medidas.pData
Giroscopo_L3G4200.Sensi

[0] (float32_t)Lecturas_Giroscopo_control_Valor.y vel /
bil
Variables_medidas.pData[2]
bil
[“1
bil

idad_Giroscopo;

= (float32_t)Lecturas_Giroscopo_control.Valor.x vel /
Giroscopo_L3G4200.Sensi idad_Giroscopo;
Variables_medidas.pData =
id

Giroscopo_L3G4200.Sensi

(float32_t)Lecturas_Giroscopo_control._Valor.z_vel /
ad_Giroscopo;
#endif

if(Modo_Control == ANGULOS 3){
switch(ModoPerturbaciones){
case NO_CORREGIR_PERTURBACIONES:
case CORREGIR_PERTURBACIONES:
case INTEGRAR_PERTURBACIONES ESTIMADAS:
Variables _medidas.pData[9] = Variables predichas.pData[9];
break;
case INTEGRAR_PERTURBACIONES:
Variables medidas.pData[9] = Ref.pData[3];
}
}
Escribir_servidor_Variables Estado Medidas(Variables medidas.pData);
//Estimar variables estado

Aux.numRows = Variables _medidas.numRows;
Aux.numCols = Variables predichas.numCols;
arm_mat_sub_f32(&Variables_medidas, &Variables_predichas, &Aux);

Aux2.numRows = ;
Aux2.numCols = 1;
arm_mat_mult_f32(&Lo_per, &Aux, &Aux2);

arm_mat_add_f32(&Variables predichas, &Aux2, &Variables estimadas);

#ifdef Estimador_ Parcial //0ptimizar multiplicando solo los estimados
Variables_estimadas.pData[0] Variables _medidas.pData[0];
Variables_estimadas.pData[1] Variables _medidas.pData[1];
Variables_estimadas.pData[2] Variables medidas.pData[2];
Variables_estimadas.pData[3] Variables _medidas.pData[3];
Variables_estimadas.pData[4] Variables _medidas.pData[4];
Variables_estimadas.pData[5] Variables medidas.pData[5];

#endif
Escribir_servidor Variables Estado Estimadas(Variables estimadas.pData);

//Estimar perturbacion
switch(ModoPerturbaciones){
case NO_CORREGIR_PERTURBACIONES:
case CORREGIR_PERTURBACIONES:

/*
Aux.numRows = Variables medidas.numRows;
Aux.numCols = Variables_predichas.numCols;
arm_mat_sub_f32(&Variables medidas, &Variables predichas, &Aux);
*/

Aux2.numRows = Aux2.numRows;
Aux2.numCols = Aux2.numCols;
arm_mat_mult f32(&Lp, &Aux, &Aux2);

Aux.numRows = Aux.numRows;
Aux.numCols = Aux.numCols;
arm_mat_add_f32(&Perturbaciones_estimadas, &Aux2, &Aux);

-33-

//A 0 la estimacion de Empuje
// Aux.pData[3] = O;

#ifndef Filtro Perturbaciones
arm_copy_T32(Aux.pData, Perturbaciones_estimadas.pData,
sizeof(Perturbaciones_estimadas_matriz)/sizeof(float32_t));

#else
// Filtar_Perturbacion
arm_biquad_cascade dfl_f32(&Filtro_Per_0, &Aux.pData[0],
&Perturbaciones_estimadas.pData[0], 1);
arm_biquad_cascade dfl f32(&Filtro Per_1, &Aux.pData[l],
&Perturbaciones_estimadas.pData[l1], 1);
arm_biquad_cascade dfl_f32(&Filtro_Per_2, &Aux.pData[?],
&Perturbaciones_estimadas.pData[2], 1);
arm_biquad_cascade dfl f32(&Filtro Per_3, &Aux.pData[3],
&Perturbaciones_estimadas.pData[3], 1);
#endif
break;
case INTEGRAR_PERTURBACIONES:
Perturbaciones_estimadas.pData[0] += Ki * (Ref.pData[0] -
Variables _medidas.pData[l1]);
Perturbaciones_estimadas.pData[l] += Ki * (Ref.pData[l] -
Variables_medidas.pData[3]);
Perturbaciones_estimadas.pData[2] += Ki * (Ref.pData[?2] -
Variables_medidas.pData[5]);
Perturbaciones_estimadas.pData[3] += Ki * (Ref.pData[3] -
Variables_medidas.pData[9]);
break;
case INTEGRAR_PERTURBACIONES ESTIMADAS:
Perturbaciones_estimadas.pData[0] += Ki_EST * (Variables predichas.pData[1]
- Variables medidas.pData[l1]);
Perturbaciones_estimadas.pData[l] += Ki_EST * (Variables predichas.pData[3]
- Variables _medidas.pData[3]);
Perturbaciones_estimadas.pData[2] += Ki_EST * (Variables predichas.pData[5]
- Variables medidas.pData[5]);
Perturbaciones_estimadas.pData[3] += Ki_EST * (Variables predichas.pData[9]
- Variables _medidas.pData[9]);
break;
}
//Prealimentar perturbaciones conocidas
Perturbaciones_calculadas.pData[0] = Perturbaciones_estimadas.pData[0];// +
Pert_Fuerza Bateria*sin(Variables_estimadas.pData[1]*P1/180.0);
Perturbaciones_calculadas.pData[1l] = Perturbaciones_estimadas.pbData[l1];// +
Pert _Fuerza Bateria*sin(Variables estimadas.pData[3]*P1/180.0);
Perturbaciones_calculadas.pData[2] = Perturbaciones_estimadas.pData[”2];
Perturbaciones_calculadas.pData[3] = Perturbaciones_estimadas.pData[3];
Escribir_servidor_Perturbaciones_Estimadas(Perturbaciones_estimadas.pData);
//Accion

switch(ModoPerturbaciones){
case NO_CORREGIR_PERTURBACIONES:
Aux.numRows K_pre_4._numRows;
Aux.numCols Ref_numCols;

Aux2 . numRows
Aux2 .numCols

K_4_numRows;
Variables_estimadas.numCols;

switch(Modo_Control){
case ANGULOS 4:
arm_mat_mult f32(&K pre_4, &Ref, &Aux);
arm_mat_mult f32(&K 4, &Variables_estimadas, &Aux2);

-34-

arm_mat_sub_f32(&Aux, &Aux2, &Accion);
break;

case ANGULOS_3:
arm_mat_mult f32(&K pre_3, &Ref, &Aux);
arm_mat_mult_f32(&K_ 3, &Variables_estimadas, &Aux2);
arm_mat_sub_f32(&Aux, &Aux2, &Accion);

break;

case EMPUJE:
Accion_matriz[0]
Accion_matriz[1]
Accion_matriz[2]
Accion_matriz[3]
break;

Ref._pData[3]; //
Ref._pData[3]; //
Ref_pData[3]; 7/
Ref.pData[3]; 7/

}

break;

case CORREGIR_PERTURBACIONES:
case INTEGRAR_PERTURBACIONES:
case INTEGRAR_PERTURBACIONES_ESTIMADAS:

Aux.numRows = K_4_numRows;
Aux.numCols = Variables_estimadas.numCols;

Aux2.numRows = Accion.numRows;
Aux2.numCols = Aux.numCols;

switch(Modo_Control){
case ANGULOS 4:
arm_mat _mult f32(&K pre 4, &Ref, &Accion);
arm_mat_mult f32(&K 4, &Variables_estimadas, &Aux);

arm_mat_sub_f32(&Accion, &Aux, &Aux2);

Aux.numRows = La.numRows;
Aux.numCols = Perturbaciones_calculadas.numCols;
arm_mat_mult_f32(&La, &Perturbaciones_calculadas, &Aux);

arm_mat_sub_f32(&Aux2, &Aux, &Accion);
break;

case ANGULOS_3:
arm_mat_mult f32(&K pre_ 3, &Ref, &Accion);
arm_mat_mult_f32(&K 3, &Variables_estimadas, &Aux);

arm_mat_sub_f32(&Accion, &Aux, &Aux2);

Aux.numRows = La.numRows;
Aux.numCols = Perturbaciones_calculadas.numCols;
arm_mat_mult f32(&La, &Perturbaciones calculadas, &Aux);

arm_mat_sub_f32(&Aux2, &Aux, &Accion);
break;
case EMPUJE:
Accion_matriz[0]
Accion_matriz[1]
Accion_matriz[2]
Accion_matriz[3]
break;

Ref_pData[3]; //
Ref_pData[3]; 7/
Ref.pData[3]; 7/
Ref._pData[3]; //

break;

}

iT(Accion.pbata[0] < Accion_Minima)
Accion.pbData[0] = Accion_Minima;
if(Accion.pData[1] < Accion_Minima)

-35-

Accion.pbData[1l] = Accion_Minima;
iT(Accion.pbata[2] < Accion_Minima)
Accion.pbData[2] = Accion_Minima;
if(Accion.pData[3] < Accion_Minima)
Accion.pbData[3] = Accion_Minima;

if(Accion.pData[0] > Accion_Maxima)
Accion.pbData[0] = Accion_Maxima;
iT(Accion.pbata[l] > Accion_Maxima)
Accion.pData[1] = Accion_Maxima;
if(Accion.pData[2] > Accion_Maxima)
Accion.pbData[2] = Accion_Maxima;
iT(Accion.pbata[3] > Accion_Maxima)
Accion.pData[3] = Accion_Maxima;

//Aplicar U
PWM_setDuty(PWMO, (uint32_t)Accion.pbData[0]
PWM_setDuty(PWM1, (uint32_t)Accion.pData[1l]
PWM_setDuty(PWM2, (uint32_t)Accion.pbData[2]
PWM_setDuty(PWM3, (uint32_t)Accion.pbData[3]

Pulso_minimo_PWM_motor);
Pulso_minimo_PWM_motor);
Pulso_minimo_PWM_motor);
Pulso_minimo_PWM_motor);

//Predecir estado
arm_mat_mult f32(&F, &Variables estimadas, &Variables predichas);

Aux.numRows = G.numRows;
Aux.numCols = Accion.numCols;
arm_mat_mult £32(&G, &Accion, &Aux);

Aux2._.numRows = Variables_predichas.numRows;
Aux2.numCols = Aux.numCols;
arm_mat_add_f32(&Variables predichas, &Aux, &Aux2);

Aux.numRows = Gp.numRows;
Aux.numCols = Perturbaciones_calculadas.numCols;
arm_mat_mult f32(&Gp, &Perturbaciones calculadas, &Aux);

arm_mat_add_f32(&Aux2, &Aux, &Variables_predichas);
//Telemetria

switch(ModoTelemetria){
case TELEMETRIA_YPR:

Telemetria YPR.Yaw = (intl6_t)(AHRS.Yaw *);
Telemetria YPR.Pitch = (intl6_t)(AHRS.Pitch * D);
Telemetria_YPR.Roll = (intl6_t)(AHRS.Roll *);

UART write(UART_BT _TELEMETRIA, &Telemetria YPR, sizeof(Telemetria YPR)-1);
break;
case TELEMETRIA CONTROL:
Telemetria_Control.InfoTelemetria = InfoTelemetria;
//Referencia
Var_Est Aux[0]
Var_Est_Aux[1]

Ref _matriz[0] / Angulo Max_Q16;

Ref_matriz[1] /7 Angulo_Max_ Q16;

Var_Est_Aux[2] Ref _matriz[2] / Angulo_Max_Q16;

Var_Est Aux[3] Ref matriz[3] / ;

arm_float_to_ql5(Var_Est Aux, (ql5 t *)Telemetria Control_.Referencia, 4);

//Accion

Telemetria_Control.Accion[0]
Telemetria Control.Accion[1]
Telemetria_Control .Accion[2]
Telemetria_Control_Accion[3]

Accion_matriz[0];
Accion_matriz[1];
Accion_matriz[2];
Accion_matriz[3];

//Var_Est

Var_Est_Aux[0]
Var_Est_Aux[1]
Var_Est Aux[2]
Var_Est Aux[3]

Variables_estimadas.pData[0] 7/ Velocidad Max Q16;
Variables_estimadas.pData[1] /7 Angulo_Max_ Q16;
Variables_estimadas.pData[2] 7/ Velocidad Max Q16;
Variables_estimadas.pData[3] /7 Angulo Max Q16;

-36-

Var_Est_Aux[4]
Var_Est_Aux[5]
Var_Est Aux[6]
Var_Est Aux[7]
Var_Est_Aux[8]
Var_Est_Aux[9] =

);

//Perturbaciones
Var_Est Aux[0]
Var_Est Aux[1]
Var_Est_Aux[2]
Var_Est_Aux[3]

//Altura

Telemetria_Control .Altura Barometrica =

Variables_estimadas.pData[4]
Variables_estimadas.pData[5]
Variables_estimadas.pData[6]
Variables_estimadas.pData[7]
Variables_estimadas.pData[8]
Variables_estimadas.pData[9]
arm_float_to _ql5(Var_Est Aux, (ql5 t *)Teleme

Perturbaciones_calculadas matriz[
Perturbaciones_calculadas _matriz[
Perturbaciones_calculadas_matriz[2]
Perturbaciones_calculadas_matriz[3] / F_Max Q16;

arm_float_to_ql5(Var_Est Aux, (ql5 t *)Telemetria Control.Perturbaciones,

Velocidad_Max_Q16;
Angulo_Max_Q16;

Max_Q16;

Max_Q16;

Max_Q16;

Max_Q16;
a_Control.vVariables Estado,

/
/
/ F_
/ F_
/ F_
/ F_
tri

1 /7 F_Max_Q16;
1 /7 F_Max_Q16;
/ F_Max _Q16;

);

Altura Presion_mm;

Telemetria Control.Altura_US = Altura_US _mm;

#ifdef IMU_MPU9250

Mailbox_pend(Buzon_Lecturas_IMU, &lLecturas 9DOF_IMU_Control, BI0OS_NO_WAIT);

//Lectura ACCEL

Telemetria Control.Acel[0]
Telemetria_Control .Acel[1]
Telemetria_Control._Acel[2]

//Lectura GYRO

Telemetria_Control.Gyro[0]
Telemetria_Control.Gyro[1]
Telemetria Control.Gyro[2]

//Lectura COMPASS

Telemetria_Control .Magnetics[0]
Telemetria_Control .Magnetics[1]
Telemetria_Control .Magnetics[2]

#endif

#ifdeft IMU_MPU6050

Lecturas_9DOF_IMU_Control.Valor.x_acel;
Lecturas_9DOF_IMU_Control.Valor.y_acel;
Lecturas 9DOF_IMU_Control.Valor.z_acel;

Lecturas_9DOF_IMU_Control.Valor.x_ vel;
Lecturas_9DOF_IMU_Control.Valor.y vel;
Lecturas_9DOF_IMU_Control.vValor.z_vel;

Lecturas_9DOF_IMU_Control.Valor.x_mag;
Lecturas_9DOF_IMU_Control.Valor.y mag;
Lecturas_9DOF_IMU_Control.Valor.z_mag;

Mai lbox_pend(Buzon_Lecturas_IMU, &Lecturas_IMU_Control, BI0OS _NO _WAIT);

//Lectura ACCEL

Telemetria Control.Acel[0]
Telemetria Control.Acel[1]
Telemetria_Control .Acel[2]

//Lectura GYRO

Telemetria _Control.Gyro[0]
Telemetria_Control.Gyro[1]
Telemetria_Control.Gyro[2]

#ifdef GYRO_L3G4200
Telemetria_Control.Gyro[0]
Telemetria_Control.Gyro[1]
Telemetria Control.Gyro[2]

#endif
//Lectura Brujula

Telemetria_Control .Magnetics[0]
Telemetria_Control .Magnetics|[1]
Telemetria_Control .Magnetics[2]

#endif

Lecturas_IMU_Control.VvValor.x_acel;
Lecturas_IMU_Control.VvValor.y_acel;
Lecturas_IMU_Control .Valor.z_acel;

Lecturas_IMU_Control.Valor.x_vel;
Lecturas_IMU_Control_Valor.y vel;
Lecturas_IMU_Control.vValor.z_ vel;

Lecturas_Giroscopo_control_Valor._.x_vel;
Lecturas_Giroscopo_control _Valor.y vel;
Lecturas_Giroscopo_control.Valor.z_vel;

Lecturas_Brujula_control_Valor_Magnetismo_x;
Lecturas_Brujula control.Valor.Magnetismo_y;
Lecturas_Brujula _control.Valor.Magnetismo_z;

UART_write(UART_BT_TELEMETRIA, &Telemetria_Control,
sizeof(Telemetria_Control)-1);

break;

-37-

void CLK_Control(){
Semaphore_post(SEMAPHORE_Control);
¥

-38-

* ======== QUAD_BOARD_C —=——====

* This file i1s responsible for setting up the board specific items for the
* QUAD_BOARD board.

*/

#include <stdint.h>
#include <stdbool.h>
#include <inc/hw_memmap.h>
#include <inc/hw_types.h>
#include <inc/hw_ints.h>
#include <inc/hw_gpio.h>

#include <driverlib/gpio.h>
#include <driverlib/sysctl_h>
#include <driverlib/i2c.h>
#include <driverlib/ssi.h>
#include <driverlib/uart.h>
#include <driverlib/udma.h>
#include <driverlib/pin_map.h>

#include <xdc/std.h>

#include <xdc/cfg/global_h>

#include <xdc/runtime/Error.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/family/arm/m3/Hwi _h>

#include "QUAD_ board.h"

#ifndef TI_DRIVERS UART_DMA
#define TI_DRIVERS UART_DMA O
#endif

/*
* —=== == DMA —===
*/
#iT defined(__TI_COMPILER_VERSION_)
#pragma DATA_ALIGN(dmaControlTable, 1024)
#elif defined(_ 1AR_SYSTEMS ICC_)
#pragma data_alignment=1024
#elif defined(__GNUC_)
__attribute__ ((aligned (1024)))
#endif
static tDMAControlTable dmaControlTable[32];
static bool dmalnitialized = false;

/* Hwi_Struct used in the initDMA Hwi_construct call */
static Hwi_Struct hwiStruct;

/*
* ======== dmaErrorHwi ========
*/
static Void dmaErrorHwi(UArg arg)
{
System printf("'DMA error code: %d\n", uDMAErrorStatusGet());
ubDMAErrorStatusClear();
System_abort("'DMA error!!™);
}
/*
* —m=m==== QUAD_BOARD_initDMA ————====
*/
void QUAD_BOARD_initDMA(void)
{

Error_Block eb;
Hwi_Params hwiParams;

if (Mdmalnitialized) {
Error_init(&eb);

Hwi_Params_init(&hwiParams);
Hwi_construct(&(hwiStruct), INT_UDMAERR, dmaErrorHwi,
&hwiParams, &eb);
if (Error_check(&eb)) {
System_abort(""Couldn”t create DMA error hwi'™);
}

SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
ubDMAEnable();
uDMAControlBaseSet(dmaControlTable);

dmalnitialized = true;

¥

/*
*/
/*
* ======== QUAD_BOARD_initGeneral ========
*
/
void QUAD_BOARD_initGeneral(void)
{

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
SysCtlPeripheralEnable(SYSCTL_PERIPH _GPIOD);
SysCtlPeripheralEnable(SYSCTL_PERIPH GPIOE);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

*/
/* Place into subsections to allow the Tl linker to remove items properly */
#if defined(__TI_COMPILER_VERSION_)
#pragma DATA SECTION(GPIOTiva _config, ".const:GPIOTiva_config™)
#endif

#include <ti/drivers/GPIO.h>
#include <ti/drivers/gpio/GPI0Tiva.h>

/*

Array of Pin configurations

NOTE: The order of the pin configurations must coincide with what was
defined in QUAD BOARD.h

NOTE: Pins not used for interrupts should be placed at the end of the
array. Callback entries can be omitted from callbacks array to
reduce memory usage.

Ok F X X% X

*/

GPI0_PinConfig gpioPinConfigs[] = {
/* Input pins */
/* QUAD BOARD _GPIO _Sw1 */
GPIOTiva PF_4 | GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_RISING,
/* QUAD_BOARD_GPIO_Sw2 */
GPIOTiva_PF_O | GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_RISING,
/* QUAD_BOARD ECHO */
GPIOTiva_PD_6 | GPIO_CFG_INPUT | GPIO_CFG_IN_INT_BOTH_EDGES,
/* QUAD_BOARD_RPM */
GPIOTiva_PA_5 | GPIO_CFG_INPUT | GPIO_CFG_IN_INT_RISING,

/* Output pins */
/* QUAD_BOARD_TRIGG */
GPIOTiva_PD_7 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_LOW | GPIO_CFG_OUT_LOW,

-2-

/* QUAD_BOARD_LED RED */

GPI0Tiva_PF_1 | GP10_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/* QUAD_BOARD_LED BLUE */

GPI0Tiva_PF_2 | GPI10_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/* QUAD_BOARD_LED GREEN */

GPI0Tiva_PF_3 | GP10_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/* QUAD_BOARD_POWER_33 */

GPI10Tiva_PD_O | GPI0_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT HIGH,
/*QUAD_BOARD_SP1_CE */

GPIOTiva_PA 6 | GP10_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/*QUAD_BOARD_SPI_CSN */

GPI0Tiva_PA_3 | GPI0_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT HIGH,

¥

/*
* Array of callback function pointers
* NOTE: The order of the pin configurations must coincide with what was
* defined in QUAD_BOARD.h
* NOTE: Pins not used for interrupts can be omitted from callbacks array to
* reduce memory usage (if placed at end of gpioPinConfigs array).
*/
GPI10_CallbackFxn gpioCallbackFunctions[] = {
NULL, /* QUAD_BOARD_GPIO_SwW1 */
NULL, /* QUAD_BOARD_GPIO_SW2 */
NULL, /* QUAD_BOARD ECHO */
NULL, /* QUAD_BOARD_RPM */
}:

/* The device-specific GPIO_config structure */

const GPIOTiva _Config GPIOTiva_config = {
-pinConfigs = (GPI10_PinConfig *) gpioPinConfigs,
-.callbacks = (GP10_CallbackFxn *) gpioCallbackFunctions,
-numberOfPinConfigs = sizeof(gpioPinConfigs) / sizeof(GP10_PinConfig),
-.numberOfCallbacks = sizeof(gpioCallbackFunctions)/sizeof(GPI0_CallbackFxn),
-intPriority = (~0)

}:
/>
* =z======= QUAD_BOARD_initGPI0 ========
*/
void QUAD_BOARD_initGP10(void)
{
/* QUAD_BOARD_GPIO_SW2 - PFO requires unlocking before configuration */
HWREG(GP10_PORTF_BASE + GP10_0_LOCK) = GPI0_LOCK_KEY;
HWREG(GP10_PORTF_BASE + GPI0_0_CR) |= GPIO_PIN_O;
GPIOPinTypeGPI0Input(GPI0_PORTF_BASE, GPIO_PIN_0):
HWREG(GP10_PORTD_BASE + GP10_0_LOCK) = GPI10_LOCK_KEY;
HWREG(GP10_PORTD_BASE + GPI0_O_CR) |= GPIO_PIN_6;
GPIOPiNTypeGPI10Input(GP10_PORTD BASE, GPIO_PIN_6):
HWREG(GP10_PORTD_BASE + GP10_0_LOCK) = GPI0_LOCK_KEY;
HWREG(GP10_PORTD_BASE + GPI0_O_CR) |= GPIO_PIN_7;
GPIOPiNnTypeGP100utput(GPI0_PORTD BASE, GPIO PIN_7):
/* Initialize peripheral and pins */
GPIO_init();
3
/*
* mmmmmmmmmm———— === |2C ===============—===
*/

/* Place into subsections to allow the Tl linker to remove items properly */
#if defined(__T1_COMPILER_VERSION_)

#pragma DATA _SECTION(12C_config, ".const:12C_config™)

#pragma DATA_SECTION(i2cTivaHWAttrs, ".const:i2cTivaHWAttrs™)

#endif

#include <ti/drivers/12C.h>
#include <ti/drivers/i2c/12CTiva.h>

/* 12C objects */
12CTiva_Object i2cTivaObjects[QUAD_BOARD_12CCOUNT];

/* 12C configuration structure, describing which pins are to be used */
const 12CTiva_HWAttrs i2cTivaHWAttrs[QUAD_BOARD_I12CCOUNT] = {
{12C0_BASE, INT_I12C0, ~0 /* Interrupt priority */%},
{12C2_BASE, INT_12C2, ~0 /* Interrupt priority */}
}:

const 12C_Config 12C_config[] = {
{&12CTiva_fxnTable, &i2cTivaObjects[0], &i2cTivaHWAttrs[0O]},
{&12CTiva_fxnTable, &i2cTivaObjects[1], &i2cTivaHWAttrs[1]},
{NULL, NULL, NULL}

};
/*
* —=——===== QUAD_BOARD_i nitl2C ========
*/
void QUAD_BOARD_initl2C(void)
{
/* 12C1 Init */
/* Enable the peripheral */
SysCtlPeripheralEnable(SYSCTL_PERIPH_12C0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_ 12C2);
/* Configure the appropriate pins to be 12C instead of GPI0. */
GPIOPINTypel2CSCL(GPI0O_PORTB_BASE, GPIO_PIN_2);
GPIOPINTypel2C(GPI0O_PORTB_BASE, GPIO_PIN_3);
GPI10PinConfigure(GP10_PB3_12COSDA);
GPI10OPinConfigure(GPI10_PB2_12C0OSCL);
/* Configure the appropriate pins to be 12C instead of GPIO. */
GPIOPiINnTypel2CSCL(GPI0_PORTE_BASE, GPIO_PIN_4);
GPI0OPINTypel2C(GPIO_PORTE_BASE, GPIO_PIN_5);
GPIOPinConfigure(GPIO_PE4 12C2SCL);
GPI10PinConfigure(GPI0_PE5_12C2SDA);
12C_initQ);
}
/*
* —=m=mmmmm————— === PWM ===============—===
*/

/* Place into subsections to allow the Tl linker to remove items properly */
#iT defined(__TI_COMPILER_VERSION_)

#pragma DATA_SECTION(PWM_config, " .const:PWM_config™)

#pragma DATA_SECTION(pwmTivaHWAttrs, '.const:pwmTivaHWAttrs')

#endif

#include <ti/drivers/PWM.h>
#include <ti/drivers/pwm/PWMTiva.h>
#include <driverlib/pwm_h>

PWMTiva_Object pwmTivaObjects[QUAD BOARD_PWMCOUNT];

/* PWM configuration structure */
const PWMTiva_HWAttrs pwmTivaHWATtrs[QUAD BOARD PWMCOUNT] = {

{

PWMO_BASE,

PWM_OUT_O,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN
}1

{

PWMO_BASE,

PWM_OUT 1,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN
3,
{

PWMO_BASE,

PWM_OUT 2,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN
3,
{

PWMO_BASE,

PWM_OUT_3,

PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN
3

const PWM_Config PWM_config[] = {
{&PWMTiva_fxnTable, &pwmTivaObjects[0], &pwmTivaHWAttrs[O]},
{&PWMTiva_fxnTable, &pwmTivaObjects[1], &pwmTivaHWAttrs[1]},
{&PWMTiva_fxnTable, &pwmTivaObjects[2], &pwmTivaHWAttrs[2]},
{&PWMTiva_fxnTable, &pwmTivaObjects[3], &pwmTivaHWAttrs[3]},
{NULL, NULL, NULL}

* ======== QUAD_BOARD_i nitPWM ========

void QUAD_BOARD_initPWM(void)

{
/* Enable PWM peripherals */
SysCtlPeripheralEnable(SYSCTL_PERIPH_PWMO);

/*
* Enable PWM output on GPIO pins. Board LED1 and Board LED2 are now
* controlled by PWM peripheral - Do not use GPIO APIs.
*/
GPI1OPinConfigure(GP10_PB4_MOPWM2) ;
GPIOPinConfigure(GPI10_PB5_MOPWM3);
GPIOPinConfigure(GPI10_PB6_MOPWMO) ;
GPIOPinConfigure(GPI0O_PB7_MOPWM1);
GPIOPINTypePWM(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);

PWM_initQ);

*/
/* Place into subsections to allow the Tl linker to remove items properly */
#iT defined(__TI_COMPILER_VERSION_)
#pragma DATA SECTION(UART config, '.const:UART_config™)
#pragma DATA SECTION(uartTivaHWAttrs, ".const:uartTivaHWAttrs')
#endif

#include <ti/drivers/UART.h>
#if TI_DRIVERS_UART DMA
#include <ti/drivers/uart/UARTTivaDMA.h>

/* UART objects */
UARTTivaDMA Object uartTivaObjects[QUAD BOARD_UARTCOUNT];

/* UART configuration structure */
const UARTTivaDMA_HWAttrs uartTivaHWAttrs[QUAD_BOARD_UARTCOUNT] = {
{/* QUAD_BOARD_UARTO */
UARTO_BASE,
INT_UARTO,
~0, /* Interrupt priority */
UDMA_CH8_UARTORX,

UDMA_CH9_UARTOTX,

{/* QUAD_BOARD_UART1 */
UART1_BASE,
INT_UART1,
~ /* Interrupt priority */
UDMA CH22_UART1RX,
UDMA_CH23_UART1TX,

{/* QUAD_BOARD_UART4 */
UART5_BASE,
INT_UARTS5,
/* Interrupt priority */
UDMA CH6_UART5RX,
UDMA_CH7_UART5TX,
}-
{/* QUAD_BOARD_UART7 */
UART7_BASE,
INT_UART7,
/* Interrupt priority */
UDMA CH20_UART7RX,
UDMA_CH21_UART7TX,

}
}:
const UART_Config UART _config[] = {
{
&UARTTivaDMA fxnTable,
&uartTivaObjects[0],
&uartTivaHWAttrs[O]
3}
{
&UARTTivaDMA_fxnTable,
&uartTivaObjects[1],
&uartTivaHWAttrs[1]
3
{
&UARTTivaDMA_fxnTable,
&uartTivaObjects[”?],
&uartTivaHWAttrs[2]
3},
{
&UARTTivaDMA fxnTable,
&uartTivaObjects[3],
&uartTivaHWAttrs[3]
}.
{NULL, NULL, NULL}
}:
#else

#include <ti/drivers/uart/UARTTiva.h>

/* UART objects */

UARTTiva_Object uartTivaObjects[QUAD_BOARD_UARTCOUNT];
unsigned char uartTivaRingBuffer[32];

unsigned char uartTivaRingBufferli[32];

unsigned char uartTivaRingBuffer5[32];

unsigned char uartTivaRingBuffer7[32];

/* UART configuration structure */
const UARTTiva_ HWAttrs uartTivaHWAttrs[QUAD BOARD UARTCOUNT]
{/* QUAD_BOARD_UARTO */
.baseAddr = UARTO_BASE,
-intNum = INT_UARTO,

-intPriority = ~ ,
-FlowControl = UART_FLOWCONTROL_NONE,
.ringBufPtr = uartTivaRingBuffer,

.ringBufSize = sizeof(uartTivaRingBuffer)

-6-

}1

{/* QUAD_BOARD_UART1 */
.baseAddr = UART1_BASE,
-intNum = INT_UART1,

-intPriority = ~0,

-FlowControl = UART_FLOWCONTROL_NONE,
.ringBufPtr = uartTivaRingBufferl,
.ringBufSize = sizeof(uartTivaRingBufferl)

}1

{/* QUAD_BOARD_UART4 */
.baseAddr = UART5_BASE,
-intNum = INT_UART5,

-intPriority = ~0,

-FlowControl = UART_FLOWCONTROL_NONE,
.ringBufPtr = uartTivaRingBuffer5,
.ringBufSize = sizeof(uartTivaRingBuffer5)

}1

{/* QUAD_BOARD_UART7 */
.baseAddr = UART7_BASE,
-intNum = INT_UART7,

-intPriority = ~0,
-FlowControl = UART_FLOWCONTROL_NONE,
.ringBufPtr = uartTivaRingBuffer7,
.ringBufSize = sizeof(uartTivaRingBuffer7)
¥
};
const UART_Config UART config[] = {
{
&UARTTiIva_fxnTable,
&uartTivaObjects[0],
&uartTivaHWAttrs[O]
3},
{
&UARTTiva_fxnTable,
&uartTivaObjects[1],
&uartTivaHWAttrs[1]
3,
{
&UARTTiva_fxnTable,
&uartTivaObjects[?],
&uartTivaHWAttrs[2]
3}
{
&UARTTiva_fxnTable,
&uartTivaObjects[3],
&uartTivaHWAttrs[3]
},
{NULL, NULL, NULL}
};
#endift /* TI_DRIVERS_UART_DMA */
/*
* =—======= QUAD_BOARD_ InitUART ========
*/
void QUAD_BOARD_initUART(void)
{

/* Enable and configure the peripherals used by the uart. */
SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);
GPIOPinConfigure(GPI0_PAO_UORX);
GPI10OPinConfigure(GP10_PA1_UOTX);
GPI0PiINnTypeUART(GPI10_PORTA BASE, GPIO_PIN_O | GPIO_PIN_1);

SysCtlPeripheralEnable(SYSCTL_PERIPH _UART1);

GPI10PinConfigure(GP10_PBO_U1RX);

GPI0OPinConfigure(GPI10_PB1 _U1TX);

GPI0PINTypeUART(GPI10_PORTB_BASE, GPIO_PIN_O | GPIO_PIN_1);
/*

SysCtlPeripheralEnable(SYSCTL_PERIPH UART5);
GP10PinConfigure(GPI10_PE4 U5RX);
GPIOPINnConfigure(GP10_PE5_U5TX);
GPIOPinTypeUART(GPI10_PORTE_BASE, GPIO_PIN_4 | GPIO_PIN_5);
*/

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART7);
GPIOPiInConfigure(GPI10_PE1_U7TX);
GPIOPinConfigure(GPI0_PEO_U7RX);
GPI10PinTypeUART(GPI10_PORTE_BASE, GPIO_PIN_O | GPIO PIN_1);
/* Initialize the UART driver */

#iFf T1_DRIVERS UART_DMA
QUAD_BOARD_initDMAQ);
#endi
UART_init(Q);
s

/*
* —=== == Watchdog —=== ===
*/
/* Place into subsections to allow the Tl linker to remove items properly */
#iT defined(__TI_COMPILER_VERSION_)
#pragma DATA_SECTION(Watchdog config, '".const:Watchdog_config™)
#pragma DATA SECTION(watchdogTivaHWAttrs, '.const:watchdogTivaHWAttrs')
#endif

#include <ti/drivers/Watchdog.h>
#include <ti/drivers/watchdog/WatchdogTiva.h>

/* Watchdog objects */
WatchdogTiva_Object watchdogTivaObjects[QUAD_BOARD_WATCHDOGCOUNT];

/* Watchdog configuration structure */

const WatchdogTiva_HWAttrs watchdogTivaHWAttrs[QUAD_BOARD_WATCHDOGCOUNT] = {
/* QUAD_BOARD_WATCHDOGO with 1 sec period at default CPU clock freq */
{WATCHDOGO_BASE, INT_WATCHDOG, ~0 /* Interrupt priority */, 80000000%},

}:

const Watchdog_Config Watchdog_config[] = {

{&WatchdogTiva_fxnTable, &watchdogTivaObjects[0], &watchdogTivaHWAttrs[0]},
{NULL, NULL, NULL},

N
*

*

======== QUAD_BOARD_initWatchdog ========

NOTE: To use the other watchdog timer with base address WATCHDOG1l BASE,
an additional function call may need be made to enable PIOSC. Enabling
WDOG1 does not do this. Enabling another peripheral that uses PIOSC
such as ADCO or SSI0, however, will do so. Example:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);
SysCtlPeripheralEnable(SYSCTL_PERIPH WDOG1);

ook o o F X X X X X

See the following forum post for more information:
http://e2e._ti.com/support/microcontrollers/stellaris_arm_cortex-m3_microcontroller/¥/471/p/17
6487/654390 . aspx#654390
*/

void QUAD_BOARD_initWatchdog(void)

{

/* Enable peripherals used by Watchdog */

SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOGO) ;

/* Initialize the Watchdog driver */
Watchdog_init();

*/
/* Place into subsections to allow the Tl linker to remove items properly */
#if defined(__TI1_COMPILER_VERSION_)
#pragma DATA SECTION(SPI_config, ".const:SPI_config™)
#pragma DATA _SECTION(spiTivaDMAHWAttrs, *.const:spiTivaDMAHWAttrs™)
#endif

#include <ti/drivers/SPI._h>
#include <ti/drivers/spi/SPITivaDMA.h>

/* SPI1 objects */

SPITivaDMA_Object spiTivaDMAObjects[QUAD_BOARD_SPICOUNT];
#i1T defined(__TI_COMPILER_VERSION_)

#pragma DATA_ALIGN(spiTivaDMAscratchBuf, 32)

#elif defined(__I1AR_SYSTEMS_ICC_)

#pragma data_alignment=32

#elift defined(__GNUC_)

__attribute _ ((aligned (32)))

#endif

uint32_t spiTivaDMAscratchBuf[QUAD_BOARD_SPICOUNT];

/* SPI1 configuration structure */
const SPITivaDMA_HWAttrs spiTivaDMAHWAttrs[QUAD_BOARD_SPICOUNT] = {

{

SSI10_BASE,

INT_SSIO,

~0, /* Interrupt priority */
&spiTivaDMAscratchBuf[0],

0

UDMA_CHANNEL_SSIORX,
UDMA_CHANNEL_SSI10TX,
uDMAChannelAssign,
UDMA_CH10_SSIORX,
UDMA_CH11_SSI10TX

};
const SPI_Config SPI_config[]

{&SPI1TivaDMA_fxnTable, &spiT
{NULL, NULL, NULL},

{
ivaDMAObjects[0], &spiTivaDMAHWAttrs[O]},

};

/*
* === QUAD_BOARD_initSPl ———=—=——==
*/

void QUAD_BOARD_initSPI(void)

{

/> SPI0 */
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);

/* Need to unlock PFO */
GPI10PinConfigure(GP10_PA2_SSIOCLK);
// GPIOPINConfigure(GP10_PA3_SSIOFSS);
GPIOPinConfigure(GPI0_PA4 SSIORX);
GPI0OPInConfigure(GP10_PA5_SSI0TX);

GPIOPinTypeSSI(GP10_PORTA BASE, GPIO_PIN_2 | /* GPIO_PIN_3 | */
GPIO_PIN_4 | GPIO_PIN_5);

QUAD_BOARD_initbMAQ) ;
SPI_init(Q);

* @file QUAD_BOARD.h

* @brief QUAD_BOARD Board Specific APIs

* The QUAD_BOARD header file should be included in an application as
* follows:

* (@code

* #include <QUAD_BOARD.h>

* @endcode

*/

#ifndef QUAD_BOARD_H
#define QUAD_BOARD_H

#ifdef _ cplusplus
extern "C" {
#endif

/* LEDs on QUAD_BOARD are active high. */
#define QUAD_BOARD LED OFF (0)
#define QUAD _BOARD_LED ON (1)

/*1
* @def QUAD_BOARD_GP IOName
* @brief Enum of GPIO names on the QUAD BOARD dev board
*/
typedef enum QUAD_BOARD_GPIOName {
QUAD_BOARD_SW1 = 0,
QUAD_BOARD_SW2,
QUAD_BOARD_ECHO,
QUAD_BOARD_RPM,

QUAD_BOARD_TRIGG,
QUAD_BOARD_LED_RED,
QUAD_BOARD_LED BLUE,
QUAD_BOARD_LED_GREEN,
QUAD_BOARD_POWER_33,
QUAD_BOARD_SPI_CE,
QUAD_BOARD_SPI_CSN,

QUAD_BOARD_GPI0COUNT
} QUAD_BOARD_GPIOName;

/*1
* @def QUAD_BOARD_ 12CName
* @brief Enum of 12C names on the QUAD BOARD dev board
*/
typedef enum QUAD_BOARD_I12CName {
QUAD_BOARD 12C0O = O,
QUAD_BOARD_12C2,
QUAD_BOARD_I12CCOUNT
} QUAD_BOARD_12CName;

/*1!
* @def QUAD_BOARD_PWMName
* @brief Enum of PWM names on the QUAD BOARD dev board
*/
typedef enum QUAD_BOARD_PWMName {
QUAD_BOARD_PWMO = O,
QUAD_BOARD_PWM1,
QUAD_BOARD_PWMZ2,
QUAD_BOARD_PWM3,

QUAD_BOARD_PWMCOUNT
} QUAD_BOARD_PWMName;

/*1
* @def QUAD_BOARD_UARTName
* @brief Enum of UARTs on the QUAD_BOARD dev board
*/
typedef enum QUAD_BOARD_UARTName {
QUAD_BOARD_UARTO_USB = 0O,
QUAD_BOARD_UART5_BT_TELEMETRIA,
QUAD_BOARD_UART1_BT_MANDO,
QUAD_BOARD_UART7_AUX,

QUAD_BOARD_UARTCOUNT
} QUAD_BOARD_UARTName;

/*1
* @def QUAD_BOARD_WatchdogName
* @brief Enum of Watchdogs on the QUAD BOARD dev board
*/
typedef enum QUAD_BOARD_ WatchdogName {
QUAD_BOARD_WATCHDOGO = O,

QUAD_BOARD_WATCHDOGCOUNT
} QUAD_BOARD_WatchdogName;

* @brief [Initialize board specific DMA settings

* This function creates a hwi In case the DMA controller creates an error
* interrrupt, enables the DMA and supplies it with a uDMA control table.
*/

typedef enum QUAD BOARD_SPIName {
QUAD_BOARD_SPI0O = 0,

QUAD_BOARD_SPICOUNT
3 QUAD_BOARD_SPIName;

extern void QUAD_BOARD_initDMA(void);

/*1
@brief [Initialize the general board specific settings
This function initializes the general board specific settings.
This includes:
- Flash wait states based on the process
- Disable clock source to watchdog module
- Enable clock sources for peripherals

ook ok ok F X X% X

*/
extern void QUAD_BOARD_initGeneral(void);

/

@brief Initialize board specific GPIO settings

This function initializes the board specific GPI0O settings and
then calls the GPIO_init APl to initialize the GPI0O module.

The GP10s controlled by the GPIO module are determined by the GPI0_PinConfig
variable.

FoF X X X X X X

*/
extern void QUAD_BOARD_initGPIO(void);

/

@brief Initialize board specific 12C settings

This function initializes the board specific 12C settings and then calls
the 12C _init API to initialize the 12C module.

ook F X X X X

The 12C peripherals controlled by the 12C module are determined by the

-2-

* 12C_config variable.
*/
extern void QUAD_BOARD_initl2C(void);

/*1
* @brief Initialize board specific PWM settings
*
* This function initializes the board specific PWM settings and then calls
* the PWM_init API to initialize the PWM module.
*
* The PWM peripherals controlled by the PWM module are determined by the
* PWM_config variable.
*/
extern void QUAD_BOARD_initPWM(void);
/*1!
* @brief [Initialize board specific UART settings
*
* This function initializes the board specific UART settings and then calls
* the UART_init APl to initialize the UART module.
*
* The UART peripherals controlled by the UART module are determined by the
* UART_config variable.
*/
extern void QUAD_BOARD_initUART(void);
/*1
* @brief [Initialize board specific Watchdog settings
*
* This function initializes the board specific Watchdog settings and then
* calls the Watchdog_init APl to initialize the Watchdog module.
*
* The Watchdog peripherals controlled by the Watchdog module are determined
* by the Watchdog_config variable.
*/
extern void QUAD_BOARD_initWatchdog(void);
/*1
* @brief Initialize board specific SPI settings
*
* This function initializes the board specific SPI settings and then calls
* the SPI_init APl to initialize the SPI module.
*
* The SPI peripherals controlled by the SPI module are determined by the
* SPI_config variable.
*/

extern void QUAD_BOARD_initSPI(void);
#ifdef _ cplusplus

}

#endif

#endif /* _ QUAD_BOARD H */

/*
* Sensores.h

*

Created on: 11/5/2015
* Author: Ruben
*/

#ifndef QUADROTOR V1 3 1 SENSORES H_
#define QUADROTOR V1 _3 1 SENSORES H_

#include <ti/drivers/12C.h>

#include "arm_math._h"
#include "Parametros.h"
#include "math.h"

#define CONVERTIR_A_RADIANES(DEGS) PI1/180.0*DEGS
#define CONVERTIR_A_GRADOS(RADS) 180.0/PI1*RADS

float32_t Normalizar_Grados(float32_t Grados);

typedef enum {DLPF_CFG_NO =-1, DLPF_CFG 0O, DLPF_CFG_1, DLPF_CFG_2, DLPF_CFG_3, DLPF_CFG_4,
DLPF_CFG_5, DLPF_CFG_6, DLPF_CFG_7}tpDLPF_CFG;

typedef enum {Gain_Gyro 250, Gain_Gyro 500, Gain_Gyro_ 1000, Gain_Gyro_ 2000}tpGanancia Gyro;
typedef enum {DLPF_CFG _GYRO _NO = -1, DLPF_CFG_GYRO 0, DLPF _CFG_GYRO_1, DLPF CFG _GYRO_2,
DLPF_CFG_GYRO_3, DLPF_CFG_GYRO_4, DLPF_CFG_GYRO_ 5, DLPF_CFG_GYRO_6,
DLPF_CFG_GYRO_7}tpDLPF_CFG_GYRO;

typedef enum {Gain_Acel 2G, Gain_Acel 4G, Gain_Acel _8G, Gain_Acel 16G}tpGanancia_ Acel;
typedef enum {DLPF_CFG_ACEL NO =-1, DLPF CFG_ACEL_O, DLPF_CFG_ACEL_1, DLPF _CFG_ACEL 2,
DLPF_CFG_ACEL_3, DLPF_CFG_ACEL_4, DLPF_CFG_ACEL_5, DLPF_CFG_ACEL_6,
DLPF_CFG_ACEL_7}tpDLPF_CFG_ACEL;

// . RECEPTOR. - ¢ i i e e e e i e e e eeeaaas //
typedef struct{

uintl6_t Canal PWM[&];

uint8_t Voltaje Bat[4];

uint8_t Error_conexion;
}tpLectura_Radio;

typedef struct {
float32_t Rango_Salida[?]; //min max
uintl6_t Rango_Entrada[2]; //min max
}tpCalibracion_canal PWM;

typedef tpCalibracion_canal PWM tpCalibracion_Receptor[numCanales];

//Parametros barometro

#define Direccion_Barometro 0x77

#define Bar_Reg Eprom_Barometro OxAA //0xAA to OxBF donde se hallan los parametros de
calibracion

#define Bar_Reg leer_temp OxF4

#define Bar_leer_Temp Ox2E

#define Bar_leer_Presion OxF4

#define Bar_Reg MSB OxF6

#define Bar_Reg LSB OxF7

#define Bar_Reg XLSB OxF8

//o . ODOF _IMU. - oo e s //
typedef union{
struct{
uint8_t x_acel _1I; //Los ponemos al reves (LOW y HIGH) dado que
uint8_t x_acel _h; //La arquitectura usa LITTLE Endian
uint8_t y acel _1I;
uint8_t y acel _h;
uint8_t z_acel I;
uint8_t z_acel _h;

uint8_t temp_1;
uint8_t temp_h;

uint8_t x_vel_1I;
uint8 t x vel _h;
uint8_t y vel _1I;
uint8_t y vel _h;
uint8_t z_vel_1I;
uint8 t z vel _h;

uint8_t x mag_|I;

uint8_t x_mag_h;

uint8_t y mag_1I;

uint8_t y mag_h;

uint8_t z mag_|I;

uint8_t z mag_h;
JReg;

struct{
intlé_t x acel;
intl6é_t y acel;
intlé_t z acel;

intlé_t temp;

intlé_t x vel;
intle_t y vel;
intle_t z vel;

intlé_t x _mag;
intlé_t y mag;
intlé_t z_mag;
}valor;
}tpLecturas_9DOF_IMU;

typedef union{ //tplLecturas_IMU
struct{
uint8_t x_acel _1I; //Los ponemos al reves (LOW y HIGH) dado que
uint8_t x_acel _h; //La arquitectura usa LITTLE Endian
uint8_t y acel_1I;
uint8_t y acel _h;
uint8_t z_acel _1I;
uint8_t z_acel_h;

uint8_t temp_1I;
uint8_t temp_h;

uint8 t x vel _1;
uint8_t x vel _h;
uint8_t y vel _1I;
uint8_t y vel_h;
uint8 t z vel _1;
uint8_t z_vel _h;

JReg;

struct{
intlé_t x acel;
intlé_t y acel;
intlé t z acel;

intlé_t temp;
intlée_ t x vel;

intle_t y vel;
intlé_t z vel;

}valor;
}tpLecturas_IMU;

typedef struct{ //tpCalibracion_IMU
intl6é_t Rango_Acel_x[2]; // Min Max
intlé_t Media Acel Xx;
float32_t Des est Acel x;
intl6é_t Rango_Acel _y[2];
intlé_t Media_Acel_y;
float32_t Des est_Acel _y;
intlé_t Rango_Acel z[2];
intl6é_t Media_ Acel z;
float32_t Des est Acel z;

intl6é_t Media_Temp;
float32_t Des est Temp;

intl6_t Rango_Vel x[2];
intl6é_t Media Vel x;
float32_t Des est Vel x;
intl6é_t Rango_Vel _y[2];
intl6_t Media_ Vel _y;
float32_t Des est Vel y;
intlé_t Rango_ Vel z[2];
intlé_t Media Vel _z;
float32_t Des est Vel z;

float32_t Correccion_Alineamiento _matriz[9];
arm_matrix_instance_¥32 Correccion_Alineamiento;

float32_t Giro[3];

}tpCalibracion_IMU;

typedef union{ //tplLecturas_Brujula
struct{
uint8_t Magnetismo_x_I; //tpLecturas Brujula
uint8_t Magnetismo_x_h; //La arquitectura usa LITTLE Endian
uint8_t Magnetismo_y 1I;
uint8_t Magnetismo_y h;
uint8_t Magnetismo_z 1I;
uint8_t Magnetismo_z h;
JReg;
struct{
intl6é_t Magnetismo_X;
intl6_t Magnetismo_y;
intl6_t Magnetismo_z;
}valor;
}tpLecturas Brujula;

typedef struct{
intl6é_t Media_ Magnetismo_Xx;
float32_t Des est Mag Xx;

intl6_t Media_Magnetismo_y;
float32_t Des est Mag y;

intl6é_t Media_Magnetismo_z;
float32_t Des est Mag z;

float32_t Offset matriz[3];
arm_matrix_instance_ f32 Offset;
float32_t Transformada_matriz[9];
arm_matrix_instance_f32 Transformada;

}tpCalibracion_Brujula;

typedef struct{//tplLecturasBarometro

uint32_t UP;
uintl6e_t UT;

uint32_t Presion;
float Temperatura;

//Parametros
intlé_t AC1;
intlé t AC2;
intlé_t AC3;
uintlé _t AC4;
uintl6é_t AC5;
uintle_t AC6;
intlé_t B1;
intlé_t B2;
intlé t MB;
intlé t MC;
intlé_t MD;
}tpLecturasBarometro;

de calibracion

typedef struct{//tplLecturasBarometro_ BMP280

uint32_t
uint32_t

uintlé_t
uintl6é_t
uintlé t

uintlé_t
uintl6é_t
uintlé t
uintlé t
uintlé_t
uintl6é_t
uintl6é t
uintlé t
uintl6é_t

Presion;
Temperatura;

dig_T1;
dig_T2;
dig_T3;

dig_P1;
dig_P2;
dig_P3;
dig_P4;
dig_P5;
dig_P6;
dig_P7;
dig_P8;
dig_P9;

}tpLecturasBarometro BMP280;

typedef union{ //tplLecturas_Giroscopo

struct{

uint8_t
uint8_t
uint8 t
uint8 t
uint8_t
uint8_t
JReg;
struct{

intle_t

intle t

intle t
}valor;

x_vel _1;
x_vel _h;
y_vel_I;
y_vel_h;
z vel _1;
z_vel _h;

x_vel;
y_vel;
z_vel;

}tpLecturas_Giroscopo;

typedef struct{

uint8_t Direccion_IMU;

uint8_t Direccion_MAG;

uint8_t SMPLRT_DIV;

float32_t Sensibilidad Giroscopo;
float32_t Sensibilidad Acel;
float32_t Sensibilidad Brujula;

tpDLPF_CFG_GYRO DLPF_CFG_GYRO;
tpGanancia_Gyro Ganancia_Gyro;
tpDLPF_CFG_ACEL DLPF _CFG_ACEL;
tpGanancia_Acel Ganancia_Acel;

FtpIMU9250;

#define DIR_O_IMU_MPU9250 0b1101000
#define Dir_1_IMU_MPU9250 0b1101001
#define Dir_MAG_MPU9250 0x0C

#define IMU_MPU9250 INT_PIN_CFG Ox37
#define IMU_MPU9250 SMPLRT DIV 0x19
#define IMU_MPU9250 USER CTRL Ox6A
#define IMU_MPU9250 PWR_MGMT 1 Ox6B
#define IMU_MPU9250 MAG_CTL1 OXOA
#define IMU_MPU9250 MAG_HXL 0x03

bool Iniciar_IMU_MPU9250(12C_Handle 12C, tpIMU9250 IMU92520);
bool Leer_IMU_MPU9250(12C_Handle 12C, tplIMU9250 IMU92520, tplLecturas_9DOF_IMU
*Lecturas_9DOF_IMU);

typedef struct{
uint8_t Direccion;
uint8 t SMPLRT DIV;
float32_t Sensibilidad_Giroscopo;
float32_t Sensibilidad Acel;

tpDLPF_CFG DLPF_CFG;
tpGanancia_Gyro Ganancia_Gyro;
tpGanancia_Acel Ganancia_Acel;

}tpIMUBOS50;

#define Dir_0_IMU_MPUB050 0b1101000
#define Dir_1_IMU_MPU6050 0b1101001

#define IMU_MPUG6050_SMPLRT_DIV 0x19
#define IMU_MPU6050_CONFIG Ox1A
#define IMU_MPU6050_GYRO_CONFIG Ox1B
#define IMU_MPU6050_ACCEL_CONFIG 0x1C

#define IMU_MPU6050 PWR_MGMT_1 Ox6B
#define IMU_MPU6050 ACCEL_XOUT H Ox3B

bool Iniciar_IMU_MPU6050(12C_Handle 12C, tpIMU6050 IMU6050);
bool Leer_ IMU_MPU6050(12C Handle 12C, tpIMU6050 IMU6050, tplLecturas_IMU *Lecturas_IMU);

#define Dir_Gir_0 0b01101000
#define Dir_Gir_1 0b01101001
#define Reg DLPF_FS 0x16

#define Reg TEMP_OUT_H Ox1B

bool Iniciar_Giroscopio ITG3200(12C_Handle 12C, uint8 t Dir_Giroscopo, uintlé t
Frecuencia_muestreo, uint8 t Filtro);

bool Leer_Giroscopio_ITG3200(12C_Handle 12C, uint8_t Dir_Giroscopo, tplLecturas_Giroscopo
*Lecturas_Giroscopo);

#define Dir_0_L3G4200 0x68
#define Dir_1_L3G4200 0x69

#define L3G4200 _WHO I _AM OxOF

#define L3G4200 CTRL _REG1 0x20
#define L3G4200 CTRL_REG2 0x21
#define L3G4200_CTRL_REG3 0x22
#define L3G4200 CTRL_REG4 0x23
#define L3G4200 CTRL_REG5 0x24
#define L3G4200 REFERENCE 0x25
#define L3G4200 _OUT_TEMP 0Ox26

#define L3G4200_ STATUS REG 0x27
#define L3G4200 OUT X L 0x28

#define L3G4200_FIFO_CTRL_REG Ox2E

typedef struct{
uint8_t Direccion;
float32_t Sensibilidad _Giroscopo;
enum{dps_250 = 0, dps_500, dps_2000}Ganancia;
enum{ODR_100 Hz = O, ODR_200_Hz, ODR_400 Hz, ODR_800_Hz}ODR;
enum{Bypass , FIFO, Stream, Bypass_ to Stream, Stream_to FIFO}Modo;
enum{LPF1_0 , LPF1_1, LPF1_2, LPF1_3}BW LPF;
enum{HPF_No_Filtro = 0, HPF_Filtro = 1 }HPF_activar;
enum{Filtrado LPF = 0, Filtrado HPF, Filtrado LPF2}Modo Filtro;
enum{HPF_0 = 0, HPF_1, HPF_2, HPF_3, HPF_4, HPF_5, HPF_6, HPF_7}BW_HPF;
enum{HPF_Normal_mode = 0O, HPF_Reference, HPF Normal, HPF_Autoreset}HPF modo;
enum{BDU_Continuo = 0, BDU No_continuo}BDU;
enum{BLE_Big_Endian = 0, BLE_Little Endian}BLE;

}tpGiroscopo L3G4200;

bool Iniciar_Giroscopo_ L3G4200(12C_Handle 12C, tpGiroscopo_L3G4200 Giroscopo_L3G4200);
bool Leer_Giroscopo L3G4200(12C_Handle 12C, tpGiroscopo L3G4200 Giroscopo L3G4200,
tpLecturas_Giroscopo *Lecturas_Giroscopo);

/o BRUJULA HMC5883L............ //
#define HMC5883L_DIR Ox1E
#define HMC5883L_CONFIG_A 0x00
#define HMC5883L_CONFIG_B 0x01
#define HMC5883L_MODE 0x02
#define HMC5883L_DATA OUTPUT_X 0x03
#define HMC5883L_SATUS 0x09
/*
#ifdeT SENSIBILIDAD_MAG
const uintl6_t Magnitud_HMC5883L[8] = {1370, 1090, 820, 660, 440, 390, 330, 230};
#endif
*/
typedef struct{
float32_t Angulo _Rotacion;
enum {MEDIA 1, MEDIA 2, MEDIA 4, MEDIA_ 8}Muestras Media;
enum {ODR_0_75 Hz, ODR_1_5 Hz, ODR_3 Hz, ODR_7_5 Hz, ODR_15 Hz, ODR_30_Hz, ODR_75 Hz}ODR;
enum {Normal, Bias_Positivo, Bias_Negativo}Modo Medida;
enum {Gauss 0 88, Gauss_1 3, Gauss_1 9, Gauss 2 5, Gauss_4, Gauss 4 7, Gauss 5 6,
Gauss_8 1}Ganancia;
enum {12C_400_Khz, 12C_3400_Khz}Velocidad_12C;
enum {Continuo, Simple, Idle}Modo_Operacion;

enum {S_0 = , S 1= , S 2= , S 3= , S 4= , S5 = , S 6= , S 7
= }Sensibilidad;
}tpHMC5883L ;

bool Iniciar_Brujula HMC5883L(12C_Handle 12C, tpHMC5883L HMC5883L);
bool Leer Brujula HMC5883L(12C _Handle 12C, tpHMC5883L HMC5883L, tpLecturas Brujula
*Lecturas_Brujula);

// .. .BAROMETRO........o.... //
bool Iniciar_Barometro(12C Handle 12C, uint8 t Dir_Barometro, tplLecturasBarometro

-6-

*LecturasBarometro);

bool Iniciar_Medida_Temp_ Barometro(12C_Handle 12C, uint8 t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro);

bool Leer_Temp Barometro(12C_Handle 12C, uint8 t Dir_Barometro, tplLecturasBarometro
*LecturasBarometro);

bool Iniciar_Medida_Presion_Barometro(12C_Handle 12C, uint8 t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro);

bool Leer_ Presion_Barometro(12C Handle 12C, uint8 t Dir_Barometro, tplLecturasBarometro
*LecturasBarometro);

/*...BMP280. .*/
#define BMP_280 DIR_0 0x76
#define BMP_280 DIR_1 0Ox77

#define BMP_280 calibracion_T1
#define BMP_280 press _msb OxF7
#define BMP_280_ctrl_meas OxF4

typedef enum {x1, x2, x4, x8, x16}0verSampling BMP280;

typedef struct{

uint8 t Direccion;

enum {Mode_Sleep = 0, Mode Forced, Mode Normal}Modo;

OverSampling BMP280 Oversampling Presion;

OverSampling BMP280 Oversampling_Temperatura;

enum {Filtro_off = 0, Filtro_2, Filtro_4, Filtro_8, Filtro_ 16}Filtro_ BMP280;

enum {ms05 = 0, ms625, msl25, ms250, ms500, ms1000, ms2000, ms4000}t sampling;
}tpBarometro BMP280;

bool Iniciar_Barometro BMP280(12C_Handle 12C, tpBarometro_BMP280 *Barometro_BMP280,
tpLecturasBarometro BMP280 *LecturasBarometro_ BMP280);

bool Leer_Barometro BMP280(12C_Handle 12C, tpBarometro BMP280 *Barometro_ BMP280,
tpLecturasBarometro BMP280 *LecturasBarometro_BMP280);

float32_t Conversion_Temperatura(tpLecturasBarometro BMP280 *LecturasBarometro_BMP280) ;
float32_t Conversion_ Altura(float32_t Temperatura, tplLecturasBarometro BMP280
*LecturasBarometro_ BMP280) ;

#endif /* QUADROTOR_V1_3 1 SENSORES_H_ */

/*
* Sensores.c

*

Created on: 11/5/2015

* Author: Ruben

*/
#include <ti/drivers/Z12C.h>
#include "Sensores.h"

float32_t Normalizar_Grados(float32_t Grados){

/*

Grados += 180;

Grados = fmodf(Grados, 360);
Grados -= 180;

*/
if(Grados >){ Grados -= 3}
else if(Grados < -){ Grados += ;3

return Grados;

}

bool Iniciar_IMU_MPU9250(12C_Handle 12C, tpIMU9250 IMU92520){
12C_Transaction 12C_Transmision;
uint8_t bufferEscritura[6] ={IMU_MPU9250 PWR_MGMT_1, O, O, O, 0, 0}; //Ponemos a cero el
registro Reg Power Managent 1 para arrancar;
bool TransmisionOK;

12C_Transmision.slaveAddress = IMU92520.Direccion_IMU;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 2;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0O;

TransmisionOK = 12C_transfer(12C, &l12C_Transmision);

bufferEscritura[0]
bufferEscritura[l]

IMU_MPU9250 SMPLRT DIV;

IMU92520.SMPLRT_DIV;

bufferEscritura[2] IMU92520.DLPF_CFG_GYRO;

bufferEscritura[3] IMU92520.Ganancia Gyro << 3;

if (IMU92520.DLPF_CFG_GYRO == -1){
bufferEscritura[3] |= ;

}

bufferEscritura[4]
bufferEscritura[5]

IMU92520.Ganancia_Acel << 3;
IMU92520.DLPF_CFG_ACEL ;

it (IMU92520.DLPF_CFG_ACEL == -1){
bufferEscritura[3] |= ;
}
12C_Transmision.writeCount = 5;
TransmisionOK |= 12C_transfer(12C, &12C_Transmision);

bufferEscritura[0] = IMU_MPU9250 INT_PIN_CFG;

bufferEscritura[l] ;

12C_Transmision.writeCount = 2;

TransmisionOK |= 12C_transfer(12C, &12C_Transmision);
//brujula

bufferEscritura[0] = IMU_MPU9250 MAG_CTL1;
bufferEscritura[l] = ;

12C_Transmision.writeCount = 2;

12C_Transmision.slaveAddress = IMU92520.Direccion_MAG;
TransmisionOK |= 12C_transfer(12C, &I12C_Transmision);

return(TransmisionOK) ;

}

bool Leer_ IMU_MPU9250(12C_Handle 12C, tpIMU9250 IMU92520, tplLecturas_ 9DOF IMU
*Lecturas_9DOF_IMU){
12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {IMU_MPU6050 ACCEL_XOUT_H};
uint8_t bufferLectura[l14];
bool TransmisionOK;

12C_Transmision.slaveAddress = IMU92520.Direccion_IMU;
12C_Transmision.writeBuf = bufferEscritura;
12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferlLectura;

// 12C _Transmision.readBuf = &(Lecturas_IMU->Reg.x_acel _h);
12C_Transmision.readCount = ;

TransmisionOK = 12C_transfer(12C, &l12C_Transmision);

Lecturas_9DOF_IMU->Reg.x_acel h=bufferLectura[0];
Lecturas_9DOF_IMU->Reg.x_acel_I=bufferLectura[l];
Lecturas_9DOF_IMU->Reg.y acel h=bufferLectura[2];
Lecturas_9DOF_IMU->Reg.y acel I=bufferLectura[3];
Lecturas_9DOF_IMU->Reg.z_acel h=bufferLectura[4];
Lecturas_9DOF_IMU->Reg.z_acel_I=bufferLectura[5];

Lecturas_9DOF_IMU->Reg.temp_h=bufferLectura[t];
Lecturas_9DOF_IMU->Reg.temp_ l=bufferLectura[’];

Lecturas_9DOF_IMU->Reg.x_vel h=bufferLectura[&];
Lecturas_9DOF_IMU->Reg.x_vel I=bufferLectura[?9];
Lecturas_9DOF_IMU->Reg.y vel h=bufferLectura[l10];
Lecturas_9DOF_IMU->Reg.y _vel I=bufferLectura[ll];
Lecturas_9DOF_IMU->Reg.z_vel h=bufferLectura[l12];
Lecturas_9DOF_IMU->Reg.z_vel I=bufferLectura[l3];

12C_Transmision.slaveAddress
12C_Transmision.readCount =
12C_Transmision.readBuf = &lLecturas 9DOF IMU->Reg.x mag |I;

IMU92520.Direccion_MAG;

bufferEscritura[0] = IMU_MPU9250 MAG_HXL;

TransmisionOK |= 12C_transfer(12C, &12C_Transmision);
return(TransmisionOK) ;

}

bool Iniciar_IMU_MPU6050(12C_Handle 12C, tpIMU6050 IMU6050){
12C_Transaction 12C_Transmision;
uint8_t bufferEscritura[5] ={IMU_MPU6050 PWR_MGMT_1, O, O, 0, O}; //Ponemos a cero el
registro Reg Power_Managent_1 para arrancar;
bool TransmisionOK;

12C_Transmision.slaveAddress = IMU6050.Direccion;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 2;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0O;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

IMU_MPU6050_SMPLRT_DIV;
IMU6050.SMPLRT_DIV;
IMU6050.DLPF_CFG;
IMUB050.Ganancia_Gyro <<
IMU6050.Ganancia_Acel <<

bufferEscritura[0]
bufferEscritura[l]
bufferEscritura[?]
bufferEscritura[3]
bufferEscritura[4]

12C_Transmision.writeCount = 5;

TransmisionOK |= 12C_transfer(12C, &12C_Transmision);
return(TransmisionOK) ;

}

bool Leer_IMU_MPU6050(12C_Handle 12C, tpIMU6050 IMU6050, tpLecturas_IMU *Lecturas_IMU){
12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {IMU_MPU6050_ ACCEL_XOUT_H};
uint8_t bufferLectura[l4];
bool TransmisionOK;

12C_Transmision.slaveAddress = IMU6050.Direccion;
12C_Transmision.writeBuf = bufferEscritura;
12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferlLectura;

// 12C _Transmision.readBuf = &(Lecturas_ IMU->Reg.x_acel _h);
12C_Transmision.readCount = ;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

Lecturas_IMU->Reg.x_acel_h=bufferLectura[0];
Lecturas_IMU->Reg.x_acel lI=bufferLectura[l];
Lecturas_IMU->Reg.y acel h=bufferLectura[?];
Lecturas_IMU->Reg.y_acel I=bufferLectura[3];
Lecturas_IMU->Reg.z_acel_h=bufferLectura[4];
Lecturas_IMU->Reg.z_acel lI=bufferLectura[5];

Lecturas_IMU->Reg.temp_h=bufferLectura[t];
Lecturas_IMU->Reg.temp_l=bufferlLectura[7];

Lecturas_IMU->Reg.x_vel h=bufferLectura[&];
Lecturas_IMU->Reg.x_vel I=bufferLectura[?9];
Lecturas_IMU->Reg.y_vel _h=bufferLectura[10];
Lecturas_IMU->Reg.y vel I=bufferLectura[ll];
Lecturas_IMU->Reg.z_vel h=bufferLectura[l2];
Lecturas_IMU->Reg.z_vel I=bufferLectura[l3];

//Comprobar a pasar el puntero de lectura la direccion de Lecturas_IMU

return(TransmisionOK) ;

}

L11777/7//7//////////////////////////7/7/7777777

/////////77

bool Iniciar_Brujula HMC5883L(12C_Handle 12C, tpHMC5883L HMC5883L){
12C_Transaction 12C_Transmision;
uint8_t bufferEscritura[4] = {0, 0, 0, 0};

12C_Transmision.slaveAddress = HMC5883L DIR;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 4;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0;

bufferEscritura[0] = HMC5883L_CONFIG_A;

bufferEscritura[l] = (HMC5883L.Muestras_Media << 4) | (HMC5883L.0DR << 2) |
HMC5883L .Modo_Medida;

bufferEscritura[2] = HMC5883L.Ganancia << 5;

bufferEscritura[3] = (HMC5883L.Velocidad 12C << 7) | HMC5883L.Modo_Operacion;

return(12C_transfer(12C, &12C_Transmision));
}

bool Leer_ Brujula HMC5883L(12C_Handle 12C, tpHMC5883L HMC5883L, tpLecturas Brujula
*Lecturas_Brujula){
12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {HMC5883L_DATA OUTPUT_X};
uint8_t bufferLectura[6];
bool TransmisionOK;

12C_Transmision.slaveAddress = HMC5883L DIR;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferlLectura;
12C_Transmision.readCount = 6;

TransmisionOK = 12C_transfer(12C, &l12C_Transmision);

Lecturas_Brujula->Reg.Magnetismo_x h
Lecturas_Brujula->Reg.Magnetismo_x_1
Lecturas_Brujula->Reg.Magnetismo z h
Lecturas_Brujula->Reg.Magnetismo_z |
Lecturas_Brujula->Reg.Magnhetismo_y h
Lecturas_Brujula->Reg.Magnetismo_y 1

bufferLectura[0];
bufferLectura[1];
bufferLectura[?];
bufferLectura[3];
bufferLectura[4];
bufferLectura[5];

return(TransmisionOK) ;

}

L1177 77/777/777/777777/7777/777/77/7/77/777/7/7777/
/1777777777
bool Iniciar_Giroscopo L3G4200(12C_Handle 12C, tpGiroscopo L3G4200 Giroscopo_ L3G4200){
12C_Transaction 12C_Transmision;
bool TransmisionOK;
uint8_t bufferEscritura[6];

bufferEscritura[0] | L3G4200_CTRL_REG1;

bufferEscritura[l] = (Giroscopo_L3G4200.0DR<<6 | Giroscopo_L3G4200.BW_LPF<<4 |);
bufferEscritura[?] = (Giroscopo_L3G4200.HPF_modo << | Giroscopo_L3G4200.BW_HPF) ;
bufferEscritura[3] = O;

bufferEscritura[4] = (Giroscopo_L3G4200.BDU << | Giroscopo_L3G4200.BLE << |

Giroscopo_L3G4200.Ganancia << 4);
bufferEscritura[5] = (1 << | Giroscopo L3G4200.HPF _activar << |
Giroscopo_L3G4200.Modo_Filtro);

12C_Transmision.slaveAddress = Giroscopo L3G4200.Direccion;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 6;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0O;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

bufferEscritura[0]
bufferEscritura[l]

L3G4200_FIFO_CTRL_REG;
Giroscopo_L3G4200.Modo << 5;

12C_Transmision.slaveAddress = Giroscopo L3G4200.Direccion;
12C_Transmision.writeBuf = bufferEscritura;
12C_Transmision.writeCount = 2;

12C_Transmision.readBuf = NULL;

12C_Transmision.readCount = 0;

TransmisionOK |= 12C_transfer(12C, &l12C_Transmision);

return(TransmisionOK) ;

}

bool Leer_Giroscopo_L3G4200(12C_Handle 12C, tpGiroscopo_L3G4200 Giroscopo_L3G4200,
tpLecturas_Giroscopo *Lecturas_Giroscopo){

12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {L3G4200 OUT_X L};

12C_Transmision.slaveAddress = Giroscopo L3G4200.Direccion;
12C_Transmision.writeBuf = bufferEscritura;

-4-

12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = &(Lecturas_Giroscopo->Reg.x_vel _1);
12C_Transmision.readCount = 6;

return(12C_transfer(12C, &12C_Transmision));

ks
L1117 777777777777777777777777/77777777777777/777/777/777777/7777/7777/77/7/77/7/77/777/7/7777/777
bool Iniciar_Barometro(12C _Handle 12C, uint8_t Dir_Barometro, tplLecturasBarometro
*LecturasBarometro){

12C_Transaction 12C_Transmision;

uint8_t bufferLectura[22];

uint8_t bufferEscritura[] = {Bar_Reg Eprom_Barometro};

bool TransmisionOK;

12C_Transmision.slaveAddress = Dir_Barometro;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferLectura;
12C_Transmision.readCount = ;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

LecturasBarometro->AC1 bufferLectura[0]<< bufferLectura[1]

= I :
LecturasBarometro->AC2 = bufferlLectura[2]<< | bufferLectura[3];
LecturasBarometro->AC3 = bufferlLectura[4]<< | bufferLectura[5];
LecturasBarometro->AC4 = bufferlLectura[6]<< | bufferLectura[7];
LecturasBarometro->AC5 = bufferlLectura[8]<< | bufferLectura[9];
LecturasBarometro->AC6 = bufferLectura[10]<<8 | bufferLectura[ll];
LecturasBarometro->B1 = bufferLectura[12]<<8 | bufferLectura[l3];
LecturasBarometro->B2 = bufferLectura[l14]<<8 | bufferLectura[l5];
LecturasBarometro->MB = bufferLectura[l16]<<8 | bufferLectura[l7];
LecturasBarometro->MC = bufferLectura[18]<<8 | bufferLectura[l19];
LecturasBarometro->MD = bufferLectura[20]<<8 | bufferLectura[21];

return(TransmisionOK) ;

}

bool Iniciar_Medida_Temp_ Barometro(12C_Handle 12C, uint8_t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro){

12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {Bar_Reg_ leer_temp, Bar_leer_Temp};

12C_Transmision.slaveAddress = Dir_Barometro;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 2;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0;

return(12C_transfer(12C, &12C_Transmision));
}

bool Leer_Temp Barometro(12C_Handle 12C, uint8 t Dir_Barometro, tplLecturasBarometro
*LecturasBarometro){

12C_Transaction 12C_Transmision;

uint8_t bufferLectura[?];

uint8_t bufferEscritura[] = {Bar_Reg MSB};

bool TransmisionOK;

int32_t X1;

int32_t X2;

int32_t B5;

12C_Transmision.slaveAddress = Dir_Barometro;
12C_Transmision.writeBuf = bufferEscritura;
12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferLectura;
12C_Transmision.readCount = 2;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);
LecturasBarometro->UT = bufferLectura[0]<<8 | bufferLectura[l];
X1 ((LecturasBarometro->UT - LecturasBarometro->AC6) * LecturasBarometro->AC5) >> ;
X2 LecturasBarometro->MC << / (X1 + LecturasBarometro->MD);

B5 X1 + X2;
LecturasBarometro->Temperatura = (B5 + 8) / ;

return(TransmisionOK) ;

}

bool Iniciar_Medida Presion_Barometro(12C_Handle 12C, uint8 t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro){

12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {Bar_Reg leer_temp, Bar_leer_Presion};

12C_Transmision.slaveAddress = Dir_Barometro;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 2;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0O;

return(12C_transfer(12C, &12C_Transmision));
¥

bool Leer Presion_Barometro(12C Handle 12C, uint8_t Dir_Barometro, tplLecturasBarometro
*LecturasBarometro){

12C_Transaction 12C_Transmision;

uint8_t bufferLectura[3];

uint8_t bufferEscritura[] = {Bar_Reg MSB};

bool TransmisionOK;

int32_t X1;
int32_t X2;
int32_t X3;
int32_t B3;
int32_t B4;
int32_t B5;
int32_t B6;
int32_t B7;

12C_Transmision.slaveAddress = Dir_Barometro;
12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferLectura;
12C_Transmision.readCount = 3;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

LecturasBarometro->UT = (bufferLectura[0]<< | bufferLectura[l] | bufferLectura[2])>>5;
X1 = ((LecturasBarometro->UT - LecturasBarometro->AC6) * LecturasBarometro->AC5) >> ;
X2 = LecturasBarometro->MC << / (X1 + LecturasBarometro->MD);

B5 = X1 + X2;

B6 = B5 - ;

X1 = (LecturasBarometro->B2 * (B6*B6 <<)) << :

X2 = LecturasBarometro->AC2 * B6 << ;

X3 = X1 + X2;

B3 = ((LecturasBarometro->ACl*4 + X3) << 5) / 4;

X1 = LecturasBarometro->AC3 * B6 << :

X2 = (LecturasBarometro->Bl1 * (B6*B6 <<)) << ;

X3 = (X1 + X2 + 2) / 4;

B4 = LecturasBarometro->AC4 * (unsigned long) (X3 +) << ;

B7 = ((unsigned long)LecturasBarometro->UP -B3) * (>> 3);

if (B7 <) {
LecturasBarometro->Presion

Yelse{
LecturasBarometro->Presion

B7 * 2 / B4;

(B7 /B4) * 2;

¥

X1 = (LecturasBarometro->Presion << 8) * (LecturasBarometro->Presion << 8);

X1 = (X1 *) << ;

X2 = (* LecturasBarometro->Presion) << ;

LecturasBarometro->Presion = LecturasBarometro->Presion + (X1 - X2 +) << 4;

return(TransmisionOK) ;

ks
L1177 77777777777777777777777777777777777/777/777/777777/777/77//77//77///77/77/
bool Iniciar_Giroscopio ITG3200(12C_Handle 12C, uint8_t Dir_Giroscopo, uintlé t
Frecuencia_muestreo, uint8_t Filtro){

12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[?2] = {Reg DLPF_FS, 0};

bufferEscritura[l] = ((<<3) | (Filtro &)

12C_Transmision.slaveAddress = Dir_Giroscopo;
12C_Transmision.writeBuf = bufferEscritura;
12C_Transmision.writeCount = 2;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0O;

/*
12C_transfer(12C, &I12C_Transmision);

bufferEscritural0]
bufferEscritura[l]

Reg_SMPRT_DIV;
8000/Frecuencia_muestreo - 1;

12C_transfer(12C, &12C _Transmision);

bufferEscritural0]
bufferEscritura[1l]

Reg_CONFIG;
(Filtro & 0x07);

*/

}
//bool Sensibilidad _Giroscopio I1TG3200(12C_Handle 12C , uint8_t Dir_Giroscopo,

tpRangoGiroscopo_ 1TG3200 RangoGiroscopo);
bool Leer_Giroscopio_ITG3200(12C_Handle 12C, uint8_t Dir_Giroscopo, tplLecturas_Giroscopo
*Lecturas_Giroscopo){

12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {Reg TEMP_OUT_H};

uint8_t bufferLectura[g];

bool TransmisionOK;

return(12C_transfer(12C, &12C_Transmision));

12C_Transmision.slaveAddress = Dir_Giroscopo;
12C_Transmision.writeBuf = bufferEscritura;
12C_Transmision.writeCount = 1;
12C_Transmision.readBuf = bufferlLectura;

// 12C _Transmision.readBuf = &(Lecturas_ IMU->Reg.x_acel _h);
12C_Transmision.readCount = 8;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

Lecturas_Giroscopo->Reg.x_vel _h=bufferLectura[2];
Lecturas_Giroscopo->Reg.x_vel I=bufferLectura[3];
Lecturas_Giroscopo->Reg.y vel h=bufferLectura[4];
Lecturas_Giroscopo->Reg.y vel I=bufferLectura[5];
Lecturas_Giroscopo->Reg.z_vel _h=bufferLectura[6];
Lecturas_Giroscopo->Reg.z_vel I=bufferLectura[/];

return(TransmisionOK) ;

}
bool Iniciar_Barometro BMP280(12C Handle 12C, tpBarometro BMP280 *Barometro_BMP280,

-7-

tpLecturasBarometro BMP280 *LecturasBarometro_ BMP280){

}

bool Leer_ Barometro BMP280(12C_Handle 12C, tpBarometro BMP280 *Barometro_BMP280,
tpLecturasBarometro BMP280 *LecturasBarometro_BMP280){

}

float32_t Conversion_Temperatura(tpLecturasBarometro BMP280 *LecturasBarometro BMP280){

12C_Transaction 12C_Transmision;

uint8_t bufferEscritura[] = {BMP_280 ctrl_meas,

uint8_t bufferLectura[24];
bool TransmisionOK;

12C_Transmision.slaveAddress =

12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 3;
12C_Transmision.readBuf = NULL;
12C_Transmision.readCount = 0;

3

bufferEscritura[l] = (Barometro_BMP280->t_sampling <<
(Barometro_BMP280->Filtro_BMP280 <<
bufferEscritura[2] = (Barometro_ BMP280->0Oversampling Temperatura << 5)

(Barometro_BMP280->0Oversampling Presion<<

);

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

bufferEscritura[0] =

12C_Transmision.writeCount = 1;

BMP_280_ ctrl_meas;

12C_Transmision.readBuf = bufferLectura;

12C_Transmision.readCount = ;

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

LecturasBarometro BMP280->dig T1
LecturasBarometro_ BMP280->dig T2
LecturasBarometro_ BMP280->dig_T3

LecturasBarometro_ BMP280->dig P1
LecturasBarometro_BMP280->dig_P2
LecturasBarometro_ BMP280->dig_P3
LecturasBarometro_ BMP280->dig_ P4
LecturasBarometro_ BMP280->dig_P5
LecturasBarometro_BMP280->dig_P6
LecturasBarometro_ BMP280->dig_P7
LecturasBarometro BMP280->dig P8
LecturasBarometro_ BMP280->dig_ P9

return TransmisionOK;

12C_Transaction 12C_Transmision;

bufferLectura[l]<<
bufferLectura[3]<<
bufferLectura[5]<<

bufferLectura[7]<<
bufferLectura[9]<<

bufferLectura[
bufferLectural[
bufferLectura[
bufferLectura[
bufferLectura[
bufferLectural[
bufferLectura[

uint8_t bufferEscritura[] = {BMP_280 ctrl_meas};

uint8_t bufferLectura[6];
bool TransmisionOK;

12C_Transmision.slaveAddress =

12C_Transmision.writeBuf = bufferEscritura;

12C_Transmision.writeCount = 1;

12C_Transmision.readBuf = bufferlLectura;

12C_Transmision.readCount = 6;

1<<
]<<
1<<
I<<
1<<
I<<
1<<

TransmisionOK = 12C_transfer(12C, &12C_Transmision);

LecturasBarometro BMP280->Presion

bufferEscritura[2]>>3 ;

LecturasBarometro_ BMP280->Temperatura = bufferEscritura[3]<<

bufferEscritura[5]>>3 ;

return TransmisionOK;

bufferEscritura[0]<< |

Barometro BMP280->Direccion;

) |

) | (Barometro_ BMP280->Modo);

|bufferLectura[0];
|bufferLectura[2];
|bufferLectura[4];

|bufferLectura[6];
|bufferLectura[8];

|bufferLectura[
|bufferLectural[
|bufferLectura[
|bufferLectura[
|bufferLectura[
|bufferLectural[
|bufferLectura[

Barometro BMP280->Direccion;

e el L e b e L

bufferEscritura[l]<<

| bufferEscritura[4]<<

-8-

float32_t varl, var2;

varl = (LecturasBarometro BMP280->Temperatura/ -

LecturasBarometro_ BMP280->dig T1/) * LecturasBarometro_ BMP280->dig T2;
var2 = ((LecturasBarometro_BMP280->Temperatura/ -
LecturasBarometro_BMP280->dig_T1/) *
(LecturasBarometro_BMP280->Temperatura/ -

LecturasBarometro_ BMP280->dig T1/)) * LecturasBarometro BMP280->dig T3 ;
return ((varl + var2) /);

}

float32_t Conversion_Altura(float32_t Temperatura, tplLecturasBarometro BMP280
*LecturasBarometro_BMP280){
float32_t varl, var2, p;

varl = Temperatura * - ;

var2 = varl * varl * LecturasBarometro BMP280->dig_P6 / ;

var2 = var2 + varl * LecturasBarometro BMP280->dig P5 * ;

var2 = varza/ + LecturasBarometro BMP280->dig P4 * ;

varl = (LecturasBarometro_BMP280->dig_P3 * varl * varl / +
LecturasBarometro_ BMP280->dig_P2 * varl) / ;

varl = (+ varl /)*LecturasBarometro_ BMP280 >dig _P1;

it (varl ==) return O; // avoid exception caused by division by zero
p = - LecturasBarometro BMP280->Presion;

varl LecturasBarometro BMP280->dig P9 * p * p / ;
var?2 p * LecturasBarometro_ BMP280->dig P8 / ;
p=p + (varl + var2 + LecturasBarometro BMP280->dig_ P7) / ;

= (p - var2/) * / varl;

return p;

/*

)(.

Servidores.h

*

Created on: 17/5/2015
* Author: Ruben
*/

#ifndef QUADROTOR V1_3 1 SERVIDORES_H_
#define QUADROTOR V1 3 1 SERVIDORES H_

#include "Sensores.h"
#include "arm_math._h"

void Iniciar_Servidores();

void Leer_servidor_Lecturas_IMU(tpLecturas_IMU *Lecturas_IMU);
void Escribir_servidor_Lecturas_IMU(tpLecturas_IMU *Lecturas_IMU);

void Leer_servidor_Lecturas_ IMU_9DOF(tpLecturas_9DOF_IMU *Lecturas_9DOF_IMU);
void Escribir_servidor_Lecturas_IMU_9DOF(tpLecturas_9DOF IMU *Lecturas_9DOF IMU);

void Leer_servidor_lLecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo);
void Escribir_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo);

void Leer_servidor_lLecturas Brujula(tpLecturas Brujula *Lecturas Brujula);
void Escribir_servidor_Lecturas_Brujula(tpLecturas Brujula *Lecturas_Brujula);

void Leer_servidor_DCM(Ffloat32_t* DCM);
void Escribir_servidor_ DCM(float32_t* DCM);

void Leer_servidor_RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw);
void Escribir_servidor RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw);

void Leer_servidor_quaternios(float32_t* q);
void Escribir_servidor_quaternios(float32_t* q);

void Leer_servidor_Variables Estado Medidas(float32_t* Variables Estado Medidas);
void Escribir_servidor_Variables Estado Medidas(float32_t* Variables_ Estado_Medidas);

void Leer_servidor_Variables Estado Estimadas(float32_t* Variables Estado Estimadas);
void Escribir_servidor Variables Estado Estimadas(float32_t* Variables Estado Estimadas);

void Leer_servidor_Perturbaciones Estimadas(float32_t* Perturbaciones_Estimadas);
void Escribir_servidor_Perturbaciones Estimadas(float32_t* Perturbaciones_Estimadas);
void Resetear_servidor_Perturbaciones Estimadas();

void Leer_servidor_Referencia(float32_t* Referencia, intl6_t* Referencia Entero);
void Escribir_servidor_Referencia(float32_t* Referencia, intl6é t* Referencia Entero);
float32_t* Direccion_servidor_Referencia();

#endif /* QUADROTOR V1_3_1 SERVIDORES_H_ */

/*

* Servidores.c

*

* Created on: 17/5/2015

* Author: Ruben

*/
#include "Servidores.h"
#include "arm_math._h"
#include <ti/sysbios/gates/GateMutexPri.h>

static volatile GateMutexPri_Handle SERVIDOR_Datos IMU;

static volatile GateMutexPri_Handle SERVIDOR_Datos 9DOF IMU;

static volatile GateMutexPri_Handle SERVIDOR Datos_Giroscopo;

static volatile GateMutexPri_Handle SERVIDOR_Datos Brujula;

static volatile GateMutexPri_Handle SERVIDOR_DCM;

static volatile GateMutexPri_Handle SERVIDOR_YPR;

static volatile GateMutexPri_Handle SERVIDOR_ Quaternio;

static volatile GateMutexPri_Handle SERVIDOR Variables Estado Medidas;
static volatile GateMutexPri_Handle SERVIDOR Variables Estado Estimadas;
static volatile GateMutexPri_Handle SERVIDOR_Perturbaciones Estimadas;
static volatile GateMutexPri_Handle SERVIDOR Referencia;

static tplLecturas_IMU Lectura Almacenada_IMU = { O, O, O, 0, O, O, O};

static tplLecturas_9DOF_IMU Lecturas_9DOF_IMU_Almacenada = {0, O, O, 0, 0, O,
static tpLecturas_Giroscopo Lecturas_Almacenada_Giroscopo = {0, 0, 0, 0};
static tplLecturas_Brujula Lectura_Almacenada_ Brujula = { 0, 0, 0};

static float32_t DCM_Almacenada[9] = { 0, O, O, O, O, O, O, O, O};

static float32_t Roll_Almacenado = 0;

static float32_t Pitch_Almacenado = 0;

static float32_t Yaw_Almacenado= 0;

static float32_t g _almacenado[4] = {0, 0, 0, O};

static float32_t Variables Estado Medidas_Almacenadas[10] = {0, O, O, O, O,
static float32_t Variables Estado Estimadas_ Almacenadas[10] = {0, O, O, O, O,

static float32_t Perturbaciones_Estimadas_Almacenadas[4] = {0, O, 0, 0};
static float32_t Referencia Almacenada[4] = {0, 0, 0, 0};
static intl6é_t Referencia Almacenada Entero[4] = {0, 0, 0, O};

void Iniciar_Servidores(){
SERVIDOR_Datos_IMU = GateMutexPri_create(NULL, NULL) ;
SERVIDOR _Datos 9DOF _IMU = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Datos_Giroscopo = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Datos_Brujula = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_DCM = GateMutexPri_create(NULL, NULL);
SERVIDOR_YPR = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Quaternio = GateMutexPri_create(NULL, NULL) ;
SERVIDOR Variables Estado Medidas = GateMutexPri_create(NULL, NULL) ;
SERVIDOR Variables Estado Estimadas = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Perturbaciones_Estimadas = GateMutexPri_create(NULL, NULL);
SERVIDOR_Referencia = GateMutexPri_create(NULL, NULL) ;

}

void Leer_servidor_Lecturas_IMU(tpLecturas_ IMU *Lecturas_IMU){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR Datos_IMU);
memcpy(Lecturas_IMU, &lLectura_Almacenada_IMU, sizeof(tpLecturas_IMU));
GateMutexPri_leave(SERVIDOR_Datos IMU, Key);

}

void Escribir_servidor_Lecturas_IMU(tpLecturas_IMU* Lecturas_IMU){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR Datos_IMU);
memcpy(&Lectura_Almacenada IMU, Lecturas_ IMU, sizeof(tpLecturas_ IMU));
GateMutexPri_leave(SERVIDOR_Datos IMU, Key);

}

void Leer_servidor_lLecturas_ IMU_9DOF(tpLecturas_ 9DOF_IMU *Lecturas_9DOF_IMU){

-

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR Datos 9DOF_IMU);
memcpy(Lecturas_9DOF_IMU, &lLecturas 9DOF IMU_Almacenada, sizeof(tpLecturas 9DOF _IMU));

GateMutexPri_leave(SERVIDOR_Datos 9DOF IMU, Key);

}

void Escribir_servidor_Lecturas_IMU_9DOF(tpLecturas_ 9DOF IMU *Lecturas_9DOF IMU){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_9DOF_IMU);
memcpy(&Lecturas_9DOF IMU_Almacenada, Lecturas 9DOF_ IMU, sizeof(tpLecturas_IMU));

GateMutexPri_leave(SERVIDOR_Datos 9DOF IMU, Key);
¥

void Leer_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_Giroscopo);
memcpy(Lecturas_Giroscopo, &Lecturas_Almacenada Giroscopo, sizeof(tpLecturas _Giroscopo));

GateMutexPri_leave(SERVIDOR_Datos_Giroscopo, Key);

}

void Escribir_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR Datos_Giroscopo);
memcpy(&Lecturas_Almacenada_Giroscopo, Lecturas_Giroscopo, sizeof(tpLecturas_Giroscopo));

GateMutexPri_leave(SERVIDOR_Datos Giroscopo, Key);
}

void Leer_servidor_lLecturas Brujula(tpLecturas Brujula *Lecturas_Brujula){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR Datos Brujula);
memcpy(Lecturas_Brujula, &lLectura_Almacenada Brujula, sizeof(tpLecturas Brujula));
GateMutexPri_leave(SERVIDOR Datos Brujula, Key);

}

void Escribir_servidor_Lecturas_Brujula(tpLecturas_Brujula* Lecturas_Brujula){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR _Datos Brujula);
memcpy(&Lectura_Almacenada Brujula, Lecturas Brujula, sizeof(tpLecturas Brujula));
GateMutexPri_leave(SERVIDOR Datos Brujula, Key);

}

void Leer_servidor_DCM(float32_t* DCM){

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_DCM);
arm_copy_¥T32(DCM_AlImacenada, DCM, sizeof(DCM_Almacenada)/sizeof(float32_t));

GateMutexPri_leave(SERVIDOR_DCM, Key);

}
void Escribir_servidor DCM(float32_t* DCM){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR_DCM);
arm_copy_¥T32(DCM, DCM_Almacenada, sizeof(DCM_Almacenada)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_DCM, Key);
}
void Leer_servidor_RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw){

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_YPR);
*Roll = Roll_Almacenado;

*Pitch = Pitch_Almacenado;

*Yaw = Yaw_Almacenado;

GateMutexPri_leave(SERVIDOR_YPR, Key);
}

void Escribir_servidor RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw){ IArg Key;

Key = GateMutexPri_enter(SERVIDOR_YPR);
Roll_Almacenado = *Roll;
Pitch_Almacenado = *Pitch;
Yaw_Almacenado = *Yaw;
GateMutexPri_leave(SERVIDOR_YPR, Key);

s

void Leer_servidor_quaternios(float32_t* q){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR Quaternio);
arm_copy_¥32(q_almacenado, q, sizeof(q_almacenado)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Quaternio, Key);

s

void Escribir_servidor_quaternios(float32_t* q){
1Arg Key;
Key = GateMutexPri_enter(SERVIDOR Quaternio);
arm_copy_T¥32(q, q_almacenado, sizeof(q_almacenado)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Quaternio, Key);

3

void Leer_servidor_Variables Estado Medidas(float32_t* Variables Estado Medidas){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR Variables Estado Medidas);
arm_copy_T32(Variables_Estado_Medidas_Almacenadas, Variables Estado_Medidas,
sizeof(Variables_Estado Medidas_Almacenadas)/sizeof(float32_t));
// memcpy(Variables Estado Medidas, Variables Estado Medidas_Almacenadas,
sizeof(Variables Estado Medidas Almacenadas));
GateMutexPri_leave(SERVIDOR Variables_Estado_Medidas, Key);
}

void Escribir_servidor Variables Estado Medidas(float32_t* Variables Estado Medidas){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR Variables Estado Medidas);
memcpy(Variables Estado Medidas Almacenadas, Variables Estado_Medidas,
sizeof(Variables Estado Medidas_ Almacenadas));
GateMutexPri_leave(SERVIDOR_Variables_Estado Medidas, Key);

}

void Leer_servidor_Variables Estado Estimadas(float32_t* Variables Estado_ Estimadas){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR Variables Estado Estimadas);
memcpy(Variables_Estado_Estimadas, Variables Estado_Estimadas_Almacenadas,
sizeof(Variables Estado Estimadas_Almacenadas));
GateMutexPri_leave(SERVIDOR Variables Estado Estimadas, Key);

}

void Escribir_servidor_Variables Estado Estimadas(float32_t* Variables Estado Estimadas){
1Arg Key;

Key = GateMutexPri_enter(SERVIDOR Variables Estado Estimadas);
memcpy(Variables Estado Estimadas_Almacenadas, Variables Estado Estimadas,
sizeof(Variables Estado Estimadas_Almacenadas));
GateMutexPri_leave(SERVIDOR Variables Estado Estimadas, Key);

}

void Leer_servidor_Perturbaciones Estimadas(float32_t* Perturbaciones_ Estimadas){
1Arg Key;

}

Key = GateMutexPri_enter(SERVIDOR_Perturbaciones_Estimadas);
arm_copy_TF32(Perturbaciones_Estimadas_Almacenadas, Perturbaciones Estimadas,
sizeof(Perturbaciones_Estimadas Almacenadas)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Perturbaciones_Estimadas, Key);

void Escribir_servidor_Perturbaciones Estimadas(float32_t* Perturbaciones Estimadas){

}

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_Perturbaciones Estimadas);
arm_copy_TFf32(Perturbaciones_Estimadas, Perturbaciones Estimadas_ Almacenadas,
sizeof(Perturbaciones_Estimadas Almacenadas)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Perturbaciones_Estimadas, Key);

void Resetear_servidor_Perturbaciones Estimadas(){

}

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_Perturbaciones_ Estimadas);
arm_fill_f32(0, Perturbaciones_Estimadas_Almacenadas,
sizeof(Perturbaciones_Estimadas_Almacenadas)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Perturbaciones_Estimadas, Key);

void Leer_servidor_Referencia(float32_t* Referencia , intl6_t* Referencia_Entero){

}

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_Referencia);

memcpy(Referencia, Referencia_Almacenada, sizeof(Referencia_Almacenada));
memcpy(Referencia_Entero, Referencia_ Almacenada Entero,
sizeof(Referencia_Almacenada Entero));
GateMutexPri_leave(SERVIDOR_Referencia, Key);

void Escribir_servidor_Referencia(float32_t* Referencia , intl6é_t* Referencia Entero){

}

1Arg Key;

Key = GateMutexPri_enter(SERVIDOR_Referencia);
memcpy(Referencia_Almacenada, Referencia, sizeof(Referencia_Almacenada));
memcpy(Referencia_Almacenada_Entero, Referencia_Entero,
sizeof(Referencia_Almacenada_Entero));
GateMutexPri_leave(SERVIDOR_Referencia, Key);

float32_t* Direccion_servidor_Referencia(){

}

return Referencia_Almacenada;

/*
* Transmisores.h
*
* Created on: 5/10/2015
* Author: Ruben_User
*/

#ifndef QUADROTOR V9 2 TRANSMISORES_H_
#define QUADROTOR V9 2 TRANSMISORES H_

#include <ti/drivers/SPI.h>
#include "Parametros.h"

typedef struct{
SP1_Handle SPI;
unsigned int PIN_CE;
unsigned int PIN_CSN;
unsigned int PIN_IRQ;

}tp_nRF24L01;

bool Iniciar_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX, uint8_t Canal, uint8_t Payload);
void Activar_nRF24L01(tp_nRF24L01 nRF24L01);

void Desactivar_nRF24L01(tp_nRF24L01 nRF24L01);

bool Flush_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX);

bool Escribir_Registro nRF24L01(tp _nRF24L01 nRF24L01, uint8 t Reg, uint8 t Dato);
bool Leer_ Registro nRF24L01(tp_nRF24L01 nRF24L01, uint8 t Reg, uint8 t* Dato);

//bool WritePaylLoad nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* PaylLoad, size t n_Payload);
//bool ReadPaylLoad nRF24LO01(tp_nRF24L01 nRF24L01, uint8_t* PaylLoad, size_t n_PaylLoad);

bool MandarByte_nRF24LO01(tp_nRF24L01 nRF24L01, uint8_t Dato);
bool RecibirByte nRF24L01(tp_nRF24L01 nRF24L01, uint8_ t* Dato);

#endif /* QUADROTOR_V9 2 TRANSMISORES H_ */

/*
* Transmisores.c

*

Created on: 7/10/2015
* Author: Ruben User
*/

#include <ti/drivers/SPI._h>
#include <ti/sysbios/Knl/Clock.h>
#include "Transmisores.h"
#include "Parametros.h"

#include <ti/drivers/GP10.h>

bool Iniciar_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX, uint8_t Canal, uint8_t Payload){
uint8_t Dato;
uint32_t systick = 0;
bool Transmision_OK;

Transmision_OK = Escribir_Registro nRF24L01(nRF24L01, , (| ¢ &
RX))); // Inicio Transmisor, CRC, NO Int

systick = Clock getTicks(Q);

while(Clock_getTicks() < systick+2);

Transmision_OK &= Escribir_Registro nRF24L01(nRF24L01, , Canal);
Transmision_OK &= Escribir_Registro nRF24L01(nRF24L01, , Payload);
Transmision_OK &= Flush_nRF24L01(nRF24L01, true);

Transmision_OK &= Leer_Registro_nRF24L01(nRF24L01, , &Dato);

return (Transmision_OK);

}

void Activar_nRF24L01(tp_nRF24L01 nRF24L01){
GPI10_write(nRF24L01.PIN_CE, 1);
¥

void Desactivar_nRF24L01(tp_nRF24L01 nRF24L01){
GPI10_write(nRF24L01.PIN_CE, 0);
¥

bool Flush_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX){
SP1_Transaction SPl_Transmision;
uint8_t Buffer_Tx = ;
bool Transmision_OK;

Buffer_Tx += RX;

&éuffer_Tx;
NULL;

SPI_Transmision.count
SP1_Transmision.txBuf
SP1_Transmision.rxBuf

GPI0_write(nRF24L0O1.PIN_CSN, 0);
Transmision_OK = (SPIl_transfer(nRF24L01.SPI, &SPl _Transmision));
GPI10_write(nRF24LO1.PIN_CSN, 1);

return(Transmision_OK);

}

bool Escribir_Registro_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Reg, uint8_t Dato){
SPI1_Transaction SPl_Transmision;
uint8_t Buffer_Tx[2];
bool Transmision_OK;
uint8_t Estado_Anterior;

Estado Anterior = GPIO_read(nRF24L01.PIN_CE);

Buffer_Tx[0]
Buffer_Tx[1]

| Reg;
Dato;

SP1_Transmision.count = 2;

}

SP1_Transmision.txBuf
SPI_Transmision.rxBuf

Buffer_Tx;
NULL;

GPI10_write(nRF24L01.PIN_CE, 0);

GPI0_write(nRF24L0O1.PIN_CSN, 0);

Transmision_OK = (SPI1_transfer(nRF24L01.SPI, &SPI1_Transmision));
GP10_write(nRF24L0O1.PIN_CSN, 1);

GP10_write(nRF24L01.PIN_CE, Estado Anterior);

return(Transmision_O0OK);

bool Leer_Registro_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Reg, uint8_t* Dato){

}

/*

SPI_Transaction SPI_Transmision;
bool Transmision_OK;

uint8_t Buffer_Tx[2] = {0, 0};
uint8_t Buffer_Rx[2];

Buffer Tx[0] = (Reg &);

Baffer_Tx;
Buffer_ Rx;

SPI_Transmision.count
SPI_Transmision.txBuf
SP1_Transmision.rxBuf

GP10_write(nRF24L0O1.PIN_CSN, 0);

Transmision_OK = SPIl_transfer(nRF24L01.SPI, &SPIl_Transmision);
GP10_write(nRF24L0O1.PIN_CSN, 1);

*Dato = Buffer_Rx[1];

return(Transmision_OK);

bool WritePaylLoad nRF24L01(tp_nRF24L01 nRF24L01, uint8 t* PaylLoad, size_ t n_PaylLoad){

}

SPI_Transaction SPl_Transmision;

PayLoad[0] = Ob10100000;

SP1_Transmision.count = n_Payload;
SP1_Transmision.txBuf = Payload;
SPI_Transmision.rxBuf = NULL;

GPI10_write(nRF24LO1.PIN_CSN, 0);
return (SPI_transfer(nRF24L01.SP1, &SPI_Transmision));
GPI0O_write(nRF24LO1.PIN_CSN, 1);

bool ReadPaylLoad nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* PaylLoad, size_t n_Payload){

}

*/

SPI_Transaction SPl_Transmision;

PayLoad[0] = 0b01100001;

SP1_Transmision.count = n_Payload;
SPI_Transmision.rxBuf = PaylLoad;
SP1_Transmision.txBuf = NULL;

GP10_write(nRF24L01.PIN_CSN, 1);
return (SPI1_transfer(nRF24L01.SPI, &SPI1_Transmision));

bool MandarByte nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Dato){

SP1_Transaction SPl_Transmision;
bool Transmision_OK;
uint8_t Tx[2] = { , 0};

Tx[1] = Dato;
GPI10_write(nRF24L0O1.PIN_CSN, 0);

TX;
NULL;

SPI_Transmision.count
SP1_Transmision.txBuf
SP1_Transmision.rxBuf

GPI0_write(nRF24L0O1.PIN_CSN, 0);
Transmision_OK = SPIl_transfer(nRF24L01.SPI, &SPl _Transmision);
GPI0_write(nRF24L0O1.PIN_CSN, 1);

return(Transmision_0OK);

}

bool RecibirByte nRF24L01(tp_nRF24L01 nRF24L01, uint8 t* Dato){
SP1_Transaction SPl_Transmision;
bool Transmision_OK;
uint8_t Tx[2] { , 0}F;
uint8_t Rx[2] {0, O};

SPI_Transmision.count
SPI_Transmision.txBuf
SP1_Transmision.rxBuf

TX;
Rx;

GPI0_write(nRF24L01_PIN_CSN, 0);

Transmision OK = SPIl_transfer(nRF24L01.SPI, &SPl _Transmision);
*Dato = Rx[1];

GP10_write(nRF24L0O1.PIN_CSN, 1);

return(Transmision_0OK);

	Impreso Autoria y originalidad TFG_TFM_2
	TFG_completo
	Ïndice de contenidos
	1. Introducción
	1.1. Estado del arte
	1.2. Requisitos

	2. Estructura y funcionamiento
	2.1. Teoria de Funcionamiento
	2.2. Estructura & Actuadores

	3. Diseño Arquitectual
	4. CONTROL
	4.1. Modelado matematico del conjunto
	4.1.1. Modelado del motor
	4.1.2. Identificación del motor.
	4.1.3. Modelado de la estructura
	4.1.4. Modelado del sistema completo
	4.1.5. Identificación del sistema completo

	4.2. Control
	4.2.1. Técnicas de Control
	4.2.1.1. Modelado por controles independientes
	4.2.1.2. Control en variables de estado

	4.2.2. Topología de control utilizada
	4.2.2.1. Estimador de estado y perturbaciones
	4.2.2.2. Integrador de perturbaciones
	4.2.2.3. Pre alimentador de perturbaciones

	4.2.3. Lazo de realimentación
	4.2.4. Cálculos del control

	5. Sensores
	5.1. Sensores Orientación
	5.1.1. Acelerómetro
	5.1.2. Giróscopo
	5.1.3. Brújula
	5.1.4. Algoritmo de fusión sensorial.
	5.1.4.1. Filtro Complementario:
	5.1.4.2. Filtro de Kalman:
	5.1.4.3. Algoritmo de Mahony:

	5.2. Tratamiento de la señal obtenida de los sensores

	6. Estructura Hardware
	6.1. Dispositivos Hardware
	6.1.1. Procesador principal
	6.1.2. Procesador Auxiliar
	6.1.3. Sensores

	6.2. Desarrollo de la electrónica asociada
	6.2.1. Diseño sobre placa de desarrollo
	6.2.2. Diseño de PCB de la versión final

	7. Estructura Software
	7.1. Estructura del RTOS en µProcesador principal
	7.1.1. Tareas
	7.1.1.1. Lectura IMU
	7.1.1.2. AHRS
	7.1.1.3. Control
	7.1.1.4. Medida Altura
	7.1.1.5. Coordinador
	7.1.1.6. Identificación

	7.2. Estructura del µProcesador Auxiliar
	7.2.1. Sistema de desactivación de emergencia.
	7.2.2. Recepción de radio & sensado de batería

	8. Vuelo:
	8.1. Pruebas de vuelo

	9. Conclusiones
	10. Referencias & Bibliografia
	11. Anexos
	A. Cálculos Sistema Operativo
	Tarea Lectura IMU
	Tarea AHRS
	Tarea Control
	Tarea Coordinador
	Tarea Cálculo Altura

	B. Cálculos Control
	C. Esquemáticos de las PCB
	Placa Prototipo

	D. Programación
	AHRS
	AHRS_c
	Funciones_Transferencia
	Parametros
	Principal
	Quad_board
	Quad_board_c
	Sensores
	Sensores_c
	Servidores
	Servidores_c
	Transmisores
	Transmisores_c

	Ruben Abad Torren: Ruben Abad Torren
	con n de DNI: 73205858-D
	Grado/Máster: Grado en Ingeniería Electrónica y Automática
	Título 1: Diseño e implementación de un sistema de control para un quadcopter
	fecha: 24 de Junio de 2016
	Fdo: Rubén Abad Torrén

