000061328 001__ 61328 000061328 005__ 20220503125123.0 000061328 0248_ $$2sideral$$a81657 000061328 037__ $$aART-2009-81657 000061328 041__ $$aeng 000061328 100__ $$0(orcid)0000-0003-1263-1996$$aClavero, C.$$uUniversidad de Zaragoza 000061328 245__ $$aHigh order schemes for reaction-diffusion singularly perturbed systems 000061328 260__ $$c2009 000061328 5060_ $$aAccess copy available to the general public$$fUnrestricted 000061328 5203_ $$aIn this paper we are interested in solving e¿ciently a singularly per-turbed linear system of di¿erential equations of reaction-di¿usion type. Firstly, anon–monotone ¿nite di¿erence scheme of HODIE type is constructed on a Shishkinmesh. The previous method is modi¿ed at the transition points such that an inversemonotone scheme is obtained. We prove that if the di¿usion parameters are equal itis a third order uniformly convergent method. If the di¿usion parameters are di¿er-ent some numerical evidence is presented to suggest that an uniformly convergentscheme of order greater than two is obtained. Nevertheless, the uniform errors arebigger and the orders of uniform convergence are less than in the case correspondingto equal di¿usion parameters. 000061328 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000061328 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000061328 700__ $$0(orcid)0000-0003-2538-9027$$aGracia, J.L.$$uUniversidad de Zaragoza 000061328 700__ $$0(orcid)0000-0001-8835-6869$$aLisbona F.J.$$uUniversidad de Zaragoza 000061328 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000061328 773__ $$g69 (2009), 107-115$$pLect. notes comput. sci. eng.$$tLecture Notes in Computational Science and Engineering$$x1439-7358 000061328 8564_ $$s725592$$uhttps://zaguan.unizar.es/record/61328/files/texto_completo.pdf$$yVersión publicada 000061328 8564_ $$s42495$$uhttps://zaguan.unizar.es/record/61328/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000061328 909CO $$ooai:zaguan.unizar.es:61328$$particulos$$pdriver 000061328 951__ $$a2022-05-03-12:44:22 000061328 980__ $$aARTICLE