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Resumen

El proceso de simulacion de imagenes por ordenador es conocido como ren-
derizado. Este proceso requiere realizar los calculos necesarios para simular las
interacciones que la luz efectiia con los distintos objetos presentes en las escenas
que se desean renderizar. Esto requiere la resoluciéon de complejos algoritmos,
que aproximan los modelos que definen las distintas propiedades de la materia.

Este proyecto trata de estudiar una implementacién alternativa para el ren-
derizado de iméagenes por ordenador a la que actualmente se plantea de manera
mas general.

El proyecto trata una aproximacién adaptativa para solucionar los proble-
mas de calculo integral ligados al renderizado de imagenes, puesto que de forma
terminal las técnicas de renderizado solucionan algoritmos que poseen impor-
tantes componentes integrales.

La complejidad de los célculos integrales necesarios para su resoluciéon hace
que una de las técnicas mas usadas en la actualidad para resolver estos algorit-
mos, y por tanto realizar la simulacién de imagenes por ordenador, sea el llamado
Método de Montecarlo. Este método aproxima la solucién utilizando ntimeros
aleatorios de manera que se termine convergiendo a una aproximacién adecuada.

La aproximacion adaptativa que se propone, en contraposicion al mencio-
nado Método de Montecarlo, pretende analizar la complejidad de las distintas
integrales que es necesario calcular a lo largo del proceso. De esta manera se
pretende utilizar un ntimero variable de muestras para la aproximacién de los
valores necesarios, que serd proporcional a la complejidad de su calculo. Frente
al método aleatorio, esta aproximacion deberia utilizar un menor niimero de
muestras en aquellos casos que no sea necesario un numero elevado para deter-
minar una solucién lo suficientemente precisa.

Se ha seguido durante este trabajo la tradicional metodologia de trabajo
software, comenzando por una fase de aprendizaje tedrico, necesario para la re-
solucién del problema, seguido de una fase de anélisis del mismo. A continuacién
se ha definido una serie de requisitos deseados para el trabajo. Por ultimo se
ha realizado el diseno del sistema y su implementacién, asi como una fase de
estudio de los resultados de todo el trabajo realizado, comentando, ademas, las
posibles aplicaciones futuras de este proyecto.
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1. Introduccion

En este documento se pretende recopilar la informacién relacionada con el
Trabajo de Fin de Grado (TFQG) titulado Simulacion Adaptativa de Ilumina-
cion Global.

El trabajo que se presenta, intenta explorar una alternativa al Método de
Monte Carlo para el renderizado de imagenes por computador, utilizando una
aproximacién adaptativa. De esta manera, el proceso de obtencién de mues-
tras, que en el caso de Monte Carlo se realiza de manera aleatoria, se realice
de manera adaptativa, tomando una mayor cantidad de muestras en aquellos
lugares en los que los calculos matematicos las requieran para obtener una pre-
cisién adecuada. En contraposicién, donde no sea necesaria una gran cantidad
de muestras para obtenerla, se utilizard una menor cantidad.

1.1. Objetivos del proyecto

El objetivo de este trabajo es la realizacion de distintas aproximaciones de la
ecuacién de render con el objetivo de realizar imagenes sintéticas por ordenador,
utilizando un método alternativo al conocido método de Monte Carlo .

En este trabajo se realizan distintas aproximaciones utilizando métodos
adaptativos, en contraposicién al método aleatorio ya mencionado, de mane-
ra que las integrales necesarias para los calculos de la imagen sean aproximadas
utilizando un nimero de muestras correlado al error numérico del célculo de ca-
da integral. Asi, se adaptara el nimero de muestras para conseguir una precisiéon
similar en toda la imagen.

Se desea, por tanto, comprobar la viabilidad de este método alternativo en
distintos escenarios posibles, comparando los resultados obtenidos adaptativa-
mente con los que los métodos ampliamente usados en la actualidad obtienen
para distintas escenas.

1.2. Estructura de la memoria

La primera seccién de este documento es esta propia introduccién del pro-
yecto, que trata los objetivos del mismo, asi como la estructura de la propia
memoria.

Posteriormente la seccién 2 de esta memoria trata los fundamentos tedricos
en los que se basa el trabajo realizado, explicados de manera general, ya que
posteriormente se comenta su aplicacion concreta en este trabajo.

Las tres siguientes secciones enfocan el trabajo realizado durante este pro-
yecto.
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La seccién tercera trata el analisis del problema realizado. La cuarta seccién
explica la fase de diseno llevada a cabo, explicando cada una de las decisiones
tomadas durante el mismo. La seccién cinco, trata sobre la implementacién del
algoritmo, explicando como se han llevado los conceptos del diseno al programa
final que resuelve el problema.

Como pentltima secciéon de esta memoria se presenta la validacién y resul-
tados del trabajo realizado.

En dltimo lugar, dentro de la quinta secciéon de la memoria, se presentan las
conclusiones, ademds de comentarios varios sobre el trabajo futuro que puede
realizarse sobre este trabajo.



2. Conceptos Teodricos

Antes de analizar el problema de la simulacién de iluminacién global, es
necesario entender los conceptos tedricos en los que se basa el mismo. En esta
seccién se explican los conceptos basicos en los que este trabajo se apoya de ma-
nera resumida. Una explicacién més detallada puede encontrarse en los Anexos
AyB

2.1. Path Integral

El problema que se plantea para la simulacién de iluminacién de Iluminacién
Global de manera adaptativa es, como ya se ha comentado durante la introduc-
cién, un problema de aproximacion adaptativa de integrales.

Esto se debe a que, la formulacién conocida como Path Integral permite
calcular el valor de cada uno de los pixeles de la imagen a simular segin la
ecuacion:

Q:AE@W® (2.1)

donde 2 es el conjunto de todos los transport paths de cualquier longitud.

El término f; representa la llamada Measurement Contribution Equation,
que designa la contribucién de cada path (path contribution).

Por tltimo, p representa el Path Space, el cual puede expresarse como una
secuencia de nimeros del intervalo [0 ... 1].

2.2. Técnicas de cuadratura

Sabiendo que es la ecuaciéon de Path Integral la base para resolver nuestro
problema de Iluminaciéon Global, y puesto que esta es una ecuacién integral, la
resolucién del problema consiste en resolver dicha ecuacién. Para ello se utilizan
las denominadas técnicas de cuadratura.

Los técnicas de cuadratura resuelven el problema de las ecuaciones integra-
les realizando aproximaciones suficientemente precisas mediante distintas eva-
luaciones del integrando, realizando combinaciones de estas evaluaciones para
conseguir la aproximacién. Existen multitud de técnicas de cuadratura tal y
como se expone en el Anexo B.1, pero las de mas interés para este trabajo son
concretamente el Método de Monte Carlo y las técnicas de cuadratura adapta-
tivas.

El Método de Monte Carlo es de interés para este trabajo dado su amplio
uso para la aproximacién de integrales en multitud de ambitos, en este caso la
simualcién de iluminacién global. La razén por la que el Método de Monte Carlo
es tan utilizado esta relacionado con las carateristicas del mismo:
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= No crece en complejidad de manera exponencial respecto al nimero de
dimensiones tratadas.

» Es un método no sesgado?
= Permite un control sencillo sobre el niimero de muestras que utiliza.

Por otro lado, las técnicas adaptativas son la base de calculo integral para
este trabajo, dado que se pretende realizar los calculos integrales necesarios ha-
ciendo uso de estas, en contraposicion al uso generalizado del Método de Monte
Carlo.

Estas y otras técnicas de cuadratura existentes se encuentran explicadas con
mas detalle en el Anexo B.1.

INo introduce sesgo, es decir, error debido a la forma en la que las muestras son cogidas.



3. Analisis del problema

3.1. Estado del arte

El objetivo de este trabajo es la realizaciéon de una aproximaciéon adaptativa
para el problema de simulacién de iluminacion global.

Existen ya trabajos realizados sobre esquemas adaptativos para la resolu-
cién de este problema [HJWT08] [ZJLT15], que igualmente plantean esquemas
de caracter adaptativo para soluciona el problema de iluminaciéon global.

A diferencia la mayoria de estos, el planteamiento de este trabajo es rea-
lizar las aproximaciones necesarias para la resolucién del problema utilizando
técnicas de cuadratura cuyo muestreo no sea aleatorio, tales como las reglas de
cuadratura de Simpson o del Rectangulo, con el objetivo de minimizar el ruido
que técnicas de este tipo aportan a la imagen resultante, tal y como ocurre en
los métodos de Monte Carlo.

Igualmente se pretende que la aproximacién sea parametrizable. Se desea
que nimero de muestras utilizadas para el calculo total pueda controlarse, tal
y como puede hacerse en el caso de utilizar el Método de Monte Carlo.

3.2. Requisitos

Se a continuacién los requisitos planteados para este proyecto y sobre los
que se apoyara el resto del trabajo:

Requisitos funcionales

= Implementacion de multiples aproximaciones al problema del céalculo de
la integral. Contando como minimo las dos planteadas durante la fase de
analisis.

= Implementacién de un método adaptativo que permita un control de la
muestras utilizadas en la aproximacién similar al utilizado en el Método
de Monte Carlo .

» Parametrizacién mediante linea de comandos de los distintos valores usa-
dos por el algoritmo.

= Posibilidad de definir distintas escenas sobre las que ejecutar el algoritmo
de renderizado de manera que se pueda validar el algoritmo.
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Requisitos no funcionales

= Minimizar el coste de memoria RAM utilizado durante la ejecucién del
algoritmo.

= Reduccién del ruido existente en implementaciones que utilizan el método
de Monte Carlo .

» Estudiar la viabilidad del algoritmo en distintas escenas frente a distintos
métodos de renderizado.

= Posibilidad de visionar la generacién de la imagen en tiempo real.

3.3. Analisis general del problema

Se pretende conseguir un método alternativo al Método de Monte Carlo para
la simulacion de iluminacién global.

Este Método de Monte Carlo presenta ciertas ventajas por las cuales es
ampliamente usado:

= No presenta el problema conocido como ”maldicién de la dimensionali-
dad”, por lo que los calculos no escalan con el niimero de dimensiones
exploradas.

= Permite una amplio y sencillo control sobre el nimero de muestras em-
pleadas durante el proceso de simulacién.

El método que se presenta, intenta igualmente tener algunas de las ventajas
méas deseables que posee el Método de Monte Carlo, mientras que trata de
subsanar alguno de sus problemas:

= Permite igualmente un control sobre el nimero de muestras utilizado al
permitir elegir el niimero de subdivisiones realizadas.

= No presenta el ruido aleatorio existente en Monte Carlo.

= Las muestras se generan de manera adaptativa, de manera que zonas que
no requiera gran cantidad de muestras para ser computadas no las tendran,
al contrario que en el Método de Monte Carlo.

Conocidas las caracteristicas del método presentado, es necesario analizar el
problema que presenta el desarrollo del mismo.

A la hora de analizar el problema hay que entender que nos encontramos
ante la integracién de una funciéon multidimensional.

El proyecto existente que se utiliza como base para este trabajo facilita una
funcién que devuelve el valor de la path integral (Seccién A.2) para unos valores
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concretos de los pardmetros de la misma.

El ntimero de pardmetros que se pueden utilizar en esta funcién es virtual-
mente infinito, como ya se ha explicado en la Secciéon A.2, asi mismo en esta
seccion se explica que los parametros son expresables como ntiimeros del intervalo
[0...1]. Dichos pardmetros corresponden a:

Parametro 0 Coordenada X del pixel de la imagen.
Parametro 1 Coordenada Y del pixel de la imagen.

Parametros 2 a N Angulo de rebote del rayo de luz en el punto de intersec-
cién.

Figura 3.1: Los dos primeros pardmetros representan las coordenadas del pixel
de la imagen analizado, mientras que el resto de parametros especifican el angulo
de los sucesivos rebotes que se producen.

Mediante esta funcién, se pretende realizar la aproximacién necesaria para
la computacion de la iluminacién global haciendo uso de una técnica adaptativa
multidimensional.

Esta técnica presenta ciertas ventajas frente a métodos de integracion alter-
nativos que pueden ser utilizados para la resoluciéon de este problema. Técnicas
como el comentado método de Montecarlo poseen la desventaja de la existencia
de ruido en sus aproximaciones (Figura 3.2), debido a la utilizacién de ntimeros
aleatorios para la generacion de sus muestras.

En contraposicion, el método que se pretende realizar en este trabajo, no
presenta ruido en la aproximaciones, e igualmente permite un control sobre el
nimero de muestras utilizado durante las aproximaciones, tal y como el Método



3 ANALISIS DEL PROBLEMA

Figura 3.2: Ejemplo de un imagen renderizada utilizando el Método de Monte-
carlo. Se puede observar el ruido aleatorio generado en la imagen.

de Montecarlo permite.

Para abordar el problema de la resoluciéon de esta integral multidimensional
es necesario decidir como utilizar conjuntamente los conceptos de integracién
adaptativa e integracién multidimensional vistos en la seccion ?77.

La adaptacion mas sencilla seria realizar el esquema adaptativo planteado
para integrales unidimensionales entendiendo que la integral multidimensional
es realmente una sucesién de integrales unidimensionales, por las que se puede
aproximar la integral.

Sin embargo, esto haria que la comparativa que se realizara para estimar el
error indicara unicamente la existencia de un error en el conjunto de la apro-
ximacién, lo que llevaria a tener que subdividir cada uno de los intervalos para
lograr una mejor aproximacién.

Un ejemplo de como evolucionaria la cantidad suponiendo que se parte desde
una estructura 2D como en la Figura 4.1 seria lo que se puede observar en la
Figura 3.3a.

Se plantea por tanto, calcular un error por dimensién, que permita encontrar
cual de las dimensiones aporta un mayor error a la aproximaciéon, de manera
que la subdivisién se produzca tnicamente en esta.

De esta manera se evita que se produzca posibles subdivisiones innecesarias
que generarian una gran cantidad de calculos que quiza no aportaran precision.

Para realizar esto, se realizan los calculos con ambas reglas de cuadratura
aproximando la integral sobre cada una de las dimensiones haciendo uso del
Teorema de Fubini (7.13). Asi, se puede elegir la dimensién que mayor aporta
y subdividir por ella (Figura 3.3b).
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(a) Divisién multiple (b) Divisién en 1 dimensién

Figura 3.3: Comparativa de como evoluciona el nimero de muestra cuando las
subdivisiones se producen en todas las dimensiones o en solo la de mayor error
(Trapecio: Muestras azules; Simpson: Muestras azules y rojas).

Igualmente, dado que se ha calculado el error en cada una de las dimensiones
se puede calcular sin coste anadido un error acumulado para toda la subdivisién
(como la suma de los errores de cada dimensién), el cual se puede usar para
ordenar cada una de las subdivisiones en la estructura.

Puesto que hay que hacer uso de dos técnicas de cuadratura distintas (para
poder realizar una estimacién del error), se elige utilizar para este trabajo las
reglas de Simpson y de Trapecio.

Teniendo clara la técnica que se va a usar para realizar los cdlculos adaptati-
vos del problema, se plantea discutir 2 alternativas distintas sobre como abordar
el planteamiento del problema como tal.

3.4. Subdivision por pixel

En esta aproximacién se ha obviado la integracién de los dos primeros valo-
res de la ecuacién, de manera que para cada pixel existente en la imagen se ha
optado por tomar un tnico valor de los parametros que estan correlados con la
situacién del mismo, en lo que a sus coordenadas X e Y respecta (pardmetros 0
y 1), intentando realizar la aproximaxién en base al resto de pardmetros.

La causa por la cual esta aproximacién decide realizar un muestreo en las
dos primeras dimensiones, en lugar de realizar la aproximacién de la integral
con todas las dimensiones, es intentar reducir el problema que supone la ya
mencionada maldicién de la dimensionalidad.

Puesto que con la aproximacion elegida para el calculo multidimensional de
la integral, el coste computacional crece exponencialmente en funcién a las di-
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mensiones de estudio, sustituir el cdlculo en las dos primeras dimensiones por
una aproximacion que usa un unico valor para la funcién en sus dos primeros
parametros, reduce la cantidad de dimensiones que se integran. De esta manera
un problema N-dimensional se reduce a un problema de N-2 dimensiones.

3.5. Subdivisién de la imagen

En esta aproximacion si que se consideran las dos dimensiones de la imagen
como dimensiones del problema, de manera que, al contrario que en la aproxi-
macién anterior, no se realizard una tinica muestra en estas, si no que el calculo
de la integral tendréd en cuenta el intervalo existente en ellas.

Como esta aproximacién tiene en cuenta también las 2 dimensiones que ha-
cen referencia a las coordenadas de los pixeles de la imagen, las subdivisiones
pueden cubrir varios pixeles de la imagen al mismo tiempo. De esta manera
se utilizaran menos muestras si es posible para realizar un calculo que la otra
aproximacioén habria realizado tomando muestras siempre en cada pixel por se-
parado.

Figura 3.4: Ejemplo de como los pixeles de una de una region de una imagen
(izquierda) podrian repartirse en distintas subdivisiones e tamarfios distintos
(derecha) si el problema se aproximara incluyendo las dimensiones de la imagen
tal y como las lineas de la figura expresan.

Por tanto, es facil llegar a la conclusion de que en esta aproximacién se pue-
de comenzar suponiendo una subdivisién tnica que cubra la totalidad de todos
los intervalos existentes. Sabiendo esto, surge la duda de como asignar entonces
los valores correspondientes a cada pixel de la imagen una vez el algoritmo ha
finalizado.

Ademas, este enfoque del problema permitiria que, puesto que en el momento
que una de las subdivisiones conseguidas tenga nulo error, o al menos un error los

10
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suficientemente bajo como para considerar que no se ha de subdividir, aproximar
la integral de toda la subdivisién suponiendo que se ajusta a la aproximacién
que haria la regla de cuadratura usada.

Asi serfa posible utilizar las muestras que se han tomado para aproximar
lo que podria ser una superficie de més de un pixel para aproximar el valor de
cada pixel suponiendo que el comportamiento de los valores de la subidivisiéon
se rige por el polinomio por el que se aproximd, permitiendo ahorrar una gran
cantidad de muestras que en la otra aproximacion al problema que se presenta
en este trabajo si que son necesarias.

(b) Subdivisi6én de la imagen

Figura 3.5: Mientras que en la subdivisién por pixel se muestree cada uno de
los mismo, en el caso de la subdivisién de la imagen, es posible que un tnico
pixel de la imagen tenga que ser interpolado con las muestras resultantes de las
miiltiples divisiones que se hayan producido en las dimensiones que corresponden
a la imagen.

11



4. Diseno

Se presenta en esta seccion el diseno del algoritmo.

Aunque el diseno se encuentra ampliamente explicado en esta seccién, esta
complementado con un diagrama de clases, cuyos nombres corresponden ademas
con las clases finalmente implementadas que se explican a lo largo de la seccion
5.

El diagrama de clases mencionado (en lenguaje UML [RJB04]), resultado
de la fase de diseno se encuentra presente en el Anexo C de este documento.

4.1. Esquema general del algoritmo

El algoritmo general sigue el esquema planteado anteriormente, de manera
que se ajusta al esquema adaptativo para integrales multidimensionales comen-
tado anteriormente.

Se presenta a continuacién la idea general del algoritmo expresada en un
pseudocédigo facilmente entendible:

Inicializar la cola de prioridad;
generar muestras iniciales;
iteraciones = 0;
mientras iteraciones <maxlters AND queue no vacia hacer
division = pop(queue);
// Subdivide dando 2 subdivisiones resultantes.
subdivide (division, first, second);
si error (first) >umbral entonces
‘ push (first) ;
en otro caso
‘ Anadir aportacion de first a la imagen;
fin
si error(second) >umbral entonces
‘ push (second);
en otro caso
‘ Anadir aportaciéon de second a la imagen;
fin

fin
// Afiadir aporaciones restantes a la imagen.
para cada division in queue hacer

| Anadir aportacion de division a la imagen;

fin
Algoritmo 1: Esquema general del algoritmo presentado en este trabajo.

En primer lugar se realiza un fase inicial de muestreo. Se realizan las subdi-
visiones iniciales sobre el problema y se almacenan en una estructura.

12
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Posteriormente se realiza iterativamente un proceso en el cual se extrae de
la estructura la subdivision con mayor error estimado, para volver a subdivi-
dirla respecto, teniendo en cuenta que dimension aporta mayor mas error a la
aproximacién realizada, siendo esa misma la que elegird para subdividir.

El uso de la estructura comentada se hace necesario puesto que se desea tener
un almacenamiento de las distintas subdivisiones del problema que permita un
acceso eficiente y rapido a aquellas con mayor error. Esta estructura se comenta
con mas detalle en una de las sucesivas secciones que se centra precisamente en
la propia estructura.

Las nuevas subdivisiones resultantes, comentadas anteriormente, se introdu-
cen en la estructura, retirando de la misma estructura la subidivsion de la que
se generaron, puesto que ahora esta se encuentra aproximada como la suma de
las resultantes del proceso comentado.

Adicionalmente puede establecerse un umbral de error a partir del cual se
considere la aproximaciéon como valida, de manera que si son generadas subdi-
visiones cuyo error es menor que este umbral, estas no sean introducidas en la
estructura, y pasen directamente a formar parte de la aproximacién definitiva.

Utilizar este umbral es interesante debido a que si inicamente se considera-
ran validas aquellas con error estimado exactamente igual a 0, pocas subdivisio-
nes serian elegidas antes de la finalizacién del algoritmo. Eligiendo un valor de
umbral superior a 0, pero igualmente pequeno, se puede conseguir que aquellas
subdivisiones con un error despreciable ya no vuelvan a ser subdivididas.

4.2. Subdivisién por pixel

La aproximacién por pixel se ha disefiado de tal manera que los calculos que
se realizan para aproximar las dos primeras dimensiones son obviados. Estas
dimensiones seran unicamente muestreadas, de manera que para cada pixel de
la imagen se considere valida una aproximacién que toma como valor de estas
dos dimensiones las coordenadas centrales de dicho pixel.

Asi, se aproximara mediante el algoritmo el valor que ha de asignarse a este
pixel en la imagen final.

Para la estimacién del error sobre cada dimensién, bastaria con realizar repe-
tidamente las integrales unidimensionales hasta que el problema quedara como
una integral unidimensional sobre la dimension, en la cual se desea realizar la
estimacién del error. Esto seria posible realizarlo para cualquier dimensién de
la integral, gracias a la propiedad enunciada en el Teorema de Fubini, visible en
la ecuacién (7.13).

De esta manera el problema ya se adaptaria al esquema planteado para el
calculo adaptativo visto en la seccién B.3, pudiendo interpretar como la nueva

13



4 DISENO

funcién a integrar la obtenida mediante integracién repetida sobre las las di-
mensiones que no son la de estudio. Asi, solo restaria realizar la aproximacion
mediante dos reglas de cuadratura distintas, y realizar el calculo del error como
la comparativa del resultado de ambas, que seria la estimaciéon del correspon-
diente a la dimensién que no se integré iterativamente.

(0.5,0)
(0,0) o (1,0)
(0.5,0.5)
(0,0.5)¢ ) ¢(1,0.5)
(0.5,1)
(0,1) e} (1,1)

Figura 4.1: Ejemplo de muestras necesarias para las reglas de Simpson y Tra-
pecio en 2 dimensiones (Trapecio: Muestras azules; Simpson: Muestras azules y
rojas).

Si este proceso se repite, dejando fija cada una de las dimensiones, y se al-
macena el error obtenido en cada una, se puede saber que dimensién acumula
un mayor error, de manera que se subdivida el intervalo correspondiente a dicha
dimensién, y se aproxime la integral multiple como la suma de las dos integrales
mutiples obtenidas segin los intervalos que se tuvieran tras la subdivision.

Como se ha comentado previamente (Seccién B.3) el célculo de la estimacién
del error se realiza sin coste adicional, dado que para el cdlculo adaptativo se
hard uso de las reglas de cuadratura de Simpson (7.10) y Trapecio ((7.9)).

El ntimero de muestras necesarias serfa, por tanto, 3V, siendo N el ntimero
de dimensiones de estudio. Un ejemplo de la posicién de las muestras en 2 di-
mensiones puede observarse en la Figura 4.1.

4.3. Subdivisién de la imagen

Como se ha comentado, el planteamiento del problema también puede orien-
tarse de manera que los calculos no se realicen por cada pixel de la imagen, si
no que se consideren las dimensiones X e Y de la imagen dentro del proceso que
seguird el algoritmo adaptativo para calcular la integral.

De esta manera, se llegara en la mayoria de casos a subdivisiones que incluyan
varios pixeles debido a como se han subdivido los intevalos correspondientes a
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las dos primeras dimensiones del problema. Esto permitira, que si el error de esa
subdivisién se considerd despreciable, incloso en esas 2 primeras dimensiones, sea
posible apriximar toda esa superficie de pixeles cubierta por la subidivisién con
una cantidad, menor de muestras que en la aproximacién anterior al problema,
en la que cada pixel es considerado de manera individual.

Para cacular los valores de los pixeles de la subidivisién habria que seguir el
siguiente proceso.

Suponiendo que por integracion reiteradada con las técnicas comentadas, se
integra hasta que quede una funcién tinicamente dependiente de los parametros
X eY, dado que en el resto de dimensiones se ha aproximado la integral, pode-
mos suponer que los valores de esta funcién, que hemos reducido a 2-dimensional
se ajustan al polinomio en 2 dimensiones que nos marca la interpolacién que se
realiza por la Regla de Simpson.

Esta suposicién marcaria que la ecuacién de render 2-dimensional se ajusta
al siguiente polinomio general:

f(z,y) = conry? +eo1x2y+coor? +cromy® +cr1xy+cior+coay® +cory+co (4.1)
De este polinomio es posible, asi mismo, calcular su integral bidimensional

de manera analitica:

3 /ey eory? 22 ey epry?
//f(:c,y)dwdy:?( 2y” | Ca1y +Czoy)+f( 12y” | cuy +C1oy)

3 2 2 3 2

co2y® | cory®
+m< +
3 2

De esta manera es posible hacer uso de esta ecuacién para calcular el valor
que en cada subdivisién aporta por separada a cada uno de los pixeles que
engloba, calculando los coeficiente con las muestras que ya se han tomado para
la Regla de Simpson sobre dos dimensiones (la de la imagen).

Una vez se tienen estos valores se resuelve el sistema que permite obtener
los valores de los coeficientes, de manera que quede una ecuacién que permite
aproximar el valor para el area de cada uno de los pixeles que se encuentran
dentro de la subdivision.

+ coy> (4.2)

De esta manera se realiza una aproximacién para cada uno de los pixeles
sin tener que calcular muestras adicionales a las que ya se utilizarén para los
calculos necesarios referentes a la parte adaptativa ya comentada ampliamente
en secciones previas.

4.4. Estructura para las subdivisiones

Una parte indispensable del diseno del algoritmo es el diseio de una estruc-
tura que almacene las subdivisiones que el algoritmo genera, y los datos de las
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mismas.

Asi mismo, para entender el espacio multidimensional que estas subdivisio-
nes tratan, se propone abstraer el problema al caso 2-dimensional, de manera
que la estructura que formarfan los intervalos seria un cuadrado (Figura 4.1).

4.4.1. Datos a almacenar

La estructura de las subdivisiones almacena la siguiente serie de datos nece-
sarios para el algoritmo:

= Posicién de los vertices: Requiere 2 valores en coma flotante (dato tipo
float) para cada una de las dimensiones que se tengan en cuenta (2 x 4
bytes por dimensién).

= Evaluacion del Path Contribution: El valor aportado por la subdivi-
sién a la aproximacién de la integral (Anexo A.2). Almacena un valor en
RGB? donde cada canal se encuentra alamcenado en un float (3*4 bytes).

= Aproximacién del error acumulada: Suma del error estimado (Anexo
B.3) para cada una de las dimensiones. Utiliza un dato de tipo double para
mayor precision (8 bytes).

= Dimension de mayor error: Almacena cual de las dimensiones analiza-
das aporta mayor error, para realizar subivisiones por la misma. Usa un
dato de tipo unsigned char (1 byte).

De esta manera cada una de las dimensiones requiere un total de 21 + 8 x N
bytes, donde N es el nimero de dimensiones analizadas en el problema.

Adicionalmente los disefios por pixel necesitan 8 bytes para almacenar las
coordendas del pixel al que hacen referencia

Seria posible reducir este niimero, pues la representacién de la subdivisién
requeriria unicamente los datos de los vértices, dado que el resto pueden cal-
cularse a partir de estos, pero el almacenamiento adicional de datos permite
ahorrar calculos repetidos.

4.5. Cola de prioridad

También es necesario pensar en que estructura se van a almacenar estas
subdivisiones, puesto que seria interesante acceder rapidamente, y sin un coste
computacional elevado, a aquella subdivisién que, entre las presentes en un mo-
mento dado del algoritmo, tenga el mayor error.

2Espacio de color que permite representar un color haciendo uso de los valores del color
rojo, verde y azul que aditivamente forman el color que se desea representar.
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La estructura mas conocida que cumple con estos requerimientos es la cola
de prioridad, y de sus implementaciones se elige la conocida como monticulo
por ser de las més eficientes [CLRS09, Section 6.5].

4.5.1. Monticulo

Esta implementacién de la cola de prioridad tiene unos costes acordes a
las necesidades del problema, ya que las inserciones y borrados tienen un coste
O(logn), ademés de un acceso con coste O(1) al primer elemento de la estructu-
ra, que por definicién es el mayor (o menor, segin se indique) elemento respecto
a una ordenacién indicada.

Utilizando esta estructura, de manera que la ordenacién coloque como pri-
mer elemento de la cola de prioridad la subdivision con mayor error, tendriamos
un acceso rapido al elemento que tendria mayor prioridad a la hora de sub-
dividir, y podrian insertarse facilmente con coste logaritmico las subdivisiones
resultantes mientras que este elemento, ya subdividido, se retira de la estructura.

4.5.2. Estructura propia

A pesar de que el monticulo presenta una cualidades practicamente 6ptimas
para los requerimientos del problema presenta una desventaja.

Es cierto que los costes que esta estructura presenta son ciertamente bajos,
pero, puesto que el crecimiento del nimero de datos en este problema es elevado
(al analizar un dato generamos dos nuevos), y al analizar los datos estos son
extraidos de la estructura y en la mayoria de los casos provocan que dos nue-
vos datos sean generados, nos encontramos con que realmente la operaciéon de
menor coste de la cola de prioridad es superada por las 3 operaciones de coste
O(logn) que produce en el peor de los casos la obtencién de uno de los datos de
la estructura, que se ve reducida a una operacion de igual coste en el caso mejor.

Ademds, esta estructura al utilizar Gnicamente memoria RAM, y crecer el
numero de datos de la forma ya comentada, el coste de memoria puede crecer
hasta el punto de llegar a ser un problema critico.

Esto ocurre sobre todo en el planteamiento que utiliza un monticulo glo-
bal y realiza tratamiento por pixel, donde el niimero méximo de subdivisiones
presentes en la estructura depende de la siguiente ecuacion:

subdivisiones = (altura*anchurax (subdivisionesIniciales+ 1)) +iteraciones
(4.3)

Se observa, por tanto, que sobre todo para imagenes grandes este plantea-
miento aumenta en gran medida el nimero de subdivisiones presentes en la
estructura, por lo que se pretende disefiar una estructura para tratar casos en
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los que esto ocurra.

Por ello, se ha planteado el diseno de una estructura que pueda ser utilizada
en el caso de que los factores comentados anteriormente suponga un problema.
Esta estructura se ha disenado de manera que, aunque su eficiencia en acceso
a datos puede llegar a no ser tan elevada como la que se consigue mediante la
utilizaciéon de una cola de prioridad, permita relajar el uso excesivo de RAM.

Puesto que no es estrictamente necesario subdividir aquella region que tenga
el mayor error, sino subdividir prioritariamente las de mayor error, podemos
utilizar una estructura que no devuelva estrictamente la regién con el mayor
error entre todas, sino una de las que mayor error posea.

fma

datos >¢q .. —>

fama

€9 > datos >¢; —

fra

€1 > datos >ey —

Figura 4.2: Los datos de la nueva estructura son divididos entre distintos vectores
segln el resultado de unas comparaciones. La estructura utiliza ficheros como
almacenamiento secundario para cada vector.

Basandose en esta idea, la estructura disenada implementa distintos grupos
de subdivisiones con error similar, de manera que se acceda por prioridad a estos
grupos, devolviendo en primer lugar subdivisiones que pertenezcan al grupo con
mayor error, y si este esta vacio, se proceda a devolver datos del siguiente grupo
de datos. Adicionalmente los datos introducidos a la estructura se introduciran
en el grupo al que correspondan segtin su error.

De esta manera el acceso a los datos es de orden O(1) frente a la inserccién
del monticulo con coste O(nlogn).

Para solucionar el problema de almacenamiento presente igualmente en el
monticulo, la estructura realiza un volcado a disco fisico cuando el nimero de
datos supera un limite especifico.

Esto sin embargo puede hacer que el coste de los accesos a los datos puede
crecer, dado que al introducir un dato en la estructura se podria provocar un
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volcado a disco de parte de los datos, aumentando el coste de la operacién.
Tgualmente si la extraccion de un dato de uno de los grupos comentados produ-
jera que este quedara vacio, seria necesario analizar si se han volcado datos a
disco, y si asi ha sido, cargarlos desde el mismo, lo que de igual manera que al
introducir un dato, aumentaria el coste de la operacién.

Por tanto, esta segunda estructura que se plantea, se presenta como alterna-
tiva a la cola prioridad, principalmente, para aquellos casos en los que una cola
prioridad falle en cuanto a motivos de almacenamiento se refiere, aunque si la
cantidad de datos generados es pequena, y la estructura no necesita de volcados
a disco las inserciones y extracciones tendran un coste mas eficiente que en la
cola de prioridad.
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5. Implementacién

5.1. Tecnologias y herramientas utilizadas

Para la implementacion del algoritmo se ha utilizado como lenguaje de pro-
gramacion C++, concrétamente se ha realizado la implementacion en la versiéon
C++14 (se puede saber més sobre la extension de esta versién sobre el lenguaje
C++ en [Strl3]), utilizando ademds las conocidas librerias para este lenguaje
denominadas Boost [boo].

El codigo de la implementacion ha sido compilado haciendo uso del com-
pilador Clang [cla], en el sistema operativo Fedora 23, aunque el proyecto es
compilable en cualquier otro entorno Unix.

También se ha utilizado la herramienta CMake [cma] para la construccién
del proyecto, asi como su configuracién.

La implementacién de este proyecto utiliza a un software ya desarrollado
como base, haciendo uso de las funciones ya implementadas para realizar el
muestreo de datos, asi como la generaciéon de imégenes con los datos que el
algoritmo que se implementa en este trabajo aproxima. La autoria de este soft-
ware base pertenece a Adolfo Mufioz Orbafianos®, director de este Trabajo de
Fin de Grado.

5.2. Implementacion de las subdivisiones

En el apartado de disenio, se han comentado las estructuras necesarias pa-
ra el funcionamiento del algoritmo. En este caso, la implementacion de dichas
estructuras ha sido realizada mediante clases C++, de manera que se utilicen
instanciaciones de las mismas en caso de ser necesarias.

Respecto a las estructuras ya comentadas para almacenar la informacién que
corresponde a las subdivisiones, se han implementado dos clases, PointDivi-
sion y PointDivisionImage.

La primera de estas clases implementa la estructura necesaria para las subdi-
visiones que se plantean en la primera aproximacién del problema. Almacena los
datos necesarios, y posee funciones para consultarlos, asi como distintas funcio-
nes que realizan los calculos del error sobre cada dimensién, y la aproximacién
del valor correspondiente para la funcién en el intervalo que cubren, utilizando
valores fijos para las dos primeras dimensiones (X e Y), que pueden ser consul-
tados igualmente a efectos de conocer el pixel al que hacen referencia.

Shttp://giga.cps.unizar.es/~amunoz/index.php/es/
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5 IMPLEMENTACION

La segunda clase, implementa una estructura similar a la primera, con la
diferencia de que en esta se tienen en cuenta los valores de las dos primeras
dimensiones a la hora de realizar célculos, puesto que en estas dimensiones se
consideran también intervalos, y no valores fijos como en el caso anterior.

5.3. Colas de prioridad

Igualmente, las estructuras en las que se almacenan los objetos resultantes
de instanciar estas clases a lo largo del algoritmo se encuentran implementadas
mediante clases.

En el caso de la cola de prioridad, esta ya se encuentra implementada dentro
de la libreria Standard Template Library (STL), por lo que se ha hecho uso de
esta implementacion.

Respecto a la otra estructura comentada en la seccién de disefio, se ha im-
plementado una clase C++-, haciendo uso de unas funciones igualmente imple-
mentadas en las clases correspondientes a las subdivisiones. Estas funciones han
sido implementadas para poder realizar un guardado de los objetos en ficheros,
asi como la para construir estos objetos a partir de datos previamente guardados
en un fichero.

De esta manera, la clase implementada realiza un guardado en distintos
grupos de vectores, que en caso de llegar a un limite de datos, son volcados a
ficheros en disco, e igualmente si quedan vacios se llenan con los datos de estos
ficheros. Estos vectores pueden variarse en nimero y limite de datos, y puede
elegirse a partir de que valores de error es elegido uno u otro vector para el
almacenamiento de los datos.

Esta clase se ha implementado de manera que presente unas funciones si-
milares a las que posee una cola la cola de prioridad, simplemente a efectos de
similitud entre ambas estructuras (funciones push, pop). De esta manera, una
vez se haya construido un objeto de esta clase, el funcionamiento externo del
mismo serd equivalente al de una cola de prioridad, variando tinicamente el fun-
cionamiento interno.

5.4. Implementacién de los engines

Respecto a la implementacién del algoritmo en si mismo, las distintas va-
riantes del mismo se han implementado igualmente en clases,de manera que los
ejecutables del proyecto hagan uso de las mismas. Estas clases se han denomi-
nado engines
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5 IMPLEMENTACION

Estas clases (a partir de a se construyen con referencias a otras ya existentes
en el c6digo base utilizado para el proyecto, y como se ha comentado son las que
permiten realizar un muestreo de los distintos valores de la funcién path integral
necesarios para el desarrollo del algoritmo implementado.

Estas clases utilizadas son la clase RecursiveRayTracer y las distintas cla-
ses que esta misma utiliza, tanto para su definicién como para su funcionamiento.

Las clases correspondientes para estos engines implementan por tanto los
distintos disefios del algoritmos, de manera que las clases EngineQuadrature-
Global y EngineQuadraturePerpirel implementan ambas el algoritmo rea-
lizando célculos para cada pixel (Seccién 4.2), diferenciandose en que la primera
utiliza una tnica cola de prioridad para todo el proceso, mientras que la segunda
utiliza una cola de prioridad en cada uno de los pixeles del proceso.

Asi mismo existe un tercer engine, EngineQudraturelmage, que imple-
menta el algoritmo realizando subdivisiones que incluyen las dimensiones de la
imagen, X e Y (Seccién 4.3).

Igualemente existe un engine adicional por cada uno de los comentado que
utiliza como cola de prioridad la estructura comentado en la Seccién 4.5.2, que
tiene el nombre del engine comentado anteriormente seguido por la palabra File
(EngineQuadratureImageFile, EngineQuadratureGlobalFile, ... ).

5.5. Ejecutables del proyecto

Respecto a los ejecutables que se comentaba con anterioridad, existe un eje-
cutable para cada implementacién del algoritmo (es decir, cada engine imple-
mentado), que utiliza la clase correspondiente a la implementacién del algoritmo
que se desea ejecutar en el mismo.

De esta manera, el ejecutable genera dos objetos de la clase que le corres-
ponde, para generar por separado la aproximaciéon de la componente especular
de la imagen y la aproximacién de la componente difusa, utilizando ambas para
generar la imagen final.

Todos estos ejecutables poseen opciones para cambiar los valores de las dis-
tintas variables de los algoritmos que ejecutan, mediante la introducciéon de va-
lores distintos a los predefinidos haciendo uso de la linea de comandos durante
su invocacién, asi como opciones para elegir la escena sobre la que se ejecutara el
algoritmo, y el formato en el que se guardard la imagen resultado de la ejecucion.

22



6. Validacion y Resultados

Durante esta seccion se van a mostrar los resultados de la técnica implemen-
tada durante este proyecto.

Como se ha comentado, el objetivo de este trabajo es realizar una técnica
de simulacion de iluminacién global de caracter adaptativo, alternativa a las
técnicas existentes para ello, por lo que igualmente durante esta seccién se reali-
zaran comparativas de otras técnicas con los resultados obtenidos mediante los
algoritmos implementados en este trabajo.

6.1. Validacién

En esta seccion se pretende verificar que el algoritmo que se presenta fun-
ciona correctamente. Para ello se realiza una comparativa de los resultados que
se obtienen utilizando este para realizar la simulaciéon de iluminacién global de
una escena frente a los resultados que se obtienen para dicha escena haciendo
uso de técnicas de path tracing? tradicional. Concretamente se va a realizar la
comparativa utilizando el disefio del algoritmo que realiza subdivisiones adap-
tativas en cada uno de los pixeles, como ya se ha presentado en las secciones 3.4
y 4.2.

La Figura 6.1, muestra como el algoritmo presentado converge a una solucién
equivalente a la obtenida mediante path trace en un tiempo sustancialmente
menor. A pesar de ello se puede observar un sesgo en los resultados del algoritmo,
debido a que el muestreo del algoritmo siempre se realiza bajo un patrén.

Los parametros que aparecen en esta figura, asi como algunos que aparecen
en sucesivas figuras corresponden a:

= paths: Niimero de caminos explorados mediante el algoritmo de path trace.
Un ntmero elevado de caminos supondrd un mejor resultado, pero a su
vez hara que aumente el tiempo de computo.

= div: Numero de divisiones iniciales que realiza el algoritmo adaptativo.
= iter: Numero de iteraciones realizadas por el algoritmo adaptativo.

= thres: Valor umbral o de corte con el cual se discrimina que datos no
se almacenan en la estructura (si su error es menor que el valor de este
umbral.

Para mayor compresién del significado de estos pardmetros puede observarse su
relevancia en el algoritmo, revisando el pseudocdédigo que expresa el funciona-
miento general del mismo en (Algoritmo 1).

4Método de simulacién de iluminacién global basado en la integracién por el Método de
Monte Carlo, desarrollado a partir de las ideas expuestas en [Kaj86] y en [Vea98]. Es por tanto
un método no adaptativo al contrario que el presentado a lo largo de este trabajo.
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6 VALIDACION Y RESULTADOS

3s 76ms

25s 710ms 17m 11s 221ms

adapt. - 0 div. 0 iter. adapt. - 1 div. 10% iter.  adapt.- 3 div. 107 iter.

33s 11ms 3m 9s 378ms 47m 5s 877ms

path trace - 16 paths path trace - 128 paths  path trace - 4096 paths

Figura 6.1: El algoritmo adaptativo que se presenta (fila superior) hacia a la so-
lucién 6ptima para la escena que se presenta. Este algoritmo presenta resultados
similares (se obtiene cierto ruido estructurado) a los obtenidos por el algoritmo
de path trace (fila inferior) en tiempos de ejecucién similares

6.2. Subdivisién de la imagen

Como se ha expuesto en la fase de andlisis en la seccién 3.5 y durante el
disefio en la seccion 4.3, se ha disefiado igualmente el algoritmo para poder rea-
lizar divisiones, no solo en cada uno de los pixeles, si no subdividiendo todo el
espacio de la imagen.

Este algoritmo de subdivisién presenta reseniables resultados para tareas
tales como el antialiasing®. Este concepto se puede observar en la Figura 6.2
donde se muestra una comparativa entre los distintos resultados de métodos
para una simulacién de la iluminacién directa en una escena concreta.

Asi mismo, este algoritmo puede utilizarse para realizar reducir el ruido
causado cuando se hace uso del Método de Monte Carlo. El concepto del ruido

existente en el Método de Monte Carlo se encuentra més explicado en el Anexo
B.2.

5El proceso de antialiasing pretende minimizar el efecto causado por el muestreo de sefiales
de manera digital, también llamado aliasing.
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path trace adaptativo path trace

8 div. 2 % 10* iter.

1 path por pixel 8 paths por pixel

620ms 1s 880ms 3s 667ms

Figura 6.2: El algoritmo de subdivisién de la imagen (imagen central) mejora
el primer caso presentado que solo hace uso de una muestra en cada pixel,
mientras que presenta una calidad equiparable a la conseguida que si se utilizan
8 muestras por pixel, presentando ademas un tiempo de ejecucion menor.

Se presenta en la Figura 6.3 una comparativa entre la misma escena realizada
haciendo uso del algoritmo de subdivisién de la imagen y del Método de Monte
Carlo de manera simple para poder comparar como el nimero de muestras
usadas afecta a ambos.

6.3. Estructura de almacenamiento

Como ya se ha explicado en el apartado de disefio en la seccién 4.5, todas
las versiones del algoritmo hacen uso de una cola de prioridad para el almace-
namiento de los datos, asi como la seleccién del orden de subdivision. Esta cola
de prioridad idealmente se plantea como un ménticulo por las propiedades del
mismo, sin embargo, en casos en los que la cantidad de datos crece altamente,
la implementacion de la cola de prioridad como un monticulo deja de ser una
opcién, por lo que como se propone, se plantea el uso de una estructura menos
restrictiva, pero con menores costes tanto de memoria como de ejecucién de sus
operaciones.

Como se puede observar en los resultados de la Figura 6.4, la estructura de
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6 VALIDACION Y RESULTADOS

8 div. 10% iter. - 20s 833ms 64 paths - 37s 917ms

Figura 6.3: El algoritmo de subdivisién de la imagen (izquierda) no muestra el
ruido aleatorio que se produce al utilizar el Método de Monte Carlo (derecha).
Asi mismo consigue generar un resultado comparable al Método de Monte Carlo
en un tiempo menor.

almacenamiento disenada como alternativa al monticulo presenta mejores coste
de memoria, mientras que mantiene unos resultados similares a los obtenidos
haciendo uso del monticulo.

Figura 6.4: Los resultados obtenidos haciendo uso del monticulo (izquierda)
son comparables a los obtenidos mediante la estructura alternativa (derecha),
quitando algunas zonas subdividas de manera equivocadamente prioritaria que
otras, mientras que el coste de memoria es altamente inferior.

Sobre el coste de memoria empleado por cada uno de los algoritmos, se pue-
de especificar un méximo pero no el coste exacto, debido al valor de umbral
presente, asi como el proceso interno de la estructura alternativa al monticulo.
De esta manera los coste de memoria fisica, no disco, méximos serian de apro-
ximadamente 300 MB para el caso del monticulo, frente a aproximadamente
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31MB en el caso de la estructura alternativa ya que se encuentra fijado por la
propia estructura.
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7. Conclusiones y trabajo futuro

7.1. Conclusiones obtenidas

Tanto durante el proceso de planteamiento, disefio e implementacién de este
trabajo, como durante la fase de andlisis de los resultados que se han obtenido,
se ha llegado a multiples conclusiones.

En primer lugar, el algoritmo que este trabajo propone presenta una im-
portante mejora para casos de mapas de entorno y para escenas que presentan
zonas “suaves”, que métodos aleatorios como el Método de Monte Carlo simulan
con ruido debido a su aleatoriedad. Para dichas zonas, el método adaptativo que
este trabajo propone consigue reducir el ruido asi como la cantidad de muestras
empleadas para la obtenciéon de resultados.

En lo que a conclusiones méas concretas respecta, se ha observado que, como
era esperable, el método propuesto con subdivisiones en todas las dimensiones
de la imagen, encuentra problemas en zonas de las imagenes que presenten dis-
continuidades, donde necesita realizar una gran cantidad de subdivisiones para
conseguir un resultado, al contrario que en las zonas suaves de las mismas. Este
hecho se tratard méas profundamente en el apartado de Trabajo Futuro.

Por tdltimo, comentar las conclusiones extraidas a partir del proceso de diseno
e implementacion de la aproximacion del error de las subdivisiones. Durante
este proceso se ha sopesado el uso de distintos métodos para su célculo, que
favoreciera en gran medida que las subdivisiones se realizaran correctamente.
Para ello se han realizado distintas pruebas, utilizando distintas férmulas para
célcular la distancia entre los valores que se obtienen con la aproximacién por la
Regla de Simpson y la Regla de Trapecio, asi como el uso de distintos espacios
de color, para poder cédlcular la aproximaciéon del error como se comenta en el
Anexo B.3. Este proceso ha permitido determinar que el uso de espacios de
color como HSV® o HSL” para la comparativa necesaria en las aproximaciones
mencionadas, supone un beneficio gracias a la representacion que este tipo de
espacios de color ofrecen, en el que cada canal aporta maéas significado para
distinguir diferencias entre colores.

8 Hue, Saturation, Value o en espafiol Matiz, Saturacién y Valor
" Hue, Saturation, Lightness o en espafiol Matiz, Saturacién y Luminosidad
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7 CONCLUSIONES Y TRABAJO FUTURO

7.2. Trabajo futuro

Como se ha comentado, la aplicacién del algoritmo para todas las subdivisio-
nes requiere de gran cantidad de subdivisiones en zonas de altos contrastes. Se
propone como trabajo futuro el disefio de un algoritmo hibrido entre el Método
de Monte Carlo y el proceso de subdivisién de la imagen que se realiza en todas
las dimensiones. Dado que este proceso ya obtiene espacio multidimensionales
con errores estimados similares, seria de interes observar el comportamiento de
una aplicacién del Método de Monte Carlo en funcién de estos espacios obteni-
dos.

Asi mismo, el disefio e implementacién, tanto de otra aproximacién del error
(distintos espacios de color a los utilizados), sobre todo para el caso de subdi-
vision de todas las dimensiones, como de un distinto proceso de interpolacion
seria interesante como campo de estudio.

Por 1ltimo, es importante mencionar que el algoritmo presentado no se en-
cuentra implementado de manera altamente eficiente, por lo que una posible
via de trabajo futuro seria la mejora de eficiencia del mismo, asi como de las
estructuras de almacenamiento, siendo viable la implementacién de nuevas con
distinta gestién de los datos almacenados que la que presentan las actuales.
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Anexos

A. Simulaciéon de Iluminacién Global

La simulacién de iluminacién global trata de modelar escenas tridimensiona-
les utilizando, ademads de la iluminaciéon que proviene directamente de las luces
existentes en las escenas que se pretenden simular, los rayos de luz que provienen
de esas fuentes de luz, pero que han sido reflejados en las diversas superficies de
la escena, formando lo que se conoce como iluminacién indirecta.

(a) luminacién local (b) Iluminacién global

Figura 7.1: Comparativa de la misma escena teniendo en cuenta unicamente
iluminacién directa, y computando iluminacién global.

Los algoritmos que se usan para la simulaciéon de graficos 3D por computado-
ra que consideran una simulacién de iluminacién global consiguen, por tanto,
una simulacién mas completa que aquellos que tienen en cuenta tinicamente la
luz directa en sus calculos.

Aun asi, el computo de esta iluminacién indirecta supone un gran coste
computacional si lo comparamos con el coste que lleva simular inicamente es-
cenas con iluminacién directa.

Una clara comparaciéon entre una escena sin iluminacién global y otra con
iluminacién global se puede observar en la Figura 7.1.

A.1. La Ecuacion de Render

Este proceso de simulacion de iluminacion se realiza utilizando lo que cono-
cemos como la Ecuacién de Render [Kaj86].

La ecuacion de render es una ecuacion integral que define la radiancia que
parte desde un punto hacia un direccién como la suma de la radiancia que dicho
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punto emite, ademds de la radiancia reflejada, bajo una aproximacién geométrica
(Figura 7.2).

Lo(X,wo, Ayt) = Le(X,Wo, A, t) +/ fr(X, wiy woy Ay t) Ly (X, wiy A, t) (w; - n)dw;
Q

(7.1)

donde:

x es la localizacién en el espacio.

w, es la direccién de la luz que parte del punto x.
A es una longitud de onda de la luz.

t es el tiempo.

n es la normal a la superficie en el punto x.

w; es la direccion de la luz que llega al punto x.

Lo(x,wo, A t) es la Radiancia Espectral total de longitud de onda A que
se emite en la direccién w, en el tiempo ¢ desde una posicién x.

L.(x,w,, A\, t) es la radiancia emitida.

Q es la semiesfera centrada alrededor de n que contiene todos los valores
posibles de w;.

Jq - - dw; es la integral sobre Q.

fr(X,wi,wo, A, ) es la BRDF &, la proporcién de luz reflejada desde w;
hacia w, en la posicién x, tiempo ¢, y en la longitud de onda A.

L;(x,w;, A\, t) es la Radiancia Espectral de longitud de onda A\ que llega a
x desde la direccién w; en el tiempo t.

w - n es el factor de debilitamiento del la radiancia entrante debido al
angulo de incidencia. Suele escribirse como cos 6;.

Un ejemplo de su uso en un caso de iluminacién local (como el presentado en
la Figura 7.1a), con distintas fuentes de luz, la luz incidente se computarfa como
un sumatorio de la luz que aportarian las distintas & fuentes de luz presentes en
la escena.

k

Lo(X, wo, A1) = Le(X,wo, A, E) + > (%, w3, wo, A, ) Li(%,w;, A, £)(w; - ) (7.2)

=0

8Bidirectional Reflectance Distribution Function, o en espafiol, Funcién de Distribucién
Bidireccional de la Reflectancia
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En los casos de iluminacién global, los calculos se realizarian utilizando de
manera recursiva la propia Ecuacién de Render para obtener la luz indirecta
que llegaria hasta un punto.

Cuando se utiliza la Ecuacién de Render para la simulacién de imagenes por
ordenador, inicialmente los puntos de estudio serian los pixeles de la imagen, ya
que sabiendo que luz emiten en direccién a la hipotética camara de la escena,
es posible asignar un color a cada pixel de la imagen que se obtendrd como
resultado del proceso de simulacién de iluminacién global.

" Wo . Wi
N

2

Figura 7.2: Fendémeno descrito por la ecuacion de render. La ecuacién de render
define la luz emitida desde un punto x en una direccién dada.

Se sobrentiende entonces la importancia de esta ecuacién para cualquier
técnica de renderizado, y la importancia de encontrar aproximaciones lo méas
cercanas al autentico valor devuelto por la misma dentro del campo de la simu-
lacién de imégenes por ordenador.

Aun asi, la ecuacién de render no contempla fendémenos que, aunque com-
plejos en términos fisicos, son habituales en escenas cotidianas. Efectos como
la fluorescencia, la fosforescencia, la interferencia de la luz o el fenémeno de
scatering no se contemplan al usar la ecuacién de render para simular escenas
por computador. Esto se debe a que la ecuacion de render simplifica el fené-
meno de interaccion de la luz al nivel de la 6ptica geométrica, mientras que los
fenémenos comentados pertenecen a los campos de la 6ptica de ondas, la 6ptica
electromagnética o la éptica cuantica.

A.2. Path Integral

Para utilizar la Ecuaciéon de Render en el proceso de simulaciéon de Ilumi-
nacion Global es necesario, como ya se ha comentado, hacer un uso recursivo
de la misma.

Esto puede conllevar, en caso de querer simular con exactitud el compor-
tamiento de la luz en un escena, un computo elevado de célculos recursivos,
costosos en términos de cdlculo para un computador.

Sin embargo, existe un formulacién distinta para el fenémeno de propagacién
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de la luz, la llamada Path Integral [Vea98, Section 8§].

La Path Integral presenta una formulacién en forma de una tnica integral
(Ecuacién 7.3) frente a la recursividad que presenta la ecuacién de render para
el problema:

%=Lﬁ@@@ (7.3)

donde (2 es el conjunto de todos los transport paths de cualquier longitud.

El término f; representa la llamada Measurement Contribution Equation,
que designa la contribucién de cada path (path contribution).

Por ultimo, u representa el Path Space, el cual puede expresarse como una
secuencia de ndmeros del intervalo [0 ...1]. Este hecho es importante, dado
que el algoritmo presentado hace uso de este hecho para definir los intervalos de
integracién.

Figura 7.3: Geometria para el la ecuacion de transporte de la luz en la three-point
form

La Measurement Contribution Equation, comentada anteriormente, puede
definirse mediante la siguiente expresion:

k—1
fj((f) = Le(XO — Xl) H fs(Xi,1 — X; — X7;+1)G(X7; 4 Xi+1)'Wéj)(Xk,1 — Xk)
i=1
(7.4)
Esta ecuacion se puede obtener extendiendo recursivamente la Ecuacién de
Render, partiendo desde la Measurement Equation que presenta [Vea98, Sec-
tion 3] y aplicando un cambio de variable hasta que se obtenga la siguiente
ecuacion:
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k—1

0o k1
Ij = Z/M Le(x0 ¢ x1) H fs(Xim1 < X < xi41)G(X; > Xiq1)
k=1 i=1

WD (%) xp)dA(x0) - - - dA(xy,) (7.5)
= / Le(xo ¢ x1)G(x; ¢ Xi41)W9 (x3_1 = x3)dA(x0)dA(x1)
M2

—|—/ Le(XO <— Xl)G(XO < Xl)fs(xo — X1 < X2)G(X1 < X2)
M3

WO (1 < x2)dA(x1)dA(x2)
+ PN

que comparando con (7.3) permite obtener la expresién de la Measurement
Contribution Function vista en (7.4).

Respecto a los términos que aparecen en esta misma, como en la forma ex-
pandida vista en (7.5), G representa el cambio de variable mencionado, mientras

que el término W7 (x — x’) representa la importancia emitida desde x’ hacia x.

Un ejemplo del valor de f;(z) para un camino Z = XoX1X2X3 serfa, por tanto:

fj(ff) = Le(XO — Xl)G(XO < Xl)fs(XO — X1 — XQ)

. G(Xl < x2)fs(x1 — X9 — Xg)G(Xg s X3)We(j)(X2 — Xg) (76)

como se puede observar en la Figura 7.4.

La integral que se presenta en esta aproximacién ya no tiene el caracter
recursivo que se encuentra en la ecuacion de render, en la que se define la apor-
tacion de luz de parte de la ecuacién como una aplicacién recursiva de la misma.

Que esta aproximacion presente una unica integral es una ventaja. De esta
manera se trata el problema de manera mas completa y se permite, por ejemplo,
la contruccién de caminos comenzando desde vértices intermedios, algo que con
la ecuacién de render no es posible, dado que el camino es construido con un
lanzamiento de rayos recursivo desde el vértice inicial, la lente o camara de la
escena.
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X0 X3 ‘
G(Xo <~ X1) G(Xg — X3 ‘
L.(x¢o — x1) < Gxiex) o We(x2 — X3)

fs(XO — X1 — XQ) fs(xl — X9 — Xg)

Figura 7.4: Ejemplo de un camino de longitud 3 segin el concepto de path
integral.
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B. Integraciéon numérica

En el ambito del analisis numérico, se considera la integracion numérica a los
distintos algoritmos utilizados para determinar el valor numérico de una inte-
gral definida, de manera que habitualmente se utiliza por extensién este termino
para referirse a la resolucién de ecuaciones diferenciales.

Esta integral definida supone la suma de valores dentro del rango establecido
con un diferencial entre los mismos, de manera que se puede expresar de la
siguiente manera:

n

b
[ e = tim 3 f6)aa
a i=1

donde Aw; = x; — x_1,0;-1 < & < a5

Es también utilizado el término cuadratura numérica (o simplemente cua-
dratura) para referirse de igual manera a la integracién numérica, y aunque
habitualmente se utiliza en el caso de integrales de una tnica dimensién, tam-
bién se utiliza para referirse en algunos casos a integrales de mas dimensiones.

Debido al caracter integral del problema de renderizado mediante la Ecua-
cién de Render o mediante la Path Integral, el cidlculo integral juega un papel
muy importante en la simulacién de imagenes 3D por ordenador.

B.1. Técnicas de cuadratura

Estas integrales se resuelven normalmente en la préctica calculando una
aproximacion suficientemente precisa de la misma haciendo uso de las llamadas
técnicas de cuadratura. Estos métodos utilizan de manera general una combi-
nacién de evaluaciones del integrando para obtener aproximaciones de la misma.

Las técnicas de cuadratura siguen una férmula general para realizar las apro-
ximaciones de las integrales definidas:

[ @~ -0y wiw) (7.7

donde wj;, x; y n son los parametros que varian entre cada algoritmo de aproxi-
macion.

De entre ellos, n indica el nimero de evaluaciones que se ha hecho del in-
tegrando, por lo que normalmente es deseable utilizar métodos que permitan
calculos precisos con pocas evaluaciones, dado que asi se reducira el tiempo de
calculo que implica el realizarlas.

Las distintas técnicas existentes se pueden agrupar en aquellas que estan
basadas en funciones de interpolacién y en métodos adaptativos.
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Aquellas que utilizan funciones de iterpolacion se basan en utilizar una fun-
cién de interpolacién, facilmente integrable, de la funcién original de la que se
desea calcular la integral.

La mencionada interpolacién es la técnica del analisis numérico que permite
la construccién de nuevos puntos partiendo de un conjunto conocido de puntos.
Esto permite en muchas ciencias que a partir de un conjunto de muestras to-
madas experimentalmente, generar una funciéon que se ajuste a la distribucién
de los mismos.

(a) Puntos a interpolar (b) Interpolacién linear  (c) Interpolacién polinémica

Figura 7.5: Ejemplo de distintas funciones de interpolacién posibles aplicadas a
un conjunto de datos.

El problema ligado estrechamente con este es la aproximaciéon de funciones
complejas por funciones mas sencillas. Este es el problema que compete en las
técnicas de cuadratura, puesto que interesa simplificar la funcién de estudio por
otra més sencilla cuya integral sea facilmente calculable.

Por tanto, se hace uso de la interpolaciéon para conseguir esa funcién sim-
plificada utilizando datos muestreados, de manera que se intente ajustar de
estructura general conocida.

Normalmente, en el caso de las técnicas de cuadratura, estas funciones de
interpolaciéon utilizadas son polinomios, y puesto que los polinomios de grado
elevado tienden a tener unas variaciones extremas, en la practica se hace uso de
polinomios de menor grado, normalmente lineares o cuadraticos.

De esta manera, el método mas sencillo seria utilizar un polinomio de grado
0, es decir una funcién constante, que pasara en este caso por el punto medio
del intervalo de la funcién a interpolar, ((a + b)/2, f((a + b)/2)). Este método
es conocido como regla del punto medio o Regla del Rectdngulo (Figura 7.6a).

/a " fada ~ (b - W (“20) (7.8)
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La siguiente aproximacién posible seria utilizar un polinomio de grado 1 que
pasara por los puntos (a, f(a)) y (b, f(b)). Esta aproximacién se conoce como
Regla del Trapecio (Figura 7.6b).

b
/ f(z)dx ~ (b— a)w (7.9)

Otra aproximacién posible serfa la conocida como Regla de Simpson (Figura
7.6¢), que utiliza como base un polinomio de grado 2.

/abf(x)dmm bga{f(“)”f(a;rb) +10)] (7.10)

Para cada una de las reglas expuestas se puede conseguir una aproximacion
més precisa si el intervalo de estudio [a,b] se subdivide en n subintervalos,
calculando la aproximacion para cada uno y sumando los resultados. Esto se
conoce como Regla Compuesta. Un ejemplo de regla compuesta seria, en el caso
de la Regla del Trapecio seria la regla compuesta del trapecio,

Lbf(x)dle);l<]cg@+§(f<a+kb;a)> +f(2b)) (7.11)

k=1

donde, si h = (b—a)/ny K =0,1,2,...,n — 1, los distintos intervalos ten-
drfan la forma [Kh, (K 4 1)h].

—a m b
(a) Regla del Rectdngulo (b) Regla del Trapecio (c) Regla de Simpson

Figura 7.6: Comparativa de las distintas reglas de cuadratura (rojo) para una
misma funcién (azul).

Otra técnica de cuadratura distinta a las mencionadas es el uso del Método
de Monte Carlo . El Método de Monte Carlo es una técnica matemaética que
hace uso de nimeros aleatorios para la resolucién de problemas.

En este caso, la integraciéon por el Método de Monte Carlo es la técnica de
integracién numérica que hace uso de muestras aleatorias para resolver integrales
definidas.

De tal manera el Método de Monte Carlo aproximaria una integral I haciendo
uso de muestras aleatorias.
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b _ a) N
:/ f(x)dx > Fla) (7.12)
a i=1

Esta técnica se menciona con mas detalle en el siguiente apartado, dada su
utilidad, precisamente, en el calculo de integrales multidimensionales.
B.2. Cuadratura multidimensional

En la anterior subseccién se han comentado distintas técnicas de cuadratura,

pero estas son aplicables a integrales de una dimensién.

Para resolver integrales de miltiples dimensiones, la primera aproximacién
posible seria expresar la integral multidimensional que se desea calcular como
una repeticion de integrales unidimensionales, utilizando el Teorema de Fubini.

/X(/Yf(ai,y)dy)dch/Y(/}(f(x,y)dm)dy:/Xxyf(x,y)d(x,y) (7.13)

El uso de este concepto serd también importante para el algoritmo como se
explicard en sucesivas secciones para poder realizar cdlculos de los valores de la
integral sobre una de las dimensiones del problema.

/ /yfxydydx—/ / f(z,y)dxdy

(b — ay (f(az,ay);rf(az, )+f(bz,ay)+f(bmby))

~ (by — az) (7.14)

2
f(az’ay)+f(bz’ay) f(azaby)+f(bz»by)
(b — ar)( 2 + 2 )

~ (by — ay) D)

Esta evaluacién de multiples integrales para la resoluciéon de la integral mul-
tiple tendria el problema de que el nimero de evaluaciones de la funcién que
habria que realizar creceria de manera exponencial segin el nimero de dimen-
siones se incrementara. Este problema es conocido como la maldicién de la
dimensionalidad, y existen varios métodos que intentan evitar este problema,
de entre los cuales el mas conocido y utilizado es el mencionado anteriormente
Método de Monte Carlo (7.12)

El Método de Monte Carlo es un método ampliamente utilizado para la
resolucién de problemas de cuadratura multidimensional, debido a que la com-
plejidad de sus aproximaciones no escala respecto al niimero de dimensiones
contempladas en la integral definida como si que hacen otras reglas de cua-
dratura. Asi mismo, permite una facil parametrizacién del nimero de muestras
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utilizadas en la aproximacion.

Sin embargo, la propia aleatoriedad de las muestras que se usan en este
método le confiere de un defecto que otras reglas de cuadratura presentan en
menor medida. Las aproximaciones que se realizan utilizando este método po-
seen un ruido” causado por esta aleatoriedad, que aunque puede ser disminuido
mediante distintas técnicas, sigue siendo una caracteristica poco deseable para
una regla de cuadratura.

(a) Método de Simpson (b) Método de Monte Carlo

Figura 7.7: Comparativa de la distribucién de muestras necesarias para el cdlculo
de una integral de 2 dimensiones con 2 métodos distintos

B.3. Cuadratura adaptativa

Las técnicas de cuadratura adaptativas se basan en las técnicas de cuadratura
mencionadas previamente, utilizando subintervalos del dominio de integracion
de estudio escogidos adaptativamente.

Esto quiere decir que el nimero de muestras que estas técnicas utilizan se
ajusta para conseguir la precisién necesaria. De esta manera, cada subintervalo
es célculado con un nimero de muestras acorde a la complejidad del mismo.

Para considerar los algoritmos adaptativos es necesario considerar una esti-
macién del error que se comete al realizar la aproximacién de la integral, que
podria ser a priori o posteriori, aunque normalmente es usado a posteriori, pues
es calculado tras haber calculado la aproximacién de la integral. Esta estima-
cién del error se calcula normalmente como la diferencia de dos aproximaciones
distintas de la integral, de manera que se considera el error entre ambas como
el error estimado de la aproximacién que se esta realizando para la integral (Al-
goritmo 2).

9En el ambito matemético y fisico se denomina ruido a aquellos datos o informacién no
correcta que se encuentra entre aquella correcta provocando datos erréneos o incorrectos. En
el caso de la integracién hace a datos incorrectos como resultado de la integracién.
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Procedure integrate(f, a, b, tau)
Q =~ aproximationl(f, a, b);
€ &~ |Q—aproximation2(f, a, b) | ;
si ( e>tau) entonces
m = (a+b)/2 ;
Q = integrate(f, a, m, tau) + integrate(f, m, b, tau)
fin
devolver Q@ ;
Algoritmo 2: Esquema general del algoritmo adaptativo para aproximacion
de integrales

El algoritmo adaptativo realiza, por tanto, una aproximacién de la integral
a calcular en el intervalo de estudio, asi como una estimacién del error cometido
en dicha aproximacion.

Si el error calculado en la aproximacién es mayor que un valor de tolerancia
escogido 7, el intervalo de estudio se subdivide, y se aplica el propio algoritmo
sobre cada uno de los intervalos que se obtienen.

De esta manera la aproximacién que se obtiene de la integral es, o bien la
aproximacién que se calculo inicialmente, o la suma del calculo recursivo de los
subintervalos obtenidos.

Figura 7.8: Las muestras necesarias para los célculos que conlleva la Regla de
Simpson (aqui en 2D) incluyen las muestras que necesita una regla de menor
grado como la Regla del Trapecio (muestras en azul).

En la préctica, es importante observar un hecho importante si queremos
ahorrar calculos a la hora de utilizar los métodos adaptativos.

Si los calculos para la aproximacién de la integral se utiliza una regla de
cuadratura determinada, supongamos que una regla de cuadratura de grado N,
podria ahorrarse utilizar muestras adicionales si la regla de cuadratura que se
utiliza para, junto a la primera, aproximar el error cometido es de grado N — 1.
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e = reglaGradoMayor(f,a,b) — reglaGradoMenor(f,a,b) (7.15)

De esta manera para el calculo del error no se realizara ningin célculo adi-
cional al ya realizado para tinicamente tener una aproximacion de la integral.
Esto es conocido como técnicas anidadas, y se utilizara tal y como se explica en

secciones posteriores para ahorrar calculo de muestras y por tanto tiempo de
computacién innecesario.
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C. Diagrama de clases

FilmPixel

—path:

Spectrum

+record (u:Real, v:Real,path contribution:Spectrum)

MultiArray

+values: arrav<I>

+get (index:array<int>): T
+set (index:array<ine>,value:T)
4MultiArray (dimiarray<ints)

PointDivsionImage

-points: array<Real>
-gaps: array<Real>
—samples: MultiArray<FilmPixel>

it zimpson: FilmPixel

+error: Real

+dimensicn: unsigned char

PointDivsion

-samples: MultiArray<FilmPixel>
+simpson: FilmPixel

-points: array<Real>

—-gaps: array<Real>

+error: Real

+dimension: unsigned char

EngineQuadraturePerpixel

PathTracer

- —path tracer:
- . EngineQuadratureGlobal —logger: Logger
EngineQuadratureImageFile oeth tracer: Pavmiracer -div: unsigned int
-path_tracer: Pathlracer -logger: Logger -minfrror: Real
—logger: Logger —div: unsigned int prioritvQueue: priority_gueue
—div unsigned int -minError: Real
-minError: Real -priorityQueue: priority gqueue [l
| priorityQueus: FileQueus 0
() EngineQuadraturePerpixel
—path_tracer: PathTracer
EngineQuadratureImage -logger: Logger
-div: unsigned int
—path_tracer: PathTracer CminError: Real
‘quer: angsr, o oriorityQueus: FileQueue
-div: unsigned int
~minError: Real
-priorityQuene: priority gqueue ()
EngineQuadratureGlobalFile
-path_tracer: PathTracer
-logger: Logger
-div: unsigned int
-minError: Real
I, e criorityQueus: FileQueus
—————— T:FiloPixel
priority_queue
+push (d:T)
+pop ()
+top(): T
+isEmpry () : boolean
FileQueue
+push (data:T)
eop (s T
+isEmpry() : boolean
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Se incluye a continuacién una breve descripcion de las clases expuestas en
este diagrama de clases:

FilmPixel: Clase encargada de almacenar la informacién de color asocia-
da a un tunico pixel.

MultiArray: Clase que permite definir arrays multidimensionales.

PointDivision: Encargada de almacenar los datos de las subdivisiones
en el algoritmo de subdivisién por pixel.

PointDivision: Encargada de almacenar los datos de las subdivisiones
en el algoritmo de subdivision de la imagen.

EngineQuadratureGlobal: Clase que implementa el algoritmo de sub-
divisién por pixel, con uso de monticulo global.

EngineQuadraturePerpixel: Clase que implementa el algoritmo de sub-
divisién por pixel, con uso de monticulo por pixel.

EngineQuadraturelmage: Clase que implementa el algoritmo de sub-
divisién de la imagen.

EngineQuadratureGlobalF'ile: Version de la clase EngineQuadrature-
Global, implementada haciendo uso de la estructura alternativa para la
cola de prioridad.

EngineQuadraturePerpixelFile: Version de la clase EngineQuadratu-
rePerpixel, implementada haciendo uso de la estructura alternativa para
la cola de prioridad.

EngineQuadraturelmage: Versiéon de la clase EngineQuadraturelmage,
implementada haciendo uso de la estructura alternativa para la cola de
prioridad.

priority__queue: Clase perteneciente a las librerias STL de C++ que
implementa la cola de prioridad por monticulo.

FileQueue: Clase propia que implementa la cola de prioridad haciendo
uso de la estructura alternativa explicada en la seccién 4.5.2.
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