
Trabajo Fin de Grado

Diseño e implementación de un sistema de
control para un quadcopter

Design and Implementation of a control sytem to a quadcopter

Autor/es

Rubén Abad Torrén

Director/es

José Luis Villroel Salcedo

EINA
2015/2016

RESUMEN

En el siguiente documento se aborda el desarrollo e implementación del sistema de control
de una aeronave no tripulada del tipo quadcoptero (o dron), también se estudiaran e
implementaran los algoritmos de sensado de la orientación, así como los procesos de fusión
sensorial para la navegación.

El control deberá ser capaz de lograr que la aeronave obtenga la orientación de forma estable
en un tiempo de respuesta menor a un segundo, así como de variar el empuje perpendicular
aportado, para ello se sensa la posición y se actúa en cada propulsor.

Para lograr dicho propósito se modelara el sistema mediante ecuaciones diferenciales, para
posteriormente identificar las constantes, una vez obtenido el modelo, se calcularan los
parámetros del control elegido.

También se implementan las tareas y procesos necesarios para la operación de la aeronave,
la comunicación con la emisora y la emisión de la telemetría.

La ejecución simultánea de las tareas correrá sobre un sistema en tiempo real, asi como la
gestión de los periféricos.

DECLARACIÓN DE
AUTORÍA Y ORIGINALIDAD

TR
A

B
A

JO
S

D
E

FI
N

 D
E

G
R

A
D

O
 /

 F
IN

 D
E

M
Á

ST
ER

(Este documento debe acompañar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Máster (TFM) cuando sea depositado para su evaluación).

D./Dª. __,

con nº de DNI ______________________ en aplicación de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Máster)

___, (Título del Trabajo)

__,

es de mi autoría y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, ____________________________________

Fdo: __________________________________

R. Abad

1

ÍNDICE DE CONTENIDOS

1. INTRODUCCIÓN .. 3

1.1. ESTADO DEL ARTE .. 3

1.2. REQUISITOS ... 3

2. ESTRUCTURA Y FUNCIONAMIENTO .. 4

2.1. TEORIA DE FUNCIONAMIENTO .. 4

2.2. ESTRUCTURA & ACTUADORES ... 4

3. DISEÑO ARQUITECTUAL ... 5

4. CONTROL ... 6

4.1. MODELADO MATEMATICO DEL CONJUNTO .. 6

MODELADO DEL MOTOR ... 6

IDENTIFICACIÓN DEL MOTOR. ... 6

MODELADO DE LA ESTRUCTURA .. 7

MODELADO DEL SISTEMA COMPLETO ... 7

IDENTIFICACIÓN DEL SISTEMA COMPLETO ... 8

4.2. CONTROL .. 9

TÉCNICAS DE CONTROL ... 9

TOPOLOGÍA DE CONTROL UTILIZADA .. 10

LAZO DE REALIMENTACIÓN ... 11

CÁLCULOS DEL CONTROL .. 12

5. SENSORES .. 13

5.1. SENSORES ORIENTACIÓN ... 13

ACELERÓMETRO .. 13

GIRÓSCOPO .. 13

BRÚJULA.. 13

ALGORITMO DE FUSIÓN SENSORIAL. ... 14

2

5.2. TRATAMIENTO DE LA SEÑAL OBTENIDA DE LOS SENSORES .. 15

6. ESTRUCTURA HARDWARE ... 17

6.1. DISPOSITIVOS HARDWARE .. 17

PROCESADOR PRINCIPAL .. 17

PROCESADOR AUXILIAR ... 17

SENSORES .. 17

6.2. DESARROLLO DE LA ELECTRÓNICA ASOCIADA ... 18

DISEÑO SOBRE PLACA DE DESARROLLO .. 18

DISEÑO DE PCB DE LA VERSIÓN FINAL .. 18

7. ESTRUCTURA SOFTWARE .. 18

7.1. ESTRUCTURA DEL RTOS EN µPROCESADOR PRINCIPAL .. 18

TAREAS .. 19

7.2. ESTRUCTURA DEL µPROCESADOR AUXILIAR .. 21

SISTEMA DE DESACTIVACIÓN DE EMERGENCIA. ... 21

RECEPCIÓN DE RADIO & SENSADO DE BATERÍA ... 21

8. VUELO: ... 21

8.1. PRUEBAS DE VUELO ... 21

9. CONCLUSIONES ... 23

10. REFERENCIAS & BIBLIOGRAFIA .. 24

11. ANEXOS ... 24

A. CÁLCULOS SISTEMA OPERATIVO ... 24

B. CÁLCULOS CONTROL ... 25

C. ESQUEMÁTICOS DE LAS PCB .. 26

D. PROGRAMACIÓN ... 31

3

1. INTRODUCCIÓN

1.1. ESTADO DEL ARTE

El campo de las aeronaves no tripuladas ha experimentado un crecimiento exponencial, se ha
pasado de proyectos militares de millones de dólares a juguetes de apenas 10€.

Hace unos años únicamente fuerzas militares disponían de “drones”, cuya finalidad consistía en el
espionaje y bombardeo táctico, evitando la posible captura de un piloto por el derribo de la
aeronave.

Hoy en día, su uso está mucho más extendido, si bien siguen usándose los drones militares, el
desarrollo de drones para usos civiles está en pleno auge, dándose el caso de que muchos
países han debido legislar este tipo de aparato, así como su utilización.

Si bien existe otra filosofía de “drone”, basada en helicóptero, con la capacidad de mantenerse
estático en un punto del espacio, es este tipo de aeronave la más usada tano por profesionales,
como por el aficionado, tareas como la fotografía o captura de video pueden hacerse ahora desde
planos aéreos, así como la inspección de edificios y pequeñas áreas de terreno.

Ante este auge, existen en el mercado distintos fabricantes, que proporcionan desde el sistema al
completo, hasta las distintas partes mecánicas, así como el control, del mismo modo existen
también proyectos de código abierto con tal fin.

1.2. REQUISITOS

 El control deberá ser capaz de lograr que la aeronave obtenga una orientación de forma
estable en un tiempo de respuesta menor a un segundo, así como de variar el empuje
aportado.

 Sensado de la ubicación y orientación de la aeronave, para la realimentación del control.

 Implementan las tareas y procesos necesarios para el pilotaje de la aeronave, la
comunicación con la emisora y la emisión de la telemetría.

 Coste: requisito común a todos los proyectos, se debe mantener el coste lo más bajo posible,
sin que ello implique la pérdida de funcionalidades.

 Compacto y ligero: La naturaleza del sistema impone que el control ni puede ser pesado, lo
que dispara el consumo de los motores para mantener el vuelo, ni voluminoso. Lo que
disminuye la aerodinámica del dron.

 Modular: un diseño que permita añadir y quitar funcionalidades, lo que permite exportar el
diseño a proyectos similares

4

2. ESTRUCTURA Y FUNCIONAMIENTO

2.1. TEORIA DE FUNCIONAMIENTO

El principio de funcionamiento de la aeronave se basa en variar el empuje de cada propulsor.
Ubicando los ejes de referencia, tal y como muestra la Figura 1 se obtiene las siguientes
aceleraciones angulares:

 La diferencia de empuje entre Ω0 y Ω2 produce una aceleración angular sobre el eje YB.

 La diferencia de empuje ente Ω1 y Ω3 produce una aceleración angular sobre el eje Xb.

 La diferencia de empuje de Ω0 mas Ω2 entre Ω1 más Ω3 produce una aceleración angular sobre el eje Zb.

Estas fuerzas son producidas por dos fenómenos. Para el empuje vertical (flechas de la Figura 1),
se usa el empuje producido por la rotación de la hélice en el fluido que es el aire. Dado que al
rotar, el motor genera un par contrario a la rotación de la hélice, (Tercera ley de Newton o Principio
de Acción y Reacción), por este motivo se genera un momento en el eje Zb, que proporciona la
rotación en dicho eje, siendo necesario que haya el mismo número de motores rotando en un
sentido que en el otro, para mantener el equilibrio.

Es decir, la diferencia de velocidad de
rotación de entre los motores situados en
los extremos de cada brazo del mismo eje
produce rotación en dicho eje (X e Y), la
diferencia de velocidad (Teniendo en cuenta
el signo) produce la rotación en torno al eje
Z.

El empuje total se corresponde con la suma
del empuje individual de cada motor.

2.2. ESTRUCTURA & ACTUADORES

La elección de la estructura no es un aspecto crítico del sistema, una vez escogido el tamaño
aproximado de la aeronave, así como su número de impulsores, debiendo tenerse en cuenta como
parámetros para su elección el peso y la rigidez. Se opta por una estructura “Q450”, que posee un
tamaño estándar de 45cm entre ejes, 4 motores, la rigidez y un peso apropiado

La tecnología de los motores es BLDC, dado la potencia que son capaces de desarrollar aun para
su reducido peso y tamaño, un motor BLDC tiene un diseño similar a un motor trifásico, si bien la
conmutación de corriente por los devanados se realiza de forma electrónica, amén de ser siempre
positiva.

Puesto que los motores escogidos son del tipo BLDC, por ser los adecuados para este propósito
se requiere de un ESC (Electronic Speed Controller), que básicamente es un inversor trifásico
definido positivo. Todos tienen un comportamiento similar, por lo que únicamente se requiere que
sean capaces de aportar la corriente necesaria, y que el firmware se “Simonk”. Dado que tiene una
tasa de muestreo interna de hasta 400Hz. Para comandar el ESC, se le aplica una señal de
mínimo 1ms (Potencia cero), a 2ms (Potencia máxima). Siendo estas las entradas del sistema.

Como se desea un comportamiento pausado en lugar de uno agresivo (usados en acrobacias), se
escogen motores de bajo Kv, y hélices grandes, aptas para “bajas” rpm. Así se escogen motores
Sunnysky x2212 KV980, hélices de 1045 (10” de radio, 4.5” de paso”) y una batería de 3 celdas
con una capacidad de 2200mAh.

Figura 1. Ejes de referencia, sentido de giro de los
motores y empujes

5

3. DISEÑO ARQUITECTUAL

El sistema (como se describió anteriormente) consta de una estructura en forma de cruz con un
actuador en el extremo de cada eje, por medio de un ESC usando un PWM se controla el actuador.

Fijados al chasis se encuentran los sensores necesarios para medir la orientación de la aeronave, así
como su velocidad angular, ambas usadas para la realimentación del control, la comunicación entre el
control y los sensores se realiza vía I2C.

El controlador dispondrá de un radio enlace vía UART de tecnología Bluetooth, para la emisión de la
telemetría, de ser necesario aumentar la distancia podría cambiarse la tecnología de comunicación
siempre que use protocolo UART.

El control dispone de un microprocesador auxiliar, este procesador lee los PWM del receptor de Radio de
la Emisora trasmitiéndolos al procesador principal vía I2C, sin embargo su función principal reside en
desactivar el procesador principal, como función de seguridad. Para dicho propósito activa el pin de
reset.

El enlace para pilotar el quadcopero corre a cargo de la emisora Turgnigy 9XR Pro, con 8 canales de
datos, emitiendo sobre la banda de 2.4Ghz, garantizando la conexión a más de un kilómetro.

Figura 2. Arquitectura de conexionado.

6

4. CONTROL

En primer lugar se procederá al modelado matemático del conjunto, tras lo cual se procederá a la
identificación de las constantes de las ecuaciones de modelado.

4.1. MODELADO MATEMATICO DEL CONJUNTO

Para el modelado matemático, el modelo se dividirá en dos subconjuntos, el motor pese a ser
un BLDC, puede modelarse como un motor de corriente continua clásico1, que se puede modelar
como un sistema de primer orden, (si se desprecia la inductancia del bobinado).

El comportamiento dinámico del chasis puede modelarse mediante las ecuaciones de Newton-
Euler.

 Modelado del motor

Ecuación del motor en el campo transformado de Laplace, en la forma estándar:

𝑉𝑟𝑝𝑚

𝐴𝑐𝑐𝑖𝑜𝑛
=

𝐾𝑚´
1+𝜏𝑚∗𝑠

 , Siendo 𝜏𝑚 el retraso característico del motor.

Como el empuje del motor es cuadrático con la velocidad de rotación, será necesaria una
linealización:

𝐹𝑚𝑜𝑡𝑜𝑟 = 𝑟𝑝𝑚 × 𝐾𝜔 =
𝐾𝜔 × 𝐾𝑚´

1 + 𝜏𝑚
=

 𝐾𝑚

1 + 𝜏𝑚

Siendo 𝐾𝜔 la proporción de velocidad y el empuje en Newton.

 Identificación del motor.

La identificación del motor consta de dos apartados, el primero donde analizaremos la
respuesta dinámica, midiendo la velocidad del motor, analizando el tiempo que le cuesta
alcanzar el permanente con el cambio de entrada. Esta identificación puede obviarse porque al
analizar el sistema completo el polo más rápido será el correspondiente al motor.

1 AN857 “Brushless DC Motor Control Made Easy” de Microchip

Figura 3. Evolución de las rpm del motor a distintas acciones.

7

La siguiente identificación es la ganancia del motor 𝐾𝑚 , la relación de
𝑉𝑟𝑝𝑚

𝐴𝑐𝑐𝑖𝑜𝑛
, se procede a medir

la fuerza ejercida por el motor a diferentes valores de entrada, obtenido los siguientes resultados:

La TF sistema tiene un comportamiento prácticamente lineal, con un valor de correlación R de
0.99.

 Modelado de la estructura

A partir de las ecuaciones de Newton-Euler:

Siendo Ʈb el momento angular, al ser proporcional a la fuerza, se modela el sistema en función
de la fuerza, modificándose la ganancia del sistema, añadir un rozamiento viscoso y linealizar el
sistema, la ecuación de rotación de un eje es:

𝐹 × 𝐿 − 𝑓 × 𝛩̇ = 𝐼 × 𝛩̈

En modelado de Laplace:

𝛩 =
𝐾𝑞

𝑠(𝑠 + 𝜏𝑞)

 Modelado del sistema completo

Multiplicando las dos ecuaciones anteriores, normalizando la función obtenida queda:

𝛩 =
𝐾𝑚 ∗ 𝐾𝑞

𝑠(𝑠 +𝜏𝑚)(𝑠 + 𝜏𝑞)

Donde 𝜏𝑚 es el polo correspondiente al motor, y 𝜏𝑞 es el polo correspondiente a la rotación de

la estructura.

Y el modelado del sistema mediante variables de estado:

Figura 4. Aproximación lineal

de la relación de F / Accion

8

[

𝜃̈𝑥

𝜃𝑥̇

𝜃̈𝑦

𝜃̇𝑦

𝜃̈𝑧

𝜃̈𝑧

∆𝐹1̇

∆𝐹2̇

∆𝐹3̇

𝐹𝑡𝑜𝑡𝑎𝑙
̇]

=

[

−1

𝐽𝑞1
 , 0, 0, 0, 0, 0,

𝐾𝑞1

𝐽𝑞1
, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0 , 0

0, 0,
−1

𝐽𝑞2
, 0, 0, 0,0,

𝐾𝑞1

𝐽𝑞2
, 0, 0

0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0 , 0, 0, 0,
−1

𝐽𝑞3
, 0, 0, 0,

𝐾𝑞3

𝐽𝑞3
, 0

0, 0, 0, 0, 0, 0,
−1

𝐽𝑚
, 0, 0, 0

0, 0, 0, 0, 0, 0, 0,
−1

𝐽𝑚
, 0, 0

0, 0, 0, 0, 0, 0, 0, 0,
−1

𝐽𝑚
, 0

0, 0, 0, 0, 0, 0, 0, 0, 0,
−1

𝐽𝑚

]

×

[

𝜃𝑥̇

𝜃𝑥

𝜃𝑦̇

𝜃𝑦

𝜃𝑧̇

𝜃𝑧

∆𝐹1
∆𝐹2
∆𝐹3
𝐹𝑡𝑜𝑡𝑎𝑙]

+

[

0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0

𝐾𝑚

𝐽𝑚
, 0,

−𝐾𝑚

𝐽𝑚
, 0

0,
𝐾𝑚

𝐽𝑚
, 0,

−𝐾𝑚

𝐽𝑚
𝐾𝑚

𝐽𝑚
,
−𝐾𝑚

𝐽𝑚
,
𝐾𝑚

𝐽𝑚
,
−𝐾𝑚

𝐽𝑚
𝐾𝑚

𝐽𝑚
,
𝐾𝑚

𝐽𝑚
,
𝐾𝑚

𝐽𝑚
,
𝐾𝑚

𝐽𝑚]

× [

𝑈1
𝑈2
𝑈3
𝑈4

]

 Identificación del sistema completo

Para la identificación del sistema se ancla el chasis a una estructura metálica que permite la
libre rotación en torno a un único eje.

Para ello se generan señales aleatorias cuadradas con un determinado margen espectral, se han
generado varios espectros para buscar la mejor respuesta y varias señales dentro de cada
espectro para comprobar que dan resultados similares.

El propio algoritmo arranca la tarea de identificación de la aeronave, recepciona y almacena la
respuesta emitida por la aeronave. Con esto obtenemos el vector de entrada al sistema, y el
vector de salida. Introduciendo los datos en la herramienta obtenemos la siguiente respuesta

Figura 5. Respuesta sistema real e identificados, con valores identificacos cercanos al 80%

9

Resultando la ecuación global entorno a un eje:

𝛩 =
0.009637 ∗ 1.89310976

𝑠(0.09639 ∗ 𝑠 + 1)(0.8613 ∗ s + 1)

4.2. CONTROL

 Técnicas de Control

Pueden abarcarse dos puntos de vista para la implementación del control, al ser un sistema
MIMO, (Multiple Inputs Multiple Outputs), puede optarse por implementar un control por eje, con
bucles de control independientes, o modelar un control que contemple todos los bucles.

4.2.1.1. Modelado por controles independientes

Con la trasformada de la función de transferencia al plano Z, la ecuación pasa a ser un
conjunto de sumas y restas de las entradas y salidas actuales y pasadas multiplicadas por
unas constantes.

Disponen de una única entrada así como de una única salida, por lo que no es el idóneo para
sistemas MIMO (Multiple Inputs Multiple Outpus), si bien siempre puede aplicarse el teorema
de la superposición.

4.2.1.2. Control en variables de estado

Se basa en la conversión de una ecuación diferencial de orden superior o conjunto de ellas,
(admite sistemas MIMO) en un sistema de ecuaciones diferenciales de primer orden.

Estas ecuaciones pueden escribirse en forma matricial, en función a un vector de las variables
del sistema, llamado variables de estado, por estar compuesto por las variables del sistema
que determinan su estado (tales como posición o velocidad).

Los polos del sistema (correspondientes a las soluciones de las ecuaciones diferenciales)
pueden calcularse como los valores propios de la ecuación, lo que proporciona una potente
herramienta matemática para el estudio de control. Al estar todo el sistema descrito en forma
de matrices facilita en gran manera la simulación del sistema, permitiendo un incorporar
elementos como estimador de estado y perturbaciones.

Como el sistema es MIMO, y se desea incorporar funciones como el estimador de
perturbaciones, esta será la técnica escogida, además, esta implementación permite conocer
el estado del sistema de todo momento, ya que las variables que lo definen están
almacenadas en el vector.

Figura 6. Esquema del lazo de
realimentación del control en
variables de estado

10

 Topología de control utilizada

4.2.2.1. Estimador de estado y perturbaciones

En lugar la técnica de la integración del error para la corrección de las perturbaciones, así
como garantizar que el permanente alcanza la referencia, se opta por implementar un
estimador de perturbaciones. El estimador de perturbaciones se basa en comparar la medida
real del sistema, con la medida que ha simulado en función a las ecuaciones que definen el
sistema, con esta comparación, es capaz de calcular la magnitud de la perturbación para
posteriormente corregirla.

Esta técnica evita los principales problemas típicos de la acción integral, como la saturación de
los actuadores sin previo aviso, o el wind-up, además de que la estimación es más rápida que
la integración del error.

Concretamente en un sistema de este tipo resulta interesante saber el estado de cada motor (
como la perdida de empuje), así como el punto de trabajo en el que está, dado que la
saturación conlleva a la pérdida del control, y en este caso muy posiblemente a colisionar la
aeronave con el suelo. Conociendo la perturbación de cada motor el sistema podría avisar de
una inminente perdida de un motor.

Otra función del estimador de perturbaciones es corregir las no linealidades del modelo, que
estimará como perturbaciones.

Esta técnica precisa de un modelado del sistema muy preciso, de lo contrario el
comportamiento del sistema puede interpretarse como perturbaciones, descontrolando el
sistema.

De forma idéntica al estimador de perturbaciones, mientras el sistema sea observable se
pueden estimar variables de estado, esto permite aplicar una filtración a la señal medida, (no
usado en este proyecto), o conocer el valor de aquellas variables de estado que no son
medidas, (en este caso el empuje de los motores)

Figura 7. Esquema de control con estimador de estados

11

4.2.2.2. Integrador de perturbaciones

Como alternativa al estimador de perturbaciones, se ha implementado la acción integral
para corregir perturbaciones, similar a la clásica implementación, en lugar de integrar la
acción, se integra una variable intermedia, de esta manera, si bien el comportamiento idéntico,
de esta manera es posible conocer el valor de la perturbación que se está corrigiendo.

Tiene las desventajas de un menor tiempo de respuesta, y los problemas asociados al integral,
y la ventaja de que su sencillo funcionamiento es independiente de otro parámetro que no sea
el error medido. Se contempla su uso en el caso de que el modelo nos sea lo bastante preciso
como para que estimador de perturbaciones funcione correctamente.

4.2.2.3. Pre alimentador de perturbaciones

Las perturbaciones que pueden ser calculadas y predichas, tales como el peso de la batería
el salir de la posición de equilibrio, los efectos giroscópicos (no contemplados en este
proyecto)…, se prealimentarán, haciendo su impacto nulo, y no siendo necesario estimarlas o
integrarlas.

 Lazo de realimentación

Se podría usar Matlab para calcular la matriz de realimentación para ubicar los polos en las
posiciones deseadas (en función de unos parámetros de respuesta deseados), una opción
perfectamente válida para sistemas más simples, con parámetros mejor definidos y salidas más
estables.

Dada la naturaleza de la planta del sistema a controlar, se opta por ubicar los polos de una
forma manual, ya que la matriz de realimentación obtenida de Matlab realimenta todos los
estados, cosa no idónea en este sistema, al no saber la exactitud del modelo y el difícil ajuste a
mano que supone.

Usando una estructura más simple, el ServoControl podemos ubicar los polos con únicamente
dos lazos de realimentación, dependientes cada uno de una única variable de estado,
(Realmente podrían usarse tres, para acelerar la respuesta del motor).

Esta topología si permite un fácil ajuste a mano por tener únicamente dos parámetros a variar,
con comportamientos radicalmente distintos, la ganancia proporcional aumenta la acción
aplicada en función del error, la ganancia de la velocidad reduce a la acción en función de la
velocidad del sistema. Básicamente, la ganancia de la velocidad se opone a todo movimiento, y
la proporcional encara al sistema hacia la referencia. Esto permite respuestas rápidas sin
oscilaciones, ya que al desaparecer la acción integral con la reducción del error, el sistema se
frena por la acción de la ganancia de la velocidad.

Figura 8. Esquema Servo-Control en un eje

12

Existen 4 actuadores en total, para los ejes X, e Y la acción se reparte entre los 2 motores
enfrentados, 0 y 2 para el eje X, 1 y 3 para el eje Y, para el eje Z, (tanto rotacional como para el
empuje) se usan los 4 motores, de ahí los factores de división en las constantes, así como su
signo, en función de su aporte a la acción.

Para su implementación mediante variables de estado se incorporaran las constantes del lazo
a la matriz de realimentación y a la matriz de pre alimentación. Quedando el sistema
(excluyendo el estimador o integrador de perturbaciones):

Quedando la matriz de realimentación y prealimentación:

Dado que la acción se aplica en varios motores, la constante del lazo se divide por ese
número de motores, así como por el signo de la aplicación para esa acción.

 Cálculos del control

Los cálculos de las constantes se realizan en función de
las ecuaciones del Servo-Control, mostradas en la Figura 10.
La realización de los cálculos, la simulación del sistema y del
eje están en los anexos

El polo más rápido se desprecia por tener una dinámica más
de cinco veces más rápida al otro polo.

Figura 9. Esquema Pre alimentación

Figura 10. Ecuaciones ajuste
Servo Control en sistema de
segundo orden con integrador

13

5. SENSORES

En todo sistema de control, algo tan importante como el propio sistema de compensación de la
planta, es el sensado de las variables a controlar, puesto que una incorrecta medición conllevará a
una incorrecta respuesta del controlador, así como una señal de salida pobre comprometerá la
respuesta de todo el sistema.

Como se vio durante el modelado matemático del sistema, existen 4 magnitudes físicas a medir en
las variables de estado, posición angular, velocidad angular, Fuerza y RPM.

Dada la necesidad de reducir el peso, todos los sensores estarán basados en tecnología MEMS, La
tecnología MEMS se basa en el micro mecanizado del silicio, lo que confiere tamaños micrométricos
y por ende poco peso, suele basarse en la variación de la capacitancia de un condensador
mecanizado por una fuerza externa a él.

Los sensores a utilizar son un giróscopo, para la medición de la velocidad angular, un acelerómetro,
el cual es el capaz de medir las fuerzas que actúan en el sistema y una brújula que realmente mide
campos magnéticos. Todos ellos dan la medición respecto en los tres ejes, es decir en forma de
vector, las RPM no se medirán, dado que no son fundamentales para el lazo de control, y se
procederá a su estimación.

5.1. SENSORES ORIENTACIÓN

La orientación se mide en se compone de la orientación respecto del eje z del plano suelo
(YAW) y la inclinación del chasis respecto del plano suelo (PITCH y ROLL).

 Acelerómetro

Como la gravedad es única e inamovible, con una orientación perpendicular al plano
terrestre, puede ser usada para calcular la orientación del chasis respecto al plano terrestre.

La gravedad es una fuerza, y por ende proporcional a la aceleración, pude medirse con un
acelerómetro. Sin embargo el acelerómetro es extremadamente sensible a las vibraciones, por lo
que queda imposibilitado su uso exclusivamente para calcular la posición, dado que el sistema
sobre el que se monta genera mucho ruido mecánico (vibración) de alta frecuencia. Otro
problema asociado al acelerómetro es que mide cualquier tipo de aceleración, no únicamente la
gravedad, por lo que la aparición de otras fuerzas (siempre que el sumatorio de fuerzas que
actúan sobre la aeronave no sea igual a 0), conlleva al falseamiento de la medida.

 Giróscopo

El uso de un giróscopo, si bien no aporta la medición del ángulo, si lo hace de la velocidad,
por lo que integrando esta velocidad se obtiene el ángulo girado desde el instante en que
comienza la integral, por lo que se obtiene el angulo girado desde el punto inicial, no el absoluto,
únicamente coincidirán si el angulo inicial es 0.

Al igual que todo sensor, el giróscopo acontece de errores en la medida, tales como no
linealidad, o un valor de offset, que es una componente de continua (producida por efectos no
ideales de la propia electrónica del sensor), es este insignificante valor de offset el que nos
causa problemática con la técnica de la integración, al ser integrado, produce una salida lineal
dependiente con el tiempo, causando un efecto deriva en el sensor, midiéndose una pequeña
rotación con el tiempo, aun estando el sensor completamente estático.

 Brújula

Conocido como magnómetro, usando el efecto hall es capaz de sensar la magnitud de un
campo magnético en los tres ejes cardinales, por lo que pude ser usado para medir la orientación

14

usando el campo magnético terrestre, que si bien no es tan único e inamovible como la
gravedad, es lo suficientemente estático para ser usado.

La problemática de referenciar una orientación usando un campo magnético es la variación de
este, dado que si bien la emisión es estable, el flujo magnético en un punto del espacio es
dependiente de la reluctancia del espacio que lo rodea. Por lo que la rotar la aeronave, y por
tanto el chasis varia la reluctancia de los tres ejes espaciales del sensor, esto puede paliarse
aplicando factores de corrección para la rotación del sensor en la estructura, pero no cuando lo
que varía es el entorno.

Otro problema es el hecho de que las corrientes generan campos magnéticos, dada la
naturaleza de impulsión eléctrica de la aeronave, es bastante factible la aparición de ruido en la
medida provocada por acción de los motores eléctricos.

 Algoritmo de fusión sensorial.

La solución para calcular la orientación deja de ser trivial, siendo necesario un algoritmo que
fusione los sensores para paliar los desventajas que poseen por separado, obteniendo una
medición de las variables precisa, absoluta, y libre de ruido.

Existen múltiples algoritmos de fusión sensorial, de varias eficiencias y costos computaciones,
sin embargo todos comparten con más o menos acierto la misma idea, estimar la posición
mediante la integración, corrigiendo posteriormente con el acelerómetro y la brújula.

5.1.4.1. Filtro Complementario:

El diseño más simple de todos, calcula la posición mediante la integración y mediante la
acción de la gravedad (campo magnético para eje Z), a cada una de estas estimaciones se le
asigna un tanto por uno, (estas constantes suman uno, de ahí complementario), es decir, la
salida es un media ponderada entre el ángulo integrado por el giroscopio y el angulo medido
por el acelerómetro.

Angle=α⋅(Angulo +Velocidad Angular ⋅dt)+(1−α)⋅angulo acelerometro

 Un filtro muy simple y con un redimiento bastante pobre.

5.1.4.2. Filtro de Kalman:

Específicamente desarrollado para la fusión sensorial en los años 60, este algoritmo ha
sido ampliamente usado para la navegación de vehículos y guía de misiles espaciales, también
permite estimar las variables no medibles, y es excelente frente al ruido blanco, es recursivo,
por lo que se ajusta a las variaciones del sistema, es polivalente y puede adaptarse para
cualquier sistema.

Su funcionamiento consiste en un estimador en el que la K de realimentación se calcula en
función de las varianzas de los ruidos, es decir calcula cuanto de precisa es la medición
respecto de la simulación. Dando como salida una medida entre ambos valores aportando peso
a cada una en función de lo precisa y probable que es.

Sus inconvenientes son que se precisa de un modelo matemático preciso, así como de
potencia de cálculo, dado que es computacionalmente complejo y pesado.

15

5.1.4.3. Algoritmo de Mahony:

Específicamente desarrollado para la navegación, es un algoritmo para la estimación de la
actitud y rumbo (AHRS), una solución intermedia a las anteriores, se basa en el cálculo de la
posición mediante el giróscopo y la posterior corrección con los otros sensores.

Utiliza la matriz de cosenos directores (DCM), aunque también existe la posibilidad de realizarlo
con quaternios, lo que permite obtener la orientación del sistema en cualquier sistema de
coordenadas con unas pocas operaciones.

El algoritmo se basa en rotar dicha matriz en función del ángulo que se estima que se ha
rotado integrando la velocidad, para dicha rotación el algoritmo establece que se use una
aproximación, sin embargo una opción más precisa, aunque algo más costosa
computacionalmente, es usar la matriz de rotación respecto de un vector. El vector de rotación
corresponde a las medidas del giróscopo en x,y,z, por lo que solo debe convertirse el vector en
unitario y obtener su magnitud (ahí radica el aumento computacional) , una vez obtenida la
matriz de rotación, se multiplica por la DCM del momento anterior, (obteniendo por las
propiedades de las matrices de rotación) la nueva DCM.

El algoritmo corrige los errores numéricos detectando la perdida de ortogonalidad de la DCM,
para corregirla posteriormente. Tras lo cual corrige la posición mediante un PI, usando como
referencia las medidas obtenidas del acelerómetro y de la brújula.

Este es el algoritmo escogido, ya que ofrece un filtrado muy robusto, es independiente del
sensor, a nivel computacional es bastante más liviano que el filtro de Kalman, y únicamente
dispone de dos parámetros, su ajuste se prevé un fácil ajuste, parámetro muy deseable, debido
a que el ajuste se realizará de forma experimental.

5.2. TRATAMIENTO DE LA SEÑAL OBTENIDA DE LOS SENSORES

Si bien el giróscopo es mucho menos sensible a las vibraciones mecánicas que el giróscopo,
esto no indica que sea inmune. En la mayoría de sistemas de este tipo, un amortiguador mecánico
sirve para este propósito (montar el sistema sobre silent-blocks), también al usarse un sistema que
calcula la posición basándose en la integración de la velocidad, el ruido blanco tiene un impacto
mínimo. Sin embargo el esquema de control que se usara (explicado en la sección 6.1.4) se usa la
medición de la velocidad directamente, por lo que es necesario una medición libre de ruido para
que el control no se vea afectado.

Tras analizar la señal de la velocidad, puede apreciarse un ruido senoidal, con una frecuencia
aproximada de 100Hz, una frecuencia relativamente baja dadas las revoluciones a los que los
motores funcionan, así como las conmutaciones eléctricas de los motores, por lo que
posiblemente sea la frecuencia de resonancia de la estructura.

Para lograr limpiar la medida, se debe utilizar algún filtro. Como la frecuencia de respuesta del
sistema es inferior, un filtro paso bajo es una opción válida dado que las frecuencias mayores
nunca tendrán una magnitud considerable, por lo que un filtro pasa banda es innecesario. La
problemática de este filtro es que la frecuencia de corte no es lejana a la de respuesta del sistema,
debe buscarse un filtro que no atenúe las frecuencias correspondientes al funcionamiento del
sistema, pero lo más alejada posible de la frecuencia del ruido. Se debe escoger una ancho de
banda que no limite el tiempo de respuesta del sistema.

Otra gran ventaja de la incorporar el filtro es la eliminación de datos espureos, así como de su
impacto negativo para el control. Experimentalmente se ha determinado que un filtro de 20Hz de
orden 4, topología chebisev, proporciona una medida limpia de ruido, con un retraso aceptable,
entendiendo como aceptable un retraso equivalente un periodo de muestreo del control, por lo que
el sistema controla con la posición anterior, que puede parecer mucho, pero es inferior a 5ms y la
dinámica del sistema, este retraso no afecta al control, podría haberse usado el filtrado solo para

16

la velocidad, eliminando de esta manera el retraso en el sensado de la posición (al ser integrada
no le afecta el ruido blanco), pero experimentalmente no se apreció retraso significativo, por lo que
se descartó.

La señal original puede verse en la Figura 11, tras pasar por el filtro anteriormente descrito, la
señal queda apta para ser usada por el control, el efecto del filtro puede apreciarse en la Figura
12.

Figura 11. Medidas del giróscopo IMU9250 sin procesar

Figura 12. Medidas del giróscopo IMU9250 filtradas y convertidas a grados/segundo

17

6. ESTRUCTURA HARDWARE

6.1. DISPOSITIVOS HARDWARE

 Procesador principal

Dada el esquema de control utilizado, así como el procesado de señal de los filtros,
se pude deducir que la implementación del controlador estará caracterizada por un alto
costo computacional.

Como también se aprecia, (y detalla más adelante), para implementar todos los
procesos periódicos se opta por el uso de un Sistema Operativo en Tiempo Real (RTOS).

A nivel de periféricos, es necesario al menos 4 PWM, un I2C y una UART.

El microprocesador escogido ha sido el TM4C123GH6PM de Texas Instruments, que
reúne todos los anteriores requisitos:

 Arquitectura ARM Cortex M4-F: Microprocesador ARM de la gama de alto desempeño (100
MIPS @80 Hz), equipado con unidad de coma flotante de 32 bits.

 Funciones de DSP: lo que permite realizar cálculos numéricos en pocos ciclos de reloj.

 Periféricos: 16 PWM, 4 SPI, 4 I2C, 8 UART, 2 CAN y USB.

 TI-RTOS: Sistema Operativo en Tiempo Real desarrollado por ti para sus integrados.

 Tiva Launchpad: Placa de desarrollo de bajo costo con JTAG integrado.

Dada la cantidad de periféricos se implemetaran dos I2C, una para sensores, y otra
para lo demás. Así como 3 UART para telemetría y usos futuros.

 Procesador Auxiliar

Dado que las funciones que realiza ni son críticas en tiempo, ni revisten costo
computacional, se opta por un procesador simple y de bajo coste, que disponga de al menos 8
GPIO, y un I2C.

El µprocesador escogido es el Atmega8 que cumple los requisitos, se ha optado por este
modelo que es pin a pin compatible con los modelos más potentes de la misma familia, por si en
un futuro fuera necesaria más potencia de cálculo.

 Sensores

Todos los sensores utilizados (excepto el US), están basados en la tecnología MEMS por el
poco peso y reducido tamaño que poseen, también son digitales con un bus de comunicaciones
I2C.

El sensor digital incorpora el conversor ADC, lo que evita que el ruido electromagnético se
superponga a la señal de salida, al ser digitales también son configurables en cuanto al muestreo
y sensibilidad. El interfaz I2C permite conectar hasta 255 dispositivos en un mismo bus,
consistente en dos líneas (SCL y SDA), por lo que se ahorran pines en el procesador principal.

Los modelos usados son el MPU-6050 del fabricante Invesense, consistente en acelerómetro y
Giróscopo, y como brújula la HMC5883L de HoneyWell.

18

También se ha trabajado con el MPU-9250 de Invesense, que incorpora los tres sensores en un
único integrado.

6.2. DESARROLLO DE LA ELECTRÓNICA ASOCIADA

Ha sido necesario el desarrollo de circuitería adicional, los esquemáticos se encuentran en
los anexos.

 Diseño sobre placa de desarrollo

Se ha desarrollado una PCB donde se inserta la placa de desarrollo “Tiva Launchpad”, la
función de esta PCB, es dar tanto apoyo mecánico a la placa de desarrollo para fijarla al chasis
de la aeronave, como para ubicar la circuitería adicional requerida:

 Microprocesador Auxiliar

 Circuitería de alimentación

 Conectores para los sensores

 Circuitería de los buses de comunicación

 Diseño de PCB de la versión final

Tras comprobar el correcto funcionamiento del montaje en la placa de desarrollo se
implementa la misma circuitería en una PCB, prescindiendo esta vez de la placa de evaluación y
desarrollando una placa de control completa, que no necesita de ningún elemento externo para
el control, se han añadido los sensores de orientación, consistentes en un único integrado.

Eliminando todos los elementos no necesarios (conectores, pulsador, JTAG), se obtiene una
PCB cuadrada de 5cm de lado, reduciendo de esta manera el peso, tamaño, y coste de la placa
controladora.

También se han añadido conexiones a periféricos no usados con vistas a futuros desarrollos.

7. ESTRUCTURA SOFTWARE

7.1. ESTRUCTURA DEL RTOS EN µPROCESADOR PRINCIPAL

Se adopta una planificación de tareas basada en prioridades estáticas, dado que el plazo de
respuesta es igual al periodo, la técnica empleada será Rate Monotonic, ordenando la prioridad de
las tareas en función de su periodicidad, usando la técnica de techo de prioridad para minimizar el
efecto de la inversión de prioridad.

Se ha evitado el uso de variables globales en la medida de lo posible, sustituyéndolas por
variables protegidas por “Mutex” (mecanismo de exclusión mutua), evitando colisiones entere
tareas que comparten datos. Únicamente los “handlers” de las tareas y periféricos, y variables
relacionadas con interrupciones (dado que estas no pueden hacer uso de las “Mutex”), sin
embargo estas todas estas son variables del tamaño de palabra del procesador, por lo que sus
instrucciones son atómicas, anulando la posibilidad de error.

Para transferencia de datos sin interés global (séase comunicación punto a punto) entre tareas se
hace uso de los “Mailbox”

Para la sincronización de tareas tanto periódicas como en el arranque se utiliza la función de
“Semaphore”, activadas por temporizadores software (en el caso de la activación periódica).

19

La comprobación de que el sistema cumple plazos, así como las capturas del tiempo de ejecución
de las tareas se detallan en los anexos, para dichos cálculos se asume un tiempo despreciable de
bloqueo por acceso a variables compartidas, dado el escaso tamaño de estas, y por la velocidad
interna del bus del procesador, el bus compartido si se ha contemplado como bloqueo.

 Tareas

Las tareas y su descripción se listan por orden de prioridad

7.1.1.1. Lectura IMU

T = 1ms, C = 0.080ms

La función de esta tarea consiste en leer los datos de los sensores de orientación
(giróscopo, acelerómetro, brújula), sean o no parte de un mismo integrado.

Tras leer los datos estos son filtrados mediante el filtro anteriormente descrito en la sección
4.1 Sensores Orientación, también se les aplica una rotación para obtener la medida en
base a los ejes referencia del chasis, para esto se usan las propiedades de la matriz de
rotación, para finalmente almacenar el dato en la variable protegida.

El periodo de esta tarea es de 2ms, para permitir filtrados de hasta 200Hz, las funciones de
DSP anteriormente descritas consiguen reducir considerablemente el tiempo de la ejecución
de los 6 filtros, y por ende el de la tarea que se ejecuta 500 veces por segundo.

7.1.1.2. AHRS

T = 2ms, C = 0.413ms

La tarea ejecuta el algoritmo de fusión sensorial anteriormente descrito a razón de
200Hz, un tiempo lo suficientemente pequeño para mantener una medida discreta muy
similar a la continua, sin ser demasiado pequeño para producir errores por diferencia de
tamaño en la coma flotante.

Para la ejecución del algoritmo, la tarea obtiene los datos AHRS anteriores, y las medidas
más recientes del IMU, tras esto las procesa para obtener la nueva medida y la almacena.

7.1.1.3. Control

T = 5ms, C =0.400ms

Tarea principal del sistema en la que se ha implementado el algoritmo de control y
estimación, en función de los parámetros del sistema ejecuta el método de control escogido,
así como el estimador de variables y perturbaciones. Por la propia estructura del control, es
la tarea computacionalmente más pesada.

Adicionalmente también trasmite vía UART la telemetría consistente en las variables de
estado del sistema, perturbaciones estimadas, medidas de los sensores, referencias de
entrada, y acciones aplicadas a cada motor.

7.1.1.4. Medida Altura

T = 50ms, C = 0.050ms

Tarea consistente en lanzar un pulso al sensor de US e iniciar el contador de tiempo
asociado, así como de iniciar la medida de presión del barómetro, tras lo que entra en

20

estado inactivo el tiempo que el sensor necesita para sensar la presión atmosférica, tras lo
que se activa para leer y procesar la media, almacenándola.

La tarea no se encarga de la recepción del eco del sensor (si lo hubiere), eso es gestionado
mediante interrupción.

7.1.1.5. Coordinador

T = 25ms, C = 0.030ms

La tarea encargada de comunicarse con el microprocesador auxiliar par obtener vía
I2C las medidas del receptor.

Tras esto determina que actuación debe tener la aeronave, configurando los parámetros
para el control, gestionar los modos de funcionamiento, y activar o desactivar las tareas en
consecuencia.

7.1.1.6. Identificación

Ejecución exclusiva, no en el ciclo inicial. Únicamente usada para la identificación del
sistema.

Tarea que lee a través de la UART una secuencia de datos correspondientes a las acciones
a aplicar en los motores, almacenándolas en la memoria dinámica.

Tras la recepción aplica a los motores la acción requerida, enviando por la UART la
velocidad sensada.

Figura 13. Esquema de Tareas y recursos compartidos del Sistema Operativo.

0.6ms

0.1ms

21

7.2. ESTRUCTURA DEL µPROCESADOR AUXILIAR

La inclusión de un microprocesador auxiliar no surge por la necesidad de paralelizar tareas
para aliviar al principal, su inclusión es debida a un aspecto de seguridad.

 Sistema de desactivación de emergencia.

Si bien el procesador principal cuenta con dispositivos de protección, tales como un
WatchDog, no se puede garantizar la no existencia de errores.

Pese a que estos aspectos han sido tenidos en cuenta durante el desarrollo, y ante la
imposibilidad de demostrar que no existe error, por improbable que sea, o un error de hardware
debido a factores externos como el ruido (más improbable aun), se ha optado por usar un
microprocesador externo, con una programación “simple” (y por ende, menos propensa a
errores), consistente en un bucle eterno que detenga el sistema en caso de error, como es
habitual en los sistemas de robótica.

Así pues, este micro activa el reset en el microprocesador principal cuando pierde en enlace de
radio. Lo que se consigue analizando la trama PWM de la siguiente manera:

Con la recepción del primer flanco de la señal, se resetea un contador descendente, el valor de
este contador es mayor que la distancia periódica entre tramas de 20ms, por lo que nunca
llegara a 0 mientras reciba la señal del receptor, si esta se pierde, al llegar a 0 ejecuta la rutina
que resetea el micro principal activando el correspondiente pin

 Recepción de radio & sensado de batería

Dado que la señal de radio es mecanismo de activación, se ha implementado que sea este
procesador quien capture la señal PWM periódica del receptor, así como los niveles de tensión
de las diferentes celdas de la batería.

Con esto evitamos el uso de pines en el microprocesador principal, así como las interrupciones
que generarían, lo que penalizaría la ejecución debido a la segmentación del procesador.

En contra, el micro principal lee los valores recibidos del receptor del micro auxiliar a través de
una comunicación I2C.

8. VUELO:

8.1. PRUEBAS DE VUELO

Tras los ajustes pertinentes, se determina que el estimador de perturbaciones no es lo
suficientemente preciso, por lo que puede estimar las perturbaciones, pero no corregirlas,
desestabilizando el sistema.

Por ese motivo se emplea el integrador de perturbaciones en el bucle de control, logrando así un
error de permanente nulo, como se aprecia en las imágenes obtenidas de la telemetría:

22

Figura 14. Captura de telemetría, Referencia en azul, Posición angular en verde

Con una perturbación estimada (incluyendo la pre alimentación) de:

Figura 15. Captura de telemetría, Perturbación modelada como fuerza en el eje.

23

Problemas que sobre el modelo teórico nunca se predijeron, tales como:

 Ruido en los sensores, producido por las vibraciones mecánicas que llevo a reenfocar todo el
algoritmo de sensado, fijación del sensor…, con el consecuente retraso de todo el proyecto.

 Cambio en el control, en un principio se pretendía usar un joystick con enlace de Bluetooth, lo
que termino por descartarse dado el alcance del mismo, como por su incapacidad de mandar
datos en tiempos fijos.

 Recableado completo del sistema, los grandes picos de corriente de los motores llegan a
inducir tensiones en los cableados de control así como en la propia referencia del motor, lo
que producía que los motores tuvieran comportamientos erráticos.

 Efecto suelo y otros efectos no lineales, sobre todo a bajas rpm, muy lejos de la zona
linealizada, lo que produce que la aeronave tenga un comportamiento mas oscilante.

 Necesidad de una completa telemetría, para identificar las causas del mal funcionamiento del
sistema, o de la dinámica del mismo, gracias a la cual se pudo descubrir el ruido y como
afectaba al control.

 Fallos de montaje, como orientación incorrecta del sensor, cableados incorrectos, o cables
demasiado largos que acabaron enganchándose en las hélices, todos ellos concluyendo en un
violento impacto contra el suelo.

 Inexperiencia en el pilotaje, lo que complico las pruebas de vuelo, asi como la extracción de
conclusiones.

 Micro Auxiliar de seguridad, tras un bloqueo del TI-RTOS

9. CONCLUSIONES

Tras el desarrollo del control, y visto el comportamiento del mismo, se puede deducir que para este
método de control es imprescindible, sobre todo en lo referente al estimador, que el modelo sea lo más
exacto posible, es necesaria una identificación más precisa de lo que se obtiene en la estructura, quizás
una identificación en vuelo sería lo más preciso, compensando las perturbaciones para hacer más
precisa la identificación.

Salvando ese obstáculo, o sustituyéndolo por el integrador de perturbaciones, el control Servo-Control ha
demostrado ser válido para este tipo de aplicación, precisando de únicamente la velocidad y posición del
eje, que pueden medirse directamente, no siendo necesaria la implementación en variables de estado
sino desea el estimador.

Para esta aplicación, una medida limpia de ruido en la velocidad es determinante.

El algoritmo de AHRS, junto con el filtrado de los sensores, logra una medida limpia de la ubicación y
velocidad del sistema, consiguiendo eliminar los efectos de deriva.

El proyecto no está cerrado, pueden seguirse añadiendo funcionalidades, como el control de posición en
el espacio cartesiano, el control de altura…, podría mejorarse el sistema de control usando ESC que
realimenten las revoluciones de los motores, o re-identificar el sistema con los datos obtenidos durante el
vuelo.

24

10. REFERENCIAS & BIBLIOGRAFIA

 “INGENIERIA DE CONTROL MODERNA 5ª ED”, Katsuhiko Ogata.

 “SISTEMAS DE CONTROL EN TIEMPO DISCRETO”, Katsuhiko Ogata.

 “COMPLEMENTARY FILTER DESIGN ON THE SPECIAL ORTHOGONAL GROUP”, Robert Mahony, Tarek

Hamel, Jean-Michel Pflimlin.

 “MODELLING, IDENTIFICATION AND CONTROL OF A QUADROTOR HELICOPTER”, Tommaso Bresciani.

11. ANEXOS

A. CÁLCULOS SISTEMA OPERATIVO

Para el cálculo de los tiempos de ejecución del sistema, se contemplan como despreciables
el tiempo de acceso a las variables compartidas, dada la frecuencia de trabajo del procesador,
así como el tamaño de las mismas.

El bus I2C compartido se contempla como recurso compartido, el tiempo de acceso a los
datos se ha contabilizado fuera del tiempo de ejecución de la tarea, dado que el procesador
puede atender otras tareas. Se ha modelado como retraso fijo, al que se le añade el retraso
producido por que una tarea de menos prioridad este usando el recurso compartido, lo cual se
calcula en función del periodo de ambas tareas.

Tarea Lectura IMU

 T=D=1ms, C = 0.080ms

 Retraso propio de acceso al I2C de 0.6ms y por otras tareas de menor prioridad de 0.1ms.

𝑑𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈 = 𝐶𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈 + 𝑏𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈 𝐼2𝐶 + 𝑏𝐼2𝐶 = 0.080ms + 0.6ms + 0.1ms = 0.78ms < 1ms

Tarea AHRS

 T=D=2ms, C = 0.400ms

𝑑𝐴𝐻𝑅𝑆 = (⌈
𝑃𝐿𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈

𝑃𝐴𝐻𝑅𝑆

⌉ (𝐶𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈) + ⌈
𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎

𝑃𝐴𝐻𝑅𝑆

⌉ 𝑏𝐼2𝐶) +𝐶𝐴𝐻𝑅𝑆 =

2 ∗ (0.08𝑚𝑠) + 1 ∗ (0.1𝑚𝑠) + 0.4𝑚𝑠 = 0.66𝑚𝑠 < 2𝑚𝑠

Tarea Control

 T=D=5ms, C = 0.600ms

𝑑𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = (⌈
𝑃𝐿𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈

𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙

⌉ (𝐶𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈) + ⌈
𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎

𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙

⌉ 𝑏𝐼2𝐶) + ⌈
𝑃𝐴𝐻𝑅𝑆

𝑃𝑇𝑎𝑟𝑒𝑎 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

⌉ 𝐶𝐴𝐻𝑅𝑆 +𝐶𝐶𝑜𝑛𝑡𝑟𝑜𝑙 =

5 ∗ (0.08𝑚𝑠) + 1 ∗ (0.1𝑚𝑠) + 2 ∗ 0.4𝑚𝑠 + 0.4𝑚𝑠 = 1.7𝑚𝑠 < 5𝑚𝑠

Tarea Coordinador

 T=D=25ms, C = 0.030ms

25

𝑑𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟 = (⌈
𝑃𝐿𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈

𝑃𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟
⌉ (𝐶𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈) +

⌈
𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎

𝑃𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟
⌉ 𝑏𝐼2𝐶) + ⌈

𝑃𝐴𝐻𝑅𝑆

𝑃𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟
⌉ 𝐶𝐴𝐻𝑅𝑆 + ⌈

𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟
⌉ 𝐶𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝐶𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟 = 25 ∗ (0.08𝑚𝑠) + 1 ∗

(0.1𝑚𝑠) + 12 ∗ 0.4𝑚𝑠 + 5 ∗ 0.4𝑚𝑠 + 0.03𝑚𝑠 = 8.93𝑚𝑠 < 25𝑚𝑠

Tarea Cálculo Altura

 T=D=50ms, C = 0.050ms

 Retraso propio de acceso al I2C de 0.6ms

𝑑𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎 = ⌈
𝑃𝐿𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈

𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎
⌉ 𝐶𝑙𝑒𝑐𝑡𝑢𝑟𝑎 𝐼𝑀𝑈 + ⌈

𝑃𝐴𝐻𝑅𝑆

𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎
⌉ 𝐶𝐴𝐻𝑅𝑆 + ⌈

𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎
⌉ 𝐶𝐶𝑜𝑛𝑡𝑟𝑜𝑙 +

⌈
𝐶𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟

𝑃𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎
⌉ 𝐶𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑑𝑜𝑟 + 𝐶𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎 + 𝑏𝐶á𝑙𝑐𝑢𝑙𝑜 𝐴𝑙𝑡𝑢𝑟𝑎 𝐼2𝐶 = 50 ∗ (0.08𝑚𝑠) + 25 ∗ 0.4𝑚𝑠 + 10 ∗

0.4𝑚𝑠 + 2 ∗ 0.03𝑚𝑠 + 0.050𝑚𝑠 + 0.1𝑚𝑠 = 18.21𝑚𝑠 < 50𝑚𝑠

Con lo que queda demostrado que todas las tareas cumplen plazos.

B. CÁLCULOS CONTROL

Extracto del fichero .m de Matlab

Figura 16. Respuesta al escalón del

sistema en Simulink

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 23/06/2016 Sheet of
File: C:\Users\..\PlacaSoporte_v2.SchDoc Drawn By:

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

P1

Header 10X2A

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

P2

Header 10X2A

PB0_U1Rx
PB1_U1Tx

PB2_SCL
PB3_SDA

PB4_M0PWM2

PB5_M0PWM3

PB6_M0PWM0
PB7_M0PWM1

PA2_SSI0_CLK
PA3_SSI0_FSS
PA4_SSI0_RX

PA5_SSIO_TX
PA6_CE
PA7_IRQ

PC4_RX_4
PC5_TX_4
PC6
PC7

PD0_3.3V
PD1
PD2
PD3_BUZZER

PD7_Trigger

PE0_RX_7

PE1_TX_7
PE2
PE3

PF0

PF1

PF2
PF3

PF4

+3.3V

+VBUS

GND

GND

+3.3V

GND PB2_SCL
PB3_SDA

+3.3V

GND

PB2_SCL
PB3_SDA

GND

+3.3V

PB2_SCL
PB3_SDA

1
2
3

P6

PWM0

1
2
3

P7

PWM1

1
2
3

P8

PWM2

1
2
3

P9

PWM3

GND

GND

GND

GND

+VBUS

+VBUS

+VBUS

+VBUS PB6_M0PWM0

PB5_M0PWM3

PB7_M0PWM1

PB4_M0PWM2

1K

R1
Res1

1K

R2
Res1

+3.3V

PB2_SCL

PB3_SDA

1
2

P11

Header 2

1
2
3

P13

Header 3
GND

+3.3V

AD0

1
2
3
4

P17

Header 4

+VBUS

GND

Vin Vout
GND

VR1

Volt Reg
+VBUS

Q1

2N3906

Q2
2N3904

1K

R5
Res1

1K

R6

Res1

GND

GND

PD0_3.3V

1
2

P15

Header 2

GND

1K

R7

Res1

100pF

C1
Cap Pol1

GND

GND

PB1_U1Tx
PB0_U1Rx

PD3_BUZZER

PD7_Trigger

PD6_Echo

PD6_Echo

PE0_RX_7
PE1_TX_7

PE5_I2C2_SDA
PE4_I2C2_SCL

PE4_I2C2_SCL
PE5_I2C2_SDA

1
2

P16

I2C_AUX

1
2
3
4

P4

BAROMETRO

1
2
3
4

P5

BRUJULA

1
2
3
4

P14

Bluetooth

1
2
3
4
5

P3

IMU

AD0

I2C1_SCL
I2C1_SDA

1
2

P18

VCC

+VBUS

GND

1
2

P19

VCC

+VBUS

GND

1
2

P20

VCC

+VBUS

GND

+VBUS

RST

1K

R8

Res1

GND

+VBUS 5_VCC_BAT

1
2

POWER

Header 2

GND

0

R_GND

Res1

GND_BAT

Q3
2N3904

GND

1K

R9
Res1

+3.3V

RST

RST_SW

F1 PIC101

PIC102
COC1

PIF101 PIF102

COF1

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

PIP107

PIP108

PIP109

PIP1010

PIP1011

PIP1012

PIP1013

PIP1014

PIP1015

PIP1016

PIP1017

PIP1018

PIP1019

PIP1020

COP1

PIP201

PIP202

PIP203

PIP204

PIP205

PIP206

PIP207

PIP208

PIP209

PIP2010

PIP2011

PIP2012

PIP2013

PIP2014

PIP2015

PIP2016

PIP2017

PIP2018

PIP2019

PIP2020

COP2

PIP301

PIP302

PIP303

PIP304

PIP305

COP3

PIP401

PIP402

PIP403

PIP404

COP4

PIP501

PIP502

PIP503

PIP504

COP5
PIP601

PIP602

PIP603

COP6

PIP701

PIP702

PIP703

COP7

PIP801

PIP802

PIP803

COP8

PIP901

PIP902

PIP903

COP9

PIP1101

PIP1102

COP11

PIP1301

PIP1302

PIP1303

COP13

PIP1401

PIP1402

PIP1403

PIP1404

COP14

PIP1501

PIP1502

COP15

PIP1601

PIP1602

COP16

PIP1701

PIP1702

PIP1703

PIP1704

COP17

PIP1801

PIP1802

COP18

PIP1901

PIP1902

COP19

PIP2001

PIP2002

COP20

PIPOWER01

PIPOWER02

COPOWER

PIQ101

PIQ102
PIQ103

COQ1

PIQ201
PIQ202

PIQ203
COQ2

PIQ301
PIQ302

PIQ303
COQ3

PIR101

PIR102
COR1

PIR201

PIR202
COR2

PIR501

PIR502
COR5

PIR601 PIR602
COR6

PIR701 PIR702
COR7

PIR801 PIR802
COR8

PIR901

PIR902

COR9

PIR0GND01 PIR0GND02
COR0GND

PIVR101

PIVR102

PIVR103

COVR1

PIC101

PIP302

PIP401 PIP501

PIP1301

PIR102 PIR202

PIR901

PIVR103

PIF101

PIP1011 PIP602

PIP702

PIP802

PIP902

PIP1402

PIP1701

PIP1801 PIP1901 PIP2001

PIPOWER02

PIPOWER01

PIP301

PIP1302
NLAD0

PIC102

PIP1012

PIP2011

PIP303

PIP402 PIP502

PIP603

PIP703

PIP803

PIP903

PIP1303

PIP1401

PIP1502

PIP1704

PIP1802 PIP1902 PIP2002

PIQ201

PIQ301

PIR0GND02

PIVR102

PIR0GND01

PIP105

PIP1601
NLI2C10SCL

NLPE40I2C20SCL

PIP106

PIP1602
NLI2C10SDA

NLPE50I2C20SDA

PIF102

PIQ101

PIP101

PIP1501 PIR701

PIQ102

PIR502

PIQ103 PIVR101

PIQ202 PIR601

PIQ203
PIR501

PIQ302 PIR801

PIP2020
NLPA20SSI00CLK

PIP2019
NLPA30SSI00FSS

PIP2018
NLPA40SSI00RX

PIP108
NLPA50SSIO0TX

PIP109
NLPA60CE

PIP1010
NLPA70IRQ

PIP103

PIP1403

NLPB00U1Rx

PIP104

PIP1404

NLPB10U1Tx

PIP2012

PIP304

PIP403 PIP503 PIR101

NLPB20SCL

PIP203

PIP305

PIP404 PIP504
PIR201

NLPB30SDA

PIP107

PIP901

NLPB40M0PWM2

PIP102

PIP801

NLPB50M0PWM3

PIP2017

PIP601

NLPB60M0PWM0 PIP2016

PIP701

NLPB70M0PWM1

PIP204
NLPC40RX04

PIP205
NLPC50TX04

PIP206
NLPC6

PIP207
NLPC7

PIP1013

PIR602
NLPD00303V

PIP1014
NLPD1

PIP1015
NLPD2

PIP1016

PIR702

NLPD30BUZZER

PIP208

PIP1703

NLPD60Echo

PIP209

PIP1702

NLPD70Trigger

PIP2013

PIP1102

NLPE00RX07

PIP1017

PIP1101

NLPE10TX07

PIP1018
NLPE2

PIP1019
NLPE3

PIP2014
NLPF0

PIP1020
NLPF1

PIP201
NLPF2

PIP202
NLPF3

PIP2010
NLPF4

PIP2015

PIQ303
PIR902

NLRST

PIR802
NLRST0SW

Esquemático Placa Prototipo - Soporte

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 23/06/2016 Sheet of
File: C:\Users\..\uC_Aux.SchDoc Drawn By:

PC6 (RESET) 29

PD0 (RXD) 30

PD1 (TXD) 31

PD2 (INT0) 32

PD3 (INT1) 1

PD4 (XCK/T0) 2

VCC6

GND5 PB6 (XTAL1/TOSC1) 7

PB7 (XTAL2/TOSC2) 8

PD5 (T1) 9

PD6 (AIN0) 10

PD7 (AIN1) 11

PB0 (ICP1) 12

PB1 (OC1A) 13

PB2 (SS/OC1B) 14

PB3 (MOSI/OC2) 15

PB4 (MISO) 16

PB5 (SCK) 17

AVCC18

AREF20

GND21

PC0 (ADC0) 23

PC1 (ADC1) 24

PC2 (ADC2) 25

PC3 (ADC3) 26

PC4 (ADC4/SDA) 27

PC5 (ADC5/SCL) 28

GND3

VCC4 ADC6 19

ADC7 22

U4

ATmega8A-AU

1 2 3 4

P_BATERIA

10K

R
_b

at
_1

10K

R
_b

at
_2

10K

R
_b

at
_3

22K

R
ba

t4

GND_BAT

1
2
3

PWR
5_VCC_BAT

0.33uF
C19

0.1uF
C15

IN1

2

OUT 3

GND

U2

MC7805CT

GND_BAT

GND_BAT

GND_BAT

GND_BAT

PWR_SW

PWR_SW

RST_R

1 2
Y3

XTAL
22pF

C16

22pF
C17

GND_BAT

GND_BAT

V
C

C
V

C
C

11

22

33

44

55

66

77

88

G
N

D
G

N
D

CHANNELS
Header 8x3

5_VCC_BAT

I2C1_SCL
I2C1_SDA

I2C1_SCL
I2C1_SDA

22K

R
_I

2C
_0

22K

R
_I

2C
_1

5_VCC_BAT

1 2
3 4
5 6
7 8
9 10

P_ICP

Header 5X2H

MISO

MISO

MOSI

MOSI

RST_R

SCK

SCK

5_VCC_BAT

5_VCC_BAT

GND_BAT

RST_R

100
R_RST

0.1uF
C18

GND_BAT

S2

SW-DPST

5_VCC_BAT

GND_BAT

5_VCC_BAT

12_VCC

12_VCC

1K

R14

Res1

1K

R13
Res1

12VCC

LED2

5VCC

LED2

GND_BAT

GND_BAT

1
2
3

PWM_AUX

RST_SW

PI5VCC01 PI5VCC02

CO5VCC

PI12VCC01 PI12VCC02

CO12VCC

PIC1501

PIC1502
COC15

PIC1601

PIC1602 COC16

PIC1701

PIC1702
COC17

PIC1801

PIC1802
COC18

PIC1901

PIC1902
COC19

PICHANNELS01

PICHANNELS02

PICHANNELS03

PICHANNELS04

PICHANNELS05

PICHANNELS06

PICHANNELS07

PICHANNELS08

PICHANNELS0GND PICHANNELS0VCC

COCHANNELS

PIP0BATERIA01 PIP0BATERIA02 PIP0BATERIA03 PIP0BATERIA04

COP0BATERIA

PIP0ICP01 PIP0ICP02

PIP0ICP03 PIP0ICP04

PIP0ICP05 PIP0ICP06

PIP0ICP07 PIP0ICP08

PIP0ICP09 PIP0ICP010

COP0ICP

PIPWM0AUX01

PIPWM0AUX02

PIPWM0AUX03

COPWM0AUX

PIPWR01

PIPWR02

PIPWR03

COPWR

PIR1301 PIR1302
COR13

PIR1401 PIR1402
COR14

PIR0bat0101

PIR0bat0102 COR0bat01

PIR0bat0201

PIR0bat0202 COR0bat02
PIR0bat0301

PIR0bat0302 COR0bat03

PIR0I2C0001

PIR0I2C0002 COR0I2C00
PIR0I2C0101

PIR0I2C0102 COR0I2C01

PIR0RST01

PIR0RST02

COR0RST

PIRbat401

PIRbat402 CORbat4

PIS201 PIS202

PIS203 PIS204

COS2

PIU201

PIU202

PIU203

COU2

PIU401

PIU402

PIU403

PIU404

PIU405

PIU406

PIU407

PIU408

PIU409

PIU4010

PIU4011

PIU4012

PIU4013

PIU4014

PIU4015

PIU4016

PIU4017

PIU4018

PIU4019

PIU4020

PIU4021

PIU4022

PIU4023

PIU4024

PIU4025

PIU4026

PIU4027

PIU4028

PIU4029

PIU4030

PIU4031

PIU4032

COU4

PIY301 PIY302

COY3

PIC1502

PICHANNELS0VCC

PIP0ICP02

PIR1301

PIR0I2C0002 PIR0I2C0102

PIR0RST01

PIU203

PIU404

PIU406

PIU4018

PIU4020

PIC1902 PIPWR02

PIR1402

PIU201

NL120VCC

PI5VCC02

PI12VCC02

PIC1501

PIC1601 PIC1701

PIC1801

PIC1901

PICHANNELS0GND

PIP0BATERIA01

PIP0ICP04

PIP0ICP06

PIP0ICP08

PIP0ICP010

PIPWR01

PIR0bat0201
PIR0bat0301

PIS202

PIS204

PIU202

PIU403

PIU405

PIU4021

PIR0I2C0001

PIU4028
NLI2C10SCL

PIR0I2C0101

PIU4027
NLI2C10SDA

PIP0ICP09

PIU4016
NLMISO

PIP0ICP01

PIPWM0AUX03 PIU4015
NLMOSI

PI5VCC01 PIR1302

PI12VCC01 PIR1401

PIC1602

PIU408

PIY301 PIC1702

PIU407

PIY302

PICHANNELS01 PIU4030

PICHANNELS02 PIU4031

PICHANNELS03 PIU4032

PICHANNELS04 PIU401

PICHANNELS05 PIU402

PICHANNELS06 PIU409

PICHANNELS07 PIU4010

PICHANNELS08 PIU4011

PIP0BATERIA02

PIU4022

PIP0BATERIA03
PIR0bat0102

PIP0BATERIA04
PIRbat402

PIP0ICP03

PIPWM0AUX01 PIU4013

PIPWM0AUX02 PIU4014

PIR0bat0101
PIR0bat0202 PIU4023

PIR0bat0302

PIRbat401
PIU4024

PIU4012

PIU4019

PIPWR03

PIU4025
NLPWR0SW

PIC1802
PIP0ICP05

PIR0RST02

PIS201

PIS203

PIU4029
NLRST0R

PIU4026
NLRST0SW

PIP0ICP07

PIU4017
NLSCK

Esquemático Placa Prototipo - Procesador Aux

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 23/06/2016 Sheet of
File: C:\Users\..\Esquematico_V1.SchDoc Drawn By:

PW
M

4
PW

M
5

PW
M

6
PW

M
7

I2
C

0_
SC

L
I2

C
0_

SD
A

I2
C

1_
SC

L
I2

C
1_

SD
A

PWM3

PWM0
PWM1
PWM2

GND

PWM4
PWM5
PWM6
PWM7

5V_VCC 1
2
3
4

P2

Header 4

I2C0_SCL
I2C0_SDA

GND

5V_VCC 1
2
3
4

P1

Header 4
GND

ECHO
TRIGGER

TRIGGER
ECHO

1
2
3
4

P5

Header 4

3.3_VCC

3.3_VCC

GND

U
1R

X
U

1T
X

U
7R

X
U

7T
X

U7TXU7RX

U1RX
U1TX

PB
6

1

VDDA2

GNDA3

PB
7

4

PE
3

5

PF
4

6

PE
2

7

PE
1

8

PE
0

9

PD7 10

VDD11

GND12

PC7 13PC6 14PC5 15PC4 16

PA
0

17

PA
1

18

PA
2

19

PA
3

20

PA
4

21

PA
5

22

PA
6

23

PA
7

24

VDDC25

VDD26

GND27

PF
0

28
PF

1
29

PF
2

30
PF

3
31

/WAKE32

/HIB33

XOSC034

GNDX35

XOSC136

VBAT37

/RST38

GND39

OSC040

OSC141

VDD42

PD4 43

PD5 44

PB
0

45

PB
1

46

PB
2

47

PB
3

48

PC3 49PC2 50PC1 51PC0 52

PD6 53

VDD54

GND55

VDDC56

PB
5

57
PB

4
58

PE
4

59
PE

5
60

PD0 61

PD1 62

PD2 63

PD3 64
TM4C123GH6PM

U1
TM4C123GH6PM

OSC0

OSC1

1
2

Y1
XTAL

10pF
C7

10pF
C10GND

XOSC0

XOSC1

1
2

Y2
XTAL

10pF
C13

10pF
C14GND

Vin Vout
GND

VR1

Volt Reg

Q1
2N3906

1K

R9
Res1

GND
PD0_3.3V

1uF

C8
Cap Pol1

GND

PD
0_

3.
3V

5V_VCC_F

Vin Vout
GND

VR2

Volt Reg
1uF

C11
Cap Pol1

GND

3.3_VCC_micro

3.3_VCC

GND

5V_VCC_F

100nF

C9
Cap Pol1

GND

100nF

C12
Cap

GND

1K
R1

1K
R2

TCK
TMS
TDIO
TDO

TCK
TMS

TDIO
TDO

3.3_VCC

1
2

P_I2C

Header 2

1
2

P_I2C

Header 2

I2C0_SCL
I2C0_SDA

I2C1_SCL
I2C1_SDA

1K

R11

Res1
1K

R12
Res1

3.3_VCC 3.3_VCC_micro
3.3V

LED2

3V3 micro

LED2
GND GND

CE_SPI_0

C
LK

_S
PI

_0
FS

S_
SP

I_
0

R
X

_S
PI

_0
TX

_S
PI

_0

IRQ_SPI_0

CE_SPI_0
CLK_SPI_0
FSS_SPI_0
RX_SPI_0TX_SPI_0

IRQ_SPI_0

LE
D

_0
LE

D
_1

LE
D

_2

SWITCH1

PW
M

2
PW

M
3

PWM0
PWM1

5V_VCC

PHA1
PHB1

GND

100pF
C6

100nF
C5

2.2uF
C4

1uF
C3

GND
3.3_VCC_micro

3.3_VCC_micro

OSC0
OSC1

XOSC0
XOSC1

5V_VCC

GND

220uF

C1
Cap

100nF

C2
Cap Pol1

10K
R_Wake1

GND

SWITCH1
RST_SW10K

R_RST13.3_VCC_micro

1
2

P_QEI2

Header 2

1
2

P_QEI1

Header 2

PHB2

PHB1
PHA1

PHA2

PHA2
PHB2

F15V_VCC_F

GND

5V_VCC

V
C

C
5

1 1

2 2

3 3

4 4

G
N

D
6 PWM2

V
C

C
5

1 1

2 2

3 3

4 4

G
N

D
6

PWM1

S1

TS-1170S-WP

1 2
3 4
7 6
5 8
9 10

P4

Header 5X2

USB_DM
USB_PM

1 2
3 4
5 6
7 8
9 10

JTAG

Header 5X2

RST_SW

5V_VCC

GND

LED_0 Q2

1K

R6

Res1

1K

R3
Res1

GND

D1
LED2

5V_VCC

LED_1 Q3

1K

R7

Res1

1K

R4
Res1

GND

D2
LED2

5V_VCC

LED_2 Q4

1K

R8

Res1

1K

R5
Res1

GND

D3
LED2

5V_VCC

GND_BAT

1
2

USB

Header 2

PI303V01 PI303V02

CO303V

PI3V3 micro01 PI3V3 micro02

CO3V3 micro

PIC101

PIC102
COC1 PIC201

PIC202
COC2

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC801

PIC802
COC8 PIC901

PIC902
COC9

PIC1001

PIC1002
COC10 PIC1101

PIC1102
COC11 PIC1201

PIC1202
COC12

PIC1301

PIC1302
COC13

PIC1401

PIC1402
COC14

PID101
PID102

COD1
PID201
PID202

COD2
PID301
PID302

COD3

PIF101 PIF102

COF1 PIJTAG01 PIJTAG02

PIJTAG03 PIJTAG04

PIJTAG05 PIJTAG06

PIJTAG07 PIJTAG08

PIJTAG09 PIJTAG010

COJTAG

PIP101

PIP102

PIP103

PIP104

COP1

PIP201

PIP202

PIP203

PIP204

COP2

PIP401 PIP402

PIP403 PIP404

PIP405

PIP406 PIP407

PIP408

PIP409 PIP4010

COP4

PIP501

PIP502

PIP503

PIP504

COP5

PIP0I2C01

PIP0I2C02

COP0I2C

PIP0I2C01

PIP0I2C02

PIP0QEI101

PIP0QEI102

COP0QEI1

PIP0QEI201

PIP0QEI202

COP0QEI2

PIPWM101

PIPWM102

PIPWM103

PIPWM104

PIPWM105 PIPWM106 COPWM1

PIPWM201

PIPWM202

PIPWM203

PIPWM204

PIPWM205 PIPWM206 COPWM2

PIQ101

PIQ102
PIQ103
COQ1

PIQ201
PIQ202

PIQ203
COQ2

PIQ301
PIQ302

PIQ303
COQ3

PIQ401
PIQ402

PIQ403
COQ4

PIR101 PIR102
COR1

PIR201 PIR202
COR2

PIR301

PIR302

COR3
PIR401

PIR402

COR4
PIR501

PIR502

COR5

PIR601 PIR602
COR6

PIR701 PIR702
COR7

PIR801 PIR802
COR8

PIR901

PIR902
COR9

PIR1101 PIR1102
COR11

PIR1201 PIR1202
COR12

PIR0RST101 PIR0RST102

COR0RST1

PIR0Wake101 PIR0Wake102
COR0Wake1

PIS101 PIS102

COS1

PIU101
PIU102

PIU103

PIU104

PIU105 PIU106 PIU107 PIU108 PIU109

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017 PIU1018 PIU1019 PIU1020 PIU1021 PIU1022 PIU1023 PIU1024

PIU1025

PIU1026

PIU1027

PIU1028 PIU1029 PIU1030 PIU1031

PIU1032

PIU1033

PIU1034

PIU1035

PIU1036

PIU1037

PIU1038

PIU1039

PIU1040

PIU1041

PIU1042

PIU1043

PIU1044

PIU1045 PIU1046 PIU1047 PIU1048

PIU1049

PIU1050

PIU1051

PIU1052

PIU1053

PIU1054

PIU1055

PIU1056

PIU1057 PIU1058

PIU1059 PIU1060

PIU1061

PIU1062

PIU1063

PIU1064

COU1

PIUSB01

PIUSB02

COUSB

PIVR101

PIVR102

PIVR103

COVR1

PIVR201

PIVR202

PIVR203

COVR2

PIY101
PIY102

COY1

PIY201
PIY202

COY2

PIC801 PIC901

PIP203

PIP502

PIR101

PIR201

PIR1102

PIVR103

PIC1101 PIC1201

PIR1201

PIR0RST101

PIR0Wake101

PIU102

PIU1011

PIU1026

PIU1037

PIU1042

PIU1054

PIVR203

PIC101 PIC201

PID101 PID201 PID301

PIF102

PIJTAG01

PIP103

PIP404

PIPWM105

PIPWM205

PIF101

PIQ101

PIVR201

PIP405

PIU1013
NLCE0SPI00

PIP406

PIU1019
NLCLK0SPI00

PIP102

PIU1063
NLECHO

PIP408

PIU1020
NLFSS0SPI00

PI303V02 PI3V3 micro02

PIC102 PIC202

PIC301 PIC401 PIC501 PIC601

PIC701

PIC802 PIC902

PIC1002

PIC1102 PIC1202

PIC1301

PIC1402

PIJTAG03

PIJTAG05

PIJTAG09

PIP104

PIP204

PIP501

PIPWM106

PIPWM206

PIQ201 PIQ301 PIQ401

PIS101

PIU103

PIU1012

PIU1027

PIU1035

PIU1039

PIU1055

PIVR102 PIVR202

PIP403

PIP202

PIP0I2C01 PIR202

PIU1047
NLI2C00SCL

PIP201

PIP0I2C02

PIR102

PIU1048
NLI2C00SDA

PIP0I2C01

PIU1023
NLI2C10SCL

PIP0I2C02

PIU1024
NLI2C10SDA

PIP407

PIU1016
NLIRQ0SPI00

PIR602

PIU107
NLLED00

PIR702

PIU108
NLLED01

PIR802

PIU109
NLLED02

PI303V01 PIR1101 PI3V3 micro01 PIR1202

PIC302 PIC402 PIC502 PIC602
PIU1025

PIU1056

PID102
PIR301

PID202
PIR401

PID302
PIR501

PIJTAG07

PIQ102
PIR902

PIQ103 PIVR101

PIQ202 PIR601

PIQ203
PIR302

PIQ302 PIR701

PIQ303
PIR402

PIQ402 PIR801

PIQ403
PIR502

PIU101 PIU104

PIU106

PIU1057 PIU1058

PIC702

PIU1040

PIY102
NLOSC0

PIC1001

PIU1041

PIY101
NLOSC1

PIR901

PIU105

NLPD00303V

PIP0QEI201

PIU1015
NLPHA1

PIP0QEI101

PIU1053
NLPHA2

PIP0QEI202

PIU1014
NLPHB1

PIP0QEI102

PIU1010
NLPHB2

PIPWM201

PIU1061
NLPWM0

PIPWM202

PIU1062
NLPWM1

PIPWM203

PIU1059
NLPWM2

PIPWM204

PIU1060
NLPWM3

PIPWM101 PIU1028
NLPWM4 PIPWM102

PIU1029
NLPWM5 PIPWM103

PIU1030
NLPWM6

PIPWM104

PIU1031
NLPWM7

PIJTAG010

PIR0RST102 PIU1038
NLRST0SW

PIP4010

PIU1021
NLRX0SPI00

PIR0Wake102

PIS102

PIU1032

PIU1033

NLSWITCH1

PIJTAG04

PIU1052
NLTCK

PIJTAG08

PIU1050
NLTDIO

PIJTAG06

PIU1049
NLTDO

PIJTAG02

PIU1051
NLTMS

PIP101

PIU1064
NLTRIGGER

PIP409

PIU1022
NLTX0SPI00

PIP503

PIU1045

NLU1RX

PIP504

PIU1046

NLU1TX

PIP401

PIU1017
NLU7RX

PIP402

PIU1018
NLU7TX

PIU1043 PIUSB01
NLUSB0DM

PIU1044 PIUSB02
NLUSB0PM

PIC1302

PIU1034

PIY202
NLXOSC0

PIC1401

PIU1036

PIY201
NLXOSC1

Esquemático Placa Final - Principal

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 23/06/2016 Sheet of
File: C:\Users\..\Sensores.SchDoc Drawn By:

I2C0_SCL
I2C0_SDA

GND

3.3_VCC

3.3_VCC

0

R13

1K

R14
Res1

GND

10nF
C15

100nF
C16

2.2nF
C17

100nF

C18
Cap

GND

GND

AUX_DA
21

AUX_CL
7

V
D
D
I
O

1
8

V
D
D

1
3

AD0/MISO
9

SDA/MOSI
24

SCLK
23

!CS
22

INT
12

REGOUT
10

FSYNC
11

G
N
D

1
8

2
0

U?

GYRO/ACCEL/COMPASS/9-AXIS

PIC1501

PIC1502
COC15

PIC1601

PIC1602
COC16

PIC1701

PIC1702
COC17

PIC1801

PIC1802
COC18 PIR1301 PIR1302

COR13

PIR1401

PIR1402

COR14
PIU?07

PIU?09

PIU?010

PIU?011

PIU?012

PIU?013 PIU?01 8

PIU?021

PIU?022

PIU?023

PIU?024

PIU?018 20

COU?

PIC1502 PIC1602 PIC1701

PIR1302

PIU?013 PIU?01 8
PIC1501 PIC1601 PIC1702

PIC1801

PIR1402

PIU?018 20

PIU?023
NLI2C00SCL

PIU?024
NLI2C00SDA

PIC1802 PIU?010

PIR1301 PIR1401 PIU?09

PIU?022 PIU?07

PIU?011

PIU?012

PIU?021

Esquemático Placa Final - Sensor

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 23/06/2016 Sheet of
File: C:\Users\..\uC_Aux.SchDoc Drawn By:

PC6 (RESET) 29

PD0 (RXD) 30

PD1 (TXD) 31

PD2 (INT0) 32

PD3 (INT1) 1

PD4 (XCK/T0) 2

VCC6

GND5 PB6 (XTAL1/TOSC1) 7

PB7 (XTAL2/TOSC2) 8

PD5 (T1) 9

PD6 (AIN0) 10

PD7 (AIN1) 11

PB0 (ICP1) 12

PB1 (OC1A) 13

PB2 (SS/OC1B) 14

PB3 (MOSI/OC2) 15

PB4 (MISO) 16

PB5 (SCK) 17

AVCC18

AREF20

GND21

PC0 (ADC0) 23

PC1 (ADC1) 24

PC2 (ADC2) 25

PC3 (ADC3) 26

PC4 (ADC4/SDA) 27

PC5 (ADC5/SCL) 28

GND3

VCC4 ADC6 19

ADC7 22

U3

ATmega8A-AU

1 2 3 4

P7

10K

R
16

10K

R
20

10K

R
21

22K

R
17

GND_BAT

1
2
3

PWR1
5_VCC_BAT

0.33uF
C19

0.1uF
C20

IN1

2

OUT 3

GND

U4

MC7805CT

GND_BAT

GND_BAT

GND_BAT

GND_BAT

PWR_SW

1 2
Y3

XTAL
22pF

C22

22pF
C23

GND_BAT

GND_BAT

V
C

C
V

C
C

11

22

33

44

55

66

77

88

G
N

D
G

N
D

CHNLS
Header 8x3

5_VCC_BAT

I2C1_SCL
I2C1_SDA

22K

R
_I

1

22K

R
_I

2

5_VCC_BAT

12
34
56
78
910

ICSP

Header 5X2H

MISO

MOSI

MOSI

RST_R
SCK

5_VCC_BAT

5_VCC_BAT

GND_BAT

RST_R

100
R22

0.1uF
C21

GND_BAT

5_VCC_BAT

GND_BAT

5_VCC_BAT

12_VCC

12_VCC

1K

R19

Res1

1K

R15
Res1

12V

LED2

5.5V

LED2

GND_BAT

GND_BAT

1
2
3

P8

RST_SW

Q6

1K

R18

Res1
RST_IC

GND

GND_BAT GND

0

R23
Res1

5_VCC_BAT

5V_VCC

1
2

P11

Header 2

S2

TS-1170S-WP

I2C1_SCL
I2C1_SDA

RST_R

MISO
SCK

PWR_SW
RST_IC

PI505V01 PI505V02

CO505V

PI12V01 PI12V02

CO12V

PIC1901

PIC1902
COC19

PIC2001

PIC2002
COC20

PIC2101

PIC2102
COC21

PIC2201

PIC2202 COC22

PIC2301

PIC2302
COC23

PICHNLS01

PICHNLS02

PICHNLS03

PICHNLS04

PICHNLS05

PICHNLS06

PICHNLS07

PICHNLS08

PICHNLS0GND PICHNLS0VCC

COCHNLS

PIICSP01 PIICSP02

PIICSP03 PIICSP04

PIICSP05 PIICSP06

PIICSP07 PIICSP08

PIICSP09 PIICSP010

COICSP

PIP701 PIP702 PIP703 PIP704

COP7

PIP801

PIP802

PIP803

COP8

PIP1101

PIP1102

COP11

PIPWR101

PIPWR102

PIPWR103

COPWR1

PIQ601
PIQ602

PIQ603
COQ6

PIR1501 PIR1502
COR15

PIR1601

PIR1602
COR16

PIR1701

PIR1702 COR17

PIR1801 PIR1802
COR18

PIR1901 PIR1902
COR19

PIR2001

PIR2002
COR20

PIR2101

PIR2102

COR21

PIR2201

PIR2202

COR22

PIR2301 PIR2302
COR23

PIR0I101

PIR0I102 COR0I1
PIR0I201

PIR0I202 COR0I2

PIS201 PIS202

COS2

PIU301

PIU302

PIU303

PIU304

PIU305

PIU306

PIU307

PIU308

PIU309

PIU3010

PIU3011

PIU3012

PIU3013

PIU3014

PIU3015

PIU3016

PIU3017

PIU3018

PIU3019

PIU3020

PIU3021

PIU3022

PIU3023

PIU3024

PIU3025

PIU3026

PIU3027

PIU3028

PIU3029

PIU3030

PIU3031

PIU3032

COU3

PIU401

PIU402

PIU403

COU4

PIY301 PIY302

COY3

PIC2002

PICHNLS0VCC

PIICSP01

PIP1102

PIR1501

PIR2201

PIR0I102 PIR0I202

PIU304

PIU306

PIU3018

PIU3020

PIU403

PIP1101

PIC1902 PIPWR102

PIR1902

PIU401

NL120VCC

PIQ601

PIR2302

PI505V02

PI12V02

PIC1901 PIC2001

PIC2101

PIC2201 PIC2301

PICHNLS0GND

PIICSP03

PIICSP05

PIICSP07

PIICSP09

PIP701

PIPWR101

PIR2001
PIR2101

PIR2301

PIS202

PIU303

PIU305

PIU3021

PIU402

PIR0I101

PIU3028
NLI2C10SCL

PIR0I201

PIU3027
NLI2C10SDA

PIICSP010

PIU3016
NLMISO

PIICSP02

PIP803 PIU3015
NLMOSI

PI505V01 PIR1502

PI12V01 PIR1901

PIC2202

PIU308

PIY301 PIC2302

PIU307

PIY302

PICHNLS01 PIU3030

PICHNLS02 PIU3031

PICHNLS03 PIU3032

PICHNLS04 PIU301

PICHNLS05 PIU302

PICHNLS06 PIU309

PICHNLS07 PIU3010

PICHNLS08 PIU3011

PIICSP04

PIP702

PIU3022

PIP703
PIR1602

PIP704
PIR1702

PIP801 PIU3013

PIP802 PIU3014

PIQ602 PIR1801

PIR1601

PIR2002 PIU3023 PIR1701

PIR2102 PIU3024

PIU3012

PIU3019

PIPWR103

PIU3025
NLPWR0SW

PIR1802

PIU3026
NLRST0IC

PIC2102
PIICSP06

PIR2202
PIS201

PIU3029
NLRST0R

PIQ603
NLRST0SW

PIICSP08

PIU3017
NLSCK

Esquemático Placa Final - Procesador Aux

/*
* AHRS.c
 *
* Created on: 22/12/2015
 * Author: Ruben
 */
#include "AHRS.h"
#include "Servidores.h"

void Compensacion_Sensor_magnetico(tpAHRS *AHRS){
//Rota el eje magnetico para alinearlo con el suelo, usando la ultima referencia ROLL
PITCH
float32_t mag_x;
float32_t mag_y;
float32_t cos_roll;
float32_t sin_roll;
float32_t cos_pitch;
float32_t sin_pitch;

cos_roll = arm_cos_f32(AHRS->Roll);
sin_roll = arm_sin_f32(AHRS->Roll);
cos_pitch = arm_cos_f32(AHRS->Pitch);
sin_pitch = arm_sin_f32(AHRS->Pitch);

// Rotamos
mag_x = AHRS->Vector_Magnetico[0] * cos_pitch + AHRS->Vector_Magnetico[1] * sin_roll *
sin_pitch + AHRS->Vector_Magnetico[2] * cos_roll * sin_pitch;
mag_y = AHRS->Vector_Magnetico[1] * cos_roll - AHRS->Vector_Magnetico[2] * sin_roll;
AHRS->Orientacion_YAW = atan2(-mag_y, mag_x);

}

void Actualizar_Matriz_DCM(tpAHRS *AHRS){
float32_t Velocidad_Total[3] = {0, 0, 0};

float32_t Rot_matriz[3][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Rotacion = {3, 3, (float32_t *)Rot_matriz};

float32_t Aux_matriz[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Aux = {3, 3, Aux_matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[0];
Velocidad_Total[1] = AHRS->Vector_Velocidad_Angular[1] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

Rot_matriz[0][0] = 1;
Rot_matriz[0][1] = -AHRS->Periodo_Muestreo*Velocidad_Total[2];//-z
Rot_matriz[0][2] = AHRS->Periodo_Muestreo*Velocidad_Total[1];//y
Rot_matriz[1][0] = AHRS->Periodo_Muestreo*Velocidad_Total[2];//z
Rot_matriz[1][1] = 1;
Rot_matriz[1][2] = -AHRS->Periodo_Muestreo*Velocidad_Total[0];//-x
Rot_matriz[2][0] = -AHRS->Periodo_Muestreo*Velocidad_Total[1];//-y
Rot_matriz[2][1] = AHRS->Periodo_Muestreo*Velocidad_Total[0];//x
Rot_matriz[2][2] = 1;

arm_mat_mult_f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_f32(Aux.pData, AHRS->DCM.pData, 9);

}

void Actualizar_Matriz_DCM_V2(tpAHRS *AHRS){
float32_t Velocidad_Total[3] = {0, 0, 0};
float32_t Vector_Rotacion[3] = {0, 0, 0};

float32_t Angulo_Rotacion = 0;
float32_t Seno = 0;
float32_t Coseno = 0;

-1-

float32_t Rot_matriz[3][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Rotacion = {3, 3, (float32_t *)Rot_matriz};

float32_t Aux_matriz[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Aux = {3, 3, Aux_matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[0];
Velocidad_Total[1] = AHRS->Vector_Velocidad_Angular[1] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

//Velocidad absoluta
arm_sqrt_f32((Velocidad_Total[0]*Velocidad_Total[0] +
Velocidad_Total[1]*Velocidad_Total[1] +

Velocidad_Total[2]*Velocidad_Total[2]), &Angulo_Rotacion);

//Normalizamos vector rotacion
if (Angulo_Rotacion != 0.0){

arm_scale_f32(Velocidad_Total, 1/Angulo_Rotacion, Vector_Rotacion, 3);
}

//Pasamos de velocidad a angulo
Angulo_Rotacion = Angulo_Rotacion*AHRS->Periodo_Muestreo;

Coseno = arm_cos_f32(Angulo_Rotacion);
Seno = arm_sin_f32(Angulo_Rotacion);

Rot_matriz[0][0] = Coseno + Vector_Rotacion[0]*Vector_Rotacion[0]*(1 - Coseno);
Rot_matriz[0][1] = Vector_Rotacion[0]*Vector_Rotacion[1]*(1 - Coseno) -
Vector_Rotacion[2]*Seno;
Rot_matriz[0][2] = Vector_Rotacion[0]*Vector_Rotacion[2]*(1 - Coseno) +
Vector_Rotacion[1]*Seno;
Rot_matriz[1][0] = Vector_Rotacion[1]*Vector_Rotacion[0]*(1 - Coseno) +
Vector_Rotacion[2]*Seno;
Rot_matriz[1][1] = Coseno + Vector_Rotacion[1]*Vector_Rotacion[1]*(1 - Coseno);
Rot_matriz[1][2] = Vector_Rotacion[1]*Vector_Rotacion[2]*(1 - Coseno) -
Vector_Rotacion[0]*Seno;
Rot_matriz[2][0] = Vector_Rotacion[2]*Vector_Rotacion[0]*(1 - Coseno) -
Vector_Rotacion[1]*Seno;
Rot_matriz[2][1] = Vector_Rotacion[2]*Vector_Rotacion[1]*(1 - Coseno) +
Vector_Rotacion[0]*Seno;
Rot_matriz[2][2] = Coseno + Vector_Rotacion[2]*Vector_Rotacion[2]*(1 - Coseno);

arm_mat_mult_f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_f32(Aux.pData, AHRS->DCM.pData, 9);

}

void Normalizar_DCM(tpAHRS *AHRS){
float error = 0;

float32_t Vector_Aux[3] = {0, 0, 0};
float32_t Matriz_Ortogonal[3][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0};

arm_dot_prod_f32(&AHRS->DCM_matriz[0][0], &AHRS->DCM_matriz[1][0], 3, &error);
error *= -0.5;

arm_scale_f32(&AHRS->DCM_matriz[1][0], error, Vector_Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[0][0], Vector_Aux, &Matriz_Ortogonal[0][0], 3); //Vector
X ortogonal

arm_scale_f32(&AHRS->DCM_matriz[0][0], error, Vector_Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[1][0], Vector_Aux, &Matriz_Ortogonal[1][0], 3); //Vector
Y ortogonal

//Producto Cruz

-2-

Matriz_Ortogonal[2][0] = Matriz_Ortogonal[0][1] * Matriz_Ortogonal[1][2] -
Matriz_Ortogonal[0][2] * Matriz_Ortogonal[1][1];
Matriz_Ortogonal[2][1] = Matriz_Ortogonal[0][2] * Matriz_Ortogonal[1][0] -
Matriz_Ortogonal[0][0] * Matriz_Ortogonal[1][2];
Matriz_Ortogonal[2][2] = Matriz_Ortogonal[0][0] * Matriz_Ortogonal[1][1] -
Matriz_Ortogonal[0][1] * Matriz_Ortogonal[1][0];

arm_dot_prod_f32(&Matriz_Ortogonal[0][0], &Matriz_Ortogonal[0][0], 3, &error);
error = 0.5*(3.0 - error);
arm_scale_f32(&Matriz_Ortogonal[0][0], error, &AHRS->DCM_matriz[0][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[1][0], &Matriz_Ortogonal[1][0], 3, &error);
error = 0.5*(3.0 - error);
arm_scale_f32(&Matriz_Ortogonal[1][0], error, &AHRS->DCM_matriz[1][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[2][0], &Matriz_Ortogonal[2][0], 3, &error);
error = 0.5*(3.0 - error);
arm_scale_f32(&Matriz_Ortogonal[2][0], error, &AHRS->DCM_matriz[2][0], 3);

}

void Correccion_deriva(tpAHRS *AHRS){
float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, 0};

//ROLL PITCH
//faltaria filtrar???
//Producto cruz
error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];
error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][0] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2];
error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp_Roll_Pitch, AHRS->Correccion_Proporcional, 3);
arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);
arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_Integral, 3);

//YAW
arm_scale_f32(&AHRS->DCM_matriz[2][0],
AHRS->DCM_matriz[0][0]*arm_sin_f32(AHRS->Orientacion_YAW) -
AHRS->DCM_matriz[1][0]*arm_cos_f32(AHRS->Orientacion_YAW), error, 3);

arm_scale_f32(error, AHRS->Kp_Yaw, Aux, 3);
arm_add_f32((float32_t *)Aux, AHRS->Correccion_Proporcional,
AHRS->Correccion_Proporcional, 3);

arm_scale_f32(error, AHRS->Ki_Yaw, Aux, 3);
arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_Integral, 3);

}

void Correccion_deriva_NO_YAW(tpAHRS *AHRS){
float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, 0};

//ROLL PITCH
//faltaria filtrar???
//Producto cruz
error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];
error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][0] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2];
error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp_Roll_Pitch, AHRS->Correccion_Proporcional, 3);
arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);

-3-

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_Integral, 3);
}

void Angulos_Euler(tpAHRS *AHRS){
AHRS->Pitch = -asin(AHRS->DCM_matriz[2][0]);
AHRS->Roll = atan2(AHRS->DCM_matriz[2][1],AHRS->DCM_matriz[2][2]);
AHRS->Yaw = atan2(AHRS->DCM_matriz[1][0],AHRS->DCM_matriz[0][0]);

}

void ResetDCM(){
tpLecturas_IMU Lecturas_IMU = {0, 0, 0, 0, 0, 0, 0 };
tpLecturas_Brujula Lecturas_Brujula = {0, 0, 0};

float32_t DCM_matriz[3][3] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
float32_t Roll = 0;
float32_t Pitch = 0;
float32_t Yaw = 0;

float32_t sin_Roll = 0;
float32_t cos_Roll = 0;
float32_t sin_Pitch = 0;
float32_t cos_Pitch = 0;
float32_t sin_Yaw = 0;
float32_t cos_Yaw = 0;

Leer_servidor_Lecturas_IMU(&Lecturas_IMU);
Leer_servidor_Lecturas_Brujula(&Lecturas_Brujula);

Pitch = -atan2(Lecturas_IMU.Valor.x_acel, sqrt(Lecturas_IMU.Valor.y_acel *
Lecturas_IMU.Valor.y_acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));
Roll = atan2(Lecturas_IMU.Valor.y_acel, sqrt(Lecturas_IMU.Valor.x_acel *
Lecturas_IMU.Valor.x_acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));

sin_Roll = arm_sin_f32(Roll);
cos_Roll = arm_cos_f32(Roll);
sin_Pitch = arm_sin_f32(Pitch);
cos_Pitch = arm_cos_f32(Pitch);

Yaw = -atan2(Lecturas_Brujula.Valor.Magnetismo_y * cos_Roll -
Lecturas_Brujula.Valor.Magnetismo_z * sin_Roll, Lecturas_Brujula.Valor.Magnetismo_x *
cos_Pitch + Lecturas_Brujula.Valor.Magnetismo_y * sin_Roll * sin_Pitch +
Lecturas_Brujula.Valor.Magnetismo_z * cos_Roll * sin_Pitch);
sin_Yaw = arm_sin_f32(Yaw);
cos_Yaw = arm_cos_f32(Yaw);

DCM_matriz[0][0] = cos_Pitch*cos_Yaw;
DCM_matriz[0][1] = cos_Yaw*sin_Roll*sin_Pitch - cos_Roll*sin_Yaw;
DCM_matriz[0][2] = sin_Roll*sin_Yaw + cos_Roll*cos_Yaw*sin_Pitch;

DCM_matriz[1][0] = cos_Pitch*sin_Yaw;
DCM_matriz[1][1] = cos_Roll*cos_Yaw + sin_Roll*sin_Pitch*sin_Yaw;
DCM_matriz[1][2] = cos_Roll*sin_Pitch*sin_Yaw - cos_Yaw*sin_Roll;

DCM_matriz[2][0] = -sin_Pitch;
DCM_matriz[2][1] = cos_Pitch*sin_Roll;
DCM_matriz[2][2] = cos_Roll*cos_Pitch;

Escribir_servidor_DCM((float32_t*)DCM_matriz);
Escribir_servidor_RPY(&Roll, &Pitch, &Yaw);

}

void Algortimo_DCM_MAG(tpAHRS *AHRS){

Compensacion_Sensor_magnetico(AHRS);
Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS);
Correccion_deriva(AHRS);
Angulos_Euler(AHRS);

-4-

}

void Algortimo_DCM_NO_YAW(tpAHRS *AHRS){

Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS);
Correccion_deriva_NO_YAW(AHRS);
Angulos_Euler(AHRS);

}

-5-

/*
* AHRS.c
 *
* Created on: 22/12/2015
 * Author: Ruben
 */
#include "AHRS.h"
#include "Servidores.h"

void Compensacion_Sensor_magnetico(tpAHRS *AHRS){
//Rota el eje magnetico para alinearlo con el suelo, usando la ultima referencia ROLL
PITCH
float32_t mag_x;
float32_t mag_y;
float32_t cos_roll;
float32_t sin_roll;
float32_t cos_pitch;
float32_t sin_pitch;

cos_roll = arm_cos_f32(AHRS->Roll);
sin_roll = arm_sin_f32(AHRS->Roll);
cos_pitch = arm_cos_f32(AHRS->Pitch);
sin_pitch = arm_sin_f32(AHRS->Pitch);

// Rotamos
mag_x = AHRS->Vector_Magnetico[0] * cos_pitch + AHRS->Vector_Magnetico[1] * sin_roll *
sin_pitch + AHRS->Vector_Magnetico[2] * cos_roll * sin_pitch;
mag_y = AHRS->Vector_Magnetico[1] * cos_roll - AHRS->Vector_Magnetico[2] * sin_roll;
AHRS->Orientacion_YAW = atan2(-mag_y, mag_x);

}

void Actualizar_Matriz_DCM(tpAHRS *AHRS){
float32_t Velocidad_Total[3] = {0, 0, 0};

float32_t Rot_matriz[3][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Rotacion = {3, 3, (float32_t *)Rot_matriz};

float32_t Aux_matriz[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Aux = {3, 3, Aux_matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[0];
Velocidad_Total[1] = AHRS->Vector_Velocidad_Angular[1] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

Rot_matriz[0][0] = 1;
Rot_matriz[0][1] = -AHRS->Periodo_Muestreo*Velocidad_Total[2];//-z
Rot_matriz[0][2] = AHRS->Periodo_Muestreo*Velocidad_Total[1];//y
Rot_matriz[1][0] = AHRS->Periodo_Muestreo*Velocidad_Total[2];//z
Rot_matriz[1][1] = 1;
Rot_matriz[1][2] = -AHRS->Periodo_Muestreo*Velocidad_Total[0];//-x
Rot_matriz[2][0] = -AHRS->Periodo_Muestreo*Velocidad_Total[1];//-y
Rot_matriz[2][1] = AHRS->Periodo_Muestreo*Velocidad_Total[0];//x
Rot_matriz[2][2] = 1;

arm_mat_mult_f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_f32(Aux.pData, AHRS->DCM.pData, 9);

}

void Actualizar_Matriz_DCM_V2(tpAHRS *AHRS){
float32_t Velocidad_Total[3] = {0, 0, 0};
float32_t Vector_Rotacion[3] = {0, 0, 0};

float32_t Angulo_Rotacion = 0;
float32_t Seno = 0;
float32_t Coseno = 0;

-1-

float32_t Rot_matriz[3][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Rotacion = {3, 3, (float32_t *)Rot_matriz};

float32_t Aux_matriz[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Aux = {3, 3, Aux_matriz};

Velocidad_Total[0] = AHRS->Vector_Velocidad_Angular[0] +
AHRS->Correccion_Proporcional[0] + AHRS->Correccion_Integral[0];
Velocidad_Total[1] = AHRS->Vector_Velocidad_Angular[1] +
AHRS->Correccion_Proporcional[1] + AHRS->Correccion_Integral[1];
Velocidad_Total[2] = AHRS->Vector_Velocidad_Angular[2] +
AHRS->Correccion_Proporcional[2] + AHRS->Correccion_Integral[2];

//Velocidad absoluta
arm_sqrt_f32((Velocidad_Total[0]*Velocidad_Total[0] +
Velocidad_Total[1]*Velocidad_Total[1] +

Velocidad_Total[2]*Velocidad_Total[2]), &Angulo_Rotacion);

//Normalizamos vector rotacion
if (Angulo_Rotacion != 0.0){

arm_scale_f32(Velocidad_Total, 1/Angulo_Rotacion, Vector_Rotacion, 3);
}

//Pasamos de velocidad a angulo
Angulo_Rotacion = Angulo_Rotacion*AHRS->Periodo_Muestreo;

Coseno = arm_cos_f32(Angulo_Rotacion);
Seno = arm_sin_f32(Angulo_Rotacion);

Rot_matriz[0][0] = Coseno + Vector_Rotacion[0]*Vector_Rotacion[0]*(1 - Coseno);
Rot_matriz[0][1] = Vector_Rotacion[0]*Vector_Rotacion[1]*(1 - Coseno) -
Vector_Rotacion[2]*Seno;
Rot_matriz[0][2] = Vector_Rotacion[0]*Vector_Rotacion[2]*(1 - Coseno) +
Vector_Rotacion[1]*Seno;
Rot_matriz[1][0] = Vector_Rotacion[1]*Vector_Rotacion[0]*(1 - Coseno) +
Vector_Rotacion[2]*Seno;
Rot_matriz[1][1] = Coseno + Vector_Rotacion[1]*Vector_Rotacion[1]*(1 - Coseno);
Rot_matriz[1][2] = Vector_Rotacion[1]*Vector_Rotacion[2]*(1 - Coseno) -
Vector_Rotacion[0]*Seno;
Rot_matriz[2][0] = Vector_Rotacion[2]*Vector_Rotacion[0]*(1 - Coseno) -
Vector_Rotacion[1]*Seno;
Rot_matriz[2][1] = Vector_Rotacion[2]*Vector_Rotacion[1]*(1 - Coseno) +
Vector_Rotacion[0]*Seno;
Rot_matriz[2][2] = Coseno + Vector_Rotacion[2]*Vector_Rotacion[2]*(1 - Coseno);

arm_mat_mult_f32(&AHRS->DCM, &Rotacion, &Aux);
arm_copy_f32(Aux.pData, AHRS->DCM.pData, 9);

}

void Normalizar_DCM(tpAHRS *AHRS){
float error = 0;

float32_t Vector_Aux[3] = {0, 0, 0};
float32_t Matriz_Ortogonal[3][3] = {0, 0, 0, 0, 0, 0, 0, 0, 0};

arm_dot_prod_f32(&AHRS->DCM_matriz[0][0], &AHRS->DCM_matriz[1][0], 3, &error);
error *= -0.5;

arm_scale_f32(&AHRS->DCM_matriz[1][0], error, Vector_Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[0][0], Vector_Aux, &Matriz_Ortogonal[0][0], 3); //Vector
X ortogonal

arm_scale_f32(&AHRS->DCM_matriz[0][0], error, Vector_Aux, 3);
arm_add_f32(&AHRS->DCM_matriz[1][0], Vector_Aux, &Matriz_Ortogonal[1][0], 3); //Vector
Y ortogonal

//Producto Cruz

-2-

Matriz_Ortogonal[2][0] = Matriz_Ortogonal[0][1] * Matriz_Ortogonal[1][2] -
Matriz_Ortogonal[0][2] * Matriz_Ortogonal[1][1];
Matriz_Ortogonal[2][1] = Matriz_Ortogonal[0][2] * Matriz_Ortogonal[1][0] -
Matriz_Ortogonal[0][0] * Matriz_Ortogonal[1][2];
Matriz_Ortogonal[2][2] = Matriz_Ortogonal[0][0] * Matriz_Ortogonal[1][1] -
Matriz_Ortogonal[0][1] * Matriz_Ortogonal[1][0];

arm_dot_prod_f32(&Matriz_Ortogonal[0][0], &Matriz_Ortogonal[0][0], 3, &error);
error = 0.5*(3.0 - error);
arm_scale_f32(&Matriz_Ortogonal[0][0], error, &AHRS->DCM_matriz[0][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[1][0], &Matriz_Ortogonal[1][0], 3, &error);
error = 0.5*(3.0 - error);
arm_scale_f32(&Matriz_Ortogonal[1][0], error, &AHRS->DCM_matriz[1][0], 3);

arm_dot_prod_f32(&Matriz_Ortogonal[2][0], &Matriz_Ortogonal[2][0], 3, &error);
error = 0.5*(3.0 - error);
arm_scale_f32(&Matriz_Ortogonal[2][0], error, &AHRS->DCM_matriz[2][0], 3);

}

void Correccion_deriva(tpAHRS *AHRS){
float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, 0};

//ROLL PITCH
//faltaria filtrar???
//Producto cruz
error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];
error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][0] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2];
error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp_Roll_Pitch, AHRS->Correccion_Proporcional, 3);
arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);
arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_Integral, 3);

//YAW
arm_scale_f32(&AHRS->DCM_matriz[2][0],
AHRS->DCM_matriz[0][0]*arm_sin_f32(AHRS->Orientacion_YAW) -
AHRS->DCM_matriz[1][0]*arm_cos_f32(AHRS->Orientacion_YAW), error, 3);

arm_scale_f32(error, AHRS->Kp_Yaw, Aux, 3);
arm_add_f32((float32_t *)Aux, AHRS->Correccion_Proporcional,
AHRS->Correccion_Proporcional, 3);

arm_scale_f32(error, AHRS->Ki_Yaw, Aux, 3);
arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_Integral, 3);

}

void Correccion_deriva_NO_YAW(tpAHRS *AHRS){
float32_t error[3] = {0, 0, 0};
float32_t Aux[3] = {0, 0, 0};

//ROLL PITCH
//faltaria filtrar???
//Producto cruz
error[0] = AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][2] -
AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][1];
error[1] = AHRS->Vector_Aceleracion_lineal[2] * AHRS->DCM_matriz[2][0] -
AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][2];
error[2] = AHRS->Vector_Aceleracion_lineal[0] * AHRS->DCM_matriz[2][1] -
AHRS->Vector_Aceleracion_lineal[1] * AHRS->DCM_matriz[2][0];

arm_scale_f32((float32_t *)&error, AHRS->Kp_Roll_Pitch, AHRS->Correccion_Proporcional, 3);
arm_scale_f32((float32_t *)&error, AHRS->Ki_Roll_Pitch, Aux, 3);

-3-

arm_add_f32((float32_t *)&Aux, AHRS->Correccion_Integral, AHRS->Correccion_Integral, 3);
}

void Angulos_Euler(tpAHRS *AHRS){
AHRS->Pitch = -asin(AHRS->DCM_matriz[2][0]);
AHRS->Roll = atan2(AHRS->DCM_matriz[2][1],AHRS->DCM_matriz[2][2]);
AHRS->Yaw = atan2(AHRS->DCM_matriz[1][0],AHRS->DCM_matriz[0][0]);

}

void ResetDCM(){
tpLecturas_IMU Lecturas_IMU = {0, 0, 0, 0, 0, 0, 0 };
tpLecturas_Brujula Lecturas_Brujula = {0, 0, 0};

float32_t DCM_matriz[3][3] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
float32_t Roll = 0;
float32_t Pitch = 0;
float32_t Yaw = 0;

float32_t sin_Roll = 0;
float32_t cos_Roll = 0;
float32_t sin_Pitch = 0;
float32_t cos_Pitch = 0;
float32_t sin_Yaw = 0;
float32_t cos_Yaw = 0;

Leer_servidor_Lecturas_IMU(&Lecturas_IMU);
Leer_servidor_Lecturas_Brujula(&Lecturas_Brujula);

Pitch = -atan2(Lecturas_IMU.Valor.x_acel, sqrt(Lecturas_IMU.Valor.y_acel *
Lecturas_IMU.Valor.y_acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));
Roll = atan2(Lecturas_IMU.Valor.y_acel, sqrt(Lecturas_IMU.Valor.x_acel *
Lecturas_IMU.Valor.x_acel + Lecturas_IMU.Valor.z_acel * Lecturas_IMU.Valor.z_acel));

sin_Roll = arm_sin_f32(Roll);
cos_Roll = arm_cos_f32(Roll);
sin_Pitch = arm_sin_f32(Pitch);
cos_Pitch = arm_cos_f32(Pitch);

Yaw = -atan2(Lecturas_Brujula.Valor.Magnetismo_y * cos_Roll -
Lecturas_Brujula.Valor.Magnetismo_z * sin_Roll, Lecturas_Brujula.Valor.Magnetismo_x *
cos_Pitch + Lecturas_Brujula.Valor.Magnetismo_y * sin_Roll * sin_Pitch +
Lecturas_Brujula.Valor.Magnetismo_z * cos_Roll * sin_Pitch);
sin_Yaw = arm_sin_f32(Yaw);
cos_Yaw = arm_cos_f32(Yaw);

DCM_matriz[0][0] = cos_Pitch*cos_Yaw;
DCM_matriz[0][1] = cos_Yaw*sin_Roll*sin_Pitch - cos_Roll*sin_Yaw;
DCM_matriz[0][2] = sin_Roll*sin_Yaw + cos_Roll*cos_Yaw*sin_Pitch;

DCM_matriz[1][0] = cos_Pitch*sin_Yaw;
DCM_matriz[1][1] = cos_Roll*cos_Yaw + sin_Roll*sin_Pitch*sin_Yaw;
DCM_matriz[1][2] = cos_Roll*sin_Pitch*sin_Yaw - cos_Yaw*sin_Roll;

DCM_matriz[2][0] = -sin_Pitch;
DCM_matriz[2][1] = cos_Pitch*sin_Roll;
DCM_matriz[2][2] = cos_Roll*cos_Pitch;

Escribir_servidor_DCM((float32_t*)DCM_matriz);
Escribir_servidor_RPY(&Roll, &Pitch, &Yaw);

}

void Algortimo_DCM_MAG(tpAHRS *AHRS){

Compensacion_Sensor_magnetico(AHRS);
Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS);
Correccion_deriva(AHRS);
Angulos_Euler(AHRS);

-4-

}

void Algortimo_DCM_NO_YAW(tpAHRS *AHRS){

Actualizar_Matriz_DCM_V2(AHRS);
Normalizar_DCM(AHRS);
Correccion_deriva_NO_YAW(AHRS);
Angulos_Euler(AHRS);

}

-5-

#ifndef QUADROTOR_V1_3_1_FUNCIONES_TRANSFERENCIA_H_
#define QUADROTOR_V1_3_1_FUNCIONES_TRANSFERENCIA_H_

#define Jq1 0.8613
#define Jq2 0.8613
#define Jq3 0.8613

#define Jm 0.096369

#define Km 0.009637 //Fuerza(N) / Accion (microseg)
#define K_sistema 1.8931
#define K_q K_sistema/Km;

#define Wn 10;
#define Wn_2 10;
#define chi 1;

#define Kpr 0.0
/*
Kp1 = Wn^2*Jq1/K;
Kp2 = Wn^2*Jq2/K;
Kp3 = Wn^2*Jq3/K2;

Kv1 = (2*chi*Wn - 1) / K;
Kv2 = (2*chi*Wn - 1) / K;
Kv3 = (2*chi*Wn - 1) / K2;
 */

/*
#define Kp1 0
#define Kv1 0

#define Kp2 0
#define Kv2 0
*/

#define Kp1 15.0
#define Kv1 2.5

#define Kp2 15.0
#define Kv2 2.5

#define Kp3 15.0
#define Kv3 2.5

#define Ki 0.02
#define Ki_EST 2

const float32_t F_matriz[] = {
0.994211639269529, 0, 0,
0, 0, 0,
1.108053901852224, 0, 0, 0,
0.004985515097154, 1.000000000000000, 0,
0, 0, 0,
0.002796838162984, 0, 0, 0,

0, 0, 0.994211639269529,
0, 0, 0,
0, 1.108053901852224, 0, 0,
0, 0, 0.004985515097154,
1.000000000000000, 0,
0, 0, 0.002796838162984,
0, 0,
0, 0, 0,
0, 0.994211639269529, 0,
0, 0, 0.166208085277834, 0,
0, 0, 0,

-1-

0, 0.004985515097154, 1.000000000000000,
0, 0, 0.000419525724448, 0,
0, 0, 0,
0, 0, 0,
0.949439085978879, 0,
0, 0,
0, 0, 0,
0, 0, 0,
0, 0.949439085978879, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0.949439085978879, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0, 0.949439085978879

};
const arm_matrix_instance_f32 F = {10, 10, (float32_t *)F_matriz};

const float32_t G_matriz[] = {
0.000279686718516044, 0,
-0.000279686718516044, 0,
0.000000468381516574, 0,
-0.000000468381516574, 0,

0, 0.000279686718516044, 0,
-0.000279686718516044,
0, 0.000000468381516574, 0,
-0.000000468381516574,

0.000041953007777407, -0.000041953007777407, 0.000041953007777407,
-0.000041953007777407,
0.000000070257227486, -0.000000070257227486, 0.000000070257227486,
-0.000000070257227486,
0.000487255528421544, 0,
-0.000487255528421544, 0,

0, 0.000487255528421544, 0,
-0.000487255528421544,

0.000487255528421544, -0.000487255528421544, 0.000487255528421544,
-0.000487255528421544,
0.000487255528421544, 0.000487255528421544, 0.000487255528421544,
0.000487255528421544

};
const arm_matrix_instance_f32 G = {10, 4, (float32_t *)G_matriz};

const float32_t Gp_matriz[] = {

-0.029022176872060, 0, 0, 0,
-0.000048602419485, 0, 0, 0,

0, -0.029022176872060, 0, 0,
0, -0.000048602419485, 0, 0,
0, 0, -0.004353326530809, 0,
0, 0, -0.000007290362923, 0,

-0.050560914021121, 0, 0, 0,
0, -0.050560914021121, 0, 0,
0, 0, -0.050560914021121, 0,
0, 0, 0, -0.050560914021121

};
const arm_matrix_instance_f32 Gp = {10, 4, (float32_t *)Gp_matriz};

const float32_t K_4_matriz[] = { Kv1/2.0, Kp1/2.0, 0, 0, Kv3/4.0,
Kp3/4.0, Kpr/2.0, 0, Kpr/4.0, Kpr/4.0,

0, 0, Kv2/2.0, Kp2/2.0, -Kv3/4.0,
-Kp3/4.0, 0, Kpr/2.0, -Kpr/4.0,
Kpr/4.0,

-Kv1/2.0, -Kp1/2.0, 0, 0, Kv3/4.0,
Kp3/4.0, -Kpr/2.0, 0, Kpr/4.0, Kpr/4.0,

-2-

0, 0, -Kv2/2.0, -Kp2/2.0, -Kv3/4.0,
-Kp3/4.0, 0, -Kpr/2.0, -Kpr/4.0,
Kpr/4.0 };

const arm_matrix_instance_f32 K_4 = {4, 10, (float32_t *)K_4_matriz};

const float32_t K_3_matriz[] = { Kv1/2, Kp1/2, 0, 0, Kv3/4,
Kp3/4, 0, 0, 0, 0,

0, 0, Kv2/2, Kp2/2, - Kv3/4,
-Kp3/4, 0, 0, 0, 0,

-Kv1/2, -Kp1/2, 0, 0, Kv3/4,
Kp3/4, 0, 0, 0, 0,

0, 0, -Kv2/2, -Kp2/2, - Kv3/4,
-Kp3/4, 0, 0, 0, 0 };

const arm_matrix_instance_f32 K_3 = {4, 10, (float32_t *)K_3_matriz};

/*
const float32_t K_pre_4_matriz [] = { Kp1/2.0, 0, Kp3/4.0,
Kpr/4.0*(1.0+1.0/(Km*Kpr)),

0, Kp2/2.0, -Kp3/4.0,
Kpr/4.0*(1.0+1.0/(Km*Kpr)),

-Kp1/2.0, 0, Kp3/4.0,
Kpr/4.0*(1.0+1.0/(Km*Kpr)),

0, -Kp2/2.0, -Kp3/4.0,
Kpr/4.0*(1.0+1.0/(Km*Kpr)) };

*/
const float32_t K_pre_4_matriz [] = { Kp1/2.0, 0, Kp3/4.0, 0,

0, Kp2/2.0, -Kp3/4.0, 0,
-Kp1/2.0, 0, Kp3/4.0, 0,

0, -Kp2/2.0, -Kp3/4.0, 0 };

const arm_matrix_instance_f32 K_pre_4 = {4, 4, (float32_t *)K_pre_4_matriz};

const float32_t K_pre_3_matriz [] = { Kp1/2, 0, Kp3/4, 1,
0, Kp2/2, -Kp3/4, 1,

-Kp1/2, 0, Kp3/4, 1,
0, -Kp2/2, -Kp3/4, 1 };

const arm_matrix_instance_f32 K_pre_3 = {4, 4, (float32_t *)K_pre_3_matriz};

const float32_t Lo_per_matriz[] = {

0.198434923933560, -0.006363850507977, -0.007659457807024,
-0.027653725397731, -0.040303351039343, 0.032195672338781,
0, 0, 0, -0.119404737466306,
0.001086363950669, 0.188835322750985, -0.016657957077870,
-0.024043417453002, -0.020908295732614, -0.011056332513453,
0, 0, 0, 0.001170982384024,

-0.005045608483105, -0.048871496093713, 0.157744315915222,
-0.041854699495902, 0.044350331784821, -0.024550313312358,
0, 0, 0, 0.016240261993865,
-0.005309682991509, -0.023052431159453, -0.007214113163155,
0.201894030185689, -0.019095064558748, -0.004329015112383,
0, 0, 0, 0.004022347367876,
-0.002378769745064, -0.002178446370954, 0.002055236651581,
-0.002107845235214, 0.111605875609966, 0.002983178665231,
0, 0, 0, 0.004293308919750,
0.003865396849945, -0.011754342406059, -0.008725820535339,
-0.005326913222497, 0.035796312502292, 0.207633665528118,
0, 0, 0, -0.002449943423081,
0.037373088816668, 0.008171926131680, -0.000749832805752,
0.012867191640016, 0.003870818022841, -0.007501931764926,
0, 0, 0, -0.065266474827869,

-0.000255055739259, 0.049442260602111, 0.037401895624638,
0.033213986376183, -0.001506645855643, 0.025470558191721,
0, 0, 0, 0.001253319942105,
0.000379721483837, 0.022713862804404, -0.000356562869897,
0.021199489086857, 0.258298575110510, -0.036706281736491,
0, 0, 0, 0.033732925270074,
0.021869479811627, 0.001408963971122, -0.000641233000648,

-3-

0.010283330987783, -0.030403824233784, -0.009898280860548,
0, 0, 0, 0.217541943060802

};
const arm_matrix_instance_f32 Lo_per = {10, 10, (float32_t *)Lo_per_matriz};

const float32_t Lp_matriz[] = {

-0.105325610557535, -0.002714467035512, 0.0,
0.0, 0.0, 0.0,
0, 0, 0, 0.0,
0.0, -0.0, -0.105325610557535,
-0.002714467035512, -0.0, -0.0,
0, 0, 0, -0.0,
0.0, -0.0, -0.0,
-0.0, -0.105325610557535, -0.002714467035512,
0, 0, 0, -0.0,

-0.0, -0.0, 0.0,
-0.0, 0.0, 0.0,
0, 0, 0, -0.278795314926213

/*
 -0.105325610557535, 0.002714467035512, 0.008732682462314,
0.002559603908597, 0.014552758777108, 0.000528954644569,
0, 0, 0, 0.102919655628366,

 0.008312078498193, -0.003819091813717, -0.075060605398528,
-0.002074987127944, -0.019057795543476, -0.005361511672757,
0, 0, 0, -0.001723807565582,

 0.004362113688891, -0.013310664761345, -0.004605587466494,
-0.014805749036137, -0.378215610185594, 0.031471607720973,
0, 0, 0, -0.048012960151969,

 -0.055502910072872, -0.000414764856061, 0.005678012486231,
-0.012687401959021, 0.057454318249112, 0.016414143824185,
0, 0, 0, -0.278795314926213

*/
};
const arm_matrix_instance_f32 Lp = {4, 10, (float32_t *)Lp_matriz};

const float32_t La_matriz[] = {
/*

 -51.883366192798583, 0, -25.941683096399295, -25.941683096399299,
0, -51.883366192798583, 25.941683096399295, -25.941683096399299,

 51.883366192798583, 0, -25.941683096399302, -25.941683096399302,
0, 51.883366192798583, 25.941683096399302, -25.941683096399302

*/

-51.883366192798583, 0, 0, 0,
0, -51.883366192798583, 0, 0,

51.883366192798583, 0, 0, 0,
0, 51.883366192798583, 0, 0

};
const arm_matrix_instance_f32 La = {4, 4, (float32_t *)La_matriz};

//Parametros Filtros
#define Kc 1
#define numero_muestras_filtro_media 5

#define Kp_ROLLPITCH 0.00005
#define Ki_ROLLPITCH 0.00000001
//#define Kp_YAW 0.00005
//#define Ki_YAW 0.00000001

#define Kp_YAW 0.00005

-4-

#define Ki_YAW 0.00000001

//50Hz
/*
#define num_etapas_Filtro_Vel 2
const float32_t Coeficientes_Filtro_Vel_Valores[5*num_etapas_Filtro_Vel] = {
0.361615673042922, 2*0.361615673042922, 0.361615673042922, 0, -0.446462692171690,
0.259891532474145, 2*0.259891532474145, 0.259891532474145, 0, -0.0395661298965801};
*/

#define num_etapas_Filtro_Per 2
const float32_t Coeficientes_Filtro_Pre_Valores[5*num_etapas_Filtro_Per] = {
0.361615673042922, 2*0.361615673042922, 0.361615673042922, 0, -0.446462692171690,
0.259891532474145, 2*0.259891532474145, 0.259891532474145, 0, -0.0395661298965801};

//Filtro 20Hz
#define num_etapas_Filtro_Vel 2
const float32_t Coeficientes_Filtro_Vel_Valores[5*num_etapas_Filtro_Vel] = {
0.00376220298169900, 2*0.00376220298169900, 0.00376220298169900, 1.89341560102250,
-0.908464412949295, 0.00353349592337797, 2*0.00353349592337797, 0.00353349592337797,
1.77831348813944, -0.792447471832947};

#define num_etapas_Filtro_Acel 2
const float32_t Coeficientes_Filtro_Acel_Valores[5*num_etapas_Filtro_Acel] = {
0.00376220298169900, 2*0.00376220298169900, 0.00376220298169900, 1.89341560102250,
-0.908464412949295, 0.00353349592337797, 2*0.00353349592337797, 0.00353349592337797,
1.77831348813944, -0.792447471832947};

#define Coeficientes_Filtro_Mag_Valores {0, 0.0425, 0.0367, 1.565, -0.6442}
#define num_etapas_Filtro_Mag 1

/*
#define num_etapas_Filtro_Per 2
const float32_t Coeficientes_Filtro_Pre_Valores[5*num_etapas_Filtro_Per] = {
0.0779563405164626, 2*0.0779563405164626, 0.0779563405164626, 1.32091343081943,
-0.632738792885277, 0.0618851952997645, 2*0.0618851952997645, 0.0618851952997645,
1.04859957636261, -0.296140357561670 };
*/

//10Hz
/*
#define num_etapas_Filtro_Per 2
const float32_t Coeficientes_Filtro_Per_Valores[5*num_etapas_Filtro_Per] = {
0.0218838519679430, 2*0.0218838519679430, 0.0218838519679430, 1.70096433194353,
-0.788499739815298, 0.0190368315878239, 2*0.0190368315878239, 0.0190368315878239,
1.47967421693119, -0.555821543282489};
*/

#endif /* QUADROTOR_V1_3_1_FUNCIONES_TRANSFERENCIA_H_ */

-5-

#ifndef PARAMETROS_DEF
#define PARAMETROS_DEF

#include "arm_math.h"

#define Frecuencia_CPU (uint32_t)80000000UL

#define BAUD_RATE_9600 (uint32_t)9600UL
#define BAUD_RATE_115200 (uint32_t)115200UL
#define BAUD_RATE_128000 (uint32_t)128000UL
#define BAUD_RATE_460800 (uint32_t)460800UL
#define BITRATE_SPI (uint32_t)1000000UL

//Integrado AUX
#define Dir_AUX 0x01

//Parametros Tareas
#define PRIORIDAD_Leer_IMU 10
#define PERIODO_Leer_IMU 1
#define Timeout_Clk_Leer_IMU 1

#define PRIORIDAD_Calculo_AHRS 9
#define PERIODO_Calculo_AHRS 2
#define Timeout_Clk_Calculo_AHRS 250

#define PRIORIDAD_Control 8
#define PERIODO_Control 5
#define Timeout_Clk_Control 5

#define PRIORIDAD_Identificacion 8
#define PERIODO_Identificacion 5
#define Timeout_Clk_Identificacion 5

#define PRIORIDAD_Coordinador 7
#define PERIODO_Coordinador 25
#define Timeout_Clk_Coordinador 25

#define PRIORIDAD_Calculo_Altura 6
#define PERIODO_Calculo_Altura 60
#define Timeout_Clk_Calculo_Altura 60

//Parametros Funcionamiento
#define numCanales 8
#define ticks_arranque_vuelo 3*1000/PERIODO_Coordinador
#define Numero_Muetras_calibracion_IMU 1000
#define Numero_Muetras_calibracion_Brujula 100
#define Longitud_buffer 9000
#define Num_intentos_conexion_Identificacion 5

typedef enum {VUELO, ESPERA, ERROR, IDENTIFICACION, CALIBRACION, DEBUG, ERROR_CONEXION}
tpEstado_Sistema;
//typedef enum {IDENTIFICACION_EJE, IDENTIFICACION_MOTOR,
IDENTIFIACION_NULA}tpEstado_Identificacion;
typedef enum {NO_TELEMETRIA, TELEMETRIA_CONTROL, TELEMETRIA_YPR, TELEMETRIA_IMU,
TELEMETRIA_BRUJULA}tpModoTelemetria;
typedef enum {CORREGIR_PERTURBACIONES, NO_CORREGIR_PERTURBACIONES, INTEGRAR_PERTURBACIONES,
INTEGRAR_PERTURBACIONES_ESTIMADAS}tpModoPerturbaciones;
typedef enum {ANGULOS_4, ANGULOS_3, ANGULOS_1, EMPUJE}tpModo_Control;
typedef enum {PARADA_EMER, ESTABILIZACION_EMER, ATERIZAJE_EMER, NO_WATCHDOG}tpModoWatchdog;
typedef enum {CALIBRACION_COMPLETA_IMU, CALIBRACION_GIROSCOPO, CALIBRACION_ACELEROMETRO,
NO_CALIBRAR_IMU}tpModoCalibracionIMU;
typedef enum {START = '#', FINAL = '*', IDENTIFICAR ='I', CALIBRAR = 'C', TELEMETRIA = 'T',
DATO_ANTERIOR = 0xFF } tpOrden;
typedef enum {TELE_0, TELE_1, TELE_2, TELE_3, TELE_4} tpInfoTelemetria;
// TELE_0 Telemetria Control, Sin perturcaciones, control 3 Angulos
// TELE_1 Telemetria Control, perturcaciones, control 3 Angulos
// TELE_2 Telemetria Control, perturcaciones integradas estimadas, control 3 Angulos
// TELE_3 Telemetria Control, perturcaciones integradas, control 3 Angulos

-1-

// TELE_4 Telemetria Control, EMPUJE

typedef struct{
uint8_t Inicio;
uint8_t InfoTelemetria;
int16_t Referencia[4];
uint16_t Accion[4];
int16_t Variables_Estado[10];
int16_t Perturbaciones[4];
uint16_t Altura_Barometrica;
uint16_t Altura_US;
int16_t Acel[3];
int16_t Gyro[3];
int16_t Magnetics[3];
uint8_t Final;

}tpTelemetria_Control;

typedef struct{
uint8_t Inicio;
int16_t Yaw;
int16_t Pitch;
int16_t Roll;
uint8_t Final;

}tpTelemetria_YPR;

typedef struct{
tpOrden Inicio;
uint16_t Acel[3];
uint16_t Gyro[3];
uint16_t Mag[3];
tpOrden Final;

}tpTelemetria_IMU;

typedef struct{
float32_t Yaw_offset;
float32_t Pitch_offset;
float32_t Roll_offset;

}tpPuntoInicial;

//VALORES MAXIMOS
#define Angulo_Maximo 30.0//º
#define Velocidad_Angular_Maxima 10.0 //º/s
#define Valor_Empuje_Maximo 800
#define Valor_Fuerza_Maximo 2.0
#define Valor_perturbacion_Motor_MAX 5.0
#define Valor_perturbacion_Motor_MIN 0.0

//VALORES CONVERSION Q_16
#define Angulo_Max_Q16 180.0
#define Velocidad_Max_Q16 1000.0
#define F_Max_Q16 100.0

//TIMEOUTS
#define Timeout_UART_BLUETOOTH_Lectura 10

//TAREAS
#define nTokensIniciales_0 0
#define nTokensIniciales_1 1

//Parametros Ultrasonido US
#define Pulso_arranque_us 10 //us
#define Distancia_MAX_us 4 //m
#define Velocidad_Sonido 340 // m/s
#define Max_pulso_us 25000 // (4.25 metros)
#define Min_pulso_us 120 // 2 cm

typedef enum{INT_TRIGGER, INT_LLEGADA}tpIntUS;

-2-

//Parametros Motor
#define Offset_rpm 1174
#define Accion_Maxima 1000
#define Accion_Minima 100

#define Pulso_minimo_PWM_motor 1000U
#define Pulso_maximo_PWM_motor 2000U

//Parametros Chasis
#define MasaQuadrotor 0.9 //Kg
#define Pert_Fuerza_Bateria 0.3 //N

#endif

-3-

/*
AHRS como tarea
Todos Sensores IMU en una tarea.
Telemetria sensores sin filtrar. paso de dato con buzon
Añadida correcccion de posicion mediante rotacion de la medidas, con calculo de matriz al
inicio del ciclo

Sincronizacion de arranaque cambiada, las tareas inician su propio clock excepto el IMU
IMU->Se calibra, Guarda la primera lectura, Inicio AHRS , Tarea ciclico.

*Reset de los parametros, Guarda la primera
lectura, Inicio Coordinador , Tarea ciclico.

 Arranca WD, SYNCRO, Tarea ciclico.

*/

/* PARAMETROS CONFIGURACION */
#define Estimador_Parcial
//#define Filtro_Perturbaciones
#define Filtrado_Vel_IMU

#define IMU_MPU9250
//#define IMU_MPU6050
//#define GYRO_L3G4200
//#define COMPASS_HMC5883L
#define BAR_BMP280
//#define Sensor_RPM

//#define MAG

/* XDCtools Header files */
#include <xdc/std.h>
#include <xdc/cfg/global.h>
#include <xdc/runtime/System.h>
#include <xdc/runtime/Error.h>
#include <xdc/runtime/Memory.h>
//#include <xdc/runtime/IHeap.h>

/* BIOS Header files */
#include <ti/sysbios/BIOS.h>
#include <ti/sysbios/Knl/Task.h>
#include <ti/sysbios/Knl/Clock.h>
#include <ti/sysbios/Knl/Semaphore.h>
#include <ti/sysbios/Knl/Mailbox.h>
#include <ti/sysbios/Knl/Swi.h>
#include <ti/sysbios/gates/GateMutexPri.h>
#include <ti/sysbios/hal/Timer.h>
#include <ti/sysbios/hal/Hwi.h>

/* TI-RTOS Header files */
#include <ti/drivers/GPIO.h>
#include <ti/drivers/I2C.h>
#include <ti/drivers/PWM.h>
#include <ti/drivers/UART.h>
#include <ti/drivers/SPI.h>
#include <ti/drivers/Watchdog.h>

/* Periphals libraries */
#include <driverlib/eeprom.h>

/* Board Header file */
#include "Quad_Board.h"
#include "arm_math.h"

-1-

#include "Parametros.h"
#include "Funciones_Transferencia.h"

#include "AHRS.h"
#include "Sensores.h"
#include "Servidores.h"
//#include "Transmisores.h"

//................Variables...//
//...Sistema....//
Ptr Datos;

tpCalibracion_Receptor Calibracion_Receptor = { //POENR PROTEGIDO???
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {0, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {-1, 1},

.Rango_Entrada = {966, 1973}
},
{.Rango_Salida = {-100, 100},

.Rango_Entrada = {966, 1973}
}

};
tpCalibracion_IMU Calibracion_IMU = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,

.Correccion_Alineamiento_matriz = {1, 0, 0, 0, 1, 0, 0, 0, 1},

.Correccion_Alineamiento.numCols = 3,

.Correccion_Alineamiento.numRows = 3,

.Correccion_Alineamiento.pData = Calibracion_IMU.Correccion_Alineamiento_matriz,

.Giro = {47.5, 0, 0}
};
tpCalibracion_Brujula Calibracion_Brujula = {0, 0, 0, 0, 0, 0};
tpModoCalibracionIMU ModoCalibracionIMU = CALIBRACION_COMPLETA_IMU;
//CALIBRACION_COMPLETA_IMU;

tpEstado_Sistema Estado_Sistema = ESPERA;
tpEstado_Sistema Estado_Sistema_Anterior = ESPERA;

tpModoTelemetria ModoTelemetria = TELEMETRIA_CONTROL;
tpInfoTelemetria InfoTelemetria = TELE_0;
const tpOrden START_FRAME = START;
const tpOrden FINAL_FRAME = FINAL;

tpModo_Control Modo_Control = ANGULOS_3;
tpModo_Control Modo_Control_Anterior = ANGULOS_3;
tpModoPerturbaciones ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
//NO_CORREGIR_PERTURBACIONES;

tpModoWatchdog ModoWatchdog = PARADA_EMER;

//....SENSORES....//

-2-

#ifdef IMU_MPU9250
tpIMU9250 IMU9250 = {

.Direccion_IMU = DIR_0_IMU_MPU9250,

.Direccion_MAG = Dir_MAG_MPU9250,

.SMPLRT_DIV = 0,

.Ganancia_Acel = Gain_Acel_16G,

.Sensibilidad_Acel = 32768.0/16.0,

.Ganancia_Gyro = Gain_Gyro_500,

.Sensibilidad_Giroscopo = 32768.0 / 500.0,

.Sensibilidad_Brujula = 32768.0/ 4800.0,

.DLPF_CFG_ACEL = DLPF_CFG_ACEL_NO,

.DLPF_CFG_GYRO = DLPF_CFG_GYRO_NO
};
#endif

#ifdef IMU_MPU6050
tpIMU6050 IMU6050 = {

.Direccion = Dir_0_IMU_MPU6050,

.SMPLRT_DIV = 0,

.DLPF_CFG = DLPF_CFG_1,

.Ganancia_Gyro = Gain_Gyro_500,

.Ganancia_Acel = Gain_Acel_16G,

.Sensibilidad_Giroscopo = 32768.0 / 500.0,

.Sensibilidad_Acel = 32768.0 /16.0
};
#endif

#ifdef GYRO_L3G4200
tpGiroscopo_L3G4200 Giroscopo_L3G4200 = {

.Direccion = Dir_1_L3G4200,

.Ganancia = dps_2000,

.Sensibilidad_Giroscopo = 32768.0 / 2000.0,

.ODR = ODR_800_Hz,

.BDU = BDU_Continuo,

.Modo = Bypass,

.BLE = BLE_Big_Endian,

.BW_LPF = LPF1_1,

.BW_HPF = HPF_0,

.HPF_activar = HPF_No_Filtro,

.HPF_modo = HPF_Normal,

.Modo_Filtro = Filtrado_LPF2
};
#endif

#ifdef COMPASS_HMC5883L
tpHMC5883L Brujula_HMC5883L = {

.Angulo_Rotacion = 0,

.Ganancia = Gauss_1_3,

.Modo_Operacion = Continuo,

.Modo_Medida = Normal,

.Muestras_Media = MEDIA_4,

.ODR = ODR_75_Hz,

.Velocidad_I2C = I2C_400_Khz,

.Sensibilidad = S_1
};
#endif

#ifdef BAR_BMP280
tpBarometro_BMP280 Barometro_BMP280 = {

.Direccion = BMP_280_DIR_0,

.Modo = Mode_Normal,

.Oversampling_Presion = x16,

.Oversampling_Temperatura = x16,

.t_sampling = ms05
};
#endif

-3-

//..Variables del sistema...//
float32_t Posicion_inicial = 0;
uint16_t Altura_US_mm = 0;
uint16_t Altura_Presion_mm = 0;
float32_t Gravedad;

//......Identificacion..........//
uint32_t nDatos_Identifiacion = 0;
uint32_t PuntoTrabajo_motor = 0;
uint16_t nDatos_leidos = 0;
//uint16_t Ticks_por_RPS = 0;

//................Instancias..//
//.......PWM............//
PWM_Handle PWM0;
PWM_Handle PWM1;
PWM_Handle PWM2;
PWM_Handle PWM3;

PWM_Params PARAMS_PWM0;
PWM_Params PARAMS_PWM1;
PWM_Params PARAMS_PWM2;
PWM_Params PARAMS_PWM3;

//.......I2C............//
I2C_Handle I2C_PRINCIPAL;
I2C_Handle I2C_AUX;

I2C_Params PARAMS_I2C;

//I2C_Params PARAMS_I2C_AUX;

//.......UART............//
UART_Handle UART_USB;
//UART_Handle UART_BT_MANDO;
UART_Handle UART_BT_TELEMETRIA;
UART_Handle UART_AUX;

UART_Params PARAMS_UART_USB;
UART_Params PARAMS_UART_BT_TELEMETRIA;
UART_Params PARAMS_UART_AUX;

//......SPI...nRF24L01......//
//tp_nRF24L01 nRF24L01;
//SPI_Params PARAMS_SPI_0;

//.....Timer..............//
Timer_Handle US_Timer;
Timer_Params PARAMS_US_Timer;

//....WATCHDOG...........//
Watchdog_Handle WatchDog_0;
Watchdog_Params PARAMS_WatchDog_0;

//...BUZON............//
Mailbox_Handle Buzon_Lecturas_IMU;
Mailbox_Params PARAMS_Buzon;

/*
Mailbox_Handle Buzon_Calibracion_IMU;
Mailbox_Handle Buzon_Calibracion_Brujula;
Mailbox_Params PARAMS_Buzon_Calibracion;
*/

-4-

//.....................TASK.......SEMAPHORES.............CLOCK........................//

Task_Params Parametros_Tarea;
Semaphore_Params Parametros_Semaforo;
Clock_Params Parametos_Clock;

//....CONTROL....//
Task_Handle TASK_Control;
Semaphore_Handle SEMAPHORE_Control;
Clock_Handle CLOCK_Control;

//....ALTURA_US..//
Task_Handle TASK_Calculo_Altura;
Semaphore_Handle SEMAPHORE_Calculo_Altura;
Clock_Handle CLOCK_Calculo_Altura;

//....Leer_IMU...//
Task_Handle TASK_Leer_IMU;
Semaphore_Handle SEMAPHORE_Leer_IMU;
Clock_Handle CLOCK_Leer_IMU;

//...Calculo_AHRS....//
Task_Handle TASK_Calculo_AHRS;
Semaphore_Handle SEMAPHORE_Calculo_AHRS;
Clock_Handle CLOCK_Calculo_AHRS;

//....Identificacion......//
Task_Handle TASK_Identificacion;
Semaphore_Handle SEMAPHORE_Identificacion;
Clock_Handle CLOCK_Identificacion;

//....Coordinador......//
Task_Handle TASK_Coordinador;
Semaphore_Handle SEMAPHORE_Coordinador;
Clock_Handle CLOCK_Coordinador;

//............ERROR..........................//
Error_Block eb;

//...................FUNCIONES..//
void Rotacion_X(arm_matrix_instance_f32 *Matriz, float32_t Giro, bool Radianes);
void Rotacion_Y(arm_matrix_instance_f32 *Matriz, float32_t Giro, bool Radianes);
void Rotacion_Z(arm_matrix_instance_f32 *Matriz, float32_t Giro, bool Radianes);
void Rotacion_ZYZp(arm_matrix_instance_f32 *Matriz, float32_t Giro[3], bool Radianes);
void Rotacion_ZXY(arm_matrix_instance_f32 *Matriz, float32_t Giro[3], bool Radianes);
//void Rotacion_XYZ(arm_matrix_instance_f32 *Matriz, float32_t Giro[3], bool Radianes);

//.........WATCHDOG.................................//
void FuncionWatchDog();
void Reestablecer_Conexion();
//...Control.....//
void Control(UArg arg0, UArg arg1);
void CLK_Control();
//...US..........//
void ISR_Timer_US();
void ISR_GPIO_US();
void Calculo_Altura(UArg arg0, UArg arg1);
void CLK_Calculo_Altura();
//....Leer_IMU...//
void Lectura_Datos_IMU(UArg arg0, UArg arg1);
void CLK_Lectura_Datos_IMU();
//....Calculo_AHRS...//
void Calculo_AHRS(UArg arg0, UArg arg1);
void CLK_Calculo_AHRS();
//....Identificacion......//
void Identificacion(UArg arg0, UArg arg1);
void CLK_Identificacion();
#ifdef Sensor_RPM

-5-

void ISR_GPIO_RPM();
#endif

//....Coordinador......//
void Coordinador(UArg arg0, UArg arg1);
void CLK_Coordinador();

/*
* ======== main ========
 */
int main(void){

Error_init(&eb);
//...........................INICIALIZACION...DRIVERS...
..........//

/* Call board init functions */
QUAD_BOARD_initGeneral();
QUAD_BOARD_initGPIO();
QUAD_BOARD_initPWM();
QUAD_BOARD_initI2C();
QUAD_BOARD_initSPI();
QUAD_BOARD_initUART();
QUAD_BOARD_initWatchdog();

//......SERVIDORES..........//
Iniciar_Servidores();

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

//......PWM........//
PWM_Params_init(&PARAMS_PWM0);
PARAMS_PWM0.period = 5000;
PARAMS_PWM0.dutyMode = PWM_DUTY_TIME;
PWM_Params_init(&PARAMS_PWM1);
PARAMS_PWM1.period = 5000;
PARAMS_PWM1.dutyMode = PWM_DUTY_TIME;
PWM_Params_init(&PARAMS_PWM2);
PARAMS_PWM2.period = 5000;
PARAMS_PWM2.dutyMode = PWM_DUTY_TIME;
PWM_Params_init(&PARAMS_PWM3);
PARAMS_PWM3.period = 5000;
PARAMS_PWM3.dutyMode = PWM_DUTY_TIME;

PWM0 = PWM_open(QUAD_BOARD_PWM0, &PARAMS_PWM0);
PWM1 = PWM_open(QUAD_BOARD_PWM1, &PARAMS_PWM1);
PWM2 = PWM_open(QUAD_BOARD_PWM2, &PARAMS_PWM2);
PWM3 = PWM_open(QUAD_BOARD_PWM3, &PARAMS_PWM3);

/*
 PWM_setDuty(PWM0, Pulso_maximo_PWM_motor);
 PWM_setDuty(PWM1, Pulso_maximo_PWM_motor);
 PWM_setDuty(PWM2, Pulso_maximo_PWM_motor);
 PWM_setDuty(PWM3, Pulso_maximo_PWM_motor);
*/

PWM_setDuty(PWM0, 0);
PWM_setDuty(PWM1, 0);
PWM_setDuty(PWM2, 0);
PWM_setDuty(PWM3, 0);

//.......I2C............//
I2C_Params_init(&PARAMS_I2C);
PARAMS_I2C.bitRate = I2C_400kHz;
PARAMS_I2C.transferMode = I2C_MODE_BLOCKING;
PARAMS_I2C.transferCallbackFxn = NULL;

I2C_PRINCIPAL = I2C_open(QUAD_BOARD_I2C0, &PARAMS_I2C);

// I2C_Params_init(&PARAMS_I2C_AUX);

-6-

// PARAMS_I2C.bitRate = I2C_400kHz;
// PARAMS_I2C.transferMode = I2C_MODE_BLOCKING;
// PARAMS_I2C.transferCallbackFxn = NULL;

I2C_AUX = I2C_open(QUAD_BOARD_I2C2, &PARAMS_I2C);

//........UART..........//
UART_Params_init(&PARAMS_UART_BT_TELEMETRIA);
PARAMS_UART_BT_TELEMETRIA.baudRate = BAUD_RATE_460800;
PARAMS_UART_BT_TELEMETRIA.dataLength = UART_LEN_8;
PARAMS_UART_BT_TELEMETRIA.parityType = UART_PAR_NONE;
PARAMS_UART_BT_TELEMETRIA.stopBits = UART_STOP_ONE;
PARAMS_UART_BT_TELEMETRIA.readEcho = UART_ECHO_OFF;

PARAMS_UART_BT_TELEMETRIA.readReturnMode = UART_RETURN_FULL;
PARAMS_UART_BT_TELEMETRIA.writeDataMode = UART_DATA_BINARY;
PARAMS_UART_BT_TELEMETRIA.readDataMode = UART_DATA_BINARY;
PARAMS_UART_BT_TELEMETRIA.readMode = UART_MODE_BLOCKING;
PARAMS_UART_BT_TELEMETRIA.writeMode = UART_MODE_BLOCKING;
PARAMS_UART_BT_TELEMETRIA.writeTimeout = BIOS_WAIT_FOREVER;
//PARAMS_UART_BT_TELEMETRIA.readTimeout = BIOS_NO_WAIT;
PARAMS_UART_BT_TELEMETRIA.readTimeout = 180;

UART_BT_TELEMETRIA = UART_open(QUAD_BOARD_UART5_BT_TELEMETRIA,
&PARAMS_UART_BT_TELEMETRIA);

//.......SPI...........//

/*
SPI_Params_init(&PARAMS_SPI_0);

PARAMS_SPI_0.transferMode = SPI_MODE_BLOCKING;
PARAMS_SPI_0.transferTimeout = BIOS_WAIT_FOREVER;
PARAMS_SPI_0.mode = SPI_MASTER;
PARAMS_SPI_0.bitRate = BITRATE_SPI;
PARAMS_SPI_0.dataSize = 8;
PARAMS_SPI_0.frameFormat = SPI_POL0_PHA0;

nRF24L01.SPI = SPI_open(QUAD_BOARD_SPI0, &PARAMS_SPI_0);
nRF24L01.PIN_CE = QUAD_BOARD_SPI_CE;
nRF24L01.PIN_CSN = QUAD_BOARD_SPI_CSN;
nRF24L01.PIN_IRQ = NULL;

*/

//.....WATCHDOG.....................//
Watchdog_Params_init(&PARAMS_WatchDog_0);
PARAMS_WatchDog_0.callbackFxn = FuncionWatchDog;
PARAMS_WatchDog_0.debugStallMode = Watchdog_DEBUG_STALL_ON;
PARAMS_WatchDog_0.resetMode = Watchdog_RESET_OFF;

//.....BUZON...............//
/*

Mailbox_Params_init(&PARAMS_Buzon_Calibracion);
Buzon_Calibracion_IMU = Mailbox_create(sizeof(tpLecturas_IMU), 1,
&PARAMS_Buzon_Calibracion, &eb);
Buzon_Calibracion_Brujula = Mailbox_create(sizeof(tpLecturas_Brujula), 1,
&PARAMS_Buzon_Calibracion, &eb);

*/
Mailbox_Params_init(&PARAMS_Buzon);

#ifdef IMU_MPU9250
Buzon_Lecturas_IMU = Mailbox_create(sizeof(tpLecturas_IMU), 1, &PARAMS_Buzon, &eb);

#endif
#ifdef IMU_MPU9250

Buzon_Lecturas_IMU = Mailbox_create(sizeof(tpLecturas_9DOF_IMU), 1, &PARAMS_Buzon, &eb);
#endif
//.........TIMER...............//

Timer_Params_init(&PARAMS_US_Timer);
PARAMS_US_Timer.period = Pulso_arranque_us; //Para una distancia MAX de 4 metros (aprox)

-7-

PARAMS_US_Timer.periodType = Timer_PeriodType_MICROSECS;
PARAMS_US_Timer.runMode = Timer_RunMode_ONESHOT;
PARAMS_US_Timer.startMode = Timer_StartMode_USER;

US_Timer = Timer_create(5, ISR_Timer_US, &PARAMS_US_Timer, &eb);

//................INTERRUPCIONES.....................................//
GPIO_setCallback(QUAD_BOARD_ECHO, ISR_GPIO_US);
GPIO_enableInt(QUAD_BOARD_ECHO);

#ifdef Sensor_RPM
GPIO_setCallback(QUAD_BOARD_RPM, ISR_GPIO_RPM);
GPIO_enableInt(QUAD_BOARD_RPM);

#endif

//...........................INICIALIZACION...TAREAS..
.........//
//....Control....//

Task_Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD_Control;
Parametros_Tarea.stackSize = 2304;
TASK_Control = Task_create(Control, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_BINARY;
SEMAPHORE_Control = Semaphore_create(nTokensIniciales_0, &Parametros_Semaforo, &eb);

Clock_Params_init(&Parametos_Clock);
Parametos_Clock.period = PERIODO_Control;
Parametos_Clock.startFlag = false;
CLOCK_Control = Clock_create(CLK_Control, Timeout_Clk_Control, &Parametos_Clock, &eb);

//....Altura..//
Task_Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD_Calculo_Altura;
Parametros_Tarea.stackSize = 768;
TASK_Calculo_Altura = Task_create(Calculo_Altura, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_BINARY;
SEMAPHORE_Calculo_Altura = Semaphore_create(nTokensIniciales_0, &Parametros_Semaforo,
&eb);

Clock_Params_init(&Parametos_Clock);
Parametos_Clock.period = PERIODO_Calculo_Altura;
Parametos_Clock.startFlag = false;
CLOCK_Calculo_Altura = Clock_create(CLK_Calculo_Altura, Timeout_Clk_Calculo_Altura,
&Parametos_Clock, &eb);

//....Leer_IMU...//
Task_Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD_Leer_IMU;
Parametros_Tarea.stackSize = 1256;
TASK_Leer_IMU = Task_create(Lectura_Datos_IMU, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_BINARY;
SEMAPHORE_Leer_IMU = Semaphore_create(nTokensIniciales_0, &Parametros_Semaforo, &eb);

Clock_Params_init(&Parametos_Clock);
Parametos_Clock.period = PERIODO_Leer_IMU;
Parametos_Clock.startFlag = true;
CLOCK_Leer_IMU = Clock_create(CLK_Lectura_Datos_IMU, Timeout_Clk_Leer_IMU,
&Parametos_Clock, &eb);

//...Calculo AHRS....//
Task_Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD_Calculo_AHRS;

-8-

TASK_Calculo_AHRS = Task_create(Calculo_AHRS, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_BINARY;
SEMAPHORE_Calculo_AHRS = Semaphore_create(nTokensIniciales_0, &Parametros_Semaforo, &eb);

Clock_Params_init(&Parametos_Clock);
Parametos_Clock.period = PERIODO_Calculo_AHRS;
Parametos_Clock.startFlag = false;
CLOCK_Calculo_AHRS = Clock_create(CLK_Calculo_AHRS, Timeout_Clk_Calculo_AHRS,
&Parametos_Clock, &eb);

//....Identificacion......//
Task_Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD_Identificacion;
Parametros_Tarea.stackSize = 512;
TASK_Identificacion = Task_create(Identificacion, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_BINARY;
SEMAPHORE_Identificacion = Semaphore_create(nTokensIniciales_0, &Parametros_Semaforo,
&eb);

Clock_Params_init(&Parametos_Clock);
Parametos_Clock.period = PERIODO_Identificacion;
Parametos_Clock.startFlag = false;
CLOCK_Identificacion = Clock_create(CLK_Identificacion, Timeout_Clk_Identificacion,
&Parametos_Clock, &eb);

//......Coordinador.......//

Task_Params_init(&Parametros_Tarea);
Parametros_Tarea.priority = PRIORIDAD_Coordinador;
TASK_Coordinador = Task_create(Coordinador, &Parametros_Tarea, &eb);

Semaphore_Params_init(&Parametros_Semaforo);
Parametros_Semaforo.mode = Semaphore_Mode_BINARY;
SEMAPHORE_Coordinador = Semaphore_create(nTokensIniciales_0, &Parametros_Semaforo, &eb);

Clock_Params_init(&Parametos_Clock);
Parametos_Clock.period = PERIODO_Coordinador;
Parametos_Clock.startFlag = false;
CLOCK_Coordinador = Clock_create(CLK_Coordinador, Timeout_Clk_Coordinador,
&Parametos_Clock, &eb);

/*
PWM_setDuty(PWM0, Pulso_minimo_PWM_motor + Accion_Maxima);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor + Accion_Maxima);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor + Accion_Maxima);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor + Accion_Maxima);

 while(GPIO_read(QUAD_BOARD_SW2));

PWM_setDuty(PWM0, Pulso_minimo_PWM_motor + Accion_Minima);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor + Accion_Minima);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor + Accion_Minima);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor + Accion_Minima);

 while(!GPIO_read(QUAD_BOARD_SW2));
*/

/*
PWM_setDuty(PWM0, Accion_Maxima + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Accion_Maxima + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Accion_Maxima + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Accion_Maxima + Pulso_minimo_PWM_motor);

 while(GPIO_read(QUAD_BOARD_SW2));
PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);

-9-

PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);
 while(!GPIO_read(QUAD_BOARD_SW2));
*/

//Iniciamos la matriz de correccion
Rotacion_ZXY(&Calibracion_IMU.Correccion_Alineamiento, Calibracion_IMU.Giro, false);

while(GPIO_read(QUAD_BOARD_SW2));

/* Start BIOS */
BIOS_start();

return (0);
}
//
/////////////
void FuncionWatchDog(){

float32_t Referencia[4] = {0, 0, 0, 0};
UInt Key, Key2, Key3;

Key = Task_disable();
Key2 = Hwi_disable();
Key3 = Swi_disable();

Watchdog_clear(WatchDog_0);

switch(Estado_Sistema){
case VUELO:
case ESPERA:
default:

Estado_Sistema_Anterior = Estado_Sistema;
Modo_Control_Anterior = Modo_Control;

Estado_Sistema = ERROR_CONEXION;

GPIO_write(QUAD_BOARD_LED_RED, 0);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

break;
}

switch(ModoWatchdog){
case PARADA_EMER:

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

//Stop a todos los clocks y tareas
Clock_stop(CLOCK_Control);
Semaphore_reset(SEMAPHORE_Control, 0);
Clock_stop(CLOCK_Identificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);

PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

while(1);
//System_exit(0);

//break;
case ESTABILIZACION_EMER:

GPIO_toggle(QUAD_BOARD_LED_RED);
GPIO_toggle(QUAD_BOARD_LED_GREEN);
GPIO_toggle(QUAD_BOARD_LED_BLUE);

Modo_Control = ANGULOS_4;
memcpy(Direccion_servidor_Referencia(), Referencia, sizeof(Referencia));

-10-

break;
}

Swi_restore(Key3);
Hwi_restore(Key2);
Task_restore(Key);

}

void Reestablecer_Conexion(){

Modo_Control = Modo_Control_Anterior;
Estado_Sistema = Estado_Sistema_Anterior;

switch(Estado_Sistema){
case VUELO:

GPIO_write(QUAD_BOARD_LED_RED, 0);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);
break;

case ESPERA:
GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);
break;

}
}
void Rotacion_X(arm_matrix_instance_f32 *Matriz, float32_t Giro, bool Radianes){

float32_t Seno = 0;
float32_t Cos = 0;

float32_t Aux_Matriz[9] = {0,0,0,0,0,0,0,0,0};
arm_matrix_instance_f32 Aux = {Matriz->numRows, Matriz->numCols, Aux_Matriz};

float32_t Matriz_Rotacion_Matriz[9] = {0,0,0,0,0,0,0,0,0};
arm_matrix_instance_f32 Matriz_Rotacion = {3, 3, Matriz_Rotacion_Matriz};

if(Radianes){ Giro = Giro * 180.0/PI; }
arm_sin_cos_f32(Giro, &Seno, &Cos);
Matriz_Rotacion.pData[0] = 1;
Matriz_Rotacion.pData[4] = Cos;
Matriz_Rotacion.pData[5] = -Seno;
Matriz_Rotacion.pData[7] = Seno;
Matriz_Rotacion.pData[8] = Cos;

arm_copy_f32(Matriz->pData, Aux.pData, 3*Matriz->numCols);
Aux.numCols = Matriz->numCols;
Aux.numRows = Matriz->numRows;

arm_mat_mult_f32(&Aux, &Matriz_Rotacion, Matriz);

}
void Rotacion_Y(arm_matrix_instance_f32 *Matriz, float32_t Giro, bool Radianes){

float32_t Seno = 0;
float32_t Cos = 0;

float32_t Aux_Matriz[9] = {0,0,0,0,0,0,0,0,0};
arm_matrix_instance_f32 Aux = {Matriz->numRows, Matriz->numCols, Aux_Matriz};

float32_t Matriz_Rotacion_Matriz[9] = {0,0,0,0,0,0,0,0,0};
arm_matrix_instance_f32 Matriz_Rotacion = {3, 3, Matriz_Rotacion_Matriz};

if(Radianes){ Giro = Giro * 180.0/PI; }
arm_sin_cos_f32(Giro, &Seno, &Cos);
Matriz_Rotacion.pData[0] = Cos;
Matriz_Rotacion.pData[2] = Seno;
Matriz_Rotacion.pData[4] = 1;
Matriz_Rotacion.pData[6] = -Seno;
Matriz_Rotacion.pData[8] = Cos;

-11-

arm_copy_f32(Matriz->pData, Aux.pData, 3*Matriz->numCols);
Aux.numCols = Matriz->numCols;
Aux.numRows = Matriz->numRows;

arm_mat_mult_f32(&Aux, &Matriz_Rotacion, Matriz);
}
void Rotacion_Z(arm_matrix_instance_f32 *Matriz, float32_t Giro, bool Radianes){

float32_t Seno = 0;
float32_t Cos = 0;

float32_t Aux_Matriz[9] = {0,0,0,0,0,0,0,0,0};
arm_matrix_instance_f32 Aux = {Matriz->numRows, Matriz->numCols, Aux_Matriz};

float32_t Matriz_Rotacion_Matriz[9] = {0,0,0,0,0,0,0,0,0};
arm_matrix_instance_f32 Matriz_Rotacion = {3, 3, Matriz_Rotacion_Matriz};

if(Radianes){ Giro = Giro * 180.0/PI; }
arm_sin_cos_f32(Giro, &Seno, &Cos);
Matriz_Rotacion.pData[0] = Cos;
Matriz_Rotacion.pData[1] = -Seno;
Matriz_Rotacion.pData[3] = Seno;
Matriz_Rotacion.pData[4] = Cos;
Matriz_Rotacion.pData[8] = 1;

arm_copy_f32(Matriz->pData, Aux.pData, 3*Matriz->numCols);
Aux.numCols = Matriz->numCols;
Aux.numRows = Matriz->numRows;

arm_mat_mult_f32(&Aux, &Matriz_Rotacion, Matriz);
}
/*
void Rotacion_ZYZp(arm_matrix_instance_f32 *Matriz, float32_t Giro[3], bool Radianes){

float32_t Aux_Matriz[9] = {1,0,0,0,1,0,0,0,1};
arm_matrix_instance_f32 Aux = {Matriz->numRows, Matriz->numCols, Aux_Matriz};
float32_t Aux_Matriz2[9] = {1,0,0,0,1,0,0,0,1};
arm_matrix_instance_f32 Aux2 = {Matriz->numRows, Matriz->numCols, Aux_Matriz2};
float32_t Aux_Matriz3[9] = {1,0,0,0,1,0,0,0,1};
arm_matrix_instance_f32 Aux3 = {Matriz->numRows, Matriz->numCols, Aux_Matriz3};

Rotacion_Z(&Aux, Giro[0], Radianes);
Rotacion_Y(&Aux2, Giro[1], Radianes);
arm_mat_mult_f32(&Aux, &Aux2, &Aux3);
Rotacion_Z(&Aux, Giro[2], Radianes);
arm_mat_mult_f32(&Aux3, &Aux, Matriz);

}
*/
void Rotacion_ZXY(arm_matrix_instance_f32 *Matriz, float32_t Giro[3], bool Radianes){

Matriz->pData[0] = 1;
Matriz->pData[1] = 0;
Matriz->pData[2] = 0;
Matriz->pData[3] = 0;
Matriz->pData[4] = 1;
Matriz->pData[5] = 0;
Matriz->pData[6] = 0;
Matriz->pData[7] = 0;
Matriz->pData[8] = 1;

Rotacion_Z(Matriz, Giro[0], Radianes);
Rotacion_X(Matriz, Giro[1], Radianes);
Rotacion_Y(Matriz, Giro[2], Radianes);

}

void Rotacion_ZYZp(arm_matrix_instance_f32 *Matriz, float32_t Giro[3], bool Radianes){

Matriz->pData[0] = 1;
Matriz->pData[1] = 0;

-12-

Matriz->pData[2] = 0;
Matriz->pData[3] = 0;
Matriz->pData[4] = 1;
Matriz->pData[5] = 0;
Matriz->pData[6] = 0;
Matriz->pData[7] = 0;
Matriz->pData[8] = 1;

Rotacion_Z(Matriz, Giro[0], Radianes);
Rotacion_Y(Matriz, Giro[1], Radianes);
Rotacion_Z(Matriz, Giro[2], Radianes);

}

//....Leer_IMU...//
void Lectura_Datos_IMU(UArg arg0, UArg arg1){

#ifdef IMU_MPU6050
tpLecturas_IMU Lecturas_IMU = {0, 0, 0, 0, 0, 0, 0};

#endif
#ifdef IMU_MPU9250

tpLecturas_9DOF_IMU Lecturas_9DOF_IMU = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
#ifdef GYRO_L3G4200

tpLecturas_Giroscopo Lecturas_Giroscopo = {0, 0, 0, 0};
#endif
#ifdef COMPASS_HMC5883L

tpLecturas_Brujula Lecturas_Brujula;
#endif

float32_t Lecturas_matriz[3];
float32_t Lecturas_Corregidas_matriz[3];

arm_matrix_instance_f32 Lecturas = {3, 1, Lecturas_matriz};
arm_matrix_instance_f32 Lecturas_Corregidas = {3, 1, Lecturas_Corregidas_matriz};

float32_t aux;
uint16_t nMuestras = 0;

tpTelemetria_IMU Telemetria_IMU = {
.Inicio = START_FRAME,
.Final = FINAL_FRAME

};

#ifdef Filtrado_Vel_IMU
float32_t Estado_filtro_Vel_X[4*num_etapas_Filtro_Vel];
float32_t Estado_filtro_Vel_Y[4*num_etapas_Filtro_Vel];
float32_t Estado_filtro_Vel_Z[4*num_etapas_Filtro_Vel];

#endif

float32_t Estado_filtro_Acel_X[4*num_etapas_Filtro_Acel];
float32_t Estado_filtro_Acel_Y[4*num_etapas_Filtro_Acel];
float32_t Estado_filtro_Acel_Z[4*num_etapas_Filtro_Acel];

#ifdef Filtrado_Vel_IMU
arm_biquad_casd_df1_inst_f32 Filtro_Vel_X = {num_etapas_Filtro_Vel, Estado_filtro_Vel_X,
(float32_t *)Coeficientes_Filtro_Vel_Valores};

-13-

arm_biquad_casd_df1_inst_f32 Filtro_Vel_Y = {num_etapas_Filtro_Vel, Estado_filtro_Vel_Y,
(float32_t *)Coeficientes_Filtro_Vel_Valores};
arm_biquad_casd_df1_inst_f32 Filtro_Vel_Z = {num_etapas_Filtro_Vel, Estado_filtro_Vel_Z,
(float32_t *)Coeficientes_Filtro_Vel_Valores};

#endif

arm_biquad_casd_df1_inst_f32 Filtro_Acel_X = {num_etapas_Filtro_Acel,
Estado_filtro_Acel_X, (float32_t *)Coeficientes_Filtro_Acel_Valores};
arm_biquad_casd_df1_inst_f32 Filtro_Acel_Y = {num_etapas_Filtro_Acel,
Estado_filtro_Acel_Y, (float32_t *)Coeficientes_Filtro_Acel_Valores};
arm_biquad_casd_df1_inst_f32 Filtro_Acel_Z = {num_etapas_Filtro_Acel,
Estado_filtro_Acel_Z, (float32_t *)Coeficientes_Filtro_Acel_Valores};

Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);

//Inicializamos el filtro
#ifdef Filtrado_Vel_IMU

arm_fill_f32(0.0, Estado_filtro_Vel_X, 4*num_etapas_Filtro_Vel);
arm_fill_f32(0.0, Estado_filtro_Vel_Y, 4*num_etapas_Filtro_Vel);
arm_fill_f32(0.0, Estado_filtro_Vel_Z, 4*num_etapas_Filtro_Vel);

#endif

arm_fill_f32(0.0, Estado_filtro_Acel_X, 4*num_etapas_Filtro_Acel);
arm_fill_f32(0.0, Estado_filtro_Acel_Y, 4*num_etapas_Filtro_Acel);
arm_fill_f32(0.0, Estado_filtro_Acel_Z, 4*num_etapas_Filtro_Acel);

#ifdef IMU_MPU6050
Iniciar_IMU_MPU6050(I2C_PRINCIPAL, IMU6050);

#endif

#ifdef IMU_MPU9250
Iniciar_IMU_MPU9250(I2C_PRINCIPAL, IMU9250);

#endif

#ifdef GYRO_L3G4200
Iniciar_Giroscopo_L3G4200(I2C_PRINCIPAL, Giroscopo_L3G4200);

#endif

#ifdef COMPASS_HMC5883L
Iniciar_Brujula_HMC5883L(I2C_PRINCIPAL, Brujula_HMC5883L);

#endif

//........Calibracion....media.........//
GPIO_write(QUAD_BOARD_LED_RED, 0);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 1);

Datos = Memory_alloc(NULL, Numero_Muetras_calibracion_IMU*4, 0, &eb);

#ifdef IMU_MPU6050

if(ModoCalibracionIMU == CALIBRACION_ACELEROMETRO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.x_acel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_x);
Calibracion_IMU.Media_Acel_x = (int16_t)Calibracion_IMU.Des_est_Acel_x;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_x);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);

-14-

Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.y_acel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_y);
Calibracion_IMU.Media_Acel_y = (int16_t)Calibracion_IMU.Des_est_Acel_y;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_y);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.z_acel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_z);
Calibracion_IMU.Media_Acel_z = (int16_t)Calibracion_IMU.Des_est_Acel_z;
Gravedad = sqrt(pow(Calibracion_IMU.Media_Acel_x,2) +
pow(Calibracion_IMU.Media_Acel_y,2) + pow(Calibracion_IMU.Media_Acel_z,2));
Calibracion_IMU.Media_Acel_z -= (int16_t)sqrt(pow(Calibracion_IMU.Media_Acel_x,2) +
pow(Calibracion_IMU.Media_Acel_y,2) + pow(Calibracion_IMU.Media_Acel_z,2));
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_z);

}

if(ModoCalibracionIMU == CALIBRACION_GIROSCOPO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.x_vel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_x);
Calibracion_IMU.Media_Vel_x = (int16_t)Calibracion_IMU.Des_est_Vel_x;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_x);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.y_vel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_y);
Calibracion_IMU.Media_Vel_y = (int16_t)Calibracion_IMU.Des_est_Vel_y;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_y);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);
((float32_t)Datos + nMuestras) = Lecturas_IMU.Valor.z_vel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_z);
Calibracion_IMU.Media_Vel_z = (int16_t)Calibracion_IMU.Des_est_Vel_z;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_z);

}

Escribir_servidor_Lecturas_IMU(&Lecturas_IMU);
#endif

-15-

#ifdef IMU_MPU9250

if(ModoCalibracionIMU == CALIBRACION_ACELEROMETRO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.x_acel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_x);
Calibracion_IMU.Media_Acel_x = (int16_t)Calibracion_IMU.Des_est_Acel_x;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_x);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.y_acel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_y);
Calibracion_IMU.Media_Acel_y = (int16_t)Calibracion_IMU.Des_est_Acel_y;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_y);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.z_acel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_z);
Calibracion_IMU.Media_Acel_z = (int16_t)Calibracion_IMU.Des_est_Acel_z;
Gravedad = sqrt(pow(Calibracion_IMU.Media_Acel_x,2) +
pow(Calibracion_IMU.Media_Acel_y,2) + pow(Calibracion_IMU.Media_Acel_z,2));
Calibracion_IMU.Media_Acel_z -= (int16_t)sqrt(pow(Calibracion_IMU.Media_Acel_x,2) +
pow(Calibracion_IMU.Media_Acel_y,2) + pow(Calibracion_IMU.Media_Acel_z,2));
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Acel_z);

}

if(ModoCalibracionIMU == CALIBRACION_GIROSCOPO || ModoCalibracionIMU ==
CALIBRACION_COMPLETA_IMU){

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.x_vel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_x);
Calibracion_IMU.Media_Vel_x = (int16_t)Calibracion_IMU.Des_est_Vel_x;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_x);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.y_vel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_y);

-16-

Calibracion_IMU.Media_Vel_y = (int16_t)Calibracion_IMU.Des_est_Vel_y;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_y);

for(nMuestras=0; nMuestras<Numero_Muetras_calibracion_IMU; nMuestras++){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);
((float32_t)Datos + nMuestras) = Lecturas_9DOF_IMU.Valor.z_vel;
Task_sleep(PERIODO_Leer_IMU);

}
arm_mean_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_z);
Calibracion_IMU.Media_Vel_z = (int16_t)Calibracion_IMU.Des_est_Vel_z;
arm_std_f32((float32_t*)Datos, Numero_Muetras_calibracion_IMU,
&Calibracion_IMU.Des_est_Vel_z);

}

Escribir_servidor_Lecturas_IMU_9DOF(&Lecturas_9DOF_IMU);
#endif

Memory_free(NULL, Datos, Numero_Muetras_calibracion_IMU*4);

PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

//ARRANCA LA TAREA DE AHRS
Semaphore_post(SEMAPHORE_Calculo_AHRS);

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

while(1){
Semaphore_pend(SEMAPHORE_Leer_IMU, BIOS_WAIT_FOREVER);

//..IMU................//
#ifdef IMU_MPU6050

Leer_IMU_MPU6050(I2C_PRINCIPAL, IMU6050, &Lecturas_IMU);

//..Offset..//
Lecturas_IMU.Valor.x_vel -= Calibracion_IMU.Media_Vel_x;
Lecturas_IMU.Valor.y_vel -= Calibracion_IMU.Media_Vel_y;
Lecturas_IMU.Valor.z_vel -= Calibracion_IMU.Media_Vel_z;

Mailbox_pend(Buzon_Lecturas_IMU, NULL, BIOS_NO_WAIT);
Mailbox_post(Buzon_Lecturas_IMU, &Lecturas_IMU, BIOS_NO_WAIT);

//..Filtrado...Lectura...IMU..........//
aux = (float32_t)Lecturas_IMU.Valor.x_acel;
arm_biquad_cascade_df1_f32(&Filtro_Acel_X, &aux, &Lecturas_matriz[0], 1);
aux = (float32_t)Lecturas_IMU.Valor.y_acel;
arm_biquad_cascade_df1_f32(&Filtro_Acel_Y, &aux, &Lecturas_matriz[1], 1);
aux = (float32_t)Lecturas_IMU.Valor.z_acel;
arm_biquad_cascade_df1_f32(&Filtro_Acel_Z, &aux, &Lecturas_matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &Lecturas,
&Lecturas_Corregidas);

Lecturas_IMU.Valor.x_acel = (int16_t)Lecturas_Corregidas_matriz[0];
Lecturas_IMU.Valor.y_acel = (int16_t)Lecturas_Corregidas_matriz[1];
Lecturas_IMU.Valor.z_acel = (int16_t)Lecturas_Corregidas_matriz[2];

#ifdef Filtrado_Vel_IMU
aux = (float32_t)Lecturas_IMU.Valor.x_vel;
arm_biquad_cascade_df1_f32(&Filtro_Vel_X, &aux, &Lecturas_matriz[0], 1);
aux = (float32_t)Lecturas_IMU.Valor.y_vel;

-17-

arm_biquad_cascade_df1_f32(&Filtro_Vel_Y, &aux, &Lecturas_matriz[1], 1);
aux = (float32_t)Lecturas_IMU.Valor.z_vel;
arm_biquad_cascade_df1_f32(&Filtro_Vel_Z, &aux, &Lecturas_matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &Lecturas,
&Lecturas_Corregidas);

Lecturas_IMU.Valor.x_vel = (int16_t)Lecturas_Corregidas_matriz[0];
Lecturas_IMU.Valor.y_vel = (int16_t)Lecturas_Corregidas_matriz[1];
Lecturas_IMU.Valor.z_vel = (int16_t)Lecturas_Corregidas_matriz[2];

#endif
Escribir_servidor_Lecturas_IMU(&Lecturas_IMU);

#endif

#ifdef IMU_MPU9250
Leer_IMU_MPU9250(I2C_PRINCIPAL, IMU9250, &Lecturas_9DOF_IMU);

//..Offset..//
Lecturas_9DOF_IMU.Valor.x_vel -= Calibracion_IMU.Media_Vel_x;
Lecturas_9DOF_IMU.Valor.y_vel -= Calibracion_IMU.Media_Vel_y;
Lecturas_9DOF_IMU.Valor.z_vel -= Calibracion_IMU.Media_Vel_z;

Mailbox_pend(Buzon_Lecturas_IMU, NULL, BIOS_NO_WAIT);
Mailbox_post(Buzon_Lecturas_IMU, &Lecturas_9DOF_IMU, BIOS_NO_WAIT);

//..Filtrado...Lectura...IMU..........//
aux = (float32_t)Lecturas_9DOF_IMU.Valor.x_acel;
arm_biquad_cascade_df1_f32(&Filtro_Acel_X, &aux, &Lecturas_matriz[0], 1);
aux = (float32_t)Lecturas_9DOF_IMU.Valor.y_acel;
arm_biquad_cascade_df1_f32(&Filtro_Acel_Y, &aux, &Lecturas_matriz[1], 1);
aux = (float32_t)Lecturas_9DOF_IMU.Valor.z_acel;
arm_biquad_cascade_df1_f32(&Filtro_Acel_Z, &aux, &Lecturas_matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &Lecturas,
&Lecturas_Corregidas);

Lecturas_9DOF_IMU.Valor.x_acel = (int16_t)Lecturas_Corregidas_matriz[0];
Lecturas_9DOF_IMU.Valor.y_acel = (int16_t)Lecturas_Corregidas_matriz[1];
Lecturas_9DOF_IMU.Valor.z_acel = (int16_t)Lecturas_Corregidas_matriz[2];

#ifdef Filtrado_Vel_IMU
aux = (float32_t)Lecturas_9DOF_IMU.Valor.x_vel;
arm_biquad_cascade_df1_f32(&Filtro_Vel_X, &aux, &Lecturas_matriz[0], 1);
aux = (float32_t)Lecturas_9DOF_IMU.Valor.y_vel;
arm_biquad_cascade_df1_f32(&Filtro_Vel_Y, &aux, &Lecturas_matriz[1], 1);
aux = (float32_t)Lecturas_9DOF_IMU.Valor.z_vel;
arm_biquad_cascade_df1_f32(&Filtro_Vel_Z, &aux, &Lecturas_matriz[2], 1);

arm_mat_mult_f32(&Calibracion_IMU.Correccion_Alineamiento, &Lecturas,
&Lecturas_Corregidas);

Lecturas_9DOF_IMU.Valor.x_vel = (int16_t)Lecturas_Corregidas_matriz[0];
Lecturas_9DOF_IMU.Valor.y_vel = (int16_t)Lecturas_Corregidas_matriz[1];
Lecturas_9DOF_IMU.Valor.z_vel = (int16_t)Lecturas_Corregidas_matriz[2];

#endif
Escribir_servidor_Lecturas_IMU_9DOF(&Lecturas_9DOF_IMU);

#endif

#ifdef GYRO_L3G4200
Leer_Giroscopo_L3G4200(I2C_PRINCIPAL, Giroscopo_L3G4200, &Lecturas_Giroscopo);

#endif

#ifdef ROT_GYRO
Lecturas_Giroscopo_Rotadas.Valor.x_vel = -Lecturas_Giroscopo.Valor.y_vel *
Rot_sin_giro + Lecturas_Giroscopo.Valor.x_vel * Rot_cos_giro;
Lecturas_Giroscopo_Rotadas.Valor.y_vel = Lecturas_Giroscopo.Valor.x_vel *

-18-

Rot_sin_giro + Lecturas_Giroscopo.Valor.y_vel * Rot_cos_giro;
Lecturas_Giroscopo_Rotadas.Valor.z_vel = Lecturas_Giroscopo.Valor.z_vel;

#endif

#ifdef GYRO_L3G4200
Escribir_servidor_Lecturas_Giroscopo(&Lecturas_Giroscopo);

#endif

#ifdef COMPASS_HMC5883L
Leer_Brujula_HMC5883L(I2C_PRINCIPAL, Brujula_HMC5883L, &Lecturas_Brujula);
//Mailbox_post(Buzon_Calibracion_Brujula, &Lecturas_Brujula, BIOS_NO_WAIT);
Escribir_servidor_Lecturas_Brujula(&Lecturas_Brujula);

#endif

#ifdef IMU_MPU6050
switch(ModoTelemetria){

case(TELEMETRIA_IMU):
Telemetria_IMU.Acel[0] = Lecturas_IMU.Valor.x_acel;
Telemetria_IMU.Acel[1] = Lecturas_IMU.Valor.y_acel;
Telemetria_IMU.Acel[2] = Lecturas_IMU.Valor.z_acel;

#ifdef GYRO_L3G4200
Telemetria_IMU.Gyro[0] = Lecturas_IMU.Valor.x_vel;
Telemetria_IMU.Gyro[1] = Lecturas_IMU.Valor.y_vel;
Telemetria_IMU.Gyro[2] = Lecturas_IMU.Valor.z_vel;

#endif
Telemetria_IMU.Mag[0] = Lecturas_Brujula.Valor.Magnetismo_x;
Telemetria_IMU.Mag[1] = Lecturas_Brujula.Valor.Magnetismo_y;
Telemetria_IMU.Mag[2] = Lecturas_Brujula.Valor.Magnetismo_z;
UART_write(UART_BT_TELEMETRIA, &Telemetria_IMU, sizeof(Telemetria_IMU));

break;
}

#endif

#ifdef IMU_MPU9250
switch(ModoTelemetria){

case(TELEMETRIA_IMU):
Telemetria_IMU.Acel[0] = Lecturas_9DOF_IMU.Valor.x_acel;
Telemetria_IMU.Acel[1] = Lecturas_9DOF_IMU.Valor.y_acel;
Telemetria_IMU.Acel[2] = Lecturas_9DOF_IMU.Valor.z_acel;

Telemetria_IMU.Gyro[0] = Lecturas_9DOF_IMU.Valor.x_vel;
Telemetria_IMU.Gyro[1] = Lecturas_9DOF_IMU.Valor.y_vel;
Telemetria_IMU.Gyro[2] = Lecturas_9DOF_IMU.Valor.z_vel;

Telemetria_IMU.Mag[0] = Lecturas_9DOF_IMU.Valor.x_mag;
Telemetria_IMU.Mag[1] = Lecturas_9DOF_IMU.Valor.y_mag;
Telemetria_IMU.Mag[2] = Lecturas_9DOF_IMU.Valor.z_mag;
UART_write(UART_BT_TELEMETRIA, &Telemetria_IMU, sizeof(Telemetria_IMU));

break;
}

#endif
}

}

void CLK_Lectura_Datos_IMU(){
Semaphore_post(SEMAPHORE_Leer_IMU);

}

//....Calculo_AHRS...........//
void Calculo_AHRS(UArg arg0, UArg arg1){

#ifdef IMU_MPU6050
tpLecturas_IMU Lecturas_IMU;

#endif
#ifdef IMU_MPU9250

tpLecturas_9DOF_IMU Lecturas_9DOF_IMU;
#endif

-19-

#ifdef GYRO_L3G4200
tpLecturas_Giroscopo Lecturas_Giroscopo;

#endif
#ifdef COMPASS_HMC5883L

tpLecturas_Brujula Lecturas_Brujula;
#endif

static tpAHRS AHRS = {
.DCM_matriz = {1, 0, 0, 0, 1, 0, 0, 0, 1},
.DCM = {3, 3, (float32_t *)AHRS.DCM_matriz},
.Kp_Roll_Pitch = Kp_ROLLPITCH,
.Ki_Roll_Pitch = Ki_ROLLPITCH,
.Kp_Yaw = Kp_YAW,
.Ki_Yaw = Ki_YAW,
.Periodo_Muestreo = PERIODO_Calculo_AHRS / 1000.0

};

Semaphore_pend(SEMAPHORE_Calculo_AHRS, BIOS_WAIT_FOREVER);

Clock_start(CLOCK_Calculo_AHRS);
Semaphore_pend(SEMAPHORE_Calculo_AHRS, BIOS_WAIT_FOREVER);

ResetDCM();
Leer_servidor_DCM((float32_t*)AHRS.DCM_matriz);
Leer_servidor_RPY(&AHRS.Roll, &AHRS.Pitch, &AHRS.Yaw);

Semaphore_post(SEMAPHORE_Coordinador);
while(1){

Semaphore_pend(SEMAPHORE_Calculo_AHRS, BIOS_WAIT_FOREVER);
#ifdef IMU_MPU6050

Leer_servidor_Lecturas_IMU(&Lecturas_IMU_Control);
#endif
#ifdef IMU_MPU9250

Leer_servidor_Lecturas_IMU_9DOF(&Lecturas_9DOF_IMU);
#endif
#ifdef GYRO_L3G4200

Leer_servidor_Lecturas_Giroscopo(&Lecturas_Giroscopo_Control);
#endif
#ifdef COMPASS_HMC5883L

Leer_servidor_Lecturas_Brujula(&Lecturas_Brujula_control);
#endif

//.................AHRS...................//
//..ACEL..//

#ifdef IMU_MPU6050

AHRS.Vector_Aceleracion_lineal[0] = Lecturas_IMU.Valor.x_acel;
AHRS.Vector_Aceleracion_lineal[1] = Lecturas_IMU.Valor.y_acel;
AHRS.Vector_Aceleracion_lineal[2] = Lecturas_IMU.Valor.z_acel;

#endif
#ifdef IMU_MPU9250

AHRS.Vector_Aceleracion_lineal[0] = Lecturas_9DOF_IMU.Valor.x_acel;
AHRS.Vector_Aceleracion_lineal[1] = Lecturas_9DOF_IMU.Valor.y_acel;
AHRS.Vector_Aceleracion_lineal[2] = Lecturas_9DOF_IMU.Valor.z_acel;

#endif
//..GYRO..//

#ifdef IMU_MPU6050
AHRS.Vector_Velocidad_Angular[0] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_IMU.Valor.x_vel /
IMU6050.Sensibilidad_Giroscopo);
AHRS.Vector_Velocidad_Angular[1] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_IMU.Valor.y_vel /
IMU6050.Sensibilidad_Giroscopo);
AHRS.Vector_Velocidad_Angular[2] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_IMU.Valor.z_vel /
IMU6050.Sensibilidad_Giroscopo);

#endif

-20-

#ifdef IMU_MPU9250
AHRS.Vector_Velocidad_Angular[0] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_9DOF_IMU.Valor.x_vel /
IMU9250.Sensibilidad_Giroscopo);
AHRS.Vector_Velocidad_Angular[1] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_9DOF_IMU.Valor.y_vel /
IMU9250.Sensibilidad_Giroscopo);
AHRS.Vector_Velocidad_Angular[2] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_9DOF_IMU.Valor.z_vel /
IMU9250.Sensibilidad_Giroscopo);

#endif

#ifdef GYRO_L3G4200
AHRS.Vector_Velocidad_Angular[0] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_Giroscopo_Control.Valor.x_vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo);
AHRS.Vector_Velocidad_Angular[1] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_Giroscopo_Control.Valor.y_vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo);
AHRS.Vector_Velocidad_Angular[2] =
CONVERTIR_A_RADIANES((float32_t)Lecturas_Giroscopo_Control.Valor.z_vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo);

#endif

//...BRUJULA...//
#ifdef COMPASS_HMC5883L

AHRS.Vector_Magnetico[0] = Lecturas_Brujula_control.Valor.Magnetismo_x;
AHRS.Vector_Magnetico[1] = Lecturas_Brujula_control.Valor.Magnetismo_y;
AHRS.Vector_Magnetico[2] = Lecturas_Brujula_control.Valor.Magnetismo_z;

#endif

#ifdef MAG
Algortimo_DCM_MAG(&AHRS);

#else
Algortimo_DCM_NO_YAW(&AHRS);

#endif
Escribir_servidor_DCM((float32_t*)AHRS.DCM_matriz);
Escribir_servidor_RPY(&AHRS.Roll, &AHRS.Pitch, &AHRS.Yaw);

}
}

void CLK_Calculo_AHRS(){
Semaphore_post(SEMAPHORE_Calculo_AHRS);

}
//....Coordinador......//

void Coordinador(UArg arg0, UArg arg1){
//..Ref.............................

tpOrden Orden = DATO_ANTERIOR;
uint16_t i = 0;

tpLectura_Radio Lectura_Radio;
I2C_Transaction I2C_Transmision;
bool estado_Transmision = false;
I2C_Transmision.slaveAddress = Dir_AUX;
I2C_Transmision.writeBuf = NULL;
I2C_Transmision.writeCount = 0;
I2C_Transmision.readBuf = &Lectura_Radio;
I2C_Transmision.readCount = sizeof(Lectura_Radio)-1;

static uint8_t Temporizador_Ticks = ticks_arranque_vuelo; //3seg

float32_t Canal[8];
float32_t Referencia[4] = {0, 0, 0, 0};
float32_t Angulos[3] = {0, 0, 0};

-21-

Semaphore_pend(SEMAPHORE_Coordinador, BIOS_WAIT_FOREVER);

WatchDog_0 = Watchdog_open(QUAD_BOARD_WATCHDOG0 , &PARAMS_WatchDog_0);
Watchdog_clear(WatchDog_0);

Clock_start(CLOCK_Coordinador);

estado_Transmision = I2C_transfer(I2C_AUX, &I2C_Transmision);

while(!(estado_Transmision && Lectura_Radio.Canal_PWM[2] < 1100)){
Semaphore_pend(SEMAPHORE_Coordinador, BIOS_WAIT_FOREVER);
estado_Transmision = I2C_transfer(I2C_AUX, &I2C_Transmision);
if(Lectura_Radio.Error_conexion != 0){

Watchdog_clear(WatchDog_0);
}

}

while(1){
Semaphore_pend(SEMAPHORE_Coordinador, BIOS_WAIT_FOREVER);

estado_Transmision = I2C_transfer(I2C_AUX, &I2C_Transmision);
// Lectura_Radio.Canal_PWM[7] =
Lectura_Radio.Canal_PWM[6];///
/

if(estado_Transmision && Lectura_Radio.Error_conexion != 0){
Watchdog_clear(WatchDog_0);

Canal[0] = ((Lectura_Radio.Canal_PWM[0] -
Calibracion_Receptor[0].Rango_Entrada[0]) * (
Calibracion_Receptor[0].Rango_Salida[1] -
Calibracion_Receptor[0].Rango_Salida[0]) / (
Calibracion_Receptor[0].Rango_Entrada[1] -
Calibracion_Receptor[0].Rango_Entrada[0]) +
Calibracion_Receptor[0].Rango_Salida[0]);
Canal[1] = ((Lectura_Radio.Canal_PWM[1] -
Calibracion_Receptor[1].Rango_Entrada[0]) * (
Calibracion_Receptor[1].Rango_Salida[1] -
Calibracion_Receptor[1].Rango_Salida[0]) / (
Calibracion_Receptor[1].Rango_Entrada[1] -
Calibracion_Receptor[1].Rango_Entrada[0]) +
Calibracion_Receptor[1].Rango_Salida[0]);
Canal[2] = ((Lectura_Radio.Canal_PWM[2] -
Calibracion_Receptor[2].Rango_Entrada[0]) * (
Calibracion_Receptor[2].Rango_Salida[1] -
Calibracion_Receptor[2].Rango_Salida[0]) / (
Calibracion_Receptor[2].Rango_Entrada[1] -
Calibracion_Receptor[2].Rango_Entrada[0]) +
Calibracion_Receptor[2].Rango_Salida[0]);
Canal[3] = ((Lectura_Radio.Canal_PWM[3] -
Calibracion_Receptor[3].Rango_Entrada[0]) * (
Calibracion_Receptor[3].Rango_Salida[1] -
Calibracion_Receptor[3].Rango_Salida[0]) / (
Calibracion_Receptor[3].Rango_Entrada[1] -
Calibracion_Receptor[3].Rango_Entrada[0]) +
Calibracion_Receptor[3].Rango_Salida[0]);
Canal[4] = ((Lectura_Radio.Canal_PWM[4] -
Calibracion_Receptor[4].Rango_Entrada[0]) * (
Calibracion_Receptor[4].Rango_Salida[1] -
Calibracion_Receptor[4].Rango_Salida[0]) / (
Calibracion_Receptor[4].Rango_Entrada[1] -
Calibracion_Receptor[4].Rango_Entrada[0]) +
Calibracion_Receptor[4].Rango_Salida[0]);
Canal[5] = ((Lectura_Radio.Canal_PWM[5] -
Calibracion_Receptor[5].Rango_Entrada[0]) * (

-22-

Calibracion_Receptor[5].Rango_Salida[1] -
Calibracion_Receptor[5].Rango_Salida[0]) / (
Calibracion_Receptor[5].Rango_Entrada[1] -
Calibracion_Receptor[5].Rango_Entrada[0]) +
Calibracion_Receptor[5].Rango_Salida[0]);
Canal[6] = ((Lectura_Radio.Canal_PWM[6] -
Calibracion_Receptor[6].Rango_Entrada[0]) * (
Calibracion_Receptor[6].Rango_Salida[1] -
Calibracion_Receptor[6].Rango_Salida[0]) / (
Calibracion_Receptor[6].Rango_Entrada[1] -
Calibracion_Receptor[6].Rango_Entrada[0]) +
Calibracion_Receptor[6].Rango_Salida[0]);
Canal[7] = ((Lectura_Radio.Canal_PWM[7] -
Calibracion_Receptor[7].Rango_Entrada[0]) * (
Calibracion_Receptor[7].Rango_Salida[1] -
Calibracion_Receptor[7].Rango_Salida[0]) / (
Calibracion_Receptor[7].Rango_Entrada[1] -
Calibracion_Receptor[7].Rango_Entrada[0]) +
Calibracion_Receptor[7].Rango_Salida[0]);

//......PULSADORES...................................//
if(!GPIO_read(QUAD_BOARD_SW2)){

while(!GPIO_read(QUAD_BOARD_SW2));

switch(Estado_Sistema){
case ESPERA:

break;
case DEBUG:

Estado_Sistema = CALIBRACION;

GPIO_write(QUAD_BOARD_LED_RED, 0);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 1);

Calibracion_Receptor[0].Rango_Entrada[0] = 1500;
Calibracion_Receptor[0].Rango_Entrada[1] = 1500;
Calibracion_Receptor[1].Rango_Entrada[0] = 1500;
Calibracion_Receptor[1].Rango_Entrada[1] = 1500;
Calibracion_Receptor[2].Rango_Entrada[0] = 1500;
Calibracion_Receptor[2].Rango_Entrada[1] = 1500;
Calibracion_Receptor[3].Rango_Entrada[0] = 1500;
Calibracion_Receptor[3].Rango_Entrada[1] = 1500;
Calibracion_Receptor[4].Rango_Entrada[0] = 1500;
Calibracion_Receptor[4].Rango_Entrada[1] = 1500;
Calibracion_Receptor[5].Rango_Entrada[0] = 1500;
Calibracion_Receptor[5].Rango_Entrada[1] = 1500;
Calibracion_Receptor[6].Rango_Entrada[0] = 1500;
Calibracion_Receptor[6].Rango_Entrada[1] = 1500;

// Calibracion_Receptor[7].Rango_Entrada[0] = 1500;
Calibracion_Receptor[7].Rango_Entrada[1] = 1500;

break;
case CALIBRACION:

Estado_Sistema = ESPERA;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

break;
}

//...........STICK_IZQUIERDA
NEGATIVO...//
}else if((Canal[0] <= -0.9) && (Canal[2] < 0.05)){

if (Temporizador_Ticks-- == 0){

-23-

switch(Estado_Sistema){
case DEBUG:

//resetear variables
break;
case ESPERA:

Estado_Sistema = DEBUG;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 1);

break;
case VUELO:

Estado_Sistema = ESPERA;

Clock_stop(CLOCK_Control);
Semaphore_reset(SEMAPHORE_Control, 0);

PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

break;
}

}
//...........STICK_IZQUIERDA
POSITIVO...//
}else if((Canal[0] >= 0.9) && (Canal[2]) < 0.05) {

if (--Temporizador_Ticks == 0){

switch(Estado_Sistema){
case DEBUG:

Estado_Sistema = ESPERA;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

Leer_servidor_RPY(NULL, NULL, &Posicion_inicial);
Posicion_inicial = CONVERTIR_A_GRADOS(Posicion_inicial);

break;
case ESPERA:

Estado_Sistema = VUELO;

GPIO_write(QUAD_BOARD_LED_RED, 0);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

Clock_start(CLOCK_Control);
Resetear_servidor_Perturbaciones_Estimadas();

break;
}

}
//...........STICK DERECHA
NEGATIVO...//
}else if((Canal[3] <= -0.9) && (Canal[2]) < 0.05) {

if (--Temporizador_Ticks == 0){

switch(Estado_Sistema){
case DEBUG:
break;
case ESPERA:

//RESET

-24-

Leer_servidor_RPY(&Angulos[1], &Angulos[0], &Angulos[2]);

//Iniciamos la matriz de correccion
Calibracion_IMU.Giro[1] -= CONVERTIR_A_GRADOS(Angulos[0]);
Calibracion_IMU.Giro[2] -= CONVERTIR_A_GRADOS(Angulos[1]);

Rotacion_ZXY(&Calibracion_IMU.Correccion_Alineamiento,
Calibracion_IMU.Giro, false);

GPIO_write(QUAD_BOARD_LED_RED, 0);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 1);

Task_sleep(250);

ResetDCM();

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

break;
}
Temporizador_Ticks = ticks_arranque_vuelo;

}
//...........STICK DERECHA
POSITIVO...//
}else if((Canal[3] >= 0.9) && (Canal[2]) < 0.05) {

if (--Temporizador_Ticks == 0){

switch(Estado_Sistema){
case DEBUG:

Estado_Sistema = IDENTIFICACION;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 1);

i = 0;

do{
Orden = START;
UART_write(UART_BT_TELEMETRIA, &Orden, 1);
Orden = IDENTIFICAR;
UART_write(UART_BT_TELEMETRIA, &Orden, 1);
Orden = FINAL;
UART_write(UART_BT_TELEMETRIA, &Orden, 1);

UART_read(UART_BT_TELEMETRIA, &Orden, 1);

Watchdog_clear(WatchDog_0);
}while(Orden != IDENTIFICAR && ++i <
Num_intentos_conexion_Identificacion);

if(Orden == IDENTIFICAR){
UART_read(UART_BT_TELEMETRIA, &nDatos_Identifiacion, 4);
UART_read(UART_BT_TELEMETRIA, &PuntoTrabajo_motor ,4);

Datos = Memory_alloc(NULL, nDatos_Identifiacion*2, 0, &eb);

for(i=0; i<nDatos_Identifiacion; i++){
UART_read(UART_BT_TELEMETRIA, (int16_t *)Datos + i, 2);
Watchdog_clear(WatchDog_0);

}

UART_read(UART_BT_TELEMETRIA, &Orden, 1);

if(Orden == FINAL){

-25-

nDatos_leidos = 0;
Clock_start(CLOCK_Identificacion);

}else{
Estado_Sistema = ESPERA;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

}
}else{

Estado_Sistema = ESPERA;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

}
}

}
}else{

Temporizador_Ticks = ticks_arranque_vuelo;
}

//.............Accion...............................//
switch(Estado_Sistema){

case VUELO:
if(Canal[7] < -83.2){ //...ERROR....//

// Estado_Sistema_Anterior = Estado_Sistema;
Estado_Sistema = ERROR;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

//Stop a todos los clocks y tareas
Clock_stop(CLOCK_Control);
Semaphore_reset(SEMAPHORE_Control, 0);
Clock_stop(CLOCK_Identificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);

//Parada_motores
PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

}
else if((Canal[7] > -83.2) && (Canal[7] <= -50.0)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = CORREGIR_PERTURBACIONES; InfoTelemetria
= TELE_1; }
else if((Canal[7] > -50.0) && (Canal[7] <= -16.6)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = INTEGRAR_PERTURBACIONES_ESTIMADAS;
InfoTelemetria = TELE_2;}
else if((Canal[7] > -16.6) && (Canal[7] <= 16.6)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = INTEGRAR_PERTURBACIONES; InfoTelemetria
= TELE_3;}
else if((Canal[7] > 16.6) && (Canal[7] <= 50.0)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_0;}
else if((Canal[7] > 50.0) && (Canal[7] <= 83.2)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_0;}
else if((Canal[7] > 83.2)) { Modo_Control =
ANGULOS_3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_0;}

switch(Modo_Control){
case ANGULOS_3:

-26-

Referencia[0] = Canal[1] * Angulo_Maximo;
Referencia[1] = Canal[3] * Angulo_Maximo;
Referencia[2] = Canal[0] * Angulo_Maximo;
Referencia[3] = Canal[2] * Valor_Empuje_Maximo;

break;
case ANGULOS_4:

Referencia[0] = Canal[1] * Angulo_Maximo;
Referencia[1] = Canal[3] * Angulo_Maximo;
Referencia[2] = Canal[0] * Angulo_Maximo;
Referencia[3] = Canal[2] * Valor_Fuerza_Maximo;

break;
case EMPUJE:

Referencia[0] = Canal[1] * Angulo_Maximo;
Referencia[1] = Canal[3] * Angulo_Maximo;
Referencia[2] = Canal[0] * Angulo_Maximo;
Referencia[3] = Canal[2] * Valor_Empuje_Maximo;

break;
}
Escribir_servidor_Referencia(Referencia, NULL);

break;
case CALIBRACION:

Calibracion_Receptor[0].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[0] <
Calibracion_Receptor[0].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[0] :
Calibracion_Receptor[0].Rango_Entrada[0];
Calibracion_Receptor[0].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[0] >
Calibracion_Receptor[0].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[0] :
Calibracion_Receptor[0].Rango_Entrada[1];
Calibracion_Receptor[1].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[1] <
Calibracion_Receptor[1].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[1] :
Calibracion_Receptor[1].Rango_Entrada[0];
Calibracion_Receptor[1].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[1] >
Calibracion_Receptor[1].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[1] :
Calibracion_Receptor[1].Rango_Entrada[1];
Calibracion_Receptor[2].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[2] <
Calibracion_Receptor[2].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[2] :
Calibracion_Receptor[2].Rango_Entrada[0];
Calibracion_Receptor[2].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[2] >
Calibracion_Receptor[2].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[2] :
Calibracion_Receptor[2].Rango_Entrada[1];
Calibracion_Receptor[3].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[3] <
Calibracion_Receptor[3].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[3] :
Calibracion_Receptor[3].Rango_Entrada[0];
Calibracion_Receptor[3].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[3] >
Calibracion_Receptor[3].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[3] :
Calibracion_Receptor[3].Rango_Entrada[1];
Calibracion_Receptor[4].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[4] <
Calibracion_Receptor[4].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[4] :
Calibracion_Receptor[4].Rango_Entrada[0];
Calibracion_Receptor[4].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[4] >
Calibracion_Receptor[4].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[4] :
Calibracion_Receptor[4].Rango_Entrada[1];
Calibracion_Receptor[5].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[5] <
Calibracion_Receptor[5].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[5] :
Calibracion_Receptor[5].Rango_Entrada[0];
Calibracion_Receptor[5].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[5] >
Calibracion_Receptor[5].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[5] :
Calibracion_Receptor[5].Rango_Entrada[1];
Calibracion_Receptor[6].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[6] <
Calibracion_Receptor[6].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[6] :
Calibracion_Receptor[6].Rango_Entrada[0];
Calibracion_Receptor[6].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[6] >
Calibracion_Receptor[6].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[6] :
Calibracion_Receptor[6].Rango_Entrada[1];

// Calibracion_Receptor[7].Rango_Entrada[0] = Lectura_Radio.Canal_PWM[7] <
Calibracion_Receptor[7].Rango_Entrada[0] ? Lectura_Radio.Canal_PWM[7] :
Calibracion_Receptor[7].Rango_Entrada[0];
// Calibracion_Receptor[7].Rango_Entrada[1] = Lectura_Radio.Canal_PWM[7] >

-27-

Calibracion_Receptor[7].Rango_Entrada[1] ? Lectura_Radio.Canal_PWM[7] :
Calibracion_Receptor[7].Rango_Entrada[1];

break;
case ERROR:

if (Canal[7] > -83.2){ //..FIN_ERROR..//
Estado_Sistema = ESPERA;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

}
/* if((Canal[7] > -83.2) && (Canal[7] < -50.0)){ Modo_Control = ANGULOS_3;
ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria = TELE_0; }

else if((Canal[7] > -50.0) && (Canal[7] < -16.6)){ Modo_Control =
ANGULOS_4; ModoPerturbaciones = Perturbaciones_Seleccionada;
InfoTelemetria = TELE_1;}
else if((Canal[7] > -16.6) && (Canal[7] < 16.6)){ Modo_Control =
EMPUJE; ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria
= TELE_0;}
else if((Canal[7] > 16.6) && (Canal[7] < 50.0)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_2;}
else if((Canal[7] > 50.0) && (Canal[7] < 83.2)){ Modo_Control =
ANGULOS_4; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_3;}
else if((Canal[7] > -83.2)){ Modo_Control = EMPUJE; ModoPerturbaciones =
NO_CORREGIR_PERTURBACIONES; InfoTelemetria = TELE_4;}

*/ break;
case ESPERA:
case DEBUG:

if(Canal[7] < -83.2){ //...ERROR....//
Estado_Sistema = ERROR;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 0);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

//Stop a todos los clocks y tareas
Clock_stop(CLOCK_Control);
Semaphore_reset(SEMAPHORE_Control, 0);
Clock_stop(CLOCK_Identificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);

//Parada_motores
PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

}
/* else if((Canal[7] > -83.2) && (Canal[7] < -50.0)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria = TELE_0; }

else if((Canal[7] > -50.0) && (Canal[7] < -16.6)){ Modo_Control =
ANGULOS_4; ModoPerturbaciones = Perturbaciones_Seleccionada;
InfoTelemetria = TELE_1;}
else if((Canal[7] > -16.6) && (Canal[7] < 16.6)){ Modo_Control =
EMPUJE; ModoPerturbaciones = Perturbaciones_Seleccionada; InfoTelemetria
= TELE_0;}
else if((Canal[7] > 16.6) && (Canal[7] < 50.0)){ Modo_Control =
ANGULOS_3; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_2;}
else if((Canal[7] > 50.0) && (Canal[7] < 83.2)){ Modo_Control =
ANGULOS_4; ModoPerturbaciones = NO_CORREGIR_PERTURBACIONES;
InfoTelemetria = TELE_3;}
else if((Canal[7] > 83.2)){ Modo_Control = EMPUJE; ModoPerturbaciones =
NO_CORREGIR_PERTURBACIONES; InfoTelemetria = TELE_0;}

*/ break;
}

-28-

}
}

}

void CLK_Coordinador(){
Semaphore_post(SEMAPHORE_Coordinador);

}

//....Identificacion......//
void Identificacion(UArg arg0, UArg arg1){

UInt Key;
tpLecturas_IMU Lecturas_IMU;
int16_t Aux;

// uint32_t Rpm;

GPIO_enableInt(QUAD_BOARD_RPM);

while(1){
Semaphore_pend(SEMAPHORE_Identificacion, BIOS_WAIT_FOREVER);

Aux = *((int16_t *)Datos + nDatos_leidos);
PWM_setDuty(PWM0, PuntoTrabajo_motor + Aux/2 + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, PuntoTrabajo_motor - Aux/2 + Pulso_minimo_PWM_motor);
nDatos_leidos++;

Leer_servidor_Lecturas_IMU(&Lecturas_IMU);

Key = Hwi_disable();
// Rpm = (uint32_t)(Frecuencia_CPU / Ticks_por_RPS *60);

Hwi_restore(Key);

UART_write(UART_BT_TELEMETRIA, &Lecturas_IMU, 14);
// UART_write(UART_BT_TELEMETRIA, &Rpm, sizeof(Rpm));

if((nDatos_leidos == nDatos_Identifiacion) || (Estado_Sistema == ESPERA)){
Clock_stop(CLOCK_Identificacion);
Semaphore_reset(SEMAPHORE_Identificacion, 0);
nDatos_leidos = 0;

Memory_free(NULL, Datos, nDatos_Identifiacion*2);
PWM_setDuty(PWM0, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, Pulso_minimo_PWM_motor);

Estado_Sistema = ESPERA;

GPIO_write(QUAD_BOARD_LED_RED, 1);
GPIO_write(QUAD_BOARD_LED_GREEN, 1);
GPIO_write(QUAD_BOARD_LED_BLUE, 0);

}
}

}

void CLK_Identificacion(){
Semaphore_post(SEMAPHORE_Identificacion);

}
#ifdef Sensor_RPM

void ISR_GPIO_RPM(UArg arg0){
static uint32_t Tick_anterior = 0;

Ticks_por_RPS = Clock_getTicks() - Tick_anterior;
}

#endif
//....Altura.............//

void ISR_GPIO_US(UArg arg0){
UInt Key;

-29-

GPIO_clearInt(QUAD_BOARD_ECHO);

if(GPIO_read(QUAD_BOARD_ECHO) == 0){
Key = Hwi_disable();
Timer_stop(US_Timer);
Altura_US_mm = (Timer_getPeriod(US_Timer) - Timer_getCount(US_Timer))/80*0.340/2 ;
//microsegondos
Hwi_restore(Key);

}else{
Key = Hwi_disable();
Timer_setPeriodMicroSecs(US_Timer, (uint32_t)Max_pulso_us);
Timer_start(US_Timer);
Hwi_restore(Key);

}
}

void ISR_Timer_US(){

if(Timer_getPeriod(US_Timer) == 800){
GPIO_write(QUAD_BOARD_TRIGG, 0);

}
else{

Altura_US_mm = 0xFF;
}

}

void Calculo_Altura(UArg arg0, UArg arg1){
UInt Key;

// uint32_t Presion_Inicial = 0;
// tpLecturasBarometro LecturasBarometro;

tpLecturasBarometro_BMP280 LecturasBarometro_BMP280;
float32_t Temperatura = 0;

/*
Iniciar_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);

Iniciar_Medida_Temp_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);
Task_sleep(5);
Leer_Temp_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);
Iniciar_Medida_Temp_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);
Task_sleep(26);
Leer_Presion_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);

Presion_Inicial = LecturasBarometro.Presion;
*/

Iniciar_Barometro_BMP280(I2C_PRINCIPAL, &Barometro_BMP280, &LecturasBarometro_BMP280);

Clock_start(CLOCK_Calculo_Altura);
while(1){

Semaphore_pend(SEMAPHORE_Calculo_Altura, BIOS_WAIT_FOREVER);
//....US....//
GPIO_write(QUAD_BOARD_TRIGG, 1);
Timer_setPeriodMicroSecs(US_Timer, (uint32_t)Pulso_arranque_us);
Key = Hwi_disable();
Timer_start(US_Timer);
Hwi_restore(Key);

Leer_Barometro_BMP280(I2C_PRINCIPAL, &Barometro_BMP280, &LecturasBarometro_BMP280);
Temperatura = Conversion_Temperatura(&LecturasBarometro_BMP280);
Altura_Presion_mm = Conversion_Altura(Temperatura, &LecturasBarometro_BMP280);

/*
//...Barometro....//
Iniciar_Medida_Temp_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);
Task_sleep(5);
Leer_Temp_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);
Iniciar_Medida_Temp_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);

-30-

Task_sleep(26);
Leer_Presion_Barometro(I2C_PRINCIPAL, Direccion_Barometro, &LecturasBarometro);

Altura_Presion_mm = 4433000 * (1 - pow(LecturasBarometro.Presion / Presion_Inicial
, 1/5.255));

*/
}

}

void CLK_Calculo_Altura(){
Semaphore_post(SEMAPHORE_Calculo_Altura);

}

void Control(UArg arg0, UArg arg1){

#ifdef IMU_MPU6050
tpLecturas_IMU Lecturas_IMU_Control;

#endif
#ifdef IMU_MPU9250

tpLecturas_9DOF_IMU Lecturas_9DOF_IMU_Control;
#endif

tpLecturas_Giroscopo Lecturas_Giroscopo_control;

tpLecturas_Brujula Lecturas_Brujula_control;

tpAHRS AHRS = {
.DCM_matriz = {1, 0, 0, 0, 1, 0, 0, 0, 1},
.DCM = {3, 3, (float32_t *)AHRS.DCM_matriz},
.Kp_Roll_Pitch = Kp_ROLLPITCH,
.Ki_Roll_Pitch = Ki_ROLLPITCH,
.Kp_Yaw = Kp_YAW,
.Ki_Yaw = Ki_YAW,
.Periodo_Muestreo = PERIODO_Control / 1000.0

};

tpTelemetria_YPR Telemetria_YPR = {
.Inicio = START_FRAME,
.Final = FINAL_FRAME

};

tpTelemetria_Control Telemetria_Control = {
.Inicio = START_FRAME,
.Final = FINAL_FRAME

};

float32_t Ref_matriz[4] = {0, 0, 0, 0};
arm_matrix_instance_f32 Ref = {4, 1, Ref_matriz};

float32_t Accion_matriz[4] = {0, 0, 0, 0};
arm_matrix_instance_f32 Accion = {4, 1, Accion_matriz};

float32_t Variables_medidas_matriz[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Variables_medidas = {10, 1, Variables_medidas_matriz};

float32_t Variables_predichas_matriz[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Variables_predichas = {10, 1, Variables_predichas_matriz};

float32_t Variables_estimadas_matriz[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
arm_matrix_instance_f32 Variables_estimadas = {10, 1, Variables_estimadas_matriz};

float32_t Perturbaciones_estimadas_matriz[4] = {0, 0, 0, 0};
arm_matrix_instance_f32 Perturbaciones_estimadas = {4, 1,
Perturbaciones_estimadas_matriz};

float32_t Perturbaciones_calculadas_matriz[4] = {0, 0, 0, 0};
arm_matrix_instance_f32 Perturbaciones_calculadas = {4, 1,
Perturbaciones_calculadas_matriz};

-31-

float32_t Aux_Matriz[100];
arm_matrix_instance_f32 Aux = {10, 10, Aux_Matriz};

float32_t Aux2_Matriz[100];
arm_matrix_instance_f32 Aux2 = {10, 10, Aux2_Matriz};

float32_t Var_Est_Aux[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

#ifdef Filtro_Perturbaciones

float32_t Estado_filtro_Per_0[4*num_etapas_Filtro_Per];
float32_t Estado_filtro_Per_1[4*num_etapas_Filtro_Per];
float32_t Estado_filtro_Per_2[4*num_etapas_Filtro_Per];
float32_t Estado_filtro_Per_3[4*num_etapas_Filtro_Per];

arm_biquad_casd_df1_inst_f32 Filtro_Per_0 = {num_etapas_Filtro_Per, Estado_filtro_Per_0,
(float32_t *)Coeficientes_Filtro_Pre_Valores};
arm_biquad_casd_df1_inst_f32 Filtro_Per_1 = {num_etapas_Filtro_Per, Estado_filtro_Per_1,
(float32_t *)Coeficientes_Filtro_Pre_Valores};
arm_biquad_casd_df1_inst_f32 Filtro_Per_2 = {num_etapas_Filtro_Per, Estado_filtro_Per_2,
(float32_t *)Coeficientes_Filtro_Pre_Valores};
arm_biquad_casd_df1_inst_f32 Filtro_Per_3 = {num_etapas_Filtro_Per, Estado_filtro_Per_3,
(float32_t *)Coeficientes_Filtro_Pre_Valores};

//Inicializamos el filtro
arm_fill_f32(0.0, Estado_filtro_Per_0, 4*num_etapas_Filtro_Per);
arm_fill_f32(0.0, Estado_filtro_Per_1, 4*num_etapas_Filtro_Per);
arm_fill_f32(0.0, Estado_filtro_Per_2, 4*num_etapas_Filtro_Per);
arm_fill_f32(0.0, Estado_filtro_Per_3, 4*num_etapas_Filtro_Per);

#endif

while(1){
Semaphore_pend(SEMAPHORE_Control, BIOS_WAIT_FOREVER);

#ifdef IMU_MPU6050
Leer_servidor_Lecturas_IMU(&Lecturas_IMU_Control);

#endif
#ifdef IMU_MPU9250

Leer_servidor_Lecturas_IMU_9DOF(&Lecturas_9DOF_IMU_Control);
#endif

Leer_servidor_Lecturas_Giroscopo(&Lecturas_Giroscopo_control);
Leer_servidor_Lecturas_Brujula(&Lecturas_Brujula_control);
Leer_servidor_Referencia(Ref_matriz, NULL);
Ref_matriz[2] = Posicion_inicial + Ref_matriz[2]; //Giro no absoluto +- posicion
inicial;

Leer_servidor_DCM((float32_t*)AHRS.DCM_matriz);
Leer_servidor_RPY(&AHRS.Roll, &AHRS.Pitch, &AHRS.Yaw);

Leer_servidor_Perturbaciones_Estimadas(Perturbaciones_estimadas.pData);

//.....Sensado..Variables.....//
//Ajuste posicion inicial//
Variables_medidas.pData[1] = Normalizar_Grados(CONVERTIR_A_GRADOS(AHRS.Pitch));
Variables_medidas.pData[3] = Normalizar_Grados(CONVERTIR_A_GRADOS(AHRS.Roll));
Variables_medidas.pData[5] = Normalizar_Grados(CONVERTIR_A_GRADOS(AHRS.Yaw));

#ifdef IMU_MPU9250
Variables_medidas.pData[0] = (float32_t)Lecturas_9DOF_IMU_Control.Valor.y_vel /
IMU9250.Sensibilidad_Giroscopo;
Variables_medidas.pData[2] = (float32_t)Lecturas_9DOF_IMU_Control.Valor.x_vel /
IMU9250.Sensibilidad_Giroscopo;
Variables_medidas.pData[4] = (float32_t)Lecturas_9DOF_IMU_Control.Valor.z_vel /
IMU9250.Sensibilidad_Giroscopo;

#endif

#ifdef IMU_MPU6050
Variables_medidas.pData[0] = (float32_t)Lecturas_IMU_Control.Valor.y_vel /

-32-

IMU6050.Sensibilidad_Giroscopo;
Variables_medidas.pData[2] = (float32_t)Lecturas_IMU_Control.Valor.x_vel /
IMU6050.Sensibilidad_Giroscopo;
Variables_medidas.pData[4] = (float32_t)Lecturas_IMU_Control.Valor.z_vel /
IMU6050.Sensibilidad_Giroscopo;

#endif

#ifdef GYRO_L3G4200
Variables_medidas.pData[0] = (float32_t)Lecturas_Giroscopo_control.Valor.y_vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo;
Variables_medidas.pData[2] = (float32_t)Lecturas_Giroscopo_control.Valor.x_vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo;
Variables_medidas.pData[4] = (float32_t)Lecturas_Giroscopo_control.Valor.z_vel /
Giroscopo_L3G4200.Sensibilidad_Giroscopo;

#endif

if(Modo_Control == ANGULOS_3){
switch(ModoPerturbaciones){

case NO_CORREGIR_PERTURBACIONES:
case CORREGIR_PERTURBACIONES:
case INTEGRAR_PERTURBACIONES_ESTIMADAS:

Variables_medidas.pData[9] = Variables_predichas.pData[9];
break;
case INTEGRAR_PERTURBACIONES:

Variables_medidas.pData[9] = Ref.pData[3];
}

}
Escribir_servidor_Variables_Estado_Medidas(Variables_medidas.pData);

//Estimar variables estado

Aux.numRows = Variables_medidas.numRows;
Aux.numCols = Variables_predichas.numCols;
arm_mat_sub_f32(&Variables_medidas, &Variables_predichas, &Aux);

Aux2.numRows = 10;
Aux2.numCols = 1;
arm_mat_mult_f32(&Lo_per, &Aux, &Aux2);

arm_mat_add_f32(&Variables_predichas, &Aux2, &Variables_estimadas);

#ifdef Estimador_Parcial //Optimizar multiplicando solo los estimados
Variables_estimadas.pData[0] = Variables_medidas.pData[0];
Variables_estimadas.pData[1] = Variables_medidas.pData[1];
Variables_estimadas.pData[2] = Variables_medidas.pData[2];
Variables_estimadas.pData[3] = Variables_medidas.pData[3];
Variables_estimadas.pData[4] = Variables_medidas.pData[4];
Variables_estimadas.pData[5] = Variables_medidas.pData[5];

#endif
Escribir_servidor_Variables_Estado_Estimadas(Variables_estimadas.pData);

//Estimar perturbacion
switch(ModoPerturbaciones){

case NO_CORREGIR_PERTURBACIONES:
case CORREGIR_PERTURBACIONES:

/*
Aux.numRows = Variables_medidas.numRows;
Aux.numCols = Variables_predichas.numCols;
arm_mat_sub_f32(&Variables_medidas, &Variables_predichas, &Aux);

*/
Aux2.numRows = Aux2.numRows;
Aux2.numCols = Aux2.numCols;
arm_mat_mult_f32(&Lp, &Aux, &Aux2);

Aux.numRows = Aux.numRows;
Aux.numCols = Aux.numCols;
arm_mat_add_f32(&Perturbaciones_estimadas, &Aux2, &Aux);

-33-

//A 0 la estimacion de Empuje
// Aux.pData[3] = 0;

#ifndef Filtro_Perturbaciones
arm_copy_f32(Aux.pData, Perturbaciones_estimadas.pData,
sizeof(Perturbaciones_estimadas_matriz)/sizeof(float32_t));

#else
// Filtar_Perturbacion
arm_biquad_cascade_df1_f32(&Filtro_Per_0, &Aux.pData[0],
&Perturbaciones_estimadas.pData[0], 1);
arm_biquad_cascade_df1_f32(&Filtro_Per_1, &Aux.pData[1],
&Perturbaciones_estimadas.pData[1], 1);
arm_biquad_cascade_df1_f32(&Filtro_Per_2, &Aux.pData[2],
&Perturbaciones_estimadas.pData[2], 1);
arm_biquad_cascade_df1_f32(&Filtro_Per_3, &Aux.pData[3],
&Perturbaciones_estimadas.pData[3], 1);

#endif

break;
case INTEGRAR_PERTURBACIONES:

Perturbaciones_estimadas.pData[0] += Ki * (Ref.pData[0] -
Variables_medidas.pData[1]);
Perturbaciones_estimadas.pData[1] += Ki * (Ref.pData[1] -
Variables_medidas.pData[3]);
Perturbaciones_estimadas.pData[2] += Ki * (Ref.pData[2] -
Variables_medidas.pData[5]);
Perturbaciones_estimadas.pData[3] += Ki * (Ref.pData[3] -
Variables_medidas.pData[9]);

break;

case INTEGRAR_PERTURBACIONES_ESTIMADAS:

Perturbaciones_estimadas.pData[0] += Ki_EST * (Variables_predichas.pData[1]
- Variables_medidas.pData[1]);
Perturbaciones_estimadas.pData[1] += Ki_EST * (Variables_predichas.pData[3]
- Variables_medidas.pData[3]);
Perturbaciones_estimadas.pData[2] += Ki_EST * (Variables_predichas.pData[5]
- Variables_medidas.pData[5]);
Perturbaciones_estimadas.pData[3] += Ki_EST * (Variables_predichas.pData[9]
- Variables_medidas.pData[9]);

break;
}

//Prealimentar perturbaciones conocidas
Perturbaciones_calculadas.pData[0] = Perturbaciones_estimadas.pData[0];// +
Pert_Fuerza_Bateria*sin(Variables_estimadas.pData[1]*PI/180.0);
Perturbaciones_calculadas.pData[1] = Perturbaciones_estimadas.pData[1];// +
Pert_Fuerza_Bateria*sin(Variables_estimadas.pData[3]*PI/180.0);
Perturbaciones_calculadas.pData[2] = Perturbaciones_estimadas.pData[2];
Perturbaciones_calculadas.pData[3] = Perturbaciones_estimadas.pData[3];

Escribir_servidor_Perturbaciones_Estimadas(Perturbaciones_estimadas.pData);

//Accion
switch(ModoPerturbaciones){

case NO_CORREGIR_PERTURBACIONES:
Aux.numRows = K_pre_4.numRows;
Aux.numCols = Ref.numCols;

Aux2.numRows = K_4.numRows;
Aux2.numCols = Variables_estimadas.numCols;

switch(Modo_Control){
case ANGULOS_4:

arm_mat_mult_f32(&K_pre_4, &Ref, &Aux);
arm_mat_mult_f32(&K_4, &Variables_estimadas, &Aux2);

-34-

arm_mat_sub_f32(&Aux, &Aux2, &Accion);
break;

case ANGULOS_3:
arm_mat_mult_f32(&K_pre_3, &Ref, &Aux);
arm_mat_mult_f32(&K_3, &Variables_estimadas, &Aux2);
arm_mat_sub_f32(&Aux, &Aux2, &Accion);

break;

case EMPUJE:
Accion_matriz[0] = Ref.pData[3]; //
Accion_matriz[1] = Ref.pData[3]; //
Accion_matriz[2] = Ref.pData[3]; //
Accion_matriz[3] = Ref.pData[3]; //

break;
}

break;

case CORREGIR_PERTURBACIONES:
case INTEGRAR_PERTURBACIONES:
case INTEGRAR_PERTURBACIONES_ESTIMADAS:

Aux.numRows = K_4.numRows;
Aux.numCols = Variables_estimadas.numCols;

Aux2.numRows = Accion.numRows;
Aux2.numCols = Aux.numCols;

switch(Modo_Control){
case ANGULOS_4:

arm_mat_mult_f32(&K_pre_4, &Ref, &Accion);
arm_mat_mult_f32(&K_4, &Variables_estimadas, &Aux);

arm_mat_sub_f32(&Accion, &Aux, &Aux2);

Aux.numRows = La.numRows;
Aux.numCols = Perturbaciones_calculadas.numCols;
arm_mat_mult_f32(&La, &Perturbaciones_calculadas, &Aux);

arm_mat_sub_f32(&Aux2, &Aux, &Accion);
break;

case ANGULOS_3:
arm_mat_mult_f32(&K_pre_3, &Ref, &Accion);
arm_mat_mult_f32(&K_3, &Variables_estimadas, &Aux);

arm_mat_sub_f32(&Accion, &Aux, &Aux2);

Aux.numRows = La.numRows;
Aux.numCols = Perturbaciones_calculadas.numCols;
arm_mat_mult_f32(&La, &Perturbaciones_calculadas, &Aux);

arm_mat_sub_f32(&Aux2, &Aux, &Accion);
break;
case EMPUJE:

Accion_matriz[0] = Ref.pData[3]; //
Accion_matriz[1] = Ref.pData[3]; //
Accion_matriz[2] = Ref.pData[3]; //
Accion_matriz[3] = Ref.pData[3]; //

break;
}

break;

}

if(Accion.pData[0] < Accion_Minima)
Accion.pData[0] = Accion_Minima;

if(Accion.pData[1] < Accion_Minima)

-35-

Accion.pData[1] = Accion_Minima;
if(Accion.pData[2] < Accion_Minima)

Accion.pData[2] = Accion_Minima;
if(Accion.pData[3] < Accion_Minima)

Accion.pData[3] = Accion_Minima;

if(Accion.pData[0] > Accion_Maxima)
Accion.pData[0] = Accion_Maxima;

if(Accion.pData[1] > Accion_Maxima)
Accion.pData[1] = Accion_Maxima;

if(Accion.pData[2] > Accion_Maxima)
Accion.pData[2] = Accion_Maxima;

if(Accion.pData[3] > Accion_Maxima)
Accion.pData[3] = Accion_Maxima;

//Aplicar U
PWM_setDuty(PWM0, (uint32_t)Accion.pData[0] + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM1, (uint32_t)Accion.pData[1] + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM2, (uint32_t)Accion.pData[2] + Pulso_minimo_PWM_motor);
PWM_setDuty(PWM3, (uint32_t)Accion.pData[3] + Pulso_minimo_PWM_motor);

//Predecir estado
arm_mat_mult_f32(&F, &Variables_estimadas, &Variables_predichas);

Aux.numRows = G.numRows;
Aux.numCols = Accion.numCols;
arm_mat_mult_f32(&G, &Accion, &Aux);

Aux2.numRows = Variables_predichas.numRows;
Aux2.numCols = Aux.numCols;
arm_mat_add_f32(&Variables_predichas, &Aux, &Aux2);

Aux.numRows = Gp.numRows;
Aux.numCols = Perturbaciones_calculadas.numCols;
arm_mat_mult_f32(&Gp, &Perturbaciones_calculadas, &Aux);

arm_mat_add_f32(&Aux2, &Aux, &Variables_predichas);

//Telemetria
switch(ModoTelemetria){

case TELEMETRIA_YPR:
Telemetria_YPR.Yaw = (int16_t)(AHRS.Yaw * 10.0);
Telemetria_YPR.Pitch = (int16_t)(AHRS.Pitch * 10.0);
Telemetria_YPR.Roll = (int16_t)(AHRS.Roll * 10.0);

UART_write(UART_BT_TELEMETRIA, &Telemetria_YPR, sizeof(Telemetria_YPR)-1);
break;
case TELEMETRIA_CONTROL:

Telemetria_Control.InfoTelemetria = InfoTelemetria;
//Referencia
Var_Est_Aux[0] = Ref_matriz[0] / Angulo_Max_Q16;
Var_Est_Aux[1] = Ref_matriz[1] / Angulo_Max_Q16;
Var_Est_Aux[2] = Ref_matriz[2] / Angulo_Max_Q16;
Var_Est_Aux[3] = Ref_matriz[3] / 1000.0;
arm_float_to_q15(Var_Est_Aux, (q15_t *)Telemetria_Control.Referencia, 4);

//Accion
Telemetria_Control.Accion[0] = Accion_matriz[0];
Telemetria_Control.Accion[1] = Accion_matriz[1];
Telemetria_Control.Accion[2] = Accion_matriz[2];
Telemetria_Control.Accion[3] = Accion_matriz[3];

//Var_Est
Var_Est_Aux[0] = Variables_estimadas.pData[0] / Velocidad_Max_Q16;
Var_Est_Aux[1] = Variables_estimadas.pData[1] / Angulo_Max_Q16;
Var_Est_Aux[2] = Variables_estimadas.pData[2] / Velocidad_Max_Q16;
Var_Est_Aux[3] = Variables_estimadas.pData[3] / Angulo_Max_Q16;

-36-

Var_Est_Aux[4] = Variables_estimadas.pData[4] / Velocidad_Max_Q16;
Var_Est_Aux[5] = Variables_estimadas.pData[5] / Angulo_Max_Q16;
Var_Est_Aux[6] = Variables_estimadas.pData[6] / F_Max_Q16;
Var_Est_Aux[7] = Variables_estimadas.pData[7] / F_Max_Q16;
Var_Est_Aux[8] = Variables_estimadas.pData[8] / F_Max_Q16;
Var_Est_Aux[9] = Variables_estimadas.pData[9] / F_Max_Q16;
arm_float_to_q15(Var_Est_Aux, (q15_t *)Telemetria_Control.Variables_Estado,
10);

//Perturbaciones
Var_Est_Aux[0] = Perturbaciones_calculadas_matriz[0] / F_Max_Q16;
Var_Est_Aux[1] = Perturbaciones_calculadas_matriz[1] / F_Max_Q16;
Var_Est_Aux[2] = Perturbaciones_calculadas_matriz[2] / F_Max_Q16;
Var_Est_Aux[3] = Perturbaciones_calculadas_matriz[3] / F_Max_Q16;
arm_float_to_q15(Var_Est_Aux, (q15_t *)Telemetria_Control.Perturbaciones, 4);

//Altura
Telemetria_Control.Altura_Barometrica = Altura_Presion_mm;
Telemetria_Control.Altura_US = Altura_US_mm;

#ifdef IMU_MPU9250
Mailbox_pend(Buzon_Lecturas_IMU, &Lecturas_9DOF_IMU_Control, BIOS_NO_WAIT);
//Lectura ACCEL
Telemetria_Control.Acel[0] = Lecturas_9DOF_IMU_Control.Valor.x_acel;
Telemetria_Control.Acel[1] = Lecturas_9DOF_IMU_Control.Valor.y_acel;
Telemetria_Control.Acel[2] = Lecturas_9DOF_IMU_Control.Valor.z_acel;

//Lectura GYRO
Telemetria_Control.Gyro[0] = Lecturas_9DOF_IMU_Control.Valor.x_vel;
Telemetria_Control.Gyro[1] = Lecturas_9DOF_IMU_Control.Valor.y_vel;
Telemetria_Control.Gyro[2] = Lecturas_9DOF_IMU_Control.Valor.z_vel;

//Lectura COMPASS
Telemetria_Control.Magnetics[0] = Lecturas_9DOF_IMU_Control.Valor.x_mag;
Telemetria_Control.Magnetics[1] = Lecturas_9DOF_IMU_Control.Valor.y_mag;
Telemetria_Control.Magnetics[2] = Lecturas_9DOF_IMU_Control.Valor.z_mag;

#endif

#ifdef IMU_MPU6050
Mailbox_pend(Buzon_Lecturas_IMU, &Lecturas_IMU_Control, BIOS_NO_WAIT);

//Lectura ACCEL
Telemetria_Control.Acel[0] = Lecturas_IMU_Control.Valor.x_acel;
Telemetria_Control.Acel[1] = Lecturas_IMU_Control.Valor.y_acel;
Telemetria_Control.Acel[2] = Lecturas_IMU_Control.Valor.z_acel;

//Lectura GYRO
Telemetria_Control.Gyro[0] = Lecturas_IMU_Control.Valor.x_vel;
Telemetria_Control.Gyro[1] = Lecturas_IMU_Control.Valor.y_vel;
Telemetria_Control.Gyro[2] = Lecturas_IMU_Control.Valor.z_vel;

#ifdef GYRO_L3G4200
Telemetria_Control.Gyro[0] = Lecturas_Giroscopo_control.Valor.x_vel;
Telemetria_Control.Gyro[1] = Lecturas_Giroscopo_control.Valor.y_vel;
Telemetria_Control.Gyro[2] = Lecturas_Giroscopo_control.Valor.z_vel;

#endif
//Lectura Brujula
Telemetria_Control.Magnetics[0] = Lecturas_Brujula_control.Valor.Magnetismo_x;
Telemetria_Control.Magnetics[1] = Lecturas_Brujula_control.Valor.Magnetismo_y;
Telemetria_Control.Magnetics[2] = Lecturas_Brujula_control.Valor.Magnetismo_z;

#endif
UART_write(UART_BT_TELEMETRIA, &Telemetria_Control,
sizeof(Telemetria_Control)-1);

break;
}

}
}

-37-

void CLK_Control(){
Semaphore_post(SEMAPHORE_Control);

}

-38-

/*
* ======== QUAD_BOARD.c ========
* This file is responsible for setting up the board specific items for the
* QUAD_BOARD board.
 */

#include <stdint.h>
#include <stdbool.h>
#include <inc/hw_memmap.h>
#include <inc/hw_types.h>
#include <inc/hw_ints.h>
#include <inc/hw_gpio.h>

#include <driverlib/gpio.h>
#include <driverlib/sysctl.h>
#include <driverlib/i2c.h>
#include <driverlib/ssi.h>
#include <driverlib/uart.h>
#include <driverlib/udma.h>
#include <driverlib/pin_map.h>

#include <xdc/std.h>
#include <xdc/cfg/global.h>
#include <xdc/runtime/Error.h>
#include <xdc/runtime/System.h>
#include <ti/sysbios/family/arm/m3/Hwi.h>

#include "QUAD_board.h"

#ifndef TI_DRIVERS_UART_DMA
#define TI_DRIVERS_UART_DMA 0
#endif

/*
* =============================== DMA ===============================
 */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_ALIGN(dmaControlTable, 1024)
#elif defined(__IAR_SYSTEMS_ICC__)
#pragma data_alignment=1024
#elif defined(__GNUC__)
__attribute__ ((aligned (1024)))
#endif
static tDMAControlTable dmaControlTable[32];
static bool dmaInitialized = false;

/* Hwi_Struct used in the initDMA Hwi_construct call */
static Hwi_Struct hwiStruct;

/*
* ======== dmaErrorHwi ========
 */
static Void dmaErrorHwi(UArg arg)
{

System_printf("DMA error code: %d\n", uDMAErrorStatusGet());
uDMAErrorStatusClear();
System_abort("DMA error!!");

}

/*
* ======== QUAD_BOARD_initDMA ========
 */
void QUAD_BOARD_initDMA(void)
{

Error_Block eb;
Hwi_Params hwiParams;

-1-

if (!dmaInitialized) {

Error_init(&eb);

Hwi_Params_init(&hwiParams);
Hwi_construct(&(hwiStruct), INT_UDMAERR, dmaErrorHwi,

&hwiParams, &eb);
if (Error_check(&eb)) {

System_abort("Couldn't create DMA error hwi");
}

SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
uDMAEnable();
uDMAControlBaseSet(dmaControlTable);

dmaInitialized = true;
}

}

/*
* =============================== General ===============================
 */
/*
* ======== QUAD_BOARD_initGeneral ========
 */
void QUAD_BOARD_initGeneral(void)
{

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

}

/*
* =============================== GPIO ===============================
 */
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(GPIOTiva_config, ".const:GPIOTiva_config")
#endif

#include <ti/drivers/GPIO.h>
#include <ti/drivers/gpio/GPIOTiva.h>

/*
* Array of Pin configurations
* NOTE: The order of the pin configurations must coincide with what was
 * defined in QUAD_BOARD.h
* NOTE: Pins not used for interrupts should be placed at the end of the
 * array. Callback entries can be omitted from callbacks array to
 * reduce memory usage.
 */
GPIO_PinConfig gpioPinConfigs[] = {

/* Input pins */
/* QUAD_BOARD_GPIO_SW1 */
GPIOTiva_PF_4 | GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_RISING,
/* QUAD_BOARD_GPIO_SW2 */
GPIOTiva_PF_0 | GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_RISING,
/* QUAD_BOARD_ECHO */
GPIOTiva_PD_6 | GPIO_CFG_INPUT | GPIO_CFG_IN_INT_BOTH_EDGES,
/* QUAD_BOARD_RPM */
GPIOTiva_PA_5 | GPIO_CFG_INPUT | GPIO_CFG_IN_INT_RISING,

/* Output pins */
/* QUAD_BOARD_TRIGG */
GPIOTiva_PD_7 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_LOW | GPIO_CFG_OUT_LOW,

-2-

/* QUAD_BOARD_LED_RED */
GPIOTiva_PF_1 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/* QUAD_BOARD_LED_BLUE */
GPIOTiva_PF_2 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/* QUAD_BOARD_LED_GREEN */
GPIOTiva_PF_3 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/* QUAD_BOARD_POWER_33 */
GPIOTiva_PD_0 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_HIGH,
/*QUAD_BOARD_SPI_CE */
GPIOTiva_PA_6 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
/*QUAD_BOARD_SPI_CSN */
GPIOTiva_PA_3 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_HIGH,

};

/*
* Array of callback function pointers
* NOTE: The order of the pin configurations must coincide with what was
 * defined in QUAD_BOARD.h
* NOTE: Pins not used for interrupts can be omitted from callbacks array to
 * reduce memory usage (if placed at end of gpioPinConfigs array).
 */
GPIO_CallbackFxn gpioCallbackFunctions[] = {

NULL, /* QUAD_BOARD_GPIO_SW1 */
NULL, /* QUAD_BOARD_GPIO_SW2 */
NULL, /* QUAD_BOARD_ECHO */
NULL, /* QUAD_BOARD_RPM */

};

/* The device-specific GPIO_config structure */
const GPIOTiva_Config GPIOTiva_config = {

.pinConfigs = (GPIO_PinConfig *) gpioPinConfigs,

.callbacks = (GPIO_CallbackFxn *) gpioCallbackFunctions,

.numberOfPinConfigs = sizeof(gpioPinConfigs) / sizeof(GPIO_PinConfig),

.numberOfCallbacks = sizeof(gpioCallbackFunctions)/sizeof(GPIO_CallbackFxn),

.intPriority = (~0)
};

/*
* ======== QUAD_BOARD_initGPIO ========
 */
void QUAD_BOARD_initGPIO(void)
{

/* QUAD_BOARD_GPIO_SW2 - PF0 requires unlocking before configuration */
HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= GPIO_PIN_0;
GPIOPinTypeGPIOInput(GPIO_PORTF_BASE, GPIO_PIN_0);

HWREG(GPIO_PORTD_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTD_BASE + GPIO_O_CR) |= GPIO_PIN_6;
GPIOPinTypeGPIOInput(GPIO_PORTD_BASE, GPIO_PIN_6);

HWREG(GPIO_PORTD_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTD_BASE + GPIO_O_CR) |= GPIO_PIN_7;
GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_7);

/* Initialize peripheral and pins */
GPIO_init();

}

/*
* =============================== I2C ===============================
 */
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(I2C_config, ".const:I2C_config")
#pragma DATA_SECTION(i2cTivaHWAttrs, ".const:i2cTivaHWAttrs")
#endif

-3-

#include <ti/drivers/I2C.h>
#include <ti/drivers/i2c/I2CTiva.h>

/* I2C objects */
I2CTiva_Object i2cTivaObjects[QUAD_BOARD_I2CCOUNT];

/* I2C configuration structure, describing which pins are to be used */
const I2CTiva_HWAttrs i2cTivaHWAttrs[QUAD_BOARD_I2CCOUNT] = {

{I2C0_BASE, INT_I2C0, ~0 /* Interrupt priority */},
{I2C2_BASE, INT_I2C2, ~0 /* Interrupt priority */}

};

const I2C_Config I2C_config[] = {
{&I2CTiva_fxnTable, &i2cTivaObjects[0], &i2cTivaHWAttrs[0]},
{&I2CTiva_fxnTable, &i2cTivaObjects[1], &i2cTivaHWAttrs[1]},
{NULL, NULL, NULL}

};

/*
* ======== QUAD_BOARD_initI2C ========
 */
void QUAD_BOARD_initI2C(void)
{

/* I2C1 Init */
/* Enable the peripheral */
SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C2);

/* Configure the appropriate pins to be I2C instead of GPIO. */
GPIOPinTypeI2CSCL(GPIO_PORTB_BASE, GPIO_PIN_2);
GPIOPinTypeI2C(GPIO_PORTB_BASE, GPIO_PIN_3);
GPIOPinConfigure(GPIO_PB3_I2C0SDA);
GPIOPinConfigure(GPIO_PB2_I2C0SCL);

/* Configure the appropriate pins to be I2C instead of GPIO. */
GPIOPinTypeI2CSCL(GPIO_PORTE_BASE, GPIO_PIN_4);
GPIOPinTypeI2C(GPIO_PORTE_BASE, GPIO_PIN_5);
GPIOPinConfigure(GPIO_PE4_I2C2SCL);
GPIOPinConfigure(GPIO_PE5_I2C2SDA);

I2C_init();
}

/*
* =============================== PWM ===============================
 */
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(PWM_config, ".const:PWM_config")
#pragma DATA_SECTION(pwmTivaHWAttrs, ".const:pwmTivaHWAttrs")
#endif

#include <ti/drivers/PWM.h>
#include <ti/drivers/pwm/PWMTiva.h>
#include <driverlib/pwm.h>

PWMTiva_Object pwmTivaObjects[QUAD_BOARD_PWMCOUNT];

/* PWM configuration structure */
const PWMTiva_HWAttrs pwmTivaHWAttrs[QUAD_BOARD_PWMCOUNT] = {

{
PWM0_BASE,
PWM_OUT_0,
PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN

},
{

-4-

PWM0_BASE,
PWM_OUT_1,
PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN

},
{

PWM0_BASE,
PWM_OUT_2,
PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN

},
{

PWM0_BASE,
PWM_OUT_3,
PWM_GEN_MODE_DOWN | PWM_GEN_MODE_DBG_RUN

}
};

const PWM_Config PWM_config[] = {
{&PWMTiva_fxnTable, &pwmTivaObjects[0], &pwmTivaHWAttrs[0]},
{&PWMTiva_fxnTable, &pwmTivaObjects[1], &pwmTivaHWAttrs[1]},
{&PWMTiva_fxnTable, &pwmTivaObjects[2], &pwmTivaHWAttrs[2]},
{&PWMTiva_fxnTable, &pwmTivaObjects[3], &pwmTivaHWAttrs[3]},
{NULL, NULL, NULL}

};

/*
* ======== QUAD_BOARD_initPWM ========
 */
void QUAD_BOARD_initPWM(void)
{

/* Enable PWM peripherals */
SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM0);

/*
* Enable PWM output on GPIO pins. Board_LED1 and Board_LED2 are now
* controlled by PWM peripheral - Do not use GPIO APIs.

 */
GPIOPinConfigure(GPIO_PB4_M0PWM2);
GPIOPinConfigure(GPIO_PB5_M0PWM3);
GPIOPinConfigure(GPIO_PB6_M0PWM0);
GPIOPinConfigure(GPIO_PB7_M0PWM1);
GPIOPinTypePWM(GPIO_PORTB_BASE, GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7);

PWM_init();
}

/*
* =============================== UART ===============================
 */
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(UART_config, ".const:UART_config")
#pragma DATA_SECTION(uartTivaHWAttrs, ".const:uartTivaHWAttrs")
#endif

#include <ti/drivers/UART.h>
#if TI_DRIVERS_UART_DMA
#include <ti/drivers/uart/UARTTivaDMA.h>

/* UART objects */
UARTTivaDMA_Object uartTivaObjects[QUAD_BOARD_UARTCOUNT];

/* UART configuration structure */
const UARTTivaDMA_HWAttrs uartTivaHWAttrs[QUAD_BOARD_UARTCOUNT] = {

{/* QUAD_BOARD_UART0 */
UART0_BASE,
INT_UART0,
~0, /* Interrupt priority */
UDMA_CH8_UART0RX,

-5-

UDMA_CH9_UART0TX,
},
{/* QUAD_BOARD_UART1 */

UART1_BASE,
INT_UART1,
~0, /* Interrupt priority */
UDMA_CH22_UART1RX,
UDMA_CH23_UART1TX,

},
{/* QUAD_BOARD_UART4 */

UART5_BASE,
INT_UART5,
~0, /* Interrupt priority */
UDMA_CH6_UART5RX,
UDMA_CH7_UART5TX,

},
{/* QUAD_BOARD_UART7 */

UART7_BASE,
INT_UART7,
~0, /* Interrupt priority */
UDMA_CH20_UART7RX,
UDMA_CH21_UART7TX,

}
};

const UART_Config UART_config[] = {
{

&UARTTivaDMA_fxnTable,
&uartTivaObjects[0],
&uartTivaHWAttrs[0]

},
{

&UARTTivaDMA_fxnTable,
&uartTivaObjects[1],
&uartTivaHWAttrs[1]

},
{

&UARTTivaDMA_fxnTable,
&uartTivaObjects[2],
&uartTivaHWAttrs[2]

},
{

&UARTTivaDMA_fxnTable,
&uartTivaObjects[3],
&uartTivaHWAttrs[3]

},
{NULL, NULL, NULL}

};

#else
#include <ti/drivers/uart/UARTTiva.h>

/* UART objects */
UARTTiva_Object uartTivaObjects[QUAD_BOARD_UARTCOUNT];
unsigned char uartTivaRingBuffer[32];
unsigned char uartTivaRingBuffer1[32];
unsigned char uartTivaRingBuffer5[32];
unsigned char uartTivaRingBuffer7[32];

/* UART configuration structure */
const UARTTiva_HWAttrs uartTivaHWAttrs[QUAD_BOARD_UARTCOUNT] = {

{/* QUAD_BOARD_UART0 */
.baseAddr = UART0_BASE,
.intNum = INT_UART0,
.intPriority = ~0,
.flowControl = UART_FLOWCONTROL_NONE,
.ringBufPtr = uartTivaRingBuffer,
.ringBufSize = sizeof(uartTivaRingBuffer)

-6-

},
{/* QUAD_BOARD_UART1 */

.baseAddr = UART1_BASE,

.intNum = INT_UART1,

.intPriority = ~0,

.flowControl = UART_FLOWCONTROL_NONE,

.ringBufPtr = uartTivaRingBuffer1,

.ringBufSize = sizeof(uartTivaRingBuffer1)
},
{/* QUAD_BOARD_UART4 */

.baseAddr = UART5_BASE,

.intNum = INT_UART5,

.intPriority = ~0,

.flowControl = UART_FLOWCONTROL_NONE,

.ringBufPtr = uartTivaRingBuffer5,

.ringBufSize = sizeof(uartTivaRingBuffer5)
},
{/* QUAD_BOARD_UART7 */

.baseAddr = UART7_BASE,

.intNum = INT_UART7,

.intPriority = ~0,

.flowControl = UART_FLOWCONTROL_NONE,

.ringBufPtr = uartTivaRingBuffer7,

.ringBufSize = sizeof(uartTivaRingBuffer7)
}

};

const UART_Config UART_config[] = {
{

&UARTTiva_fxnTable,
&uartTivaObjects[0],
&uartTivaHWAttrs[0]

},
{

&UARTTiva_fxnTable,
&uartTivaObjects[1],
&uartTivaHWAttrs[1]

},
{

&UARTTiva_fxnTable,
&uartTivaObjects[2],
&uartTivaHWAttrs[2]

},
{

&UARTTiva_fxnTable,
&uartTivaObjects[3],
&uartTivaHWAttrs[3]

},
{NULL, NULL, NULL}

};
#endif /* TI_DRIVERS_UART_DMA */

/*
* ======== QUAD_BOARD_initUART ========
 */
void QUAD_BOARD_initUART(void)
{

/* Enable and configure the peripherals used by the uart. */
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
GPIOPinConfigure(GPIO_PB0_U1RX);
GPIOPinConfigure(GPIO_PB1_U1TX);
GPIOPinTypeUART(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

/*

-7-

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART5);
 GPIOPinConfigure(GPIO_PE4_U5RX);
 GPIOPinConfigure(GPIO_PE5_U5TX);
 GPIOPinTypeUART(GPIO_PORTE_BASE, GPIO_PIN_4 | GPIO_PIN_5);
*/

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART7);
GPIOPinConfigure(GPIO_PE1_U7TX);
GPIOPinConfigure(GPIO_PE0_U7RX);
GPIOPinTypeUART(GPIO_PORTE_BASE, GPIO_PIN_0 | GPIO_PIN_1);
/* Initialize the UART driver */

#if TI_DRIVERS_UART_DMA
QUAD_BOARD_initDMA();

#endif
UART_init();

}

/*
* =============================== Watchdog ===============================
 */
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(Watchdog_config, ".const:Watchdog_config")
#pragma DATA_SECTION(watchdogTivaHWAttrs, ".const:watchdogTivaHWAttrs")
#endif

#include <ti/drivers/Watchdog.h>
#include <ti/drivers/watchdog/WatchdogTiva.h>

/* Watchdog objects */
WatchdogTiva_Object watchdogTivaObjects[QUAD_BOARD_WATCHDOGCOUNT];

/* Watchdog configuration structure */
const WatchdogTiva_HWAttrs watchdogTivaHWAttrs[QUAD_BOARD_WATCHDOGCOUNT] = {

/* QUAD_BOARD_WATCHDOG0 with 1 sec period at default CPU clock freq */
{WATCHDOG0_BASE, INT_WATCHDOG, ~0 /* Interrupt priority */, 80000000},

};

const Watchdog_Config Watchdog_config[] = {
{&WatchdogTiva_fxnTable, &watchdogTivaObjects[0], &watchdogTivaHWAttrs[0]},
{NULL, NULL, NULL},

};

/*
* ======== QUAD_BOARD_initWatchdog ========
 *
* NOTE: To use the other watchdog timer with base address WATCHDOG1_BASE,
 * an additional function call may need be made to enable PIOSC. Enabling
 * WDOG1 does not do this. Enabling another peripheral that uses PIOSC
 * such as ADC0 or SSI0, however, will do so. Example:
 *
 * SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
 * SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOG1);
 *
 * See the following forum post for more information:
 *
http://e2e.ti.com/support/microcontrollers/stellaris_arm_cortex-m3_microcontroller/f/471/p/17
6487/654390.aspx#654390
 */
void QUAD_BOARD_initWatchdog(void)
{

/* Enable peripherals used by Watchdog */
SysCtlPeripheralEnable(SYSCTL_PERIPH_WDOG0);

/* Initialize the Watchdog driver */
Watchdog_init();

}

-8-

/*
* =============================== SPI ===============================
 */
/* Place into subsections to allow the TI linker to remove items properly */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_SECTION(SPI_config, ".const:SPI_config")
#pragma DATA_SECTION(spiTivaDMAHWAttrs, ".const:spiTivaDMAHWAttrs")
#endif

#include <ti/drivers/SPI.h>
#include <ti/drivers/spi/SPITivaDMA.h>

/* SPI objects */
SPITivaDMA_Object spiTivaDMAObjects[QUAD_BOARD_SPICOUNT];
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_ALIGN(spiTivaDMAscratchBuf, 32)
#elif defined(__IAR_SYSTEMS_ICC__)
#pragma data_alignment=32
#elif defined(__GNUC__)
__attribute__ ((aligned (32)))
#endif
uint32_t spiTivaDMAscratchBuf[QUAD_BOARD_SPICOUNT];

/* SPI configuration structure */
const SPITivaDMA_HWAttrs spiTivaDMAHWAttrs[QUAD_BOARD_SPICOUNT] = {

{
SSI0_BASE,
INT_SSI0,
~0, /* Interrupt priority */
&spiTivaDMAscratchBuf[0],
0,
UDMA_CHANNEL_SSI0RX,
UDMA_CHANNEL_SSI0TX,
uDMAChannelAssign,
UDMA_CH10_SSI0RX,
UDMA_CH11_SSI0TX

}
};

const SPI_Config SPI_config[] = {
{&SPITivaDMA_fxnTable, &spiTivaDMAObjects[0], &spiTivaDMAHWAttrs[0]},
{NULL, NULL, NULL},

};

/*
* ======== QUAD_BOARD_initSPI ========
 */
void QUAD_BOARD_initSPI(void)
{

/* SPI0 */
SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);

/* Need to unlock PF0 */
GPIOPinConfigure(GPIO_PA2_SSI0CLK);

// GPIOPinConfigure(GPIO_PA3_SSI0FSS);
GPIOPinConfigure(GPIO_PA4_SSI0RX);
GPIOPinConfigure(GPIO_PA5_SSI0TX);

GPIOPinTypeSSI(GPIO_PORTA_BASE, GPIO_PIN_2 | /* GPIO_PIN_3 | */
GPIO_PIN_4 | GPIO_PIN_5);

QUAD_BOARD_initDMA();
SPI_init();

}

-9-

/** ==
* @file QUAD_BOARD.h
 *
* @brief QUAD_BOARD Board Specific APIs
 *
* The QUAD_BOARD header file should be included in an application as
* follows:
* @code
* #include <QUAD_BOARD.h>
* @endcode
 *
* ==
 */
#ifndef QUAD_BOARD_H
#define QUAD_BOARD_H

#ifdef __cplusplus
extern "C" {
#endif

/* LEDs on QUAD_BOARD are active high. */
#define QUAD_BOARD_LED_OFF (0)
#define QUAD_BOARD_LED_ON (1)

/*!
* @def QUAD_BOARD_GPIOName
* @brief Enum of GPIO names on the QUAD_BOARD dev board
 */
typedef enum QUAD_BOARD_GPIOName {

QUAD_BOARD_SW1 = 0,
QUAD_BOARD_SW2,
QUAD_BOARD_ECHO,
QUAD_BOARD_RPM,

QUAD_BOARD_TRIGG,
QUAD_BOARD_LED_RED,
QUAD_BOARD_LED_BLUE,
QUAD_BOARD_LED_GREEN,
QUAD_BOARD_POWER_33,
QUAD_BOARD_SPI_CE,
QUAD_BOARD_SPI_CSN,

QUAD_BOARD_GPIOCOUNT
} QUAD_BOARD_GPIOName;

/*!
* @def QUAD_BOARD_I2CName
* @brief Enum of I2C names on the QUAD_BOARD dev board
 */
typedef enum QUAD_BOARD_I2CName {

QUAD_BOARD_I2C0 = 0,
QUAD_BOARD_I2C2,
QUAD_BOARD_I2CCOUNT

} QUAD_BOARD_I2CName;

/*!
* @def QUAD_BOARD_PWMName
* @brief Enum of PWM names on the QUAD_BOARD dev board
 */
typedef enum QUAD_BOARD_PWMName {

QUAD_BOARD_PWM0 = 0,
QUAD_BOARD_PWM1,
QUAD_BOARD_PWM2,
QUAD_BOARD_PWM3,

QUAD_BOARD_PWMCOUNT
} QUAD_BOARD_PWMName;

-1-

/*!
* @def QUAD_BOARD_UARTName
* @brief Enum of UARTs on the QUAD_BOARD dev board
 */
typedef enum QUAD_BOARD_UARTName {

QUAD_BOARD_UART0_USB = 0,
QUAD_BOARD_UART5_BT_TELEMETRIA,
QUAD_BOARD_UART1_BT_MANDO,
QUAD_BOARD_UART7_AUX,

QUAD_BOARD_UARTCOUNT
} QUAD_BOARD_UARTName;

/*!
* @def QUAD_BOARD_WatchdogName
* @brief Enum of Watchdogs on the QUAD_BOARD dev board
 */
typedef enum QUAD_BOARD_WatchdogName {

QUAD_BOARD_WATCHDOG0 = 0,

QUAD_BOARD_WATCHDOGCOUNT
} QUAD_BOARD_WatchdogName;

/*!
* @brief Initialize board specific DMA settings
 *
* This function creates a hwi in case the DMA controller creates an error
* interrrupt, enables the DMA and supplies it with a uDMA control table.
 */

typedef enum QUAD_BOARD_SPIName {
QUAD_BOARD_SPI0 = 0,

QUAD_BOARD_SPICOUNT
} QUAD_BOARD_SPIName;

extern void QUAD_BOARD_initDMA(void);

/*!
* @brief Initialize the general board specific settings
 *
* This function initializes the general board specific settings.
* This includes:
* - Flash wait states based on the process
* - Disable clock source to watchdog module
* - Enable clock sources for peripherals
 */
extern void QUAD_BOARD_initGeneral(void);

/*!
* @brief Initialize board specific GPIO settings
 *
* This function initializes the board specific GPIO settings and
* then calls the GPIO_init API to initialize the GPIO module.
 *
* The GPIOs controlled by the GPIO module are determined by the GPIO_PinConfig
* variable.
 */
extern void QUAD_BOARD_initGPIO(void);

/*!
* @brief Initialize board specific I2C settings
 *
* This function initializes the board specific I2C settings and then calls
* the I2C_init API to initialize the I2C module.
 *
* The I2C peripherals controlled by the I2C module are determined by the

-2-

* I2C_config variable.
 */
extern void QUAD_BOARD_initI2C(void);

/*!
* @brief Initialize board specific PWM settings
 *
* This function initializes the board specific PWM settings and then calls
* the PWM_init API to initialize the PWM module.
 *
* The PWM peripherals controlled by the PWM module are determined by the
* PWM_config variable.
 */
extern void QUAD_BOARD_initPWM(void);

/*!
* @brief Initialize board specific UART settings
 *
* This function initializes the board specific UART settings and then calls
* the UART_init API to initialize the UART module.
 *
* The UART peripherals controlled by the UART module are determined by the
* UART_config variable.
 */
extern void QUAD_BOARD_initUART(void);

/*!
* @brief Initialize board specific Watchdog settings
 *
* This function initializes the board specific Watchdog settings and then
* calls the Watchdog_init API to initialize the Watchdog module.
 *
* The Watchdog peripherals controlled by the Watchdog module are determined
* by the Watchdog_config variable.
 */
extern void QUAD_BOARD_initWatchdog(void);

/*!
* @brief Initialize board specific SPI settings
 *
* This function initializes the board specific SPI settings and then calls
* the SPI_init API to initialize the SPI module.
 *
* The SPI peripherals controlled by the SPI module are determined by the
* SPI_config variable.
 */
extern void QUAD_BOARD_initSPI(void);

#ifdef __cplusplus
}
#endif

#endif /* __QUAD_BOARD_H */

-3-

/*
* Sensores.h
 *
* Created on: 11/5/2015
 * Author: Ruben
 */

#ifndef QUADROTOR_V1_3_1_SENSORES_H_
#define QUADROTOR_V1_3_1_SENSORES_H_

#include <ti/drivers/I2C.h>

#include "arm_math.h"
#include "Parametros.h"
#include "math.h"

#define CONVERTIR_A_RADIANES(DEGS) PI/180.0*DEGS
#define CONVERTIR_A_GRADOS(RADS) 180.0/PI*RADS

float32_t Normalizar_Grados(float32_t Grados);

typedef enum {DLPF_CFG_NO =-1, DLPF_CFG_0, DLPF_CFG_1, DLPF_CFG_2, DLPF_CFG_3, DLPF_CFG_4,
DLPF_CFG_5, DLPF_CFG_6, DLPF_CFG_7}tpDLPF_CFG;
typedef enum {Gain_Gyro_250, Gain_Gyro_500, Gain_Gyro_1000, Gain_Gyro_2000}tpGanancia_Gyro;
typedef enum {DLPF_CFG_GYRO_NO = -1, DLPF_CFG_GYRO_0, DLPF_CFG_GYRO_1, DLPF_CFG_GYRO_2,
DLPF_CFG_GYRO_3, DLPF_CFG_GYRO_4, DLPF_CFG_GYRO_5, DLPF_CFG_GYRO_6,
DLPF_CFG_GYRO_7}tpDLPF_CFG_GYRO;
typedef enum {Gain_Acel_2G, Gain_Acel_4G, Gain_Acel_8G, Gain_Acel_16G}tpGanancia_Acel;
typedef enum {DLPF_CFG_ACEL_NO =-1, DLPF_CFG_ACEL_0, DLPF_CFG_ACEL_1, DLPF_CFG_ACEL_2,
DLPF_CFG_ACEL_3, DLPF_CFG_ACEL_4, DLPF_CFG_ACEL_5, DLPF_CFG_ACEL_6,
DLPF_CFG_ACEL_7}tpDLPF_CFG_ACEL;

//............RECEPTOR............................//
typedef struct{

uint16_t Canal_PWM[8];
uint8_t Voltaje_Bat[4];
uint8_t Error_conexion;

}tpLectura_Radio;

typedef struct {
float32_t Rango_Salida[2]; //min max
uint16_t Rango_Entrada[2]; //min max

}tpCalibracion_canal_PWM;

typedef tpCalibracion_canal_PWM tpCalibracion_Receptor[numCanales];

//..........Barometro.............................//

//Parametros barometro
#define Direccion_Barometro 0x77
#define Bar_Reg_Eprom_Barometro 0xAA //0xAA to 0xBF donde se hallan los parametros de
calibracion
#define Bar_Reg_leer_temp 0xF4
#define Bar_leer_Temp 0x2E
#define Bar_leer_Presion 0xF4
#define Bar_Reg_MSB 0xF6
#define Bar_Reg_LSB 0xF7
#define Bar_Reg_XLSB 0xF8

//..........9DOF_IMU..............................//
typedef union{

struct{
uint8_t x_acel_l; //Los ponemos al reves (LOW y HIGH) dado que
uint8_t x_acel_h; //La arquitectura usa LITTLE Endian
uint8_t y_acel_l;
uint8_t y_acel_h;
uint8_t z_acel_l;
uint8_t z_acel_h;

-1-

uint8_t temp_l;
uint8_t temp_h;

uint8_t x_vel_l;
uint8_t x_vel_h;
uint8_t y_vel_l;
uint8_t y_vel_h;
uint8_t z_vel_l;
uint8_t z_vel_h;

uint8_t x_mag_l;
uint8_t x_mag_h;
uint8_t y_mag_l;
uint8_t y_mag_h;
uint8_t z_mag_l;
uint8_t z_mag_h;

}Reg;

struct{
int16_t x_acel;
int16_t y_acel;
int16_t z_acel;

int16_t temp;

int16_t x_vel;
int16_t y_vel;
int16_t z_vel;

int16_t x_mag;
int16_t y_mag;
int16_t z_mag;

}Valor;
}tpLecturas_9DOF_IMU;

//..........IMU...................................//
typedef union{ //tpLecturas_IMU

struct{
uint8_t x_acel_l; //Los ponemos al reves (LOW y HIGH) dado que
uint8_t x_acel_h; //La arquitectura usa LITTLE Endian
uint8_t y_acel_l;
uint8_t y_acel_h;
uint8_t z_acel_l;
uint8_t z_acel_h;

uint8_t temp_l;
uint8_t temp_h;

uint8_t x_vel_l;
uint8_t x_vel_h;
uint8_t y_vel_l;
uint8_t y_vel_h;
uint8_t z_vel_l;
uint8_t z_vel_h;

}Reg;

struct{
int16_t x_acel;
int16_t y_acel;
int16_t z_acel;

int16_t temp;

int16_t x_vel;
int16_t y_vel;
int16_t z_vel;

-2-

}Valor;
}tpLecturas_IMU;

typedef struct{ //tpCalibracion_IMU
int16_t Rango_Acel_x[2]; // Min Max
int16_t Media_Acel_x;
float32_t Des_est_Acel_x;
int16_t Rango_Acel_y[2];
int16_t Media_Acel_y;
float32_t Des_est_Acel_y;
int16_t Rango_Acel_z[2];
int16_t Media_Acel_z;
float32_t Des_est_Acel_z;

int16_t Media_Temp;
float32_t Des_est_Temp;

int16_t Rango_Vel_x[2];
int16_t Media_Vel_x;
float32_t Des_est_Vel_x;
int16_t Rango_Vel_y[2];
int16_t Media_Vel_y;
float32_t Des_est_Vel_y;
int16_t Rango_Vel_z[2];
int16_t Media_Vel_z;
float32_t Des_est_Vel_z;

float32_t Correccion_Alineamiento_matriz[9];
arm_matrix_instance_f32 Correccion_Alineamiento;

float32_t Giro[3];

}tpCalibracion_IMU;

//..........BRUJULA......................//

typedef union{ //tpLecturas_Brujula
struct{

uint8_t Magnetismo_x_l; //tpLecturas_Brujula
uint8_t Magnetismo_x_h; //La arquitectura usa LITTLE Endian
uint8_t Magnetismo_y_l;
uint8_t Magnetismo_y_h;
uint8_t Magnetismo_z_l;
uint8_t Magnetismo_z_h;

}Reg;
struct{

int16_t Magnetismo_x;
int16_t Magnetismo_y;
int16_t Magnetismo_z;

}Valor;
}tpLecturas_Brujula;

typedef struct{
int16_t Media_Magnetismo_x;
float32_t Des_est_Mag_x;

int16_t Media_Magnetismo_y;
float32_t Des_est_Mag_y;

int16_t Media_Magnetismo_z;
float32_t Des_est_Mag_z;

float32_t Offset_matriz[3];
arm_matrix_instance_f32 Offset;
float32_t Transformada_matriz[9];
arm_matrix_instance_f32 Transformada;

-3-

}tpCalibracion_Brujula;

//.......BAROMETRO.................//

typedef struct{//tpLecturasBarometro
uint32_t UP;
uint16_t UT;

uint32_t Presion;
float Temperatura;

//Parametros de calibracion
int16_t AC1;
int16_t AC2;
int16_t AC3;
uint16_t AC4;
uint16_t AC5;
uint16_t AC6;
int16_t B1;
int16_t B2;
int16_t MB;
int16_t MC;
int16_t MD;

}tpLecturasBarometro;

typedef struct{//tpLecturasBarometro_BMP280

uint32_t Presion;
uint32_t Temperatura;

uint16_t dig_T1;
uint16_t dig_T2;
uint16_t dig_T3;

uint16_t dig_P1;
uint16_t dig_P2;
uint16_t dig_P3;
uint16_t dig_P4;
uint16_t dig_P5;
uint16_t dig_P6;
uint16_t dig_P7;
uint16_t dig_P8;
uint16_t dig_P9;

}tpLecturasBarometro_BMP280;

//...........GIROSCOPO..................//

typedef union{ //tpLecturas_Giroscopo
struct{

uint8_t x_vel_l;
uint8_t x_vel_h;
uint8_t y_vel_l;
uint8_t y_vel_h;
uint8_t z_vel_l;
uint8_t z_vel_h;

}Reg;
struct{

int16_t x_vel;
int16_t y_vel;
int16_t z_vel;

}Valor;
}tpLecturas_Giroscopo;

//..............................IMU_9250..//
typedef struct{

uint8_t Direccion_IMU;

-4-

uint8_t Direccion_MAG;
uint8_t SMPLRT_DIV;
float32_t Sensibilidad_Giroscopo;
float32_t Sensibilidad_Acel;
float32_t Sensibilidad_Brujula;

tpDLPF_CFG_GYRO DLPF_CFG_GYRO;
tpGanancia_Gyro Ganancia_Gyro;
tpDLPF_CFG_ACEL DLPF_CFG_ACEL;
tpGanancia_Acel Ganancia_Acel;

}tpIMU9250;

#define DIR_0_IMU_MPU9250 0b1101000
#define Dir_1_IMU_MPU9250 0b1101001
#define Dir_MAG_MPU9250 0x0C

#define IMU_MPU9250_INT_PIN_CFG 0x37
#define IMU_MPU9250_SMPLRT_DIV 0x19
#define IMU_MPU9250_USER_CTRL 0x6A
#define IMU_MPU9250_PWR_MGMT_1 0x6B
#define IMU_MPU9250_MAG_CTL1 0x0A
#define IMU_MPU9250_MAG_HXL 0x03

bool Iniciar_IMU_MPU9250(I2C_Handle I2C, tpIMU9250 IMU92520);
bool Leer_IMU_MPU9250(I2C_Handle I2C, tpIMU9250 IMU92520, tpLecturas_9DOF_IMU
*Lecturas_9DOF_IMU);

//..............................IMU_6050..//
typedef struct{

uint8_t Direccion;
uint8_t SMPLRT_DIV;
float32_t Sensibilidad_Giroscopo;
float32_t Sensibilidad_Acel;

tpDLPF_CFG DLPF_CFG;
tpGanancia_Gyro Ganancia_Gyro;
tpGanancia_Acel Ganancia_Acel;

}tpIMU6050;

#define Dir_0_IMU_MPU6050 0b1101000
#define Dir_1_IMU_MPU6050 0b1101001

#define IMU_MPU6050_SMPLRT_DIV 0x19
#define IMU_MPU6050_CONFIG 0x1A
#define IMU_MPU6050_GYRO_CONFIG 0x1B
#define IMU_MPU6050_ACCEL_CONFIG 0x1C

#define IMU_MPU6050_PWR_MGMT_1 0x6B
#define IMU_MPU6050_ACCEL_XOUT_H 0x3B

bool Iniciar_IMU_MPU6050(I2C_Handle I2C, tpIMU6050 IMU6050);
bool Leer_IMU_MPU6050(I2C_Handle I2C, tpIMU6050 IMU6050, tpLecturas_IMU *Lecturas_IMU);

//............................GYRO_ITG3200...................................//
#define Dir_Gir_0 0b01101000
#define Dir_Gir_1 0b01101001
#define Reg_DLPF_FS 0x16
#define Reg_TEMP_OUT_H 0x1B

bool Iniciar_Giroscopio_ITG3200(I2C_Handle I2C, uint8_t Dir_Giroscopo, uint16_t
Frecuencia_muestreo, uint8_t Filtro);
bool Leer_Giroscopio_ITG3200(I2C_Handle I2C, uint8_t Dir_Giroscopo, tpLecturas_Giroscopo
*Lecturas_Giroscopo);

-5-

//...........................GYRO_L3G4200..//
#define Dir_0_L3G4200 0x68
#define Dir_1_L3G4200 0x69

#define L3G4200_WHO_I_AM 0x0F
#define L3G4200_CTRL_REG1 0x20
#define L3G4200_CTRL_REG2 0x21
#define L3G4200_CTRL_REG3 0x22
#define L3G4200_CTRL_REG4 0x23
#define L3G4200_CTRL_REG5 0x24
#define L3G4200_REFERENCE 0x25
#define L3G4200_OUT_TEMP 0x26
#define L3G4200_STATUS_REG 0x27
#define L3G4200_OUT_X_L 0x28

#define L3G4200_FIFO_CTRL_REG 0x2E

typedef struct{
uint8_t Direccion;
float32_t Sensibilidad_Giroscopo;
enum{dps_250 = 0, dps_500, dps_2000}Ganancia;
enum{ODR_100_Hz = 0, ODR_200_Hz, ODR_400_Hz, ODR_800_Hz}ODR;
enum{Bypass = 0, FIFO, Stream, Bypass_to_Stream, Stream_to_FIFO}Modo;
enum{LPF1_0 = 0, LPF1_1, LPF1_2, LPF1_3}BW_LPF;
enum{HPF_No_Filtro = 0, HPF_Filtro = 1 }HPF_activar;
enum{Filtrado_LPF = 0, Filtrado_HPF, Filtrado_LPF2}Modo_Filtro;
enum{HPF_0 = 0, HPF_1, HPF_2, HPF_3, HPF_4, HPF_5, HPF_6, HPF_7}BW_HPF;
enum{HPF_Normal_mode = 0, HPF_Reference, HPF_Normal, HPF_Autoreset}HPF_modo;
enum{BDU_Continuo = 0, BDU_No_continuo}BDU;
enum{BLE_Big_Endian = 0, BLE_Little_Endian}BLE;

}tpGiroscopo_L3G4200;

bool Iniciar_Giroscopo_L3G4200(I2C_Handle I2C, tpGiroscopo_L3G4200 Giroscopo_L3G4200);
bool Leer_Giroscopo_L3G4200(I2C_Handle I2C, tpGiroscopo_L3G4200 Giroscopo_L3G4200,
tpLecturas_Giroscopo *Lecturas_Giroscopo);

//.............BRUJULA_HMC5883L............//
#define HMC5883L_DIR 0x1E
#define HMC5883L_CONFIG_A 0x00
#define HMC5883L_CONFIG_B 0x01
#define HMC5883L_MODE 0x02
#define HMC5883L_DATA_OUTPUT_X 0x03
#define HMC5883L_SATUS 0x09
/*
#ifdef SENSIBILIDAD_MAG

const uint16_t Magnitud_HMC5883L[8] = {1370, 1090, 820, 660, 440, 390, 330, 230};
#endif
*/
typedef struct{

float32_t Angulo_Rotacion;
enum {MEDIA_1, MEDIA_2, MEDIA_4, MEDIA_8}Muestras_Media;
enum {ODR_0_75_Hz, ODR_1_5_Hz, ODR_3_Hz, ODR_7_5_Hz, ODR_15_Hz, ODR_30_Hz, ODR_75_Hz}ODR;
enum {Normal, Bias_Positivo, Bias_Negativo}Modo_Medida;
enum {Gauss_0_88, Gauss_1_3, Gauss_1_9, Gauss_2_5, Gauss_4, Gauss_4_7, Gauss_5_6,
Gauss_8_1}Ganancia;
enum {I2C_400_Khz, I2C_3400_Khz}Velocidad_I2C;
enum {Continuo, Simple, Idle}Modo_Operacion;
enum {S_0 = 1370, S_1 = 1090, S_2 = 820, S_3 = 660, S_4 = 440, S_5 = 390, S_6 = 330, S_7
= 230}Sensibilidad;

}tpHMC5883L;

bool Iniciar_Brujula_HMC5883L(I2C_Handle I2C, tpHMC5883L HMC5883L);
bool Leer_Brujula_HMC5883L(I2C_Handle I2C, tpHMC5883L HMC5883L, tpLecturas_Brujula
*Lecturas_Brujula);

//...BAROMETRO.............//
bool Iniciar_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro, tpLecturasBarometro

-6-

*LecturasBarometro);
bool Iniciar_Medida_Temp_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro);
bool Leer_Temp_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro, tpLecturasBarometro
*LecturasBarometro);
bool Iniciar_Medida_Presion_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro);
bool Leer_Presion_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro, tpLecturasBarometro
*LecturasBarometro);

/*...BMP280..*/
#define BMP_280_DIR_0 0x76
#define BMP_280_DIR_1 0x77

#define BMP_280_calibracion_T1
#define BMP_280_press_msb 0xF7
#define BMP_280_ctrl_meas 0xF4

typedef enum {x1, x2, x4, x8, x16}OverSampling_BMP280;

typedef struct{
uint8_t Direccion;
enum {Mode_Sleep = 0, Mode_Forced, Mode_Normal}Modo;
OverSampling_BMP280 Oversampling_Presion;
OverSampling_BMP280 Oversampling_Temperatura;
enum {Filtro_off = 0, Filtro_2, Filtro_4, Filtro_8, Filtro_16}Filtro_BMP280;
enum {ms05 = 0, ms625, ms125, ms250, ms500, ms1000, ms2000, ms4000}t_sampling;

}tpBarometro_BMP280;

bool Iniciar_Barometro_BMP280(I2C_Handle I2C, tpBarometro_BMP280 *Barometro_BMP280,
tpLecturasBarometro_BMP280 *LecturasBarometro_BMP280);
bool Leer_Barometro_BMP280(I2C_Handle I2C, tpBarometro_BMP280 *Barometro_BMP280,
tpLecturasBarometro_BMP280 *LecturasBarometro_BMP280);
float32_t Conversion_Temperatura(tpLecturasBarometro_BMP280 *LecturasBarometro_BMP280);
float32_t Conversion_Altura(float32_t Temperatura, tpLecturasBarometro_BMP280
*LecturasBarometro_BMP280);

#endif /* QUADROTOR_V1_3_1_SENSORES_H_ */

-7-

/*
* Sensores.c
 *
* Created on: 11/5/2015
 * Author: Ruben
 */
#include <ti/drivers/I2C.h>
#include "Sensores.h"

float32_t Normalizar_Grados(float32_t Grados){

/*
Grados += 180;
Grados = fmodf(Grados, 360);
Grados -= 180;
 */
if(Grados > 180.0){ Grados -= 360;}
else if(Grados < -180.0){ Grados += 360;}

return Grados;
}

bool Iniciar_IMU_MPU9250(I2C_Handle I2C, tpIMU9250 IMU92520){
I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[6] ={IMU_MPU9250_PWR_MGMT_1, 0, 0, 0, 0, 0}; //Ponemos a cero el
registro Reg_Power_Managent_1 para arrancar;
bool TransmisionOK;

I2C_Transmision.slaveAddress = IMU92520.Direccion_IMU;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 2;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = IMU_MPU9250_SMPLRT_DIV;
bufferEscritura[1] = IMU92520.SMPLRT_DIV;
bufferEscritura[2] = IMU92520.DLPF_CFG_GYRO;
bufferEscritura[3] = IMU92520.Ganancia_Gyro << 3;
if (IMU92520.DLPF_CFG_GYRO == -1){

bufferEscritura[3] |= 0b00000011;
}
bufferEscritura[4] = IMU92520.Ganancia_Acel << 3;
bufferEscritura[5] = IMU92520.DLPF_CFG_ACEL;
if (IMU92520.DLPF_CFG_ACEL == -1){

bufferEscritura[3] |= 0b00000001;
}

I2C_Transmision.writeCount = 5;
TransmisionOK |= I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = IMU_MPU9250_INT_PIN_CFG;
bufferEscritura[1] = 0x02;

I2C_Transmision.writeCount = 2;
TransmisionOK |= I2C_transfer(I2C, &I2C_Transmision);

//brujula

bufferEscritura[0] = IMU_MPU9250_MAG_CTL1;
bufferEscritura[1] = 0x16;

I2C_Transmision.writeCount = 2;
I2C_Transmision.slaveAddress = IMU92520.Direccion_MAG;
TransmisionOK |= I2C_transfer(I2C, &I2C_Transmision);

-1-

return(TransmisionOK);
}

bool Leer_IMU_MPU9250(I2C_Handle I2C, tpIMU9250 IMU92520, tpLecturas_9DOF_IMU
*Lecturas_9DOF_IMU){

I2C_Transaction I2C_Transmision;

uint8_t bufferEscritura[] = {IMU_MPU6050_ACCEL_XOUT_H};
uint8_t bufferLectura[14];
bool TransmisionOK;

I2C_Transmision.slaveAddress = IMU92520.Direccion_IMU;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;

// I2C_Transmision.readBuf = &(Lecturas_IMU->Reg.x_acel_h);
I2C_Transmision.readCount = 14;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

Lecturas_9DOF_IMU->Reg.x_acel_h=bufferLectura[0];
Lecturas_9DOF_IMU->Reg.x_acel_l=bufferLectura[1];
Lecturas_9DOF_IMU->Reg.y_acel_h=bufferLectura[2];
Lecturas_9DOF_IMU->Reg.y_acel_l=bufferLectura[3];
Lecturas_9DOF_IMU->Reg.z_acel_h=bufferLectura[4];
Lecturas_9DOF_IMU->Reg.z_acel_l=bufferLectura[5];

Lecturas_9DOF_IMU->Reg.temp_h=bufferLectura[6];
Lecturas_9DOF_IMU->Reg.temp_l=bufferLectura[7];

Lecturas_9DOF_IMU->Reg.x_vel_h=bufferLectura[8];
Lecturas_9DOF_IMU->Reg.x_vel_l=bufferLectura[9];
Lecturas_9DOF_IMU->Reg.y_vel_h=bufferLectura[10];
Lecturas_9DOF_IMU->Reg.y_vel_l=bufferLectura[11];
Lecturas_9DOF_IMU->Reg.z_vel_h=bufferLectura[12];
Lecturas_9DOF_IMU->Reg.z_vel_l=bufferLectura[13];

I2C_Transmision.slaveAddress = IMU92520.Direccion_MAG;
I2C_Transmision.readCount = 6;
I2C_Transmision.readBuf = &Lecturas_9DOF_IMU->Reg.x_mag_l;

bufferEscritura[0] = IMU_MPU9250_MAG_HXL;

TransmisionOK |= I2C_transfer(I2C, &I2C_Transmision);
return(TransmisionOK);

}

bool Iniciar_IMU_MPU6050(I2C_Handle I2C, tpIMU6050 IMU6050){
I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[5] ={IMU_MPU6050_PWR_MGMT_1, 0, 0, 0, 0}; //Ponemos a cero el
registro Reg_Power_Managent_1 para arrancar;
bool TransmisionOK;

I2C_Transmision.slaveAddress = IMU6050.Direccion;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 2;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = IMU_MPU6050_SMPLRT_DIV;
bufferEscritura[1] = IMU6050.SMPLRT_DIV;
bufferEscritura[2] = IMU6050.DLPF_CFG;
bufferEscritura[3] = IMU6050.Ganancia_Gyro << 3;
bufferEscritura[4] = IMU6050.Ganancia_Acel << 3;

I2C_Transmision.writeCount = 5;

-2-

TransmisionOK |= I2C_transfer(I2C, &I2C_Transmision);
return(TransmisionOK);

}

bool Leer_IMU_MPU6050(I2C_Handle I2C, tpIMU6050 IMU6050, tpLecturas_IMU *Lecturas_IMU){
I2C_Transaction I2C_Transmision;

uint8_t bufferEscritura[] = {IMU_MPU6050_ACCEL_XOUT_H};
uint8_t bufferLectura[14];
bool TransmisionOK;

I2C_Transmision.slaveAddress = IMU6050.Direccion;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;

// I2C_Transmision.readBuf = &(Lecturas_IMU->Reg.x_acel_h);
I2C_Transmision.readCount = 14;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

Lecturas_IMU->Reg.x_acel_h=bufferLectura[0];
Lecturas_IMU->Reg.x_acel_l=bufferLectura[1];
Lecturas_IMU->Reg.y_acel_h=bufferLectura[2];
Lecturas_IMU->Reg.y_acel_l=bufferLectura[3];
Lecturas_IMU->Reg.z_acel_h=bufferLectura[4];
Lecturas_IMU->Reg.z_acel_l=bufferLectura[5];

Lecturas_IMU->Reg.temp_h=bufferLectura[6];
Lecturas_IMU->Reg.temp_l=bufferLectura[7];

Lecturas_IMU->Reg.x_vel_h=bufferLectura[8];
Lecturas_IMU->Reg.x_vel_l=bufferLectura[9];
Lecturas_IMU->Reg.y_vel_h=bufferLectura[10];
Lecturas_IMU->Reg.y_vel_l=bufferLectura[11];
Lecturas_IMU->Reg.z_vel_h=bufferLectura[12];
Lecturas_IMU->Reg.z_vel_l=bufferLectura[13];

//Comprobar a pasar el puntero de lectura la direccion de Lecturas_IMU

return(TransmisionOK);
}

//
///////////
bool Iniciar_Brujula_HMC5883L(I2C_Handle I2C, tpHMC5883L HMC5883L){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[4] = {0, 0, 0, 0};

I2C_Transmision.slaveAddress = HMC5883L_DIR;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 4;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

bufferEscritura[0] = HMC5883L_CONFIG_A;
bufferEscritura[1] = (HMC5883L.Muestras_Media << 4) | (HMC5883L.ODR << 2) |
HMC5883L.Modo_Medida;
bufferEscritura[2] = HMC5883L.Ganancia << 5;
bufferEscritura[3] = (HMC5883L.Velocidad_I2C << 7) | HMC5883L.Modo_Operacion;

return(I2C_transfer(I2C, &I2C_Transmision));
}

bool Leer_Brujula_HMC5883L(I2C_Handle I2C, tpHMC5883L HMC5883L, tpLecturas_Brujula
*Lecturas_Brujula){

I2C_Transaction I2C_Transmision;

-3-

uint8_t bufferEscritura[] = {HMC5883L_DATA_OUTPUT_X};
uint8_t bufferLectura[6];
bool TransmisionOK;

I2C_Transmision.slaveAddress = HMC5883L_DIR;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;
I2C_Transmision.readCount = 6;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

Lecturas_Brujula->Reg.Magnetismo_x_h = bufferLectura[0];
Lecturas_Brujula->Reg.Magnetismo_x_l = bufferLectura[1];
Lecturas_Brujula->Reg.Magnetismo_z_h = bufferLectura[2];
Lecturas_Brujula->Reg.Magnetismo_z_l = bufferLectura[3];
Lecturas_Brujula->Reg.Magnetismo_y_h = bufferLectura[4];
Lecturas_Brujula->Reg.Magnetismo_y_l = bufferLectura[5];

return(TransmisionOK);
}

//
///////////
bool Iniciar_Giroscopo_L3G4200(I2C_Handle I2C, tpGiroscopo_L3G4200 Giroscopo_L3G4200){

I2C_Transaction I2C_Transmision;
bool TransmisionOK;
uint8_t bufferEscritura[6];

bufferEscritura[0] = 0x80 | L3G4200_CTRL_REG1;
bufferEscritura[1] = (Giroscopo_L3G4200.ODR<<6 | Giroscopo_L3G4200.BW_LPF<<4 | 0x0F);
bufferEscritura[2] = (Giroscopo_L3G4200.HPF_modo << 4 | Giroscopo_L3G4200.BW_HPF);
bufferEscritura[3] = 0;
bufferEscritura[4] = (Giroscopo_L3G4200.BDU << 7 | Giroscopo_L3G4200.BLE << 6 |
Giroscopo_L3G4200.Ganancia << 4);
bufferEscritura[5] = (1 << 6 | Giroscopo_L3G4200.HPF_activar << 4 |
Giroscopo_L3G4200.Modo_Filtro);

I2C_Transmision.slaveAddress = Giroscopo_L3G4200.Direccion;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 6;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = L3G4200_FIFO_CTRL_REG;
bufferEscritura[1] = Giroscopo_L3G4200.Modo << 5;

I2C_Transmision.slaveAddress = Giroscopo_L3G4200.Direccion;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 2;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

TransmisionOK |= I2C_transfer(I2C, &I2C_Transmision);

return(TransmisionOK);
}

bool Leer_Giroscopo_L3G4200(I2C_Handle I2C, tpGiroscopo_L3G4200 Giroscopo_L3G4200,
tpLecturas_Giroscopo *Lecturas_Giroscopo){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[] = {L3G4200_OUT_X_L};

I2C_Transmision.slaveAddress = Giroscopo_L3G4200.Direccion;
I2C_Transmision.writeBuf = bufferEscritura;

-4-

I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = &(Lecturas_Giroscopo->Reg.x_vel_l);
I2C_Transmision.readCount = 6;

return(I2C_transfer(I2C, &I2C_Transmision));
}
///
bool Iniciar_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro, tpLecturasBarometro
*LecturasBarometro){

I2C_Transaction I2C_Transmision;
uint8_t bufferLectura[22];
uint8_t bufferEscritura[] = {Bar_Reg_Eprom_Barometro};
bool TransmisionOK;

I2C_Transmision.slaveAddress = Dir_Barometro;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;
I2C_Transmision.readCount = 22;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

LecturasBarometro->AC1 = bufferLectura[0]<<8 | bufferLectura[1];
LecturasBarometro->AC2 = bufferLectura[2]<<8 | bufferLectura[3];
LecturasBarometro->AC3 = bufferLectura[4]<<8 | bufferLectura[5];
LecturasBarometro->AC4 = bufferLectura[6]<<8 | bufferLectura[7];
LecturasBarometro->AC5 = bufferLectura[8]<<8 | bufferLectura[9];
LecturasBarometro->AC6 = bufferLectura[10]<<8 | bufferLectura[11];
LecturasBarometro->B1 = bufferLectura[12]<<8 | bufferLectura[13];
LecturasBarometro->B2 = bufferLectura[14]<<8 | bufferLectura[15];
LecturasBarometro->MB = bufferLectura[16]<<8 | bufferLectura[17];
LecturasBarometro->MC = bufferLectura[18]<<8 | bufferLectura[19];
LecturasBarometro->MD = bufferLectura[20]<<8 | bufferLectura[21];

return(TransmisionOK);
}

bool Iniciar_Medida_Temp_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[] = {Bar_Reg_leer_temp, Bar_leer_Temp};

I2C_Transmision.slaveAddress = Dir_Barometro;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 2;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

return(I2C_transfer(I2C, &I2C_Transmision));
}

bool Leer_Temp_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro, tpLecturasBarometro
*LecturasBarometro){

I2C_Transaction I2C_Transmision;
uint8_t bufferLectura[2];
uint8_t bufferEscritura[] = {Bar_Reg_MSB};
bool TransmisionOK;
int32_t X1;
int32_t X2;
int32_t B5;

I2C_Transmision.slaveAddress = Dir_Barometro;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;
I2C_Transmision.readCount = 2;

-5-

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

LecturasBarometro->UT = bufferLectura[0]<<8 | bufferLectura[1];

X1 = ((LecturasBarometro->UT - LecturasBarometro->AC6) * LecturasBarometro->AC5) >> 15;
X2 = LecturasBarometro->MC << 11 / (X1 + LecturasBarometro->MD);
B5 = X1 + X2;
LecturasBarometro->Temperatura = (B5 + 8) / 160.0;

return(TransmisionOK);
}

bool Iniciar_Medida_Presion_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro,
tpLecturasBarometro *LecturasBarometro){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[] = {Bar_Reg_leer_temp, Bar_leer_Presion};

I2C_Transmision.slaveAddress = Dir_Barometro;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 2;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

return(I2C_transfer(I2C, &I2C_Transmision));
}

bool Leer_Presion_Barometro(I2C_Handle I2C, uint8_t Dir_Barometro, tpLecturasBarometro
*LecturasBarometro){

I2C_Transaction I2C_Transmision;
uint8_t bufferLectura[3];
uint8_t bufferEscritura[] = {Bar_Reg_MSB};
bool TransmisionOK;

int32_t X1;
int32_t X2;
int32_t X3;
int32_t B3;
int32_t B4;
int32_t B5;
int32_t B6;
int32_t B7;

I2C_Transmision.slaveAddress = Dir_Barometro;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;
I2C_Transmision.readCount = 3;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

LecturasBarometro->UT = (bufferLectura[0]<<16 | bufferLectura[1] | bufferLectura[2])>>5;

X1 = ((LecturasBarometro->UT - LecturasBarometro->AC6) * LecturasBarometro->AC5) >> 15;
X2 = LecturasBarometro->MC << 11 / (X1 + LecturasBarometro->MD);
B5 = X1 + X2;

B6 = B5 - 4000;
X1 = (LecturasBarometro->B2 * (B6*B6 << 12)) << 11;
X2 = LecturasBarometro->AC2 * B6 << 11;
X3 = X1 + X2;
B3 = ((LecturasBarometro->AC1*4 + X3) << 5) / 4;
X1 = LecturasBarometro->AC3 * B6 << 13;
X2 = (LecturasBarometro->B1 * (B6*B6 << 12)) << 16;
X3 = (X1 + X2 + 2) / 4;

B4 = LecturasBarometro->AC4 * (unsigned long)(X3 + 32768) << 15;
B7 = ((unsigned long)LecturasBarometro->UP -B3) * (5000 >> 3);

-6-

if (B7 < 0x80000000) {
LecturasBarometro->Presion = B7 * 2 / B4;

}else{
LecturasBarometro->Presion = (B7 /B4) * 2;

}

X1 = (LecturasBarometro->Presion << 8) * (LecturasBarometro->Presion << 8);
X1 = (X1 * 3038) << 16;
X2 = (7357 * LecturasBarometro->Presion) << 16;
LecturasBarometro->Presion = LecturasBarometro->Presion + (X1 - X2 + 3791) << 4;

return(TransmisionOK);
}
//
bool Iniciar_Giroscopio_ITG3200(I2C_Handle I2C, uint8_t Dir_Giroscopo, uint16_t
Frecuencia_muestreo, uint8_t Filtro){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[2] = {Reg_DLPF_FS, 0};

bufferEscritura[1] = ((0x03<<3) | (Filtro & 0x7));

I2C_Transmision.slaveAddress = Dir_Giroscopo;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 2;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

/*
I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = Reg_SMPRT_DIV;
bufferEscritura[1] = 8000/Frecuencia_muestreo - 1;

I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = Reg_CONFIG;
bufferEscritura[1] = (Filtro & 0x07);

*/
return(I2C_transfer(I2C, &I2C_Transmision));

}
//bool Sensibilidad_Giroscopio_ITG3200(I2C_Handle I2C , uint8_t Dir_Giroscopo,
tpRangoGiroscopo_ITG3200 RangoGiroscopo);
bool Leer_Giroscopio_ITG3200(I2C_Handle I2C, uint8_t Dir_Giroscopo, tpLecturas_Giroscopo
*Lecturas_Giroscopo){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[] = {Reg_TEMP_OUT_H};
uint8_t bufferLectura[8];
bool TransmisionOK;

I2C_Transmision.slaveAddress = Dir_Giroscopo;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;

// I2C_Transmision.readBuf = &(Lecturas_IMU->Reg.x_acel_h);
I2C_Transmision.readCount = 8;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

Lecturas_Giroscopo->Reg.x_vel_h=bufferLectura[2];
Lecturas_Giroscopo->Reg.x_vel_l=bufferLectura[3];
Lecturas_Giroscopo->Reg.y_vel_h=bufferLectura[4];
Lecturas_Giroscopo->Reg.y_vel_l=bufferLectura[5];
Lecturas_Giroscopo->Reg.z_vel_h=bufferLectura[6];
Lecturas_Giroscopo->Reg.z_vel_l=bufferLectura[7];

return(TransmisionOK);
}

bool Iniciar_Barometro_BMP280(I2C_Handle I2C, tpBarometro_BMP280 *Barometro_BMP280,

-7-

tpLecturasBarometro_BMP280 *LecturasBarometro_BMP280){
I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[] = {BMP_280_ctrl_meas, 0, 0};
uint8_t bufferLectura[24];
bool TransmisionOK;

I2C_Transmision.slaveAddress = Barometro_BMP280->Direccion;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 3;
I2C_Transmision.readBuf = NULL;
I2C_Transmision.readCount = 0;

bufferEscritura[1] = (Barometro_BMP280->t_sampling << 5) |
(Barometro_BMP280->Filtro_BMP280 << 2);
bufferEscritura[2] = (Barometro_BMP280->Oversampling_Temperatura << 5) |
(Barometro_BMP280->Oversampling_Presion<< 2) | (Barometro_BMP280->Modo);

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

bufferEscritura[0] = BMP_280_ctrl_meas;

I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;
I2C_Transmision.readCount = 24;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

LecturasBarometro_BMP280->dig_T1 = bufferLectura[1]<<8 |bufferLectura[0];
LecturasBarometro_BMP280->dig_T2 = bufferLectura[3]<<8 |bufferLectura[2];
LecturasBarometro_BMP280->dig_T3 = bufferLectura[5]<<8 |bufferLectura[4];

LecturasBarometro_BMP280->dig_P1 = bufferLectura[7]<<8 |bufferLectura[6];
LecturasBarometro_BMP280->dig_P2 = bufferLectura[9]<<8 |bufferLectura[8];
LecturasBarometro_BMP280->dig_P3 = bufferLectura[11]<<8 |bufferLectura[10];
LecturasBarometro_BMP280->dig_P4 = bufferLectura[13]<<8 |bufferLectura[12];
LecturasBarometro_BMP280->dig_P5 = bufferLectura[15]<<8 |bufferLectura[14];
LecturasBarometro_BMP280->dig_P6 = bufferLectura[17]<<8 |bufferLectura[16];
LecturasBarometro_BMP280->dig_P7 = bufferLectura[19]<<8 |bufferLectura[18];
LecturasBarometro_BMP280->dig_P8 = bufferLectura[21]<<8 |bufferLectura[20];
LecturasBarometro_BMP280->dig_P9 = bufferLectura[23]<<8 |bufferLectura[22];

return TransmisionOK;
}
bool Leer_Barometro_BMP280(I2C_Handle I2C, tpBarometro_BMP280 *Barometro_BMP280,
tpLecturasBarometro_BMP280 *LecturasBarometro_BMP280){

I2C_Transaction I2C_Transmision;
uint8_t bufferEscritura[] = {BMP_280_ctrl_meas};
uint8_t bufferLectura[6];
bool TransmisionOK;

I2C_Transmision.slaveAddress = Barometro_BMP280->Direccion;
I2C_Transmision.writeBuf = bufferEscritura;
I2C_Transmision.writeCount = 1;
I2C_Transmision.readBuf = bufferLectura;
I2C_Transmision.readCount = 6;

TransmisionOK = I2C_transfer(I2C, &I2C_Transmision);

LecturasBarometro_BMP280->Presion = bufferEscritura[0]<<12 | bufferEscritura[1]<<8 |
bufferEscritura[2]>>3 ;
LecturasBarometro_BMP280->Temperatura = bufferEscritura[3]<<12 | bufferEscritura[4]<<8 |
bufferEscritura[5]>>3 ;

return TransmisionOK;
}

float32_t Conversion_Temperatura(tpLecturasBarometro_BMP280 *LecturasBarometro_BMP280){

-8-

float32_t var1, var2;

var1 = (LecturasBarometro_BMP280->Temperatura/16384.0 -
LecturasBarometro_BMP280->dig_T1/1024.0) * LecturasBarometro_BMP280->dig_T2;
var2 = ((LecturasBarometro_BMP280->Temperatura/131072.0 -
LecturasBarometro_BMP280->dig_T1/8192.0) *
(LecturasBarometro_BMP280->Temperatura/131072.0 -
LecturasBarometro_BMP280->dig_T1/8192.0)) * LecturasBarometro_BMP280->dig_T3 ;

return ((var1 + var2) / 5120.0);
}

float32_t Conversion_Altura(float32_t Temperatura, tpLecturasBarometro_BMP280
*LecturasBarometro_BMP280){

float32_t var1, var2, p;

var1 = Temperatura * 2560.0 - 64000.0;
var2 = var1 * var1 * LecturasBarometro_BMP280->dig_P6 / 32768.0;
var2 = var2 + var1 * LecturasBarometro_BMP280->dig_P5 * 2.0;
var2 = var2/4.0 + LecturasBarometro_BMP280->dig_P4 * 65536.0;
var1 = (LecturasBarometro_BMP280->dig_P3 * var1 * var1 / 524288.0 +
LecturasBarometro_BMP280->dig_P2 * var1) / 524288.0;
var1 = (1.0 + var1 / 32768.0)*LecturasBarometro_BMP280->dig_P1;

if (var1 == 0.0) return 0; // avoid exception caused by division by zero

p = 1048576.0 - LecturasBarometro_BMP280->Presion;
p = (p - var2/4096.0) * 6250.0 / var1;
var1 = LecturasBarometro_BMP280->dig_P9 * p * p / 2147483648.0;
var2 = p * LecturasBarometro_BMP280->dig_P8 / 32768.0;
p = p + (var1 + var2 + LecturasBarometro_BMP280->dig_P7) / 16.0;

return p;

}

-9-

/*
* Servidores.h
 *
* Created on: 17/5/2015
 * Author: Ruben
 */

#ifndef QUADROTOR_V1_3_1_SERVIDORES_H_
#define QUADROTOR_V1_3_1_SERVIDORES_H_

#include "Sensores.h"
#include "arm_math.h"

void Iniciar_Servidores();

void Leer_servidor_Lecturas_IMU(tpLecturas_IMU *Lecturas_IMU);
void Escribir_servidor_Lecturas_IMU(tpLecturas_IMU *Lecturas_IMU);

void Leer_servidor_Lecturas_IMU_9DOF(tpLecturas_9DOF_IMU *Lecturas_9DOF_IMU);
void Escribir_servidor_Lecturas_IMU_9DOF(tpLecturas_9DOF_IMU *Lecturas_9DOF_IMU);

void Leer_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo);
void Escribir_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo);

void Leer_servidor_Lecturas_Brujula(tpLecturas_Brujula *Lecturas_Brujula);
void Escribir_servidor_Lecturas_Brujula(tpLecturas_Brujula *Lecturas_Brujula);

void Leer_servidor_DCM(float32_t* DCM);
void Escribir_servidor_DCM(float32_t* DCM);

void Leer_servidor_RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw);
void Escribir_servidor_RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw);

void Leer_servidor_quaternios(float32_t* q);
void Escribir_servidor_quaternios(float32_t* q);

void Leer_servidor_Variables_Estado_Medidas(float32_t* Variables_Estado_Medidas);
void Escribir_servidor_Variables_Estado_Medidas(float32_t* Variables_Estado_Medidas);

void Leer_servidor_Variables_Estado_Estimadas(float32_t* Variables_Estado_Estimadas);
void Escribir_servidor_Variables_Estado_Estimadas(float32_t* Variables_Estado_Estimadas);

void Leer_servidor_Perturbaciones_Estimadas(float32_t* Perturbaciones_Estimadas);
void Escribir_servidor_Perturbaciones_Estimadas(float32_t* Perturbaciones_Estimadas);
void Resetear_servidor_Perturbaciones_Estimadas();

void Leer_servidor_Referencia(float32_t* Referencia, int16_t* Referencia_Entero);
void Escribir_servidor_Referencia(float32_t* Referencia, int16_t* Referencia_Entero);
float32_t* Direccion_servidor_Referencia();

#endif /* QUADROTOR_V1_3_1_SERVIDORES_H_ */

-1-

/*
* Servidores.c
 *
* Created on: 17/5/2015
 * Author: Ruben
 */
#include "Servidores.h"
#include "arm_math.h"
#include <ti/sysbios/gates/GateMutexPri.h>

static volatile GateMutexPri_Handle SERVIDOR_Datos_IMU;
static volatile GateMutexPri_Handle SERVIDOR_Datos_9DOF_IMU;
static volatile GateMutexPri_Handle SERVIDOR_Datos_Giroscopo;
static volatile GateMutexPri_Handle SERVIDOR_Datos_Brujula;
static volatile GateMutexPri_Handle SERVIDOR_DCM;
static volatile GateMutexPri_Handle SERVIDOR_YPR;
static volatile GateMutexPri_Handle SERVIDOR_Quaternio;
static volatile GateMutexPri_Handle SERVIDOR_Variables_Estado_Medidas;
static volatile GateMutexPri_Handle SERVIDOR_Variables_Estado_Estimadas;
static volatile GateMutexPri_Handle SERVIDOR_Perturbaciones_Estimadas;
static volatile GateMutexPri_Handle SERVIDOR_Referencia;

static tpLecturas_IMU Lectura_Almacenada_IMU = { 0, 0, 0, 0, 0, 0, 0};
static tpLecturas_9DOF_IMU Lecturas_9DOF_IMU_Almacenada = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static tpLecturas_Giroscopo Lecturas_Almacenada_Giroscopo = {0, 0, 0, 0};
static tpLecturas_Brujula Lectura_Almacenada_Brujula = { 0, 0, 0};
static float32_t DCM_Almacenada[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0};
static float32_t Roll_Almacenado = 0;
static float32_t Pitch_Almacenado = 0;
static float32_t Yaw_Almacenado= 0;
static float32_t q_almacenado[4] = {0, 0, 0, 0};
static float32_t Variables_Estado_Medidas_Almacenadas[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static float32_t Variables_Estado_Estimadas_Almacenadas[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static float32_t Perturbaciones_Estimadas_Almacenadas[4] = {0, 0, 0, 0};
static float32_t Referencia_Almacenada[4] = {0, 0, 0, 0};
static int16_t Referencia_Almacenada_Entero[4] = {0, 0, 0, 0};

void Iniciar_Servidores(){
SERVIDOR_Datos_IMU = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Datos_9DOF_IMU = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Datos_Giroscopo = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Datos_Brujula = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_DCM = GateMutexPri_create(NULL, NULL);
SERVIDOR_YPR = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Quaternio = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Variables_Estado_Medidas = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Variables_Estado_Estimadas = GateMutexPri_create(NULL, NULL) ;
SERVIDOR_Perturbaciones_Estimadas = GateMutexPri_create(NULL, NULL);
SERVIDOR_Referencia = GateMutexPri_create(NULL, NULL) ;

}

void Leer_servidor_Lecturas_IMU(tpLecturas_IMU *Lecturas_IMU){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_IMU);
memcpy(Lecturas_IMU, &Lectura_Almacenada_IMU, sizeof(tpLecturas_IMU));
GateMutexPri_leave(SERVIDOR_Datos_IMU, Key);

}

void Escribir_servidor_Lecturas_IMU(tpLecturas_IMU* Lecturas_IMU){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_IMU);
memcpy(&Lectura_Almacenada_IMU, Lecturas_IMU, sizeof(tpLecturas_IMU));
GateMutexPri_leave(SERVIDOR_Datos_IMU, Key);

}

void Leer_servidor_Lecturas_IMU_9DOF(tpLecturas_9DOF_IMU *Lecturas_9DOF_IMU){

-1-

IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_9DOF_IMU);
memcpy(Lecturas_9DOF_IMU, &Lecturas_9DOF_IMU_Almacenada, sizeof(tpLecturas_9DOF_IMU));
GateMutexPri_leave(SERVIDOR_Datos_9DOF_IMU, Key);

}
void Escribir_servidor_Lecturas_IMU_9DOF(tpLecturas_9DOF_IMU *Lecturas_9DOF_IMU){

IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_9DOF_IMU);
memcpy(&Lecturas_9DOF_IMU_Almacenada, Lecturas_9DOF_IMU, sizeof(tpLecturas_IMU));
GateMutexPri_leave(SERVIDOR_Datos_9DOF_IMU, Key);

}

void Leer_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_Giroscopo);
memcpy(Lecturas_Giroscopo, &Lecturas_Almacenada_Giroscopo, sizeof(tpLecturas_Giroscopo));
GateMutexPri_leave(SERVIDOR_Datos_Giroscopo, Key);

}
void Escribir_servidor_Lecturas_Giroscopo(tpLecturas_Giroscopo *Lecturas_Giroscopo){

IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_Giroscopo);
memcpy(&Lecturas_Almacenada_Giroscopo, Lecturas_Giroscopo, sizeof(tpLecturas_Giroscopo));
GateMutexPri_leave(SERVIDOR_Datos_Giroscopo, Key);

}

void Leer_servidor_Lecturas_Brujula(tpLecturas_Brujula *Lecturas_Brujula){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_Brujula);
memcpy(Lecturas_Brujula, &Lectura_Almacenada_Brujula, sizeof(tpLecturas_Brujula));
GateMutexPri_leave(SERVIDOR_Datos_Brujula, Key);

}

void Escribir_servidor_Lecturas_Brujula(tpLecturas_Brujula* Lecturas_Brujula){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Datos_Brujula);
memcpy(&Lectura_Almacenada_Brujula, Lecturas_Brujula, sizeof(tpLecturas_Brujula));
GateMutexPri_leave(SERVIDOR_Datos_Brujula, Key);

}

void Leer_servidor_DCM(float32_t* DCM){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_DCM);
arm_copy_f32(DCM_Almacenada, DCM, sizeof(DCM_Almacenada)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_DCM, Key);

}

void Escribir_servidor_DCM(float32_t* DCM){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_DCM);
arm_copy_f32(DCM, DCM_Almacenada, sizeof(DCM_Almacenada)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_DCM, Key);

}

void Leer_servidor_RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_YPR);
*Roll = Roll_Almacenado;
*Pitch = Pitch_Almacenado;
*Yaw = Yaw_Almacenado;

-2-

GateMutexPri_leave(SERVIDOR_YPR, Key);
}

void Escribir_servidor_RPY(float32_t *Roll, float32_t *Pitch, float32_t *Yaw){ IArg Key;

Key = GateMutexPri_enter(SERVIDOR_YPR);
Roll_Almacenado = *Roll;
Pitch_Almacenado = *Pitch;
Yaw_Almacenado = *Yaw;
GateMutexPri_leave(SERVIDOR_YPR, Key);

}

void Leer_servidor_quaternios(float32_t* q){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Quaternio);
arm_copy_f32(q_almacenado, q, sizeof(q_almacenado)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Quaternio, Key);

}
void Escribir_servidor_quaternios(float32_t* q){

IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Quaternio);
arm_copy_f32(q, q_almacenado, sizeof(q_almacenado)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Quaternio, Key);

}

void Leer_servidor_Variables_Estado_Medidas(float32_t* Variables_Estado_Medidas){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Variables_Estado_Medidas);
arm_copy_f32(Variables_Estado_Medidas_Almacenadas, Variables_Estado_Medidas,
sizeof(Variables_Estado_Medidas_Almacenadas)/sizeof(float32_t));

// memcpy(Variables_Estado_Medidas, Variables_Estado_Medidas_Almacenadas,
sizeof(Variables_Estado_Medidas_Almacenadas));

GateMutexPri_leave(SERVIDOR_Variables_Estado_Medidas, Key);
}

void Escribir_servidor_Variables_Estado_Medidas(float32_t* Variables_Estado_Medidas){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Variables_Estado_Medidas);
memcpy(Variables_Estado_Medidas_Almacenadas, Variables_Estado_Medidas,
sizeof(Variables_Estado_Medidas_Almacenadas));
GateMutexPri_leave(SERVIDOR_Variables_Estado_Medidas, Key);

}

void Leer_servidor_Variables_Estado_Estimadas(float32_t* Variables_Estado_Estimadas){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Variables_Estado_Estimadas);
memcpy(Variables_Estado_Estimadas, Variables_Estado_Estimadas_Almacenadas,
sizeof(Variables_Estado_Estimadas_Almacenadas));
GateMutexPri_leave(SERVIDOR_Variables_Estado_Estimadas, Key);

}

void Escribir_servidor_Variables_Estado_Estimadas(float32_t* Variables_Estado_Estimadas){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Variables_Estado_Estimadas);
memcpy(Variables_Estado_Estimadas_Almacenadas, Variables_Estado_Estimadas,
sizeof(Variables_Estado_Estimadas_Almacenadas));
GateMutexPri_leave(SERVIDOR_Variables_Estado_Estimadas, Key);

}

void Leer_servidor_Perturbaciones_Estimadas(float32_t* Perturbaciones_Estimadas){
IArg Key;

-3-

Key = GateMutexPri_enter(SERVIDOR_Perturbaciones_Estimadas);
arm_copy_f32(Perturbaciones_Estimadas_Almacenadas, Perturbaciones_Estimadas,
sizeof(Perturbaciones_Estimadas_Almacenadas)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Perturbaciones_Estimadas, Key);

}

void Escribir_servidor_Perturbaciones_Estimadas(float32_t* Perturbaciones_Estimadas){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Perturbaciones_Estimadas);
arm_copy_f32(Perturbaciones_Estimadas, Perturbaciones_Estimadas_Almacenadas,
sizeof(Perturbaciones_Estimadas_Almacenadas)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Perturbaciones_Estimadas, Key);

}

void Resetear_servidor_Perturbaciones_Estimadas(){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Perturbaciones_Estimadas);
arm_fill_f32(0, Perturbaciones_Estimadas_Almacenadas,
sizeof(Perturbaciones_Estimadas_Almacenadas)/sizeof(float32_t));
GateMutexPri_leave(SERVIDOR_Perturbaciones_Estimadas, Key);

}

void Leer_servidor_Referencia(float32_t* Referencia , int16_t* Referencia_Entero){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Referencia);
memcpy(Referencia, Referencia_Almacenada, sizeof(Referencia_Almacenada));
memcpy(Referencia_Entero, Referencia_Almacenada_Entero,
sizeof(Referencia_Almacenada_Entero));
GateMutexPri_leave(SERVIDOR_Referencia, Key);

}

void Escribir_servidor_Referencia(float32_t* Referencia , int16_t* Referencia_Entero){
IArg Key;

Key = GateMutexPri_enter(SERVIDOR_Referencia);
memcpy(Referencia_Almacenada, Referencia, sizeof(Referencia_Almacenada));
memcpy(Referencia_Almacenada_Entero, Referencia_Entero,
sizeof(Referencia_Almacenada_Entero));
GateMutexPri_leave(SERVIDOR_Referencia, Key);

}

float32_t* Direccion_servidor_Referencia(){
return Referencia_Almacenada;

}

-4-

/*
* Transmisores.h
 *
* Created on: 5/10/2015
 * Author: Ruben_User
 */

#ifndef QUADROTOR_V9_2_TRANSMISORES_H_
#define QUADROTOR_V9_2_TRANSMISORES_H_

#include <ti/drivers/SPI.h>
#include "Parametros.h"

typedef struct{
SPI_Handle SPI;
unsigned int PIN_CE;
unsigned int PIN_CSN;
unsigned int PIN_IRQ;

}tp_nRF24L01;

bool Iniciar_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX, uint8_t Canal, uint8_t Payload);
void Activar_nRF24L01(tp_nRF24L01 nRF24L01);
void Desactivar_nRF24L01(tp_nRF24L01 nRF24L01);

bool Flush_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX);

bool Escribir_Registro_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Reg, uint8_t Dato);
bool Leer_Registro_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Reg, uint8_t* Dato);

//bool WritePayLoad_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* PayLoad, size_t n_PayLoad);
//bool ReadPayLoad_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* PayLoad, size_t n_PayLoad);

bool MandarByte_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Dato);
bool RecibirByte_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* Dato);

#endif /* QUADROTOR_V9_2_TRANSMISORES_H_ */

-1-

/*
* Transmisores.c
 *
* Created on: 7/10/2015
 * Author: Ruben_User
 */

#include <ti/drivers/SPI.h>
#include <ti/sysbios/Knl/Clock.h>
#include "Transmisores.h"
#include "Parametros.h"
#include <ti/drivers/GPIO.h>

bool Iniciar_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX, uint8_t Canal, uint8_t Payload){
uint8_t Dato;
uint32_t systick = 0;
bool Transmision_OK;

Transmision_OK = Escribir_Registro_nRF24L01(nRF24L01, 0x00 , (0b00001010 | (0x01 &
RX))); // Inicio Transmisor, CRC, NO Int
systick = Clock_getTicks();
while(Clock_getTicks() < systick+2);
Transmision_OK &= Escribir_Registro_nRF24L01(nRF24L01, 0x05 , Canal);
Transmision_OK &= Escribir_Registro_nRF24L01(nRF24L01, 0x11 , Payload);
Transmision_OK &= Flush_nRF24L01(nRF24L01, true);
Transmision_OK &= Leer_Registro_nRF24L01(nRF24L01, 0x00, &Dato);

return (Transmision_OK);
}

void Activar_nRF24L01(tp_nRF24L01 nRF24L01){
GPIO_write(nRF24L01.PIN_CE, 1);

}

void Desactivar_nRF24L01(tp_nRF24L01 nRF24L01){
GPIO_write(nRF24L01.PIN_CE, 0);

}

bool Flush_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t RX){
SPI_Transaction SPI_Transmision;
uint8_t Buffer_Tx = 0xE1;
bool Transmision_OK;

Buffer_Tx += RX;

SPI_Transmision.count = 1;
SPI_Transmision.txBuf = &Buffer_Tx;
SPI_Transmision.rxBuf = NULL;

GPIO_write(nRF24L01.PIN_CSN, 0);
Transmision_OK = (SPI_transfer(nRF24L01.SPI, &SPI_Transmision));
GPIO_write(nRF24L01.PIN_CSN, 1);

return(Transmision_OK);
}

bool Escribir_Registro_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Reg, uint8_t Dato){
SPI_Transaction SPI_Transmision;
uint8_t Buffer_Tx[2];
bool Transmision_OK;
uint8_t Estado_Anterior;

Estado_Anterior = GPIO_read(nRF24L01.PIN_CE);

Buffer_Tx[0] = 0x20 | Reg;
Buffer_Tx[1] = Dato;

SPI_Transmision.count = 2;

-1-

SPI_Transmision.txBuf = Buffer_Tx;
SPI_Transmision.rxBuf = NULL;

GPIO_write(nRF24L01.PIN_CE, 0);
GPIO_write(nRF24L01.PIN_CSN, 0);
Transmision_OK = (SPI_transfer(nRF24L01.SPI, &SPI_Transmision));
GPIO_write(nRF24L01.PIN_CSN, 1);
GPIO_write(nRF24L01.PIN_CE, Estado_Anterior);

return(Transmision_OK);
}

bool Leer_Registro_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Reg, uint8_t* Dato){
SPI_Transaction SPI_Transmision;
bool Transmision_OK;
uint8_t Buffer_Tx[2] = {0, 0};
uint8_t Buffer_Rx[2];

Buffer_Tx[0] = (Reg & 0x1F);

SPI_Transmision.count = 2;
SPI_Transmision.txBuf = Buffer_Tx;
SPI_Transmision.rxBuf = Buffer_Rx;

GPIO_write(nRF24L01.PIN_CSN, 0);
Transmision_OK = SPI_transfer(nRF24L01.SPI, &SPI_Transmision);
GPIO_write(nRF24L01.PIN_CSN, 1);
*Dato = Buffer_Rx[1];

return(Transmision_OK);
}
/*
bool WritePayLoad_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* PayLoad, size_t n_PayLoad){

SPI_Transaction SPI_Transmision;

PayLoad[0] = 0b10100000;
SPI_Transmision.count = n_PayLoad;
SPI_Transmision.txBuf = PayLoad;
SPI_Transmision.rxBuf = NULL;

GPIO_write(nRF24L01.PIN_CSN, 0);
return (SPI_transfer(nRF24L01.SPI, &SPI_Transmision));
GPIO_write(nRF24L01.PIN_CSN, 1);

}

bool ReadPayLoad_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* PayLoad, size_t n_PayLoad){
SPI_Transaction SPI_Transmision;

PayLoad[0] = 0b01100001;
SPI_Transmision.count = n_PayLoad;
SPI_Transmision.rxBuf = PayLoad;
SPI_Transmision.txBuf = NULL;

GPIO_write(nRF24L01.PIN_CSN, 1);
return (SPI_transfer(nRF24L01.SPI, &SPI_Transmision));

}
*/
bool MandarByte_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t Dato){

SPI_Transaction SPI_Transmision;
bool Transmision_OK;
uint8_t Tx[2] = {0b10100000, 0};

Tx[1] = Dato;
GPIO_write(nRF24L01.PIN_CSN, 0);

SPI_Transmision.count = 2;
SPI_Transmision.txBuf = Tx;
SPI_Transmision.rxBuf = NULL;

-2-

GPIO_write(nRF24L01.PIN_CSN, 0);

Transmision_OK = SPI_transfer(nRF24L01.SPI, &SPI_Transmision);

GPIO_write(nRF24L01.PIN_CSN, 1);

return(Transmision_OK);
}

bool RecibirByte_nRF24L01(tp_nRF24L01 nRF24L01, uint8_t* Dato){
SPI_Transaction SPI_Transmision;
bool Transmision_OK;
uint8_t Tx[2] = {0b01100001, 0};
uint8_t Rx[2] = {0, 0};

SPI_Transmision.count = 2;
SPI_Transmision.txBuf = Tx;
SPI_Transmision.rxBuf = Rx;

GPIO_write(nRF24L01.PIN_CSN, 0);

Transmision_OK = SPI_transfer(nRF24L01.SPI, &SPI_Transmision);
*Dato = Rx[1];

GPIO_write(nRF24L01.PIN_CSN, 1);

return(Transmision_OK);
}

-3-

	Impreso Autoria y originalidad TFG_TFM_2
	TFG_completo
	Ïndice de contenidos
	1. Introducción
	1.1. Estado del arte
	1.2. Requisitos

	2. Estructura y funcionamiento
	2.1. Teoria de Funcionamiento
	2.2. Estructura & Actuadores

	3. Diseño Arquitectual
	4. CONTROL
	4.1. Modelado matematico del conjunto
	4.1.1. Modelado del motor
	4.1.2. Identificación del motor.
	4.1.3. Modelado de la estructura
	4.1.4. Modelado del sistema completo
	4.1.5. Identificación del sistema completo

	4.2. Control
	4.2.1. Técnicas de Control
	4.2.1.1. Modelado por controles independientes
	4.2.1.2. Control en variables de estado

	4.2.2. Topología de control utilizada
	4.2.2.1. Estimador de estado y perturbaciones
	4.2.2.2. Integrador de perturbaciones
	4.2.2.3. Pre alimentador de perturbaciones

	4.2.3. Lazo de realimentación
	4.2.4. Cálculos del control

	5. Sensores
	5.1. Sensores Orientación
	5.1.1. Acelerómetro
	5.1.2. Giróscopo
	5.1.3. Brújula
	5.1.4. Algoritmo de fusión sensorial.
	5.1.4.1. Filtro Complementario:
	5.1.4.2. Filtro de Kalman:
	5.1.4.3. Algoritmo de Mahony:

	5.2. Tratamiento de la señal obtenida de los sensores

	6. Estructura Hardware
	6.1. Dispositivos Hardware
	6.1.1. Procesador principal
	6.1.2. Procesador Auxiliar
	6.1.3. Sensores

	6.2. Desarrollo de la electrónica asociada
	6.2.1. Diseño sobre placa de desarrollo
	6.2.2. Diseño de PCB de la versión final

	7. Estructura Software
	7.1. Estructura del RTOS en µProcesador principal
	7.1.1. Tareas
	7.1.1.1. Lectura IMU
	7.1.1.2. AHRS
	7.1.1.3. Control
	7.1.1.4. Medida Altura
	7.1.1.5. Coordinador
	7.1.1.6. Identificación

	7.2. Estructura del µProcesador Auxiliar
	7.2.1. Sistema de desactivación de emergencia.
	7.2.2. Recepción de radio & sensado de batería

	8. Vuelo:
	8.1. Pruebas de vuelo

	9. Conclusiones
	10. Referencias & Bibliografia
	11. Anexos
	A. Cálculos Sistema Operativo
	Tarea Lectura IMU
	Tarea AHRS
	Tarea Control
	Tarea Coordinador
	Tarea Cálculo Altura

	B. Cálculos Control
	C. Esquemáticos de las PCB
	Placa Prototipo

	D. Programación
	AHRS
	AHRS_c
	Funciones_Transferencia
	Parametros
	Principal
	Quad_board
	Quad_board_c
	Sensores
	Sensores_c
	Servidores
	Servidores_c
	Transmisores
	Transmisores_c

	Ruben Abad Torren: Ruben Abad Torren
	con n de DNI: 73205858-D
	Grado/Máster: Grado en Ingeniería Electrónica y Automática
	Título 1: Diseño e implementación de un sistema de control para un quadcopter
	fecha: 24 de Junio de 2016
	Fdo: Rubén Abad Torrén

