
Trabajo Fin de Grado

Simulación Adaptativa de Iluminación
Global

Autor

Francisco Javier Fabre Herrando

Director

Adolfo Muñoz Orbañanos

Escuela de Ingeniería y Arquitectura
2016

A la memoria de mi tía Ana.

i

Agradecimientos
Quiero dar las gracias, a Adolfo, por darme la posibilidad de realizar este

trabajo. A él y a todas las personas del Graphics and Imaging Lab que desin-
teresadamente han compartido sus conocimientos conmigo. Por último, pero no
por ello menos importante, a mi familia y amigos por apoyarme en los buenos
y en los malos momentos. Gracias a todos.

iii

Resumen
El proceso de simulación de imágenes por ordenador es conocido como ren-

derizado. Este proceso requiere realizar los cálculos necesarios para simular las
interacciones que la luz efectúa con los distintos objetos presentes en las escenas
que se desean renderizar. Esto requiere la resolución de complejos algoritmos,
que aproximan los modelos que definen las distintas propiedades de la materia.

Este proyecto trata de estudiar una implementación alternativa para el ren-
derizado de imágenes por ordenador a la que actualmente se plantea de manera
más general.

El proyecto trata una aproximación adaptativa para solucionar los proble-
mas de cálculo integral ligados al renderizado de imágenes, puesto que de forma
terminal las técnicas de renderizado solucionan algoritmos que poseen impor-
tantes componentes integrales.

La complejidad de los cálculos integrales necesarios para su resolución hace
que una de las técnicas más usadas en la actualidad para resolver estos algorit-
mos, y por tanto realizar la simulación de imágenes por ordenador, sea el llamado
Método de Montecarlo. Este método aproxima la solución utilizando números
aleatorios de manera que se termine convergiendo a una aproximación adecuada.

La aproximación adaptativa que se propone, en contraposición al mencio-
nado Método de Montecarlo, pretende analizar la complejidad de las distintas
integrales que es necesario calcular a lo largo del proceso. De esta manera se
pretende utilizar un número variable de muestras para la aproximación de los
valores necesarios, que será proporcional a la complejidad de su cálculo. Frente
al método aleatorio, esta aproximación debería utilizar un menor número de
muestras en aquellos casos que no sea necesario un número elevado para deter-
minar una solución lo suficientemente precisa.

Se ha seguido durante este trabajo la tradicional metodología de trabajo
software, comenzando por una fase de aprendizaje teórico, necesario para la re-
solución del problema, seguido de una fase de análisis del mismo. A continuación
se ha definido una serie de requisitos deseados para el trabajo. Por último se
ha realizado el diseño del sistema y su implementación, así como una fase de
estudio de los resultados de todo el trabajo realizado, comentando, además, las
posibles aplicaciones futuras de este proyecto.

v

Índice
1. Introducción 1

1.1. Objetivos del proyecto . 1
1.2. Estructura de la memoria . 1

2. Conceptos Teóricos 3
2.1. Path Integral . 3
2.2. Técnicas de cuadratura . 3

3. Análisis del problema 5
3.1. Estado del arte . 5
3.2. Requisitos . 5
3.3. Analisis general del problema . 6
3.4. Subdivisión por pixel . 9
3.5. Subdivisión de la imagen . 10

4. Diseño 12
4.1. Esquema general del algoritmo 12
4.2. Subdivisión por pixel . 13
4.3. Subdivisión de la imagen . 14
4.4. Estructura para las subdivisiones 15

4.4.1. Datos a almacenar . 16
4.5. Cola de prioridad . 16

4.5.1. Montículo . 17
4.5.2. Estructura propia . 17

5. Implementación 20
5.1. Tecnologías y herramientas utilizadas 20
5.2. Implementación de las subdivisiones 20
5.3. Colas de prioridad . 21
5.4. Implementación de los engines . 21
5.5. Ejecutables del proyecto . 22

6. Validación y Resultados 23
6.1. Validación . 23
6.2. Subdivisión de la imagen . 24
6.3. Estructura de almacenamiento 25

7. Conclusiones y trabajo futuro 28
7.1. Conclusiones obtenidas . 28
7.2. Trabajo futuro . 29

Referencias 30

vi

Anexos 31
A. Simulación de Iluminación Global 31

A.1. La Ecuación de Render 31
A.2. Path Integral . 33

B. Integración numérica . 37
B.1. Técnicas de cuadratura 37
B.2. Cuadratura multidimensional 40
B.3. Cuadratura adaptativa . 41

C. Diagrama de clases . 44

vii

1. Introducción
En este documento se pretende recopilar la información relacionada con el

Trabajo de Fin de Grado (TFG) titulado Simulación Adaptativa de Ilumina-
ción Global.

El trabajo que se presenta, intenta explorar una alternativa al Método de
Monte Carlo para el renderizado de imágenes por computador, utilizando una
aproximación adaptativa. De esta manera, el proceso de obtención de mues-
tras, que en el caso de Monte Carlo se realiza de manera aleatoria, se realice
de manera adaptativa, tomando una mayor cantidad de muestras en aquellos
lugares en los que los cálculos matemáticos las requieran para obtener una pre-
cisión adecuada. En contraposición, donde no sea necesaria una gran cantidad
de muestras para obtenerla, se utilizará una menor cantidad.

1.1. Objetivos del proyecto
El objetivo de este trabajo es la realización de distintas aproximaciones de la

ecuación de render con el objetivo de realizar imágenes sintéticas por ordenador,
utilizando un método alternativo al conocido método de Monte Carlo .

En este trabajo se realizan distintas aproximaciones utilizando métodos
adaptativos, en contraposición al método aleatorio ya mencionado, de mane-
ra que las integrales necesarias para los cálculos de la imagen sean aproximadas
utilizando un número de muestras correlado al error numérico del cálculo de ca-
da integral. Así, se adaptará el número de muestras para conseguir una precisión
similar en toda la imagen.

Se desea, por tanto, comprobar la viabilidad de este método alternativo en
distintos escenarios posibles, comparando los resultados obtenidos adaptativa-
mente con los que los métodos ampliamente usados en la actualidad obtienen
para distintas escenas.

1.2. Estructura de la memoria
La primera sección de este documento es esta propia introducción del pro-

yecto, que trata los objetivos del mismo, así como la estructura de la propia
memoria.

Posteriormente la sección 2 de esta memoria trata los fundamentos teóricos
en los que se basa el trabajo realizado, explicados de manera general, ya que
posteriormente se comenta su aplicación concreta en este trabajo.

Las tres siguientes secciones enfocan el trabajo realizado durante este pro-
yecto.

1

1 INTRODUCCIÓN

La sección tercera trata el análisis del problema realizado. La cuarta sección
explica la fase de diseño llevada a cabo, explicando cada una de las decisiones
tomadas durante el mismo. La sección cinco, trata sobre la implementación del
algoritmo, explicando como se han llevado los conceptos del diseño al programa
final que resuelve el problema.

Como penúltima sección de esta memoria se presenta la validación y resul-
tados del trabajo realizado.

En último lugar, dentro de la quinta sección de la memoria, se presentan las
conclusiones, además de comentarios varios sobre el trabajo futuro que puede
realizarse sobre este trabajo.

2

2. Conceptos Teóricos
Antes de analizar el problema de la simulación de iluminación global, es

necesario entender los conceptos teóricos en los que se basa el mismo. En esta
sección se explican los conceptos básicos en los que este trabajo se apoya de ma-
nera resumida. Una explicación más detallada puede encontrarse en los Anexos
A y B

2.1. Path Integral
El problema que se plantea para la simulación de iluminación de Iluminación

Global de manera adaptativa es, como ya se ha comentado durante la introduc-
ción, un problema de aproximación adaptativa de integrales.

Esto se debe a que, la formulación conocida como Path Integral permite
cálcular el valor de cada uno de los pixeles de la imagen a simular según la
ecuación:

Ij =
∫

Ω
fj(x̄)dµ(x̄) (2.1)

donde Ω es el conjunto de todos los transport paths de cualquier longitud.
El término fj representa la llamada Measurement Contribution Equation,

que designa la contribución de cada path (path contribution).
Por último, µ representa el Path Space, el cual puede expresarse como una

secuencia de números del intervalo [0 . . . 1].

2.2. Técnicas de cuadratura
Sabiendo que es la ecuación de Path Integral la base para resolver nuestro

problema de Iluminación Global, y puesto que esta es una ecuación integral, la
resolución del problema consiste en resolver dicha ecuación. Para ello se utilizan
las denominadas técnicas de cuadratura.

Los técnicas de cuadratura resuelven el problema de las ecuaciones integra-
les realizando aproximaciones suficientemente precisas mediante distintas eva-
luaciones del integrando, realizando combinaciones de estas evaluaciones para
conseguir la aproximación. Existen múltitud de técnicas de cuadratura tal y
como se expone en el Anexo B.1, pero las de más interés para este trabajo son
concretamente el Método de Monte Carlo y las técnicas de cuadratura adapta-
tivas.

El Método de Monte Carlo es de interés para este trabajo dado su amplio
uso para la aproximación de integrales en multitud de ambitos, en este caso la
simualción de iluminación global. La razón por la que el Método de Monte Carlo
es tan utilizado esta relacionado con las caraterísticas del mismo:

3

2 CONCEPTOS TEÓRICOS

No crece en complejidad de manera exponencial respecto al número de
dimensiones tratadas.

Es un método no sesgado1

Permite un control sencillo sobre el número de muestras que utiliza.

Por otro lado, las técnicas adaptativas son la base de cálculo integral para
este trabajo, dado que se pretende realizar los cálculos integrales necesarios ha-
ciendo uso de estas, en contraposición al uso generalizado del Método de Monte
Carlo.

Estas y otras técnicas de cuadratura existentes se encuentran explicadas con
más detalle en el Anexo B.1.

1No introduce sesgo, es decir, error debido a la forma en la que las muestras son cogidas.

4

3. Análisis del problema
3.1. Estado del arte

El objetivo de este trabajo es la realización de una aproximación adaptativa
para el problema de simulación de iluminación global.

Existen ya trabajos realizados sobre esquemas adaptativos para la resolu-
ción de este problema [HJW+08] [ZJL+15], que igualmente plantean esquemas
de caracter adaptativo para soluciona el problema de iluminación global.

A diferencia la mayoría de estos, el planteamiento de este trabajo es rea-
lizar las aproximaciones necesarias para la resolución del problema utilizando
técnicas de cuadratura cuyo muestreo no sea aleatorio, tales como las reglas de
cuadratura de Simpson o del Rectángulo, con el objetivo de minimizar el ruido
que técnicas de este tipo aportan a la imagen resultante, tal y como ocurre en
los métodos de Monte Carlo.

Igualmente se pretende que la aproximación sea parametrizable. Se desea
que número de muestras utilizadas para el cálculo total pueda controlarse, tal
y como puede hacerse en el caso de utilizar el Método de Monte Carlo.

3.2. Requisitos
Se a continuación los requisitos planteados para este proyecto y sobre los

que se apoyará el resto del trabajo:

Requisitos funcionales

Implementación de múltiples aproximaciones al problema del cálculo de
la integral. Contando como mínimo las dos planteadas durante la fase de
análisis.

Implementación de un método adaptativo que permita un control de la
muestras utilizadas en la aproximación similar al utilizado en el Método
de Monte Carlo .

Parametrización mediante linea de comandos de los distintos valores usa-
dos por el algoritmo.

Posibilidad de definir distintas escenas sobre las que ejecutar el algoritmo
de renderizado de manera que se pueda validar el algoritmo.

5

3 ANÁLISIS DEL PROBLEMA

Requisitos no funcionales

Minimizar el coste de memoria RAM utilizado durante la ejecución del
algoritmo.

Reducción del ruido existente en implementaciones que utilizan el método
de Monte Carlo .

Estudiar la viabilidad del algoritmo en distintas escenas frente a distintos
métodos de renderizado.

Posibilidad de visionar la generación de la imagen en tiempo real.

3.3. Analisis general del problema
Se pretende conseguir un método alternativo al Método de Monte Carlo para

la simulación de iluminación global.

Este Método de Monte Carlo presenta ciertas ventajas por las cuales es
ampliamente usado:

No presenta el problema conocido como ”maldición de la dimensionali-
dad”, por lo que los cálculos no escalan con el número de dimensiones
exploradas.

Permite una amplio y sencillo control sobre el número de muestras em-
pleadas durante el proceso de simulación.

El método que se presenta, intenta igualmente tener algunas de las ventajas
más deseables que posee el Método de Monte Carlo, mientras que trata de
subsanar alguno de sus problemas:

Permite igualmente un control sobre el número de muestras utilizado al
permitir elegir el número de subdivisiones realizadas.

No presenta el ruido aleatorio existente en Monte Carlo.

Las muestras se generan de manera adaptativa, de manera que zonas que
no requiera gran cantidad de muestras para ser computadas no las tendrán,
al contrario que en el Método de Monte Carlo.

Conocidas las características del método presentado, es necesario analizar el
problema que presenta el desarrollo del mismo.

A la hora de analizar el problema hay que entender que nos encontramos
ante la integración de una función multidimensional.

El proyecto existente que se utiliza como base para este trabajo facilita una
función que devuelve el valor de la path integral (Sección A.2) para unos valores

6

3 ANÁLISIS DEL PROBLEMA

concretos de los parámetros de la misma.

El número de parámetros que se pueden utilizar en esta función es virtual-
mente infinito, como ya se ha explicado en la Sección A.2, así mismo en esta
sección se explica que los parámetros son expresables como números del intervalo
[0 . . . 1]. Dichos parámetros corresponden a:

Parámetro 0 Coordenada X del pixel de la imagen.

Parámetro 1 Coordenada Y del pixel de la imagen.

Parámetros 2 a N Ángulo de rebote del rayo de luz en el punto de intersec-
ción.

Y
X

Figura 3.1: Los dos primeros parámetros representan las coordenadas del pixel
de la imagen analizado, mientras que el resto de parámetros especifican el ángulo
de los sucesivos rebotes que se producen.

Mediante esta función, se pretende realizar la aproximación necesaria para
la computación de la iluminación global haciendo uso de una técnica adaptativa
multidimensional.

Esta técnica presenta ciertas ventajas frente a métodos de integración alter-
nativos que pueden ser utilizados para la resolución de este problema. Técnicas
como el comentado método de Montecarlo poseen la desventaja de la existencia
de ruido en sus aproximaciones (Figura 3.2), debido a la utilización de números
aleatorios para la generación de sus muestras.

En contraposición, el método que se pretende realizar en este trabajo, no
presenta ruido en la aproximaciones, e igualmente permite un control sobre el
número de muestras utilizado durante las aproximaciones, tal y como el Método

7

3 ANÁLISIS DEL PROBLEMA

Figura 3.2: Ejemplo de un imagen renderizada utilizando el Método de Monte-
carlo. Se puede observar el ruido aleatorio generado en la imagen.

de Montecarlo permite.

Para abordar el problema de la resolución de esta integral multidimensional
es necesario decidir como utilizar conjuntamente los conceptos de integración
adaptativa e integración multidimensional vistos en la sección ??.

La adaptación más sencilla sería realizar el esquema adaptativo planteado
para integrales unidimensionales entendiendo que la integral multidimensional
es realmente una sucesión de integrales unidimensionales, por las que se puede
aproximar la integral.

Sin embargo, esto haría que la comparativa que se realizara para estimar el
error indicara unicamente la existencia de un error en el conjunto de la apro-
ximación, lo que llevaría a tener que subdividir cada uno de los intervalos para
lograr una mejor aproximación.

Un ejemplo de como evolucionaría la cantidad suponiendo que se parte desde
una estructura 2D como en la Figura 4.1 sería lo que se puede observar en la
Figura 3.3a.

Se plantea por tanto, calcular un error por dimensión, que permita encontrar
cual de las dimensiones aporta un mayor error a la aproximación, de manera
que la subdivisión se produzca únicamente en esta.

De esta manera se evita que se produzca posibles subdivisiones innecesarias
que generarían una gran cantidad de cálculos que quizá no aportaran precisión.

Para realizar esto, se realizan los cálculos con ambas reglas de cuadratura
aproximando la integral sobre cada una de las dimensiones haciendo uso del
Teorema de Fubini (7.13). Así, se puede elegir la dimensión que mayor aporta
y subdividir por ella (Figura 3.3b).

8

3 ANÁLISIS DEL PROBLEMA

(a) División múltiple (b) División en 1 dimensión

Figura 3.3: Comparativa de como evoluciona el número de muestra cuando las
subdivisiones se producen en todas las dimensiones o en solo la de mayor error
(Trapecio: Muestras azules; Simpson: Muestras azules y rojas).

Igualmente, dado que se ha cálculado el error en cada una de las dimensiones
se puede calcular sin coste añadido un error acumulado para toda la subdivisión
(como la suma de los errores de cada dimensión), el cual se puede usar para
ordenar cada una de las subdivisiones en la estructura.

Puesto que hay que hacer uso de dos técnicas de cuadratura distintas (para
poder realizar una estimación del error), se elige utilizar para este trabajo las
reglas de Simpson y de Trapecio.

Teniendo clara la técnica que se va a usar para realizar los cálculos adaptati-
vos del problema, se plantea discutir 2 alternativas distintas sobre como abordar
el planteamiento del problema como tal.

3.4. Subdivisión por pixel
En esta aproximación se ha obviado la integración de los dos primeros valo-

res de la ecuación, de manera que para cada pixel existente en la imagen se ha
optado por tomar un único valor de los párametros que están correlados con la
situación del mismo, en lo que a sus coordenadas X e Y respecta (parámetros 0
y 1), intentando realizar la aproximaxión en base al resto de parámetros.

La causa por la cual esta aproximación decide realizar un muestreo en las
dos primeras dimensiones, en lugar de realizar la aproximación de la integral
con todas las dimensiones, es intentar reducir el problema que supone la ya
mencionada maldición de la dimensionalidad.

Puesto que con la aproximación elegida para el cálculo multidimensional de
la integral, el coste computacional crece exponencialmente en función a las di-

9

3 ANÁLISIS DEL PROBLEMA

mensiones de estudio, sustituir el cálculo en las dos primeras dimensiones por
una aproximación que usa un único valor para la función en sus dos primeros
parámetros, reduce la cantidad de dimensiones que se integran. De esta manera
un problema N-dimensional se reduce a un problema de N-2 dimensiones.

3.5. Subdivisión de la imagen
En esta aproximación si que se consideran las dos dimensiones de la imagen

como dimensiones del problema, de manera que, al contrario que en la aproxi-
mación anterior, no se realizará una única muestra en estas, si no que el cálculo
de la integral tendrá en cuenta el intervalo existente en ellas.

Como esta aproximación tiene en cuenta también las 2 dimensiones que ha-
cen referencia a las coordenadas de los pixeles de la imagen, las subdivisiones
pueden cubrir varios pixeles de la imagen al mismo tiempo. De esta manera
se utilizaran menos muestras si es posible para realizar un cálculo que la otra
aproximación habría realizado tomando muestras siempre en cada pixel por se-
parado.

Figura 3.4: Ejemplo de como los pixeles de una de una región de una imagen
(izquierda) podrían repartirse en distintas subdivisiones e tamaños distintos
(derecha) si el problema se aproximara incluyendo las dimensiones de la imagen
tal y como las lineas de la figura expresan.

Por tanto, es fácil llegar a la conclusión de que en esta aproximación se pue-
de comenzar suponiendo una subdivisión única que cubra la totalidad de todos
los intervalos existentes. Sabiendo esto, surge la duda de como asignar entonces
los valores correspondientes a cada pixel de la imagen una vez el algoritmo ha
finalizado.

Además, este enfoque del problema permitiría que, puesto que en el momento
que una de las subdivisiones conseguidas tenga nulo error, o al menos un error los

10

3 ANÁLISIS DEL PROBLEMA

suficientemente bajo como para considerar que no se ha de subdividir, aproximar
la integral de toda la subdivisión suponiendo que se ajusta a la aproximación
que haría la regla de cuadratura usada.

Así sería posible utilizar las muestras que se han tomado para aproximar
lo que podría ser una superficie de más de un pixel para aproximar el valor de
cada pixel suponiendo que el comportamiento de los valores de la subidivisión
se rige por el polinomio por el que se aproximó, permitiendo ahorrar una gran
cantidad de muestras que en la otra aproximación al problema que se presenta
en este trabajo si que son necesarias.

x2

x1 x′1

x0

x′0

(a) Subdivisión por pixel

(b) Subdivisión de la imagen

Figura 3.5: Mientras que en la subdivisión por pixel se muestree cada uno de
los mismo, en el caso de la subdivisión de la imagen, es posible que un único
pixel de la imagen tenga que ser interpolado con las muestras resultantes de las
múltiples divisiones que se hayan producido en las dimensiones que corresponden
a la imagen.

11

4. Diseño
Se presenta en esta sección el diseño del algoritmo.
Aunque el diseño se encuentra ampliamente explicado en esta sección, está

complementado con un diagrama de clases, cuyos nombres corresponden además
con las clases finalmente implementadas que se explican a lo largo de la sección
5.

El diagrama de clases mencionado (en lenguaje UML [RJB04]), resultado
de la fase de diseño se encuentra presente en el Anexo C de este documento.

4.1. Esquema general del algoritmo
El algoritmo general sigue el esquema planteado anteriormente, de manera

que se ajusta al esquema adaptativo para integrales multidimensionales comen-
tado anteriormente.

Se presenta a continuación la idea general del algoritmo expresada en un
pseudocódigo fácilmente entendible:

Inicializar la cola de prioridad;
generar muestras iniciales;
iteraciones = 0;
mientras iteraciones <maxIters AND queue no vacia hacer

division = pop(queue);
// Subdivide dando 2 subdivisiones resultantes.
subdivide(division, first, second);
si error(first) >umbral entonces

push(first);
en otro caso

Añadir aportación de first a la imagen;
fin
si error(second) >umbral entonces

push(second);
en otro caso

Añadir aportación de second a la imagen;
fin

fin
// Añadir aporaciones restantes a la imagen.
para cada division in queue hacer

Añadir aportacion de division a la imagen;
fin

Algoritmo 1: Esquema general del algoritmo presentado en este trabajo.

En primer lugar se realiza un fase inicial de muestreo. Se realizan las subdi-
visiones iniciales sobre el problema y se almacenan en una estructura.

12

4 DISEÑO

Posteriormente se realiza iterativamente un proceso en el cual se extrae de
la estructura la subdivisión con mayor error estimado, para volver a subdivi-
dirla respecto, teniendo en cuenta que dimensión aporta mayor más error a la
aproximación realizada, siendo esa misma la que elegirá para subdividir.

El uso de la estructura comentada se hace necesario puesto que se desea tener
un almacenamiento de las distintas subdivisiones del problema que permita un
acceso eficiente y rápido a aquellas con mayor error. Esta estructura se comenta
con más detalle en una de las sucesivas secciones que se centra precisamente en
la propia estructura.

Las nuevas subdivisiones resultantes, comentadas anteriormente, se introdu-
cen en la estructura, retirando de la misma estructura la subidivsión de la que
se generaron, puesto que ahora está se encuentra aproximada como la suma de
las resultantes del proceso comentado.

Adicionalmente puede establecerse un umbral de error a partir del cual se
considere la aproximación como válida, de manera que si son generadas subdi-
visiones cuyo error es menor que este umbral, estas no sean introducidas en la
estructura, y pasen directamente a formar parte de la aproximación definitiva.

Utilizar este umbral es interesante debido a que si únicamente se considera-
ran válidas aquellas con error estimado exactamente igual a 0, pocas subdivisio-
nes serían elegidas antes de la finalización del algoritmo. Eligiendo un valor de
umbral superior a 0, pero igualmente pequeño, se puede conseguir que aquellas
subdivisiones con un error despreciable ya no vuelvan a ser subdivididas.

4.2. Subdivisión por pixel
La aproximación por pixel se ha diseñado de tal manera que los cálculos que

se realizan para aproximar las dos primeras dimensiones son obviados. Estas
dimensiones serán unicamente muestreadas, de manera que para cada pixel de
la imagen se considere válida una aproximación que toma como valor de estas
dos dimensiones las coordenadas centrales de dicho pixel.

Así, se aproximará mediante el algoritmo el valor que ha de asignarse a este
pixel en la imagen final.

Para la estimación del error sobre cada dimensión, bastaría con realizar repe-
tidamente las integrales unidimensionales hasta que el problema quedara como
una integral unidimensional sobre la dimensión, en la cual se desea realizar la
estimación del error. Esto sería posible realizarlo para cualquier dimensión de
la integral, gracias a la propiedad enunciada en el Teorema de Fubini, visible en
la ecuación (7.13).

De esta manera el problema ya se adaptaría al esquema planteado para el
cálculo adaptativo visto en la sección B.3, pudiendo interpretar como la nueva

13

4 DISEÑO

función a integrar la obtenida mediante integración repetida sobre las las di-
mensiones que no son la de estudio. Así, solo restaría realizar la aproximación
mediante dos reglas de cuadratura distintas, y realizar el cálculo del error como
la comparativa del resultado de ambas, que sería la estimación del correspon-
diente a la dimensión que no se integró iterativamente.

Figura 4.1: Ejemplo de muestras necesarias para las reglas de Simpson y Tra-
pecio en 2 dimensiones (Trapecio: Muestras azules; Simpson: Muestras azules y
rojas).

Si este proceso se repite, dejando fija cada una de las dimensiones, y se al-
macena el error obtenido en cada una, se puede saber que dimensión acumula
un mayor error, de manera que se subdivida el intervalo correspondiente a dicha
dimensión, y se aproxime la integral múltiple como la suma de las dos integrales
mútiples obtenidas según los intervalos que se tuvieran tras la subdivisión.

Como se ha comentado previamente (Sección B.3) el cálculo de la estimación
del error se realiza sin coste adicional, dado que para el cálculo adaptativo se
hará uso de las reglas de cuadratura de Simpson (7.10) y Trapecio ((7.9)).

El número de muestras necesarias sería, por tanto, 3N , siendo N el número
de dimensiones de estudio. Un ejemplo de la posición de las muestras en 2 di-
mensiones puede observarse en la Figura 4.1.

4.3. Subdivisión de la imagen
Como se ha comentado, el planteamiento del problema también puede orien-

tarse de manera que los cálculos no se realicen por cada pixel de la imagen, si
no que se consideren las dimensiones X e Y de la imagen dentro del proceso que
seguirá el algoritmo adaptativo para calcular la integral.

De esta manera, se llegará en la mayoria de casos a subdivisiones que incluyan
varios pixeles debido a como se han subdivido los intevalos correspondientes a

14

4 DISEÑO

las dos primeras dimensiones del problema. Esto permitirá, que si el error de esa
subdivisión se considerá despreciable, incloso en esas 2 primeras dimensiones, sea
posible apriximar toda esa superficie de pixeles cubierta por la subidivisión con
una cantidad, menor de muestras que en la aproximación anterior al problema,
en la que cada pixel es considerado de manera individual.

Para cacular los valores de los pixeles de la subidivisión habría que seguir el
siguiente proceso.

Suponiendo que por integración reiteradada con las técnicas comentadas, se
integra hasta que quede una función únicamente dependiente de los parámetros
X e Y, dado que en el resto de dimensiones se ha aproximado la integral, pode-
mos suponer que los valores de esta función, que hemos reducido a 2-dimensional
se ajustan al polinomio en 2 dimensiones que nos marca la interpolación que se
realiza por la Regla de Simpson.

Esta suposición marcaría que la ecuación de render 2-dimensional se ajusta
al siguiente polinomio general:

f(x, y) = c22x
2y2+c21x

2y+c20x
2+c12xy

2+c11xy+c10x+c02y
2+c01y+c0 (4.1)

De este polinomio es posible, así mismo, calcular su integral bidimensional
de manera analítica:

∫∫
f(x, y)dxdy =x3

3

(c22y
3

3 + c21y
2

2 + c20y
)

+ x2

2

(c12y
3

3 + c11y
2

2 + c10y
)

+x
(c02y

3

3 + c01y
2

2 + c0y
)

(4.2)

De esta manera es posible hacer uso de esta ecuación para cálcular el valor
que en cada subdivisión aporta por separada a cada uno de los píxeles que
engloba, cálculando los coeficiente con las muestras que ya se han tomado para
la Regla de Simpson sobre dos dimensiones (la de la imagen).

Una vez se tienen estos valores se resuelve el sistema que permite obtener
los valores de los coeficientes, de manera que quede una ecuación que permite
aproximar el valor para el area de cada uno de los pixeles que se encuentran
dentro de la subdivisión.

De esta manera se realiza una aproximación para cada uno de los píxeles
sin tener que cálcular muestras adicionales a las que ya se utilizarón para los
cálculos necesarios referentes a la parte adaptativa ya comentada ampliamente
en secciones previas.

4.4. Estructura para las subdivisiones
Una parte indispensable del diseño del algoritmo es el diseño de una estruc-

tura que almacene las subdivisiones que el algoritmo genera, y los datos de las

15

4 DISEÑO

mismas.

Así mismo, para entender el espacio multidimensional que estas subdivisio-
nes tratan, se propone abstraer el problema al caso 2-dimensional, de manera
que la estructura que formarían los intervalos sería un cuadrado (Figura 4.1).

4.4.1. Datos a almacenar

La estructura de las subdivisiones almacena la siguiente serie de datos nece-
sarios para el algoritmo:

Posición de los vertices: Requiere 2 valores en coma flotante (dato tipo
float) para cada una de las dimensiones que se tengan en cuenta (2 ∗ 4
bytes por dimensión).

Evaluación del Path Contribution: El valor aportado por la subdivi-
sión a la aproximación de la integral (Anexo A.2). Almacena un valor en
RGB2 donde cada canal se encuentra alamcenado en un float (3∗4 bytes).

Aproximación del error acumulada: Suma del error estimado (Anexo
B.3) para cada una de las dimensiones. Utiliza un dato de tipo double para
mayor precisión (8 bytes).

Dimensión de mayor error: Almacena cual de las dimensiones analiza-
das aporta mayor error, para realizar subivisiones por la misma. Usa un
dato de tipo unsigned char (1 byte).

De esta manera cada una de las dimensiones requiere un total de 21 + 8 ∗N
bytes, donde N es el número de dimensiones analizadas en el problema.

Adicionalmente los diseños por pixel necesitan 8 bytes para almacenar las
coordendas del pixel al que hacen referencia

Sería posible reducir este número, pues la representación de la subdivisión
requeriría unicamente los datos de los vértices, dado que el resto pueden cal-
cularse a partir de estos, pero el almacenamiento adicional de datos permite
ahorrar cálculos repetidos.

4.5. Cola de prioridad
También es necesario pensar en que estructura se van a almacenar estas

subdivisiones, puesto que sería interesante acceder rápidamente, y sin un coste
computacional elevado, a aquella subdivisión que, entre las presentes en un mo-
mento dado del algoritmo, tenga el mayor error.

2Espacio de color que permite representar un color haciendo uso de los valores del color
rojo, verde y azul que aditivamente forman el color que se desea representar.

16

4 DISEÑO

La estructura más conocida que cumple con estos requerimientos es la cola
de prioridad, y de sus implementaciones se elige la conocida como montículo
por ser de las más eficientes [CLRS09, Section 6.5].

4.5.1. Montículo

Esta implementación de la cola de prioridad tiene unos costes acordes a
las necesidades del problema, ya que las inserciones y borrados tienen un coste
O(logn), además de un acceso con coste O(1) al primer elemento de la estructu-
ra, que por definición es el mayor (o menor, según se indique) elemento respecto
a una ordenación indicada.

Utilizando esta estructura, de manera que la ordenación coloque como pri-
mer elemento de la cola de prioridad la subdivisión con mayor error, tendríamos
un acceso rápido al elemento que tendría mayor prioridad a la hora de sub-
dividir, y podrían insertarse fácilmente con coste logarítmico las subdivisiones
resultantes mientras que este elemento, ya subdividido, se retira de la estructura.

4.5.2. Estructura propia

A pesar de que el montículo presenta una cualidades prácticamente óptimas
para los requerimientos del problema presenta una desventaja.

Es cierto que los costes que esta estructura presenta son ciertamente bajos,
pero, puesto que el crecimiento del número de datos en este problema es elevado
(al analizar un dato generamos dos nuevos), y al analizar los datos estos son
extraídos de la estructura y en la mayoría de los casos provocan que dos nue-
vos datos sean generados, nos encontramos con que realmente la operación de
menor coste de la cola de prioridad es superada por las 3 operaciones de coste
O(logn) que produce en el peor de los casos la obtención de uno de los datos de
la estructura, que se ve reducida a una operación de igual coste en el caso mejor.

Además, esta estructura al utilizar únicamente memoria RAM, y crecer el
número de datos de la forma ya comentada, el coste de memoria puede crecer
hasta el punto de llegar a ser un problema crítico.

Esto ocurre sobre todo en el planteamiento que utiliza un montículo glo-
bal y realiza tratamiento por pixel, donde el número máximo de subdivisiones
presentes en la estructura depende de la siguiente ecuación:

subdivisiones = (altura∗anchura∗ (subdivisionesIniciales+1))+ iteraciones
(4.3)

Se observa, por tanto, que sobre todo para imágenes grandes este plantea-
miento aumenta en gran medida el número de subdivisiones presentes en la
estructura, por lo que se pretende diseñar una estructura para tratar casos en

17

4 DISEÑO

los que esto ocurra.

Por ello, se ha planteado el diseño de una estructura que pueda ser utilizada
en el caso de que los factores comentados anteriormente suponga un problema.
Esta estructura se ha diseñado de manera que, aunque su eficiencia en acceso
a datos puede llegar a no ser tan elevada como la que se consigue mediante la
utilización de una cola de prioridad, permita relajar el uso excesivo de RAM.

Puesto que no es estrictamente necesario subdividir aquella región que tenga
el mayor error, sino subdividir prioritariamente las de mayor error, podemos
utilizar una estructura que no devuelva estrictamente la región con el mayor
error entre todas, sino una de las que mayor error posea.

←→

←→

←→

. . .

. . .

. . .

. . .

. . .

. . .

datos >ε0

ε0 ≥ datos >ε1

ε1 ≥ datos >ε2

Figura 4.2: Los datos de la nueva estructura son divididos entre distintos vectores
según el resultado de unas comparaciones. La estructura utiliza ficheros como
almacenamiento secundario para cada vector.

Basándose en esta idea, la estructura diseñada implementa distintos grupos
de subdivisiones con error similar, de manera que se acceda por prioridad a estos
grupos, devolviendo en primer lugar subdivisiones que pertenezcan al grupo con
mayor error, y si este está vacío, se proceda a devolver datos del siguiente grupo
de datos. Adicionalmente los datos introducidos a la estructura se introducirán
en el grupo al que correspondan según su error.

De esta manera el acceso a los datos es de orden O(1) frente a la insercción
del montículo con coste O(n logn).

Para solucionar el problema de almacenamiento presente igualmente en el
montículo, la estructura realiza un volcado a disco físico cuando el número de
datos supera un límite específico.

Esto sin embargo puede hacer que el coste de los accesos a los datos puede
crecer, dado que al introducir un dato en la estructura se podría provocar un

18

4 DISEÑO

volcado a disco de parte de los datos, aumentando el coste de la operación.
Igualmente si la extracción de un dato de uno de los grupos comentados produ-
jera que este quedara vacio, sería necesario analizar si se han volcado datos a
disco, y si así ha sido, cargarlos desde el mismo, lo que de igual manera que al
introducir un dato, aumentaría el coste de la operación.

Por tanto, esta segunda estructura que se plantea, se presenta como alterna-
tiva a la cola prioridad, principalmente, para aquellos casos en los que una cola
prioridad falle en cuanto a motivos de almacenamiento se refiere, aunque si la
cantidad de datos generados es pequeña, y la estructura no necesita de volcados
a disco las inserciones y extracciones tendrán un coste más eficiente que en la
cola de prioridad.

19

5. Implementación
5.1. Tecnologías y herramientas utilizadas

Para la implementación del algoritmo se ha utilizado como lenguaje de pro-
gramación C++, concrétamente se ha realizado la implementación en la versión
C++14 (se puede saber más sobre la extensión de esta versión sobre el lenguaje
C++ en [Str13]), utilizando además las conocidas librerias para este lenguaje
denominadas Boost [boo].

El código de la implementación ha sido compilado haciendo uso del com-
pilador Clang [cla], en el sistema operativo Fedora 23, aunque el proyecto es
compilable en cualquier otro entorno Unix.

También se ha utilizado la herramienta CMake [cma] para la construcción
del proyecto, así como su configuración.

La implementación de este proyecto utiliza a un software ya desarrollado
como base, haciendo uso de las funciones ya implementadas para realizar el
muestreo de datos, así como la generación de imágenes con los datos que el
algoritmo que se implementa en este trabajo aproxima. La autoría de este soft-
ware base pertenece a Adolfo Muñoz Orbañanos3, director de este Trabajo de
Fin de Grado.

5.2. Implementación de las subdivisiones
En el apartado de diseño, se han comentado las estructuras necesarias pa-

ra el funcionamiento del algoritmo. En este caso, la implementación de dichas
estructuras ha sido realizada mediante clases C++, de manera que se utilicen
instanciaciones de las mismas en caso de ser necesarias.

Respecto a las estructuras ya comentadas para almacenar la información que
corresponde a las subdivisiones, se han implementado dos clases, PointDivi-
sion y PointDivisionImage.

La primera de estas clases implementa la estructura necesaria para las subdi-
visiones que se plantean en la primera aproximación del problema. Almacena los
datos necesarios, y posee funciones para consultarlos, así como distintas funcio-
nes que realizan los cálculos del error sobre cada dimensión, y la aproximación
del valor correspondiente para la función en el intervalo que cubren, utilizando
valores fijos para las dos primeras dimensiones (X e Y), que pueden ser consul-
tados igualmente a efectos de conocer el pixel al que hacen referencia.

3http://giga.cps.unizar.es/~amunoz/index.php/es/

20

5 IMPLEMENTACIÓN

La segunda clase, implementa una estructura similar a la primera, con la
diferencia de que en esta se tienen en cuenta los valores de las dos primeras
dimensiones a la hora de realizar cálculos, puesto que en estas dimensiones se
consideran también intervalos, y no valores fijos como en el caso anterior.

5.3. Colas de prioridad
Igualmente, las estructuras en las que se almacenan los objetos resultantes

de instanciar estas clases a lo largo del algoritmo se encuentran implementadas
mediante clases.

En el caso de la cola de prioridad, esta ya se encuentra implementada dentro
de la librería Standard Template Library (STL), por lo que se ha hecho uso de
esta implementación.

Respecto a la otra estructura comentada en la sección de diseño, se ha im-
plementado una clase C++, haciendo uso de unas funciones igualmente imple-
mentadas en las clases correspondientes a las subdivisiones. Estas funciones han
sido implementadas para poder realizar un guardado de los objetos en ficheros,
así como la para construir estos objetos a partir de datos previamente guardados
en un fichero.

De esta manera, la clase implementada realiza un guardado en distintos
grupos de vectores, que en caso de llegar a un limite de datos, son volcados a
ficheros en disco, e igualmente si quedan vacíos se llenan con los datos de estos
ficheros. Estos vectores pueden variarse en número y límite de datos, y puede
elegirse a partir de que valores de error es elegido uno u otro vector para el
almacenamiento de los datos.

Esta clase se ha implementado de manera que presente unas funciones si-
milares a las que posee una cola la cola de prioridad, simplemente a efectos de
similitud entre ambas estructuras (funciones push, pop). De esta manera, una
vez se haya construido un objeto de esta clase, el funcionamiento externo del
mismo será equivalente al de una cola de prioridad, variando únicamente el fun-
cionamiento interno.

5.4. Implementación de los engines
Respecto a la implementación del algoritmo en si mismo, las distintas va-

riantes del mismo se han implementado igualmente en clases,de manera que los
ejecutables del proyecto hagan uso de las mismas. Estas clases se han denomi-
nado engines

21

5 IMPLEMENTACIÓN

Estas clases (a partir de a se construyen con referencias a otras ya existentes
en el código base utilizado para el proyecto, y como se ha comentado son las que
permiten realizar un muestreo de los distintos valores de la función path integral
necesarios para el desarrollo del algoritmo implementado.

Estas clases utilizadas son la clase RecursiveRayTracer y las distintas cla-
ses que esta misma utiliza, tanto para su definición como para su funcionamiento.

Las clases correspondientes para estos engines implementan por tanto los
distintos diseños del algoritmos, de manera que las clases EngineQuadrature-
Global y EngineQuadraturePerpixel implementan ambas el algoritmo rea-
lizando cálculos para cada pixel (Sección 4.2), diferenciandose en que la primera
utiliza una única cola de prioridad para todo el proceso, mientras que la segunda
utiliza una cola de prioridad en cada uno de los pixeles del proceso.

Así mismo existe un tercer engine, EngineQudratureImage, que imple-
menta el algoritmo realizando subdivisiones que incluyen las dimensiones de la
imagen, X e Y (Sección 4.3).

Igualemente existe un engine adicional por cada uno de los comentado que
utiliza como cola de prioridad la estructura comentado en la Sección 4.5.2, que
tiene el nombre del engine comentado anteriormente seguido por la palabra File
(EngineQuadratureImageFile, EngineQuadratureGlobalFile, . . .).

5.5. Ejecutables del proyecto
Respecto a los ejecutables que se comentaba con anterioridad, existe un eje-

cutable para cada implementación del algoritmo (es decir, cada engine imple-
mentado), que utiliza la clase correspondiente a la implementación del algoritmo
que se desea ejecutar en el mismo.

De esta manera, el ejecutable genera dos objetos de la clase que le corres-
ponde, para generar por separado la aproximación de la componente especular
de la imagen y la aproximación de la componente difusa, utilizando ambas para
generar la imagen final.

Todos estos ejecutables poseen opciones para cambiar los valores de las dis-
tintas variables de los algoritmos que ejecutan, mediante la introducción de va-
lores distintos a los predefinidos haciendo uso de la linea de comandos durante
su invocación, así como opciones para elegir la escena sobre la que se ejecutará el
algoritmo, y el formato en el que se guardará la imagen resultado de la ejecución.

22

6. Validación y Resultados
Durante esta sección se van a mostrar los resultados de la técnica implemen-

tada durante este proyecto.
Como se ha comentado, el objetivo de este trabajo es realizar una técnica

de simulación de iluminación global de caracter adaptativo, alternativa a las
técnicas existentes para ello, por lo que igualmente durante esta sección se reali-
zarán comparativas de otras técnicas con los resultados obtenidos mediante los
algoritmos implementados en este trabajo.

6.1. Validación
En esta sección se pretende verificar que el algoritmo que se presenta fun-

ciona correctamente. Para ello se realiza una comparativa de los resultados que
se obtienen utilizando este para realizar la simulación de iluminación global de
una escena frente a los resultados que se obtienen para dicha escena haciendo
uso de técnicas de path tracing4 tradicional. Concretamente se va a realizar la
comparativa utilizando el diseño del algoritmo que realiza subdivisiones adap-
tativas en cada uno de los pixeles, como ya se ha presentado en las secciones 3.4
y 4.2.

La Figura 6.1, muestra como el algoritmo presentado converge a una solución
equivalente a la obtenida mediante path trace en un tiempo sustancialmente
menor. A pesar de ello se puede observar un sesgo en los resultados del algoritmo,
debido a que el muestreo del algoritmo siempre se realiza bajo un patrón.

Los parámetros que aparecen en esta figura, así como algunos que aparecen
en sucesivas figuras corresponden a:

paths: Número de caminos explorados mediante el algoritmo de path trace.
Un número elevado de caminos supondrá un mejor resultado, pero a su
vez hará que aumente el tiempo de computo.

div: Número de divisiones iniciales que realiza el algoritmo adaptativo.

iter: Número de iteraciones realizadas por el algoritmo adaptativo.

thres: Valor umbral o de corte con el cual se discrimina que datos no
se almacenan en la estructura (si su error es menor que el valor de este
umbral.

Para mayor compresión del significado de estos parámetros puede observarse su
relevancia en el algoritmo, revisando el pseudocódigo que expresa el funciona-
miento general del mismo en (Algoritmo 1).

4Método de simulación de iluminación global basado en la integración por el Método de
Monte Carlo, desarrollado a partir de las ideas expuestas en [Kaj86] y en [Vea98]. Es por tanto
un método no adaptativo al contrario que el presentado a lo largo de este trabajo.

23

6 VALIDACIÓN Y RESULTADOS

adapt. - 0 div. 0 iter.

3s 76ms

adapt. - 1 div. 106 iter.

25s 710ms

adapt.- 3 div. 107 iter.

17m 11s 221ms

path trace - 16 paths

33s 11ms

path trace - 128 paths

3m 9s 378ms

path trace - 4096 paths

47m 5s 877ms

Figura 6.1: El algoritmo adaptativo que se presenta (fila superior) hacia a la so-
lución óptima para la escena que se presenta. Este algoritmo presenta resultados
similares (se obtiene cierto ruido estructurado) a los obtenidos por el algoritmo
de path trace (fila inferior) en tiempos de ejecución similares

6.2. Subdivisión de la imagen
Como se ha expuesto en la fase de análisis en la sección 3.5 y durante el

diseño en la sección 4.3, se ha diseñado igualmente el algoritmo para poder rea-
lizar divisiones, no solo en cada uno de los pixeles, si no subdividiendo todo el
espacio de la imagen.

Este algoritmo de subdivisión presenta reseñables resultados para tareas
tales como el antialiasing5. Este concepto se puede observar en la Figura 6.2
donde se muestra una comparativa entre los distintos resultados de métodos
para una simulación de la iluminación directa en una escena concreta.

Así mismo, este algoritmo puede utilizarse para realizar reducir el ruido
causado cuando se hace uso del Método de Monte Carlo. El concepto del ruido
existente en el Método de Monte Carlo se encuentra más explicado en el Anexo
B.2.

5El proceso de antialiasing pretende minimizar el efecto causado por el muestreo de señales
de manera digital, también llamado aliasing.

24

6 VALIDACIÓN Y RESULTADOS

path trace adaptativo path trace

1 path por pixel

620ms

8 div. 2 ∗ 104 iter.

1s 880ms

8 paths por pixel

3s 667ms

Figura 6.2: El algoritmo de subdivisión de la imagen (imagen central) mejora
el primer caso presentado que solo hace uso de una muestra en cada pixel,
mientras que presenta una calidad equiparable a la conseguida que si se utilizan
8 muestras por pixel, presentando además un tiempo de ejecución menor.

Se presenta en la Figura 6.3 una comparativa entre la misma escena realizada
haciendo uso del algoritmo de subdivisión de la imagen y del Método de Monte
Carlo de manera simple para poder comparar como el número de muestras
usadas afecta a ambos.

6.3. Estructura de almacenamiento
Como ya se ha explicado en el apartado de diseño en la sección 4.5, todas

las versiones del algoritmo hacen uso de una cola de prioridad para el almace-
namiento de los datos, así como la selección del orden de subdivisión. Esta cola
de prioridad idealmente se plantea como un mónticulo por las propiedades del
mismo, sin embargo, en casos en los que la cantidad de datos crece altamente,
la implementación de la cola de prioridad como un montículo deja de ser una
opción, por lo que como se propone, se plantea el uso de una estructura menos
restrictiva, pero con menores costes tanto de memoria como de ejecución de sus
operaciones.

Como se puede observar en los resultados de la Figura 6.4, la estructura de

25

6 VALIDACIÓN Y RESULTADOS

8 div. 104 iter. - 20s 833ms 64 paths - 37s 917ms

Figura 6.3: El algoritmo de subdivisión de la imagen (izquierda) no muestra el
ruido aleatorio que se produce al utilizar el Método de Monte Carlo (derecha).
Así mismo consigue generar un resultado comparable al Método de Monte Carlo
en un tiempo menor.

almacenamiento diseñada como alternativa al montículo presenta mejores coste
de memoria, mientras que mantiene unos resultados similares a los obtenidos
haciendo uso del montículo.

0 div. 7,5 ∗ 106 iter 0.04 thres. 0 div. 9,5 ∗ 106 iter 0.04 thres.

Figura 6.4: Los resultados obtenidos haciendo uso del montículo (izquierda)
son comparables a los obtenidos mediante la estructura alternativa (derecha),
quitando algunas zonas subdividas de manera equivocadamente prioritaria que
otras, mientras que el coste de memoria es altamente inferior.

Sobre el coste de memoria empleado por cada uno de los algoritmos, se pue-
de especificar un máximo pero no el coste exacto, debido al valor de umbral
presente, así como el proceso interno de la estructura alternativa al montículo.
De esta manera los coste de memoria física, no disco, máximos serían de apro-
ximadamente 300 MB para el caso del montículo, frente a aproximadamente

26

6 VALIDACIÓN Y RESULTADOS

31MB en el caso de la estructura alternativa ya que se encuentra fijado por la
propia estructura.

27

7. Conclusiones y trabajo futuro
7.1. Conclusiones obtenidas

Tanto durante el proceso de planteamiento, diseño e implementación de este
trabajo, como durante la fase de análisis de los resultados que se han obtenido,
se ha llegado a múltiples conclusiones.

En primer lugar, el algoritmo que este trabajo propone presenta una im-
portante mejora para casos de mapas de entorno y para escenas que presentan
zonas “suaves”, que métodos aleatorios como el Método de Monte Carlo simulan
con ruido debido a su aleatoriedad. Para dichas zonas, el método adaptativo que
este trabajo propone consigue reducir el ruido así como la cantidad de muestras
empleadas para la obtención de resultados.

En lo que a conclusiones más concretas respecta, se ha observado que, como
era esperable, el método propuesto con subdivisiones en todas las dimensiones
de la imagen, encuentra problemas en zonas de las imágenes que presenten dis-
continuidades, donde necesita realizar una gran cantidad de subdivisiones para
conseguir un resultado, al contrario que en las zonas suaves de las mismas. Este
hecho se tratará más profundamente en el apartado de Trabajo Futuro.

Por último, comentar las conclusiones extraidas a partir del proceso de diseño
e implementación de la aproximación del error de las subdivisiones. Durante
este proceso se ha sopesado el uso de distintos métodos para su cálculo, que
favoreciera en gran medida que las subdivisiones se realizarán correctamente.
Para ello se han realizado distintas pruebas, utilizando distintas fórmulas para
cálcular la distancia entre los valores que se obtienen con la aproximación por la
Regla de Simpson y la Regla de Trapecio, así como el uso de distintos espacios
de color, para poder cálcular la aproximación del error como se comenta en el
Anexo B.3. Este proceso ha permitido determinar que el uso de espacios de
color como HSV6 o HSL7 para la comparativa necesaria en las aproximaciones
mencionadas, supone un beneficio gracias a la representación que este tipo de
espacios de color ofrecen, en el que cada canal aporta más significado para
distinguir diferencias entre colores.

6Hue, Saturation, Value o en español Matiz, Saturación y Valor
7Hue, Saturation, Lightness o en español Matiz, Saturación y Luminosidad

28

7 CONCLUSIONES Y TRABAJO FUTURO

7.2. Trabajo futuro
Como se ha comentado, la aplicación del algoritmo para todas las subdivisio-

nes requiere de gran cantidad de subdivisiones en zonas de altos contrastes. Se
propone como trabajo futuro el diseño de un algoritmo híbrido entre el Método
de Monte Carlo y el proceso de subdivisión de la imagen que se realiza en todas
las dimensiones. Dado que este proceso ya obtiene espacio multidimensionales
con errores estimados similares, sería de interes observar el comportamiento de
una aplicación del Método de Monte Carlo en función de estos espacios obteni-
dos.

Así mismo, el diseño e implementación, tanto de otra aproximación del error
(distintos espacios de color a los utilizados), sobre todo para el caso de subdi-
visión de todas las dimensiones, como de un distinto proceso de interpolación
sería interesante como campo de estudio.

Por último, es importante mencionar que el algoritmo presentado no se en-
cuentra implementado de manera altamente eficiente, por lo que una posible
vía de trabajo futuro sería la mejora de eficiencia del mismo, así como de las
estructuras de almacenamiento, siendo viable la implementación de nuevas con
distinta gestión de los datos almacenados que la que presentan las actuales.

29

Referencias
[boo] Boost. http://www.boost.org/. 1.59.0.

[cla] Clang. http://clang.llvm.org/. 3.7.1.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

[cma] Cmake. https://cmake.org/. 3.4.1.

[HJW+08] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Ke-
vin Dale, Greg Humphreys, Matthias Zwicker, and Henrik Wann
Jensen. Multidimensional adaptive sampling and reconstruction for
ray tracing. In ACM Transactions on Graphics (TOG), volume 27,
page 33. ACM, 2008.

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143–150, August 1986.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Mo-
deling Language Reference Manual, The (2Nd Edition). Pearson
Higher Education, 2004.

[Str13] Bjarne Stroustrup. A Tour of C++. 2013.

[Vea98] Eric Veach. Robust Monte Carlo Methods for Light Transport Simu-
lation. PhD thesis, Stanford, CA, USA, 1998. AAI9837162.

[ZJL+15] Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang
Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril
Soler, and S-E Yoon. Recent advances in adaptive sampling and re-
construction for monte carlo rendering. Computer Graphics Forum,
34(2):667–681, 2015.

30

http://www.boost.org/
http://clang.llvm.org/
https://cmake.org/

Anexos
A. Simulación de Iluminación Global

La simulación de iluminación global trata de modelar escenas tridimensiona-
les utilizando, además de la iluminación que proviene directamente de las luces
existentes en las escenas que se pretenden simular, los rayos de luz que provienen
de esas fuentes de luz, pero que han sido reflejados en las diversas superficies de
la escena, formando lo que se conoce como iluminación indirecta.

(a) Iluminación local (b) Iluminación global

Figura 7.1: Comparativa de la misma escena teniendo en cuenta únicamente
iluminación directa, y computando iluminación global.

Los algoritmos que se usan para la simulación de gráficos 3D por computado-
ra que consideran una simulación de iluminación global consiguen, por tanto,
una simulación más completa que aquellos que tienen en cuenta únicamente la
luz directa en sus cálculos.

Aún así, el computo de esta iluminación indirecta supone un gran coste
computacional si lo comparamos con el coste que lleva simular únicamente es-
cenas con iluminación directa.

Una clara comparación entre una escena sin iluminación global y otra con
iluminación global se puede observar en la Figura 7.1.

A.1. La Ecuación de Render

Este proceso de simulación de iluminación se realiza utilizando lo que cono-
cemos como la Ecuación de Render [Kaj86].

La ecuación de render es una ecuación integral que define la radiancia que
parte desde un punto hacia un dirección como la suma de la radiancia que dicho

31

punto emite, además de la radiancia reflejada, bajo una aproximación geométrica
(Figura 7.2).

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +
∫

Ω
fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi · n)dωi

(7.1)
donde:

x es la localización en el espacio.

ωo es la dirección de la luz que parte del punto x.

λ es una longitud de onda de la luz.

t es el tiempo.

n es la normal a la superficie en el punto x.

ωi es la dirección de la luz que llega al punto x.

Lo(x, ωo, λ, t) es la Radiancia Espectral total de longitud de onda λ que
se emite en la dirección ωo en el tiempo t desde una posición x.

Le(x, ωo, λ, t) es la radiancia emitida.

Ω es la semiesfera centrada alrededor de n que contiene todos los valores
posibles de ωi.∫

Ω · · · dωi es la integral sobre Ω.

fr(x, ωi, ωo, λ, t) es la BRDF 8, la proporción de luz reflejada desde ωi

hacia ωo en la posición x, tiempo t, y en la longitud de onda λ.

Li(x, ωi, λ, t) es la Radiancia Espectral de longitud de onda λ que llega a
x desde la dirección ωi en el tiempo t.

ω · n es el factor de debilitamiento del la radiancia entrante debido al
ángulo de incidencia. Suele escribirse como cos θi.

Un ejemplo de su uso en un caso de iluminación local (como el presentado en
la Figura 7.1a), con distintas fuentes de luz, la luz incidente se computaría como
un sumatorio de la luz que aportarían las distintas k fuentes de luz presentes en
la escena.

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +
k∑

i=0
fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi ·n) (7.2)

8Bidirectional Reflectance Distribution Function, o en español, Función de Distribución
Bidireccional de la Reflectancia

32

En los casos de iluminación global, los cálculos se realizarían utilizando de
manera recursiva la propia Ecuación de Render para obtener la luz indirecta
que llegaría hasta un punto.

Cuando se utiliza la Ecuación de Render para la simulación de imágenes por
ordenador, inicialmente los puntos de estudio serían los píxeles de la imagen, ya
que sabiendo que luz emiten en dirección a la hipotética cámara de la escena,
es posible asignar un color a cada pixel de la imagen que se obtendrá como
resultado del proceso de simulación de iluminación global.

ωo ωi
n

x
Ω

Figura 7.2: Fenómeno descrito por la ecuación de render. La ecuación de render
define la luz emitida desde un punto x en una dirección dada.

Se sobrentiende entonces la importancia de esta ecuación para cualquier
técnica de renderizado, y la importancia de encontrar aproximaciones lo más
cercanas al autentico valor devuelto por la misma dentro del campo de la simu-
lación de imágenes por ordenador.

Aun así, la ecuación de render no contempla fenómenos que, aunque com-
plejos en términos físicos, son habituales en escenas cotidianas. Efectos como
la fluorescencia, la fosforescencia, la interferencia de la luz o el fenómeno de
scatering no se contemplan al usar la ecuación de render para simular escenas
por computador. Esto se debe a que la ecuación de render simplifica el fenó-
meno de interacción de la luz al nivel de la óptica geométrica, mientras que los
fenómenos comentados pertenecen a los campos de la óptica de ondas, la óptica
electromagnética o la óptica cuántica.

A.2. Path Integral

Para utilizar la Ecuación de Render en el proceso de simulación de Ilumi-
nación Global es necesario, como ya se ha comentado, hacer un uso recursivo
de la misma.

Esto puede conllevar, en caso de querer simular con exactitud el compor-
tamiento de la luz en un escena, un computo elevado de cálculos recursivos,
costosos en términos de cálculo para un computador.

Sin embargo, existe un formulación distinta para el fenómeno de propagación

33

de la luz, la llamada Path Integral [Vea98, Section 8].

La Path Integral presenta una formulación en forma de una única integral
(Ecuación 7.3) frente a la recursividad que presenta la ecuación de render para
el problema:

Ij =
∫

Ω
fj(x̄)dµ(x̄) (7.3)

donde Ω es el conjunto de todos los transport paths de cualquier longitud.
El término fj representa la llamada Measurement Contribution Equation,

que designa la contribución de cada path (path contribution).
Por último, µ representa el Path Space, el cual puede expresarse como una

secuencia de números del intervalo [0 . . . 1]. Este hecho es importante, dado
que el algoritmo presentado hace uso de este hecho para definir los intervalos de
integración.

q′i

qo

N

N x

x′

x′′

Figura 7.3: Geometría para el la ecuación de transporte de la luz en la three-point
form

La Measurement Contribution Equation, comentada anteriormente, puede
definirse mediante la siguiente expresión:

fj(x̄) = Le(x0 ← x1)
k−1∏
i=1

fs(xi−1 ← xi ← xi+1)G(xi ↔ xi+1)·W (j)
e (xk−1 ← xk)

(7.4)
Esta ecuación se puede obtener extendiendo recursivamente la Ecuación de

Render, partiendo desde la Measurement Equation que presenta [Vea98, Sec-
tion 3] y aplicando un cambio de variable hasta que se obtenga la siguiente
ecuación:

34

Ij =
∞∑

k=1

∫ k+1

M
Le(x0 ← x1)

k−1∏
i=1

fs(xi−1 ← xi ← xi+1)G(xi ↔ xi+1)

·W (j)
e (xk−1 ← xk)dA(x0) · · · dA(xk) (7.5)

=
∫
M2

Le(x0 ← x1)G(xi ↔ xi+1)W (j)
e (xk−1 ← xk)dA(x0)dA(x1)

+
∫
M3

Le(x0 ← x1)G(x0 ↔ x1)fs(x0 ← x1 ← x2)G(x1 ↔ x2)

·W (j)
e (x1 ← x2)dA(x1)dA(x2)

+ · · ·

que comparando con (7.3) permite obtener la expresión de la Measurement
Contribution Function vista en (7.4).

Respecto a los términos que aparecen en esta misma, como en la forma ex-
pandida vista en (7.5), G representa el cambio de variable mencionado, mientras
que el términoW (j)

e (x→ x′) representa la importancia emitida desde x′ hacia x.

Un ejemplo del valor de fj(x̄) para un camino x̄ = x0x1x2x3 sería, por tanto:

fj(x̄) = Le(x0 → x1)G(x0 ↔ x1)fs(x0 → x1 → x2)
·G(x1 ↔ x2)fs(x1 → x2 → x3)G(x2 ↔ x3)W (j)

e (x2 → x3) (7.6)

como se puede observar en la Figura 7.4.

La integral que se presenta en esta aproximación ya no tiene el caracter
recursivo que se encuentra en la ecuación de render, en la que se define la apor-
tación de luz de parte de la ecuación como una aplicación recursiva de la misma.

Que esta aproximación presente una única integral es una ventaja. De esta
manera se trata el problema de manera más completa y se permite, por ejemplo,
la contrucción de caminos comenzando desde vértices intermedios, algo que con
la ecuación de render no es posible, dado que el camino es construido con un
lanzamiento de rayos recursivo desde el vértice inicial, la lente o cámara de la
escena.

35

x0

x1 x2

x3
G(x0 ↔ x1)

G(x1 ↔ x2)
G(x2 ↔ x3)

fs(x0 → x1 → x2) fs(x1 → x2 → x3)

Le(x0 → x1) We(x2 → x3)

Figura 7.4: Ejemplo de un camino de longitud 3 según el concepto de path
integral.

36

B. Integración numérica
En el ámbito del análisis numérico, se considera la integración numérica a los

distintos algoritmos utilizados para determinar el valor numérico de una inte-
gral definida, de manera que habitualmente se utiliza por extensión este termino
para referirse a la resolución de ecuaciones diferenciales.

Esta integral definida supone la suma de valores dentro del rango establecido
con un diferencial entre los mismos, de manera que se puede expresar de la
siguiente manera: ∫ b

a

f(x)dx = ĺım
n→∞

n∑
i=1

f(ξi)∆xi

donde ∆xi = xi − xi−1,xi−1 ≤ ξi ≤ xi.

Es también utilizado el término cuadratura numérica (o simplemente cua-
dratura) para referirse de igual manera a la integración numérica, y aunque
habitualmente se utiliza en el caso de integrales de una única dimensión, tam-
bién se utiliza para referirse en algunos casos a integrales de más dimensiones.

Debido al caracter integral del problema de renderizado mediante la Ecua-
ción de Render o mediante la Path Integral, el cálculo integral juega un papel
muy importante en la simulación de imágenes 3D por ordenador.

B.1. Técnicas de cuadratura

Estas integrales se resuelven normalmente en la práctica calculando una
aproximación suficientemente precisa de la misma haciendo uso de las llamadas
técnicas de cuadratura. Estos métodos utilizan de manera general una combi-
nación de evaluaciones del integrando para obtener aproximaciones de la misma.

Las técnicas de cuadratura siguen una fórmula general para realizar las apro-
ximaciones de las integrales definidas:∫ b

a

f(x) ≈ (b− a)
n∑

i=1
ωif(xi) (7.7)

donde ωi, xi y n son los párametros que varian entre cada algoritmo de aproxi-
mación.

De entre ellos, n indica el número de evaluaciones que se ha hecho del in-
tegrando, por lo que normalmente es deseable utilizar métodos que permitan
cálculos precisos con pocas evaluaciones, dado que así se reducirá el tiempo de
cálculo que implica el realizarlas.

Las distintas técnicas existentes se pueden agrupar en aquellas que están
basadas en funciones de interpolación y en métodos adaptativos.

37

Aquellas que utilizan funciones de iterpolación se basan en utilizar una fun-
ción de interpolación, fácilmente integrable, de la función original de la que se
desea calcular la integral.

La mencionada interpolación es la técnica del análisis numérico que permite
la construcción de nuevos puntos partiendo de un conjunto conocido de puntos.
Esto permite en muchas ciencias que a partir de un conjunto de muestras to-
madas experimentalmente, generar una función que se ajuste a la distribución
de los mismos.

(a) Puntos a interpolar (b) Interpolación linear (c) Interpolación polinómica

Figura 7.5: Ejemplo de distintas funciones de interpolación posibles aplicadas a
un conjunto de datos.

El problema ligado estrechamente con este es la aproximación de funciones
complejas por funciones más sencillas. Este es el problema que compete en las
técnicas de cuadratura, puesto que interesa simplificar la función de estudio por
otra más sencilla cuya integral sea facilmente calculable.

Por tanto, se hace uso de la interpolación para conseguir esa función sim-
plificada utilizando datos muestreados, de manera que se intente ajustar de
estructura general conocida.

Normalmente, en el caso de las técnicas de cuadratura, estas funciones de
interpolación utilizadas son polinomios, y puesto que los polinomios de grado
elevado tienden a tener unas variaciones extremas, en la práctica se hace uso de
polinomios de menor grado, normalmente lineares o cuadráticos.

De esta manera, el método más sencillo sería utilizar un polinomio de grado
0, es decir una función constante, que pasara en este caso por el punto medio
del intervalo de la función a interpolar, ((a + b)/2, f((a + b)/2)). Este método
es conocido como regla del punto medio o Regla del Rectángulo (Figura 7.6a).∫ b

a

f(x)dx ≈ (b− a)f
(a+ b

2

)
(7.8)

38

La siguiente aproximación posible sería utilizar un polinomio de grado 1 que
pasara por los puntos (a, f(a)) y (b, f(b)). Esta aproximación se conoce como
Regla del Trapecio (Figura 7.6b).∫ b

a

f(x)dx ≈ (b− a)f(a) + f(b)
2 (7.9)

Otra aproximación posible sería la conocida como Regla de Simpson (Figura
7.6c), que utiliza como base un polinomio de grado 2.∫ b

a

f(x)dx ≈ b− a
6

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]
(7.10)

Para cada una de las reglas expuestas se puede conseguir una aproximación
más precisa si el intervalo de estudio [a, b] se subdivide en n subintervalos,
calculando la aproximación para cada uno y sumando los resultados. Esto se
conoce como Regla Compuesta. Un ejemplo de regla compuesta sería, en el caso
de la Regla del Trapecio sería la regla compuesta del trapecio,

∫ b

a

f(x)dx ≈ b− a
n

(
f(a)

2 +
n−1∑
k=1

(
f

(
a+ k

b− a
n

))
+ f(b)

2

)
(7.11)

donde, si h = (b − a)/n y K = 0, 1, 2, ..., n − 1, los distintos intervalos ten-
drían la forma [Kh, (K + 1)h].

(a) Regla del Rectángulo (b) Regla del Trapecio (c) Regla de Simpson

Figura 7.6: Comparativa de las distintas reglas de cuadratura (rojo) para una
misma función (azul).

Otra técnica de cuadratura distinta a las mencionadas es el uso del Método
de Monte Carlo . El Método de Monte Carlo es una técnica matemática que
hace uso de números aleatorios para la resolución de problemas.

En este caso, la integración por el Método de Monte Carlo es la técnica de
integración numérica que hace uso de muestras aleatorias para resolver integrales
definidas.

De tal manera el Método de Monte Carlo aproximaría una integral I haciendo
uso de muestras aleatorias.

39

I =
∫ b

a

f(x)dx ≈ (b− a)
N

N∑
i=1

f(xi) (7.12)

Esta técnica se menciona con más detalle en el siguiente apartado, dada su
utilidad, precisamente, en el cálculo de integrales multidimensionales.

B.2. Cuadratura multidimensional

En la anterior subsección se han comentado distintas técnicas de cuadratura,
pero estas son aplicables a integrales de una dimensión.

Para resolver integrales de múltiples dimensiones, la primera aproximación
posible sería expresar la integral multidimensional que se desea calcular como
una repetición de integrales unidimensionales, utilizando el Teorema de Fubini.

∫
X

(∫
Y

f(x, y)dy
)
dx =

∫
Y

(∫
X

f(x, y)dx
)
dy =

∫
X×Y

f(x, y)d(x, y) (7.13)

El uso de este concepto será también importante para el algoritmo como se
explicará en sucesivas secciones para poder realizar cálculos de los valores de la
integral sobre una de las dimensiones del problema.

∫ bx

ax

∫ by

ay

f(x, y)dydx =
∫ by

ay

∫ bx

ax

f(x, y)dxdy

≈ (bx − ax)
(by − ay)

(
f(ax,ay)+f(ax,by)

2 + f(bx,ay)+f(bx,by)
2

)
2 (7.14)

≈ (by − ay)
(bx − ax)

(
f(ax,ay)+f(bx,ay)

2 + f(ax,by)+f(bx,by)
2

)
2

Esta evaluación de múltiples integrales para la resolución de la integral múl-
tiple tendría el problema de que el número de evaluaciones de la función que
habría que realizar crecería de manera exponencial según el número de dimen-
siones se incrementara. Este problema es conocido como la maldición de la
dimensionalidad, y existen varios métodos que intentan evitar este problema,
de entre los cuales el más conocido y utilizado es el mencionado anteriormente
Método de Monte Carlo (7.12)

El Método de Monte Carlo es un método ampliamente utilizado para la
resolución de problemas de cuadratura multidimensional, debido a que la com-
plejidad de sus aproximaciones no escala respecto al número de dimensiones
contempladas en la integral definida como si que hacen otras reglas de cua-
dratura. Así mismo, permite una fácil parametrización del número de muestras

40

utilizadas en la aproximación.

Sin embargo, la propia aleatoriedad de las muestras que se usan en este
método le confiere de un defecto que otras reglas de cuadratura presentan en
menor medida. Las aproximaciones que se realizan utilizando este método po-
seen un ruido9 causado por esta aleatoriedad, que aunque puede ser disminuido
mediante distintas técnicas, sigue siendo una característica poco deseable para
una regla de cuadratura.

(a) Método de Simpson (b) Método de Monte Carlo

Figura 7.7: Comparativa de la distribución de muestras necesarias para el cálculo
de una integral de 2 dimensiones con 2 métodos distintos

B.3. Cuadratura adaptativa

Las técnicas de cuadratura adaptativas se basan en las técnicas de cuadratura
mencionadas previamente, utilizando subintervalos del dominio de integración
de estudio escogidos adaptativamente.

Esto quiere decir que el número de muestras que estas técnicas utilizan se
ajusta para conseguir la precisión necesaria. De esta manera, cada subintervalo
es cálculado con un número de muestras acorde a la complejidad del mismo.

Para considerar los algoritmos adaptativos es necesario considerar una esti-
mación del error que se comete al realizar la aproximación de la integral, que
podría ser a priori o posteriori, aunque normalmente es usado a posteriori, pues
es calculado tras haber calculado la aproximación de la integral. Esta estima-
ción del error se calcula normalmente como la diferencia de dos aproximaciones
distintas de la integral, de manera que se considera el error entre ambas como
el error estimado de la aproximación que se esta realizando para la integral (Al-
goritmo 2).

9En el ambito matemático y físico se denomina ruido a aquellos datos o información no
correcta que se encuentra entre aquella correcta provocando datos erróneos o incorrectos. En
el caso de la integración hace a datos incorrectos como resultado de la integración.

41

Procedure integrate(f, a, b, tau)
Q ≈ aproximation1(f, a, b);
ε ≈ |Q−aproximation2(f, a, b) | ;
si (ε>tau) entonces

m = (a+b)/2 ;
Q = integrate(f, a, m, tau) + integrate(f, m, b, tau)

fin
devolver Q ;

Algoritmo 2: Esquema general del algoritmo adaptativo para aproximación
de integrales

El algoritmo adaptativo realiza, por tanto, una aproximación de la integral
a calcular en el intervalo de estudio, así como una estimación del error cometido
en dicha aproximación.

Si el error calculado en la aproximación es mayor que un valor de tolerancia
escogido τ , el intervalo de estudio se subdivide, y se aplica el propio algoritmo
sobre cada uno de los intervalos que se obtienen.

De esta manera la aproximación que se obtiene de la integral es, o bien la
aproximación que se calculo inicialmente, o la suma del calculo recursivo de los
subintervalos obtenidos.

Figura 7.8: Las muestras necesarias para los cálculos que conlleva la Regla de
Simpson (aquí en 2D) incluyen las muestras que necesita una regla de menor
grado como la Regla del Trapecio (muestras en azul).

En la práctica, es importante observar un hecho importante si queremos
ahorrar cálculos a la hora de utilizar los métodos adaptativos.

Si los cálculos para la aproximación de la integral se utiliza una regla de
cuadratura determinada, supongamos que una regla de cuadratura de grado N ,
podría ahorrarse utilizar muestras adicionales si la regla de cuadratura que se
utiliza para, junto a la primera, aproximar el error cometido es de grado N − 1.

42

ε = reglaGradoMayor(f, a, b)− reglaGradoMenor(f, a, b) (7.15)

De esta manera para el cálculo del error no se realizará ningún cálculo adi-
cional al ya realizado para únicamente tener una aproximación de la integral.
Esto es conocido como técnicas anidadas, y se utilizará tal y como se explica en
secciones posteriores para ahorrar cálculo de muestras y por tanto tiempo de
computación innecesario.

43

C. Diagrama de clases

44

Se incluye a continuación una breve descripción de las clases expuestas en
este diagrama de clases:

FilmPixel: Clase encargada de almacenar la información de color asocia-
da a un único pixel.

MultiArray: Clase que permite definir arrays multidimensionales.

PointDivision: Encargada de almacenar los datos de las subdivisiones
en el algoritmo de subdivisión por pixel.

PointDivision: Encargada de almacenar los datos de las subdivisiones
en el algoritmo de subdivisión de la imagen.

EngineQuadratureGlobal: Clase que implementa el algoritmo de sub-
división por pixel, con uso de montículo global.

EngineQuadraturePerpixel: Clase que implementa el algoritmo de sub-
división por pixel, con uso de montículo por pixel.

EngineQuadratureImage: Clase que implementa el algoritmo de sub-
división de la imagen.

EngineQuadratureGlobalFile: Versión de la clase EngineQuadrature-
Global, implementada haciendo uso de la estructura alternativa para la
cola de prioridad.

EngineQuadraturePerpixelFile: Versión de la clase EngineQuadratu-
rePerpixel, implementada haciendo uso de la estructura alternativa para
la cola de prioridad.

EngineQuadratureImage: Versión de la clase EngineQuadratureImage,
implementada haciendo uso de la estructura alternativa para la cola de
prioridad.

priority_queue: Clase perteneciente a las librerias STL de C++ que
implementa la cola de prioridad por montículo.

FileQueue: Clase propia que implementa la cola de prioridad haciendo
uso de la estructura alternativa explicada en la sección 4.5.2.

45

	Introducción
	Objetivos del proyecto
	Estructura de la memoria

	Conceptos Teóricos
	Path Integral
	Técnicas de cuadratura

	Análisis del problema
	Estado del arte
	Requisitos
	Analisis general del problema
	Subdivisión por pixel
	Subdivisión de la imagen

	Diseño
	Esquema general del algoritmo
	Subdivisión por pixel
	Subdivisión de la imagen
	Estructura para las subdivisiones
	Datos a almacenar

	Cola de prioridad
	Montículo
	Estructura propia

	Implementación
	Tecnologías y herramientas utilizadas
	Implementación de las subdivisiones
	Colas de prioridad
	Implementación de los engines
	Ejecutables del proyecto

	Validación y Resultados
	Validación
	Subdivisión de la imagen
	Estructura de almacenamiento

	Conclusiones y trabajo futuro
	Conclusiones obtenidas
	Trabajo futuro
	Referencias
	Anexos
	Simulación de Iluminación Global
	La Ecuación de Render
	Path Integral

	Integración numérica
	Técnicas de cuadratura
	Cuadratura multidimensional
	Cuadratura adaptativa

	Diagrama de clases

