000061317 001__ 61317
000061317 005__ 20200221144314.0
000061317 0247_ $$2doi$$a10.1016/j.cej.2016.05.018
000061317 0248_ $$2sideral$$a95338
000061317 037__ $$aART-2016-95338
000061317 041__ $$aeng
000061317 100__ $$0(orcid)0000-0003-3315-5933$$aRemón, J.
000061317 245__ $$aEffect of biodiesel-derived impurities (acetic acid, methanol and potassium hydroxide) on the aqueous phase reforming of glycerol
000061317 260__ $$c2016
000061317 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061317 5203_ $$aThis work analyses the influence of three biodiesel-derived impurities (CH3OH, CH3COOH and KOH) on the aqueous phase reforming of glycerol at 220 °C and 44 bar using a Ni-La/Al2O3 catalyst. The experiments were planed according to a factorial 2k design and analysed by means of an analysis of variance (ANOVA) test to identify the effect of each impurity and all possible binary and ternary combinations. The presence of CH3OH decreased the glycerol conversion, while CH3COOH and KOH decreased and increased the gas production, respectively. Catalyst deactivation took place under acidic conditions due to the loss of part of the active phase of the catalyst through leaching. The gas phase was made up of H2, CO2, CO and CH4. KOH exerted the greatest influence on the gas composition, increasing H2 production due to the greater gas production and the lower H2 consumption in the hydrogenation reactions. The liquid phase was made up of aldehydes, monohydric and polyhydric alcohols, C3 and C4 ketones and esters. CH3OH increased the proportion of monohydric alcohols, while CH3COOH promoted dehydration reactions, leading to an increase in the relative amount of C3-ketones.
000061317 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2010-18985$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-41523-R
000061317 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000061317 590__ $$a6.216$$b2016
000061317 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 49 = 0.061$$c2016$$dQ1$$eT1
000061317 591__ $$aENGINEERING, CHEMICAL$$b6 / 135 = 0.044$$c2016$$dQ1$$eT1
000061317 592__ $$a1.758$$b2016
000061317 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000061317 593__ $$aIndustrial and Manufacturing Engineering$$c2016$$dQ1
000061317 593__ $$aEnvironmental Chemistry$$c2016$$dQ1
000061317 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000061317 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000061317 700__ $$aRuiz, J.
000061317 700__ $$0(orcid)0000-0002-7179-3031$$aOliva, M.$$uUniversidad de Zaragoza
000061317 700__ $$0(orcid)0000-0001-7115-9025$$aGarcía, L.$$uUniversidad de Zaragoza
000061317 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, J.$$uUniversidad de Zaragoza
000061317 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000061317 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000061317 773__ $$g299 (2016), 431-448$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000061317 8564_ $$s697730$$uhttps://zaguan.unizar.es/record/61317/files/texto_completo.pdf$$yPostprint
000061317 8564_ $$s62934$$uhttps://zaguan.unizar.es/record/61317/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000061317 909CO $$ooai:zaguan.unizar.es:61317$$particulos$$pdriver
000061317 951__ $$a2020-02-21-13:38:56
000061317 980__ $$aARTICLE