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The self-assembly of α-synuclein is closely associated with Parkinson’s
disease and related syndromes. We show that squalamine, a natural
product with known anticancer and antiviral activity, dramatically
affects α-synuclein aggregation in vitro and in vivo. We elucidate
the mechanism of action of squalamine by investigating its interaction
with lipid vesicles, which are known to stimulate nucleation, and find
that this compound displaces α-synuclein from the surfaces of such
vesicles, thereby blocking the first steps in its aggregation process. We
also show that squalamine almost completely suppresses the toxicity
of α-synuclein oligomers in human neuroblastoma cells by inhibiting
their interactions with lipid membranes. We further examine the ef-
fects of squalamine in a Caenorhabditis elegans strain overexpressing
α-synuclein, observing a dramatic reduction of α-synuclein aggrega-
tion and an almost complete elimination of muscle paralysis. These
findings suggest that squalamine could be a means of therapeutic
intervention in Parkinson’s disease and related conditions.

Parkinson’s disease | protein aggregation | amyloid formation |
toxic oligomers | drug development

The aggregation of α-synuclein (Fig. 1A), an intrinsically dis-
ordered protein expressed at high levels in the brain, is

closely associated with the pathogenesis of a variety of neuro-
degenerative disorders, collectively known as α-synucleino-
pathies, including Parkinson’s disease (PD), dementia with Lewy
bodies (DLB), and multiple-system atrophy (MSA) (1–7). It has
been exceptionally challenging, however, to develop effective
strategies to suppress the formation of α-synuclein aggregates
and their associated toxicity (8, 9), because the mechanism of
aggregation of this protein is extremely complex and highly de-
pendent on environmental factors, such as pH, temperature, and
contact with surfaces (10). In particular, it is well established that
phospholipid binding can accelerate fibril formation (11); moreover,
it has recently been shown that such acceleration occurs through the
enhancement of the initial primary nucleation step in the aggrega-
tion process (12). In the light of this information, we decided to
investigate whether compounds capable of altering the binding of
α-synuclein to lipid membranes could be effective in inhibiting its
aggregation. This study was stimulated by our recent finding that a
small molecule, bexarotene, can suppress significantly the primary
nucleation reaction that initiates the production of the Aβ42 ag-
gregates linked with Alzheimer’s disease (AD) and reduces the as-
sociated toxicity in aCaenorhabditis elegansmodel of this disease (13).
In the present work, we have focused on one particular com-

pound, squalamine (Fig. 1B), an antimicrobial aminosterol origi-
nally discovered in 1993 in the dogfish shark, Squalus acanthias
(14). This small molecule, now prepared synthetically (see
SI Materials and Methods for details), has been found to
have pharmacological activity in endothelial cells by inhibiting

growth factor-dependent pathways and thus has emerged as a drug
candidate for the treatment of cancer and macular degeneration (15,
16). In the present context, our choice of studying squalamine was
prompted by the observation that this molecule is able to enter
eukaryotic cells and displace proteins that are bound to the cyto-
plasmic face of plasma membranes (17–19), suggesting that it may
influence the initiation of the aggregation of α-synuclein (12). Indeed
squalamine has been referred to as a “cationic lipid” (18) as it carries a
net positive charge and shows a high affinity for anionic phospholipids
(20) of the type that nucleates the aggregation of α-synuclein, thereby
reducing the negative charge of the membrane surface to which it is
bound (18, 21) without significantly disrupting the integrity of lipid
surfaces (18). In analogy, it has recently been shown that a homolo-
gous protein, β-synuclein, can inhibit α-synuclein lipid-induced aggre-
gation via a competitive binding at the surface of lipid vesicles (22).
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of aberrant aggregates primarily formed by the protein α-synuclein.
It has been difficult, however, to identify compounds capable of
preventing the formation of such deposits because of the com-
plexity of the aggregation process of α-synuclein. By exploiting
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compound, squalamine, that blocks α-synuclein aggregation, and
characterize its mode of action. Our results show that squalamine,
by competing with α-synuclein for binding lipid membranes, spe-
cifically inhibits the initiation of the aggregation process of
α-synuclein and abolishes the toxicity of α-synuclein oligomers in
neuronal cells and in an animal model of Parkinson’s disease.
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Because of these properties, we investigated the possibility
that squalamine could be effective in interfering with the mem-
brane-induced aggregation of α-synuclein. We first investigated
the possible mechanism of action of squalamine in this regard by
detailed biophysical studies in vitro and extended those results by
testing the effects of squalamine on the toxicity of α-synuclein
oligomers, using human neuroblastoma cells in culture (23, 24),
and then carried out experiments in vivo, using a well-established
C. elegans animal model of PD (25).

Results
Squalamine Displaces α-Synuclein from Lipid Membranes. To study
whether or not squalamine can affect the binding of α-synuclein
to lipid bilayers, we first used small unilamellar vesicles (SUVs)
with diameters of about 30 nm composed of 30% 1,2-dioleoyl-sn-

glycero-3-phospho-L-serine (DOPS), 50% 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE), and 20% 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC), which represent the most abundant lipids
found in the membranes of synaptic vesicles (26). Titrating squal-
amine into a solution of α-synuclein bound to DOPS:DOPE:DOPC
(30:50:20) vesicles was observed to reduce the α-helical content of
α-synuclein in an approximately linear manner with squalamine
concentration, as measured by circular dichroism (CD) (Fig. 1 C
and D). This observation suggests that squalamine is able to
displace α-synuclein from the surface of lipid bilayers.
The physiological concentration of α-synuclein in neuronal syn-

apses is estimated to be about 50 μM (27, 28), a concentration of
protein that can be studied by NMR spectroscopy (27, 29–32). We
therefore used this technique to probe potential interactions be-
tween α-synuclein and squalamine in the absence of lipids and to
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Fig. 1. Squalamine displaces α-synuclein from DOPS:DOPE:DOPC (30:50:20) vesicles. (A) Amino acid sequence of α-synuclein and its three distinct regions (44),
the N-terminal region (blue), the central region (gray), and the C-terminal fragment (green). (B) Structure of squalamine (21). (C and D) Changes in the CD
spectrum (C) and the mean residue ellipticity (MRE) (D) at 222 nm of 5 μM α-synuclein in the presence of 1.25 mM DOPS:DOPE:DOPC (30:50:20) vesicles in the
absence (black) and presence (colors) of increasing concentrations of squalamine: 10 μM (brown), 20 μM (green), 30 μM (red), 40 μM (orange), 50 μM (violet),
60 μM (blue), and 70 μM (light blue) in 20 mM Tris (pH 7.4) and 100 mM NaCl. The dashed horizontal line in D indicates the MRE at 222 nm of monomeric
α-synuclein in the absence of lipids. Nearly complete displacement of α-synuclein is achieved for a lipid:squalamine ratio of about 18:1. (E) Ratios of the
α-synuclein NMR peak heights as a function of added squalamine for three residues representative of the three regions of α-synuclein with distinct forms of
behavior (11), the N-terminal residue M1 (circles), the central non-Aβ component (NAC) residue G86 (squares), and the C-terminal residue A107 (crosses).
(F) Ratios of the NMR peak heights of 100 μM of α-synuclein observed in 1H-15N NMR HSQC spectra in the presence of DOPE:DOPS:DOPC (30:50:20) vesicles
(1.25 mM) and different concentrations of squalamine (0 μM, circles; 64 μM, squares; 96 μM, triangles; 112 μM, rhomboids; 144 μM, hexagons; and 176 μM,
inverted triangles) relative to peak heights in a spectrum of α-synuclein in the absence of lipids and squalamine. Essentially complete displacement of
α-synuclein from lipid membranes is observed at a concentration of squalamine of ca. 200 μM, corresponding to a lipid:squalamine ratio of about 6:1. For all
the experiments shown in this figure N-terminally acetylated α-synuclein was used (45).
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characterize the displacement of the protein from lipid membranes
by squalamine, as suggested by the CD experiments. This approach
is based on the fact that even very weak interactions typically gen-
erate measurable shifts in the NMR signals of interacting molecules

and often broaden the resonances to an extent that is determined by
the rates involved in the binding process.
We first incubated free monomeric α-synuclein in the absence

of lipids and in the presence of increasing concentrations of
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Fig. 2. Squalamine inhibits α-synuclein aggregation via competitive binding with lipid membranes. (A) Changes in the CD spectrum of 20 μM α-synuclein in the
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KD,S = 67 nM and LS = 7.3, respectively (see SI Materials and Methods for details). (C) Global fits of the early time points in the kinetic traces of α-synuclein ag-
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and 10 μM, brown). The solid line is the corresponding global fit using a competitive binding model (See SI Materials and Methods for details) with only one free
parameter, nb (the reaction order of the lipid-induced aggregation with respect to the fraction of the protein bound), which was found to be 5.5.
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squalamine and observed small chemical shift changes in the
resonances of residues in the C-terminal region of the protein
(Fig. S1), consistent with those associated with the weak binding
of α-synuclein to other polyamine compounds (33). The in-
teraction involves two regions between residues 85 and 140, where
the NMR spectra reveal two distinct types of behavior; the
resonances of residues 88–106 show only very small effects, but
those of residues 113–139 are affected in a much more pro-
nounced manner. To probe the stoichiometry of the interaction
of α-synuclein and squalamine and to estimate the binding
constant, we performed a series of dilutions on a sample con-
taining 80 μM α-synuclein and 240 μM squalamine, monitoring
the intensities of the α-synuclein resonances (Fig. S1). This
experiment shows that when the squalamine concentration
becomes lower than about 100 μM, the spectral changes char-
acteristic of the interaction are no longer visible.
Then, we investigated further the displacement of α-synuclein

from the membrane by squalamine. It has been previously
demonstrated that addition of DOPE:DOPS:DOPC (50:30:20)
vesicles to a sample of α-synuclein results in attenuation of
the main-chain amide signals of its about 100 N-terminal resi-
dues in the 1H-15N heteronuclear single quantum correlation
(HSQC) NMR spectrum (27). This attenuation is attributable to

the binding of these residues to the large, slowly tumbling vesi-
cles, whereas the secondary structure becomes α-helical, as in-
dicated by CD measurements and by indirect transferred nuclear
Overhauser effects (NOEs) in the spectra (27). By contrast, the
resonances of the 40 C-terminal residues retain almost their full
intensity and experience only very minor changes in chemical shifts
(Fig. 1F). In the present work we prepared an NMR sample
containing a sufficient quantity of lipid vesicles to cause a large
attenuation of the signals of α-synuclein and then titrated in-
creasing amounts of squalamine into the sample (Fig. 1 E and F).
We observed that the addition of about 200 μM of squalamine
resulted in an almost complete recovery of the intensity of the
α-synuclein signals (Fig. 1F) and found that signals from residues
101–120, which are affected to a much smaller extent than residues
1–100 by the presence of lipids, were restored to their free in-
tensities at a much lower concentration of squalamine.
Interestingly, even though the squalamine:α-synuclein ratios

and the absolute squalamine concentrations in the presence of
DOPE:DOPS:DOPC vesicles (Fig. 1 C and D) were comparable
to those in the lipid-free experiments (Fig. S1), there was no
evidence in the former experiments for the interaction of
squalamine with the C-terminal residues. In addition, when the
squalamine concentration was increased to 80 μM in the absence

Fig. 3. Squalamine suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their binding to the cell membranes.
(A) Effects of squalamine on α-synuclein oligomer-induced MTT reduction in SH-SY5Y cells. α-Synuclein oligomers (23, 24) were resuspended in the cell culture
medium at a concentration of 0.3 μM, incubated with or without increasing concentrations (0.03 μM, 0.1 μM, 0.3 μM, 1.0 μM, and 3.0 μM) of squalamine for 1 h
at 37 °C under shaking conditions, and then added to the cell culture medium of SH-SY5Y cells for 24 h. The cells were also treated with squalamine pre-
incubated in the absence of oligomers for 1 h at 37 °C under shaking conditions. **P ≤ 0.01 and ***P ≤ 0.001, respectively, relative to untreated cells and °°P ≤
0.01 relative to cells treated with α-synuclein oligomers. (B) Representative confocal scanning microscope images of SH-SY5Y cells showing the effect of
squalamine on α-synuclein oligomer-induced ROS production. α-Synuclein oligomers were resuspended in the cell culture medium at a concentration of
0.3 μM, incubated with or without increasing concentrations (0.03 μM, 0.3 μM, and 3.0 μM) of squalamine for 1 h at 37 °C under shaking conditions, and then
added to the cell culture medium of SH-SY5Y cells for 15 min. The cells were also treated with 3 μM squalamine preincubated without oligomers for 1 h at
37 °C while shaking. The green fluorescence arises from the 2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) probe that has reacted with ROS. (Scale
bar, 30 μm.) *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001, respectively, relative to untreated cells. °°P ≤ 0.01 and °°°P ≤ 0.001, respectively, relative to untreated cells
and the symbol °° indicates P ≤ 0.01 relative to cells treated with α-synuclein oligomers. (C) Representative confocal scanning microscopy images of the apical
sections of SH-SY5Y cells treated for 15 min with α-synuclein oligomers (0.3 μM) and increasing concentrations (0.03 μM, 0.1 μM, 0.3 μM, 1.0 μM, and 3.0 μM) of
squalamine. Red and green fluorescence indicates the cell membranes and the α-synuclein oligomers, respectively. (Scale bar, 10 μm.)
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of α-synuclein, the sample became highly opaque, suggesting that
the lipid vesicles in the sample undergo fusion within seconds, an
effect likely to be due to the change in the electrostatic prop-
erties of the lipid vesicles upon squalamine binding. However, in
the presence of α-synuclein the samples were stable and no
precipitation occurred within the time scales of either the CD or
the NMR experiments.
Taken together, these observations demonstrate that, in a sys-

tem containing α-synuclein and negatively charged lipid mem-
branes, squalamine partitions to the membrane surface, thereby
inducing the displacement of the protein from the membrane
rather than remaining free in solution and interacting directly
with α-synuclein.

Squalamine Inhibits Lipid-Induced Aggregation of α-Synuclein by
Competing for Binding Sites at the Surface of the DMPS Vesicles. In
the light of these results, we explored the effects of squalamine
on the binding and aggregation of α-synuclein in the presence of
1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS)-containing
vesicles, which have been shown to be particularly effective in
enhancing the rate of aggregation and amyloid formation by
α-synuclein (12). We first incubated the protein under conditions
where effectively all of the α-synuclein molecules present in the
sample were bound to the vesicles and in the presence of increasing
concentrations of squalamine. As observed in the experiments with

the DOPS:DOPE:DOPC (30:50:20) vesicles (Fig. 1 C–F), the
presence of squalamine progressively decreased the α-helical con-
tent of α-synuclein (Fig. 2A), again indicating that squalamine dis-
places the protein from the vesicles. We thus used the same
competitive binding model (Fig. 2B) as the one describing the dis-
placement of α-synuclein from the vesicle by β-synuclein (22), where
both α-synuclein and squalamine compete for binding sites at the
surface of the DMPS vesicles, in order to analyze the CD data. This
model, together with previously determined binding constants for
the α-synuclein/DMPS system (12), described the data very closely
and yielded values for both the binding constant and the stoichio-
metry of the binding of squalamine to DMPS vesicles, KD,  S = 67 nM
and LS = 7.3, respectively. These results suggest that the positively
charged squalamine binds strongly to the anionic head groups of
the lipid bilayers, progressively coating the surfaces of the lipid
membrane, thereby decreasing the electrostatic forces and com-
peting for the sites on the lipid vesicles that are required for the
binding of α-synuclein.
We further monitored the effects of increasing concentrations

of squalamine on the size and the fluidity of the DMPS vesicles,
using dynamic light scattering and differential scanning calorime-
try (Fig. S2), respectively. The presence of squalamine caused an
increase in the diameter of the DMPS vesicles from about 20 nm
to values in excess of 100 nm at squalamine:lipid ratios greater
than 0.1 (Fig. S2). In addition, differential scanning calorimetry
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(DSC) traces of the DMPS vesicles in the absence and presence of
50 μM squalamine show that the molecule induced a decrease in
the melting temperature by 10 °C (Fig. S2), an effect similar to
that observed upon binding of α-synuclein to DMPS vesicles (12),
suggesting that squalamine interacts with the membrane surface.
Overall, however, these results indicate that at squalamine:DMPS
ratios below 1:10 the integrity of the vesicles is not compromised.
We then studied the aggregation of α-synuclein in the pres-

ence of DMPS vesicles and increasing concentrations of
squalamine and observed that the overall rate of amyloid for-
mation under such conditions decreases dramatically in a dose-
dependent manner (Fig. 2 C–E). It is interesting to note that
the observed change in the rate of lipid-induced aggregation of
α-synuclein is not likely to be due to a change in the vesicle
morphology; as discussed above, at the squalamine:lipid ratios
used here the diameter of the vesicles ranges from 20 nm to 100 nm
(Fig. S2), and this size variation has been shown not to affect sig-
nificantly the kinetics of amyloid formation by α-synuclein in the
presence of DMPS vesicles (12).
To quantify further the effects of squalamine on α-synuclein

aggregation, we analyzed the early stages of the kinetic traces
(Fig. 2C) (12) (see SI Materials and Methods for details) and
determined the rate of α-synuclein aggregation at each concentra-
tion of squalamine (Fig. 2E). The change in the relative rate of
lipid-induced aggregation of α-synuclein with increasing concen-
tration of squalamine is well described by a competitive binding
model, with the binding constants determined here for squalamine
(KD,S and LS) and previously for α-synuclein (KD,α and Lα) (12).
Taken together, these results are consistent with the conclusion that
squalamine inhibits the lipid-induced aggregation of α-synuclein via

competitive binding at the surfaces of the vesicles, as observed for
β-synuclein (22). In addition, we probed the interaction of
squalamine with α-synuclein fibrils by incubating squalamine in
the presence of the fibrils. We then centrifuged the sample and
separated the supernatant from the pellet. Then we assessed
the quantity of squalamine in the supernatant before and after
incubation with fibrils using, mass spectrometry (Fig. S3). We
found that, after incubation, the signal corresponding to
squalamine in the supernatant was reduced (−85%), suggesting
a degree of binding to α-synuclein fibrils. This interaction may also
play a role in the observed inhibition of squalamine on the lipid-
induced aggregation of α-synuclein. As a control we performed
the same experiment, using Aβ42 fibrils (Fig. S3). In this case, we
observed a lower binding signal (−66%), indicating stronger
binding to α-synuclein fibrils.

Squalamine Suppresses the Toxicity of α-Synuclein Oligomers in
Human Neuroblastoma Cell Lines by Inhibiting Their Binding to
Cellular Membranes. We have recently developed a protocol to iso-
late oligomers of α-synuclein shown to be toxic to human cells (23,
24). We exposed cultured human SH-SY5Y neuroblastoma culture
cells to such oligomers at a concentration of 0.3 μM (monomer
equivalent of α-synuclein). Under these conditions, the oligomers
were indeed toxic to the cells, as demonstrated by the decreased
ability of the cells to chemically reduce 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Fig. 3A). The
cells were also treated with α-synuclein oligomers (0.3 μM) in
the presence of increasing concentrations of squalamine (up to
3.0 μM) (Fig. 3A). The results show that squalamine decreases
markedly the mitochondrial damage induced by the α-synuclein
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oligomers, as indicated by MTT reduction data, with the pro-
tective effect increasing with squalamine concentration (Fig. 3A).
Similar results were obtained from analyzing intracellular re-
active oxygen species (ROS) production within SH-SY5Y cells;
the α-synuclein oligomers (0.3 μM) induced a sharp increase in
ROS levels in this cell model, indicating increased ROS-induced
cellular damage (Fig. 3B). Upon treatment of the cells with
α-synuclein oligomers (0.3 μMmonomer equivalent) and increasing
concentrations (0.03 μM, 0.3 μM, and 3 μM) of squalamine, the
degree of ROS-derived fluorescence was observed to decrease
steadily with increasing squalamine concentration (Fig. 3B), and
at the highest ratio of squalamine:α-synuclein concentrations it
was found to suppress almost completely the increase of in-
tracellular ROS levels caused by the oligomers.
We then investigated the mechanism by which squalamine

inhibits α-synuclein oligomer toxicity by analyzing the interac-
tions between the oligomers (0.3 μM) and human SH-SY5Y
neuroblastoma cells at increasing concentrations (up to 3.0 μM)
of squalamine, using confocal microscopy and anti–α-synuclein
antibodies. The images were scanned at apical planes to detect
oligomers (green channel) interacting with the cellular surface
(red channel) (Fig. 3C). Large numbers of α-synuclein oligomers
bound to the plasma membrane were observed in cells exposed
to oligomers, but their number was markedly decreased as the
squalamine concentration was increased (Fig. 3C). As we have
shown previously, the toxicity caused by protein oligomers can be
correlated with membrane binding (34) and this finding provides
an explanation for the inhibition of the cellular damage induced

by α-synuclein oligomers by squalamine and is consistent with a
competitive binding model.

Squalamine Reduces α-Synuclein Aggregation and Related Paralysis in
a Worm Model of PD. We extended our in vitro observations that
squalamine can suppress the aggregation and toxicity of α-synuclein
to a living system. We used a well-studied model of PD in the
nematode worm C. elegans, which is based on the overexpression
of α-synuclein tagged with yellow fluorescent protein (YFP) in the
muscle cells of the nematode worms (25). This model organism, in
which the presence of α-synuclein causes characteristic phenotypic
changes (25), has been successfully used to probe the nature of a
range of neurodegenerative conditions and has been used in high-
throughput screens to identify novel genes that modify the course
of disease (35, 36).
Motility in C. elegans declines during aging and it can be

measured in liquid media by counting the number of body bends
per unit of time (37). This phenotypic readout has been used
extensively for identification of genes and pathways connected to
age-related protein homeostasis, as well as for the definition of
modifiers of protein aggregation (25, 35, 36); both of these
processes are closely associated with the onset and development
of neurodegenerative diseases (5, 7, 38). We first tested different
approaches to optimize the effects of squalamine in vivo and
found that the best treatment regime was to administer the
compound at the larval stage L4, when the worms were fully
developed, and to maintain the worms on plates seeded with
squalamine for their whole lifespan. By carrying out standard
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body bend assays (37), we observed a very significantly im-
proved motility of the PD worms treated with squalamine (Fig.
S4). By contrast, the motility of a C. elegans strain expressing
only YFP, used here as a control, was not detectably affected by
squalamine (Fig. S4).
As standard body bend assays monitored by manual means can

be prone to errors and are not always reproducible, many digital
tracking platforms have recently been proposed to characterize
worm behavior in a more quantitative and rigorous way (39). To
improve the reproducibility of the results, we have developed a
high-throughput microscopic screening procedure that allows robust
C. elegans phenotypic screening with improved statistics, coupled
with automated analysis of the motility of the animals (see SI Ma-
terials and Methods for details).
Movies of swimming worms were recorded using a high-per-

formance imaging lens and a machine vision camera at a high
number of frames per second (fps) for 30 s or 1 min, and the
platform enabled us to image simultaneously up to 200 swimming
animals over the whole surface of a 6-cm agar plate (see SI Ma-
terials and Methods for details). Using this method, we confirmed
with statistical confidence the observed improved motility (Fig. S5)
of the PD worms upon squalamine administration (Figs. 4A, 5, and
6 and Movies S1–S4). Automated analysis of the velocities of the
movements of the worms further confirmed a significant difference
between treated and untreated PD worms, and indeed those ani-
mals exposed to 50 μM squalamine showed motility levels that
were essentially the same as those of the control worms (Fig. 4B).
We then explored the effects of squalamine on the aggregation

of α-synuclein in PD worms by fluorescence microscopy. Fol-
lowing the addition of squalamine to the medium in which the
animals were maintained, we observed a substantial decrease in
α-synuclein inclusion formation in aged PD worms (day 12 of
adulthood) (Fig. 4 C and D), despite the fact that the levels of
α-synuclein expression in the PD worms in the absence and in the
presence of squalamine were found to be closely similar (Fig.
4E). We also demonstrated that no effects could be detected on
the intensity or the distribution pattern of YFP expressed within
the body-wall muscle of the control worms (Fig. 4C).
Furthermore the protective effect of squalamine was apparent

throughout the study, as shown by recovery of motility (thrashing
and speed), decrease in paralysis rate, and the decrease in the
number of inclusions (Fig. 5). Finally, to assess whether or not
the observed effects of squalamine in suppressing inclusion for-
mation and toxicity were specific to the α-synuclein worms, we
tested squalamine in a worm model of Aβ42-mediated dysfunction
(40). In this system, where the presence of lipids is not required for
the initiation of Aβ42 aggregation (41, 42), we observed that
squalamine, at concentrations that completely restored the
pathological phenotype in the Abeta42 worms, showed no sig-
nificant protective effects (Fig. S5), thereby indicating the
specificity of squalamine against α-synuclein aggregation.

Discussion
We have shown by using a variety of biophysical techniques that
squalamine can inhibit in vitro the aggregation of α-synuclein
induced by lipid membranes. Furthermore we have shown by
using a cellular model and an animal model of PD that squal-
amine dramatically reduces in vivo the toxicity associated with
α-synuclein aggregation (Fig. 6).
To study the binding of α-synuclein to lipids, we first used SUVs

composed of DOPS, DOPE, and DOPC, which are the most
abundant lipids found in the membranes of synaptic vesicles (26).
Titrating squalamine into a solution of α-synuclein bound to SUVs
caused the α-helical content of α-synuclein to decrease in an ap-
proximately linear manner with squalamine concentration, as
measured by CD and NMR, thus suggesting that squalamine dis-
places α-synuclein from lipid membranes, as observed for a range of
other protein/lipid systems (17). We further explored the effects of

squalamine on the binding and aggregation of α-synuclein in the
presence of DMPS-containing vesicles, which have been shown to
be particularly effective in enhancing the rate of aggregation and
amyloid formation of α-synuclein (12). The presence of squalamine
progressively decreased the α-helical content of α-synuclein, again
indicating that this compound displaces the protein from the vesi-
cles, as recently observed for β-synuclein (22). To analyze these
data, we thus used the same competitive binding model as the one
describing the inhibitory effect of β-synculein on α-synuclein lipid-
induced aggregation (22), where both α-synuclein and squalamine
compete for binding sites at the surface of the DMPS vesicles,
which validated the model in a quantitative manner.
In addition, we have shown that squalamine does not interact

directly with monomeric α-synuclein in free solution, except at
very high concentrations and in the absence of lipids, and that it
affects the size and the thermotropic properties of lipid vesicles
only at high squalamine:DMPS ratios (>0.1). Moreover, we have
observed that the overall rate of lipid-induced α-synuclein ag-
gregation in vitro decreases dramatically and in a dose-de-
pendent manner upon incubation with squalamine.
We then extended this study by using SH-SY5Y cells treated

with oligomers of α-synuclein previously shown to be toxic to
cells in culture (23, 24) and found that squalamine inhibits
completely the mitochondrial dysfunction and the cellular ROS
production induced by the oligomers. The degree of binding of
toxic α-synuclein oligomers to neuronal cells also decreased with
increasing squalamine concentration, and based on our results,
we proposed a competitive binding model, where toxic oligomers
of α-synuclein and squalamine compete for binding sites at the
surface of neuronal cells. These results suggest that squalamine
drastically decreases not only the neurotoxicity caused by the
intracellular accumulation of α-synuclein aggregates but also
the cellular damage induced by aggregates interacting with the
membrane of neuronal cells. We then provided further evidence
for a protective effect of squalamine observed in vitro and in
cells by using a well-studied C. elegans model of PD (25). When
worms were exposed to squalamine from an early stage in their
development, we observed an almost complete recovery of the
motility dysfunction induced by α-synuclein together with a
substantial decrease in inclusion formation in treated PD worms.
Taken together, these results suggest that squalamine inhibits the

initial step in the lipid-induced aggregation of α-synuclein through
competitive binding at the surface of the lipid vesicles and also
drastically reduces the toxicity of oligomeric forms of α-synuclein in
vivo. We note that it is also possible that other secondary mecha-
nisms of action, such as direct interactions with fibrils, may be
present and could work in synergy with the principal mechanism of
action of squalamine that we have described.

Conclusions
We have shown that in vitro and in cell cultures squalamine sup-
presses the initial events in the aggregation of α-synuclein by dis-
placing the protein from lipid membranes, where such events
preferentially take place, and also acts to reduce the interactions of
oligomeric aggregates with the membrane surfaces (Fig. 6). These
results indicate the mechanisms by which squalamine significantly
inhibits the aggregation of α-synuclein in vivo and also reduces
dramatically its associated toxicity. We suggest, therefore, that
squalamine, and by extension other molecules that can compete ef-
fectively with α-synuclein for lipid membrane binding, could have the
potential to act as therapeutic agents for PD and other conditions
associated with the pathogenic aggregation of α-synuclein.

Materials and Methods
Extended experimental procedures are described in SI Materials and Methods.
Wild-type α-synuclein was expressed in Escherichia coli and purified as pre-
viously described (10). DOPE/DOPS/DOPC vesicles were prepared as previously
described (27). DMPS vesicles were prepared as previously reported (12) and
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aggregation kinetics and related data analysis were carried out as previously
described (12). α-Synuclein oligomers were also prepared as described
previously (23, 24) and cell cytotoxicity assays were carried out as indicated
(43). In vivo experiments were carried out by using a well-studied C. elegans
model of PD (25).
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