

ANEXO 1. PROCEDIMIENTO DE OPERACIÓN Y RESULTADOS EN LA PLANTA PILOTO DE GASIFICACIÓN

A continuación se muestra el procedimiento de operación seguido para el desarrollo de los experimentos y las tablas que se han tomado como referencia para realizar el apartado de "Resultados en la planta de gasificación" y que han sido elaboradas a partir de la experimentación en la planta piloto de gasificación del ICB-CSIC. En ellas se muestran las variables que se han considerado, las condiciones de operación utilizadas y los resultados obtenidos.

1.1 Procedimiento de operación

Antes de realizar los experimentos es necesario que el día previo a la experimentación se limpie y se prepare la instalación para evitar los problemas de taponamiento provocados por compuestos condensables formados tras la parada del experimento anterior. Para llevar a cabo estas tareas se hace pasar aire a presión mediante una pistola de aire comprimido por el interior de las tuberías de escape de gases y conexiones con los analizadores. Además se han de limpiar y sustituir los filtros utilizados en la instalación y debe cargarse la cantidad de sólido del lecho y biomasa que durante la experimentación anterior han sido retenidos en el filtro situado en el combustor y consumida respectivamente.

Para la puesta en marcha de la instalación se hace pasar un flujo de N_2 al gasificador, de aire al combustor y el flujo de N_2 correspondiente al *loop*, para que el sólido circule entre ambos reactores, y estos mantengan condiciones de fluidización a medida que se van alcanzando las temperaturas deseadas para cada reactor. Esta etapa suele prolongarse durante un par de horas.

Una vez alcanzadas las temperaturas de operación deseadas y un comportamiento estacionario de la instalación se procede a gasificar. Llegado este punto, se sustituye la corriente de N_2 al gasificador por agua y se enciende el dispositivo de tornillo sinfín para introducir biomasa a una velocidad de 20 rpm.

Una vez que la instalación comienza a gasificar, antes de la toma de datos y recogida de las muestras de alquitranes absorbidos, es necesario que el comportamiento de la instalación sea estacionario, por lo tanto será necesario gasificar durante por lo menos una hora antes de la toma de datos y recogida de alquitranes.

Alcanzado el estado estacionario de la instalación se procede a la recogida de alquitranes haciendo pasar el gas de síntesis por el interior de los frascos borboteadores durante aproximadamente una hora, dependiendo de la velocidad del gas de síntesis a su paso por el filtro, para recoger una cantidad de 60 LN de gas seco. En el caso de que el experimento consista en comprobar el comportamiento de un filtro catalítico, se hace pasar el gas de síntesis por el interior del filtro previamente al paso por los frascos borboteadores.

1.2 Tablas de resultados obtenidos en la experimentación

Efecto del material del lecho y la temperatura de gasificación

Tabla 1.1. Condiciones de operación y composición de los vapore para diferentes Temperaturas de gasificación y diferentes materiales de lecho.

	Unidades	Arena*		Olivina		I	Fe/olivina	a		
T ^a Gasificador	[°C]	800	750	800	850	750	800	850		
T ^a Combustor	[°C]	900	900	900	900	900	900	900		
Biomasa	[g/h]	250	250	250	270	250	250	250		
Relación	$\left[\alpha / \alpha \right]$	0.60	0.65	0.65	0.60	0.60	0.60	0.57		
H ₂ O/biomasa	[g/g-bs]	0.00	0.05	0.05	0.00	0.00	0.00	0.37		
Composición del gas	Composición del gas (base seca, libre deN ₂)									
Gasificador	. ,									
\mathbf{H}_2	$[vol\%_{bs}]$	22.8	26.9	29.2	29.4	29.0	29.6	26.7		
CO_2	$[vol\%_{bs}]$	13.2	24.5	27.9	23.3	34.6	29.6	41.8		
СО	$[vol\%_{bs}]$	43.3	31.4	27.4	31.4	22.3	26.2	18.7		
CH_4	$[vol\%_{bs}]$	14.4	12.0	10.8	11.1	9.9	10.2	8.8		
C_2H_4	$[vol\%_{bs}]$	5.2	4.4	3.9	4.0	3.6	3.7	3.2		
C_2H_6	$[vol\%_{bs}]$	0.6	0.5	0.5	0.5	0.4	0.4	0.4		
C_3H_8	$[vol\%_{bs}]$	0.4	0.3	0.3	0.3	0.3	0.3	0.3		
Combustor										
O_2	$[vol\%_{bs}]$	18.1	17.1	17.5	17.6	15.7	16.5	15.4		
CO_2	$[vol\%_{bs}]$	1.6	2.8	2.4	1.9	3.4	2.4	1.8		
CO	$[vol\%_{bs}]$	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Cont. Alquitranes	[g/Nm ³ _{bs}]	16.8	8.3	5.5	7.8	5.5	3.7	2.6		

*El experimento con arena, sin actividad catalítica, se realizó como referencia.

Efecto de la relación H₂O/biomasa en el gasificador

Sólido del lecho	Fe/olivina	Fe/olivina
Temperaturas(°C)		
Gasificador	800	800
Gas del "freeboard"	800	800
Combustor	900	900
Condiciones de operación		
Biomasa (g/h)	234	229
H ₂ O/biomasa seca (g/g)	0.59	0.88
Composición del gas (%vol, li	ibre de N ₂ y en base seca)	
Gasificador		
СО	26.2	20.3
CO2	29.6	37.7
H2	29.6	31,6
CH4	10.2	9.2
C2H4	3.7	1.0
C2H6	0.4	0.1
C3H8	0.3	0.1
Combustor		
O ₂	16.4	16.4
CO ₂	2.4	1.97
Alquitranes (g/Nm ³ seca)	3.69	4.22

Tabla 1.2. Condiciones de operación y resultados experimentales de los experimentos en Fe/olivina para diferentes ratios de H₂O/biomasa.

Efecto de la utilización de filtros catalíticos a la salida del gasificador

Sólido del lecho Filtro catalítico	Fe/Olivina No	Fe/Olivina Si	Fe/Olivina No	Fe/Olivina Si	Fe/Olivina No	Fe/Olivina Si
Dimensiones del		60x40x20x12		60x40x20x12		60x40x20x12
filtro T^{a} filtro (°C)		800		800		800
Γ muo (C)		800		800		800
Velocidad del gas en	el filtro (m/h)					
Diseño		60		60		60
Experimental		66		68		65
ΔP filtro (mbar)		8		11		11
Temperaturas (°C)						
Gasificador	750	750	800	800	850	850
Gas "freeboard"	800	800	800	800	800	800
Combustor	900	900	900	900	900	900
Condiciones de opera	ación	I		- · · · · · · · · · · · · · · · · · · ·		
Biomasa (g/h)	250	250	250	250	250	250
H ₂ O/biomasa seca	0.62	0.62	0.64	0.64	0.63	0.63
(g/g)						
Composición del gas	(%vol. libre	de N₂ v en base s	eca)			
Gasificador	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
CO	23.3	17.2	17.1	15.5	18.0	18.0
CO ₂	36.1	34.2	45.7	40.5	44.2	37.2
H ₂	30.3	39.9	28.1	36.1	28.6	36.5
$\tilde{CH_4}$	10.3	8.6	9.1	7.9	9.2	8.3
Combustor						
O_2	15.7	15.7	14.9	14.9	16.2	16.2
CO ₂	3.2	3.2	2.7	2.7	1.3	1.3
-						
Alquitranes	5 5	1 75	236	0.86	2.68	1 47
(g/Nm ³ seco)	5.5	1.75	2.30	0.80	2.08	1.47
Conversión		69		64		45
alquitranes (%)	-	08	-	04	-	45
Composición de alou	uitranes (ø/Nm	n^3 seco)				
Estireno	0.22	0.00	0.07	0.00	0.12	0.01
Benceno	0.68	0.00	0.07	0.00	0.00	0.00
Indeno	1.48	0.15	0.42	0.06	0.29	0.03
Naftaleno	2.39	1.48	1.43	0.70	2.02	1.36
Acenaftileno	0.28	0.00	0.11	0.00	0.08	0.02
Fluoreno	0.06	0.00	0.00	0.00	0.00	0.00
Penantreno	0.25	0.07	0.19	0.04	0.13	0.02
Otros	0.14	0.04	0.06	0.06	0.04	0.03

Tabla 1.3. Condiciones de operación y resultados experimentales de los experimentos con Fe/olivina y el filtro A de PALL (60x40x20x12)

Sólido del lecho Filtro catalítico	Fe/Olivina No	Fe/Olivina Si	Fe/Olivina No	Fe/Olivina Si	Fe/Olivina No	Fe/Olivina Si
Dimensiones del		70x50x30x16		70x50x30x16		70x50x30x16
filtro		, 0.12 0.12 0.11 0		, 0.12 0.12 0.11 0		, one one one of
T ^a filtro (^o C)		800	I	800		800
Velocidad del gas	en el filtro (m	/h)				
Diseño		60		60		60
Experimental		60		67		62
ΔP filtro (mbar)		15	-	16		11
Tomporaturas (°C	(r					
Gasificador	750	750	800	800	850	850
Gas "freeboard"	800	800	800	800	800	800
Combustor	000	000	000	000	000	000
Combustor	900	900	900	900	900	900
Condiciones de op	peración					
Biomasa (g/h)	261	261	258	258	241	241
H ₂ O/biomasa	0.52	0.52	0.52	0.52	0.57	0.57
seca (g/g)	0.52	0.52	0.52	0.52	0.57	0.57
Composición del s	oas (%vol lib	re de Na v en base	seca)			
Gasificador		re de 1\2 y en buse	(secu)			
CO	23.0	18 5	22.7	19.8	19.5	10.0
CO	37.0	32.6	30 4	33.6	43.5	35.7
H ₂	28.8	38.8	28.4	39.0	27.8	37.7
CH.	10.3	83	96	7.8	9.2	80
Combustor	10.5	0.5	2.0	7.0	2.2	0.0
$\Omega_{\rm c}$	14 5	147	15 5	15.6	15 1	15.8
	3.8	3.6	27	26	18	16
CO_2	5.0	5.0	2.7	2.0	1.0	1.0
Alquitranes	57	1 30	3.88	1.12	2.62	0.65
(g/Nm ³ seco)	5.7	1.39	5.00	1.12	2.02	0.05
Conversión		75		71		75
Alquitranes (%)	-	75	-	/1	-	75
Composición de a	lauitranes (g/l	Nm ³ seco)				
Estireno	033	0.00	0.21	0.00	0.00	0.00
Fenol	0.17	0.00	0.00	0.00	0.00	0.00
Renzofurano	0.24	0.00	0.00	0.00	0.00	0.00
Indeno	1.45	0.00	0.25	0.00	0.00	0.00
Naftaleno	2 41	1 16	1 94	1 11	1 11	0.65
Rifenileno	0.51	0.06	0.24	0.00	0.00	0.00
Fluoreno	0.13	0.00	0.24	0.00	0.00	0.00
Franantrano	0.15	0.00	0.15	0.00	0.00	0.00
Antracono	0.20	0.04	0.15	0.00	0.00	0.00
Fluoranteno	0.02	0.00	0.02	0.00	0.00	0.00
Pireno	0.07	0.00	0.21	0.00	0.00	0.00
	0.07	0.00	0.00	0.00	0.00	0.00

Tabla 1.4. Condiciones de operación y resultados experimentales de los experimentos en Fe/olivina con el filtro catalítico B de PALL (70x50x30x16)

Efecto de la velocidad del gas a la entrada del filtro

Sólido del lecho Filtro catalítico	Fe/olivina No	Fe/olivina Si	Fe/olivina Si	Fe/olivina Si
Dimensiones del filtro		70x50x30x16	70x50x30x16	70x50x30x16
T ^a filtro (°C)		800	800	800
Velocidad del gas en el	filtro (m/h)			
Diseño		60	72	90
Experimental		68.8	82.5	95.7
ΔP filtro (mbar)		20	19	32
Temperaturas (°C)				
Gasificador	800	800	800	800
Gas. del "freeboard"	800	800	800	800
Combustor	900	900	900	900
Condiciones de operaci	ón			
Biomasa (g/h)	229	229	229	229
H ₂ O/biomasa seca	0.88	0.88	0.88	0.88
(g/g)	0.88	0.00	0.88	0.88
Composición del gas (%	ovol, libre de N ₂ y e	n base seca)		
Gasificador				
CO	20.3	15.5	15.8	15.7
CO_2	37.7	34.2	34.2	33.9
H_2	31.6	42.5	42.1	42.4
CH_4	9.2	7.3	7.4	7.5
Combustor				
O_2	16.4	16.2	16.2	16.3
CO_2	1.97	2.01	2.03	1.92
Alquitranes	4.22	0.86	1.52	1.72
$(g/Nm^3 seco)$	4.22	0.80	1.55	1.72
Conversión	_	80	64	60
Alquitranes (%)		00	UT	00

Tabla 1.5. Condiciones de operación y resultados experimentales de los experimentos en Fe/olivina para diferentes velocidades con el filtro catalítico B de PALL (70x50x30x16).

ANEXO 2. ESTUDIOS DE TERMOGRAVIMETRIA

Para llevar a cabo la caracterización del sólido Fe/olivina ha sido necesaria la utilización de un equipo de termobalanza donde poder practicar a las muestras los ensayos de reducción/oxidación. En este apartado se va a tratar la descripción del equipo utilizado y se va a describir el procedimiento experimental.

2.1 Descripción del equipo

El equipo consta principalmente de un sistema de alimentación de gases, una termobalanza CI Electronics y un sistema de recogida de datos.

El sistema de alimentación de gases consta de varias válvulas y controladores de flujo másico que permiten fijar la composición y caudal de los gases que se introducen en la termobalanza, Figuras 2.1 y 2.2. Para introducir vapor de agua en la corriente de gases alimentada a la termobalanza, los gases atraviesan un borboteador con agua destilada cuya temperatura se establece mediante una resistencia. Al atravesar los gases el borboteador, se saturan con la cantidad de agua correspondiente a la presión del vapor a esa temperatura (ver tabla 2.1). Los conductos desde el borboteador hasta la termobalanza se encuentran rodeados de resistencias eléctricas para evitar la condensación del vapor de agua.

Tabla 2.1. Relación de la temperatura en el borboteador con el porcentaje de vapor en los gases de

salida							
$T^{a}\left(^{o}C\right)$	33	46	61	70			
%H ₂ O	5	10	20	30			

Sistema d	Instituto de de control :	e Carboqui MFC y Vál	mica - 200 vulas - Mo	15 do manual			Đ.	Servicios d Instrumenti Unive	e Apoyo a la ación Científi ersidad de Z	i Investigaci ica Electrói aragoza	ón hica
100.	0-	_		_		_					A
90.	0-										В
80.	0-										C
70. 19	0-										D
ම 60.	0-										E
육 50.	0-										F
₩ 40. ≪	0-										G
° 30.	0 -										н
											10000000
20.	0 -										-
20. 10.	0 - 0 -										
20. 10. 0.	0-								16-20	2.20	
20. 10. 0. 10	0 - 0 - 0 - 6:13:25				Time			-	16:30):28	
20. 10. 0. 11 Controlad	0- 0- 0- 6:13:25 lores de flu	ujo Set M	trc 🔿	Válvulas	Time		Set By	0	16:30 <i>Error</i>	0:28	
20. 10. 0. 11 Controlad	0- 0- 1- 6:13:25 lores de flu	ijo Set M	(FC 🕥	Válvulas	Time		Set Ev		16:30	0:28	
20. 10. 0. 11 Controlad	0- 0- 0- 6:13:25	ijo Set M		Válvulas	Time	6785	Set Ev		16:30	0:28	
20. 10. 0. 11 Controlad A: 99.9 B:	0- 0- 0- 6:13:25 Pores de flu 99.8	(jo Set M €: €: Fi 0.0	(PC)	Válvulas	Time	6785	Set By		16:30	0:28	
20. 10. 0. 11 Controlad A: 99.9 B: 4) 99.0	0- 0- 0- 6:13:25 <i>lores de flu</i> 99.8	(<i>jo Set M</i> ⊖ €: €: €: €: 0.0	(PC)	Válvulas	Time 3 4 5	678S	Set By		16:30	0:28	
20. 10. 0. 11 Controlad A: 99,9 B: 99,0 C:	0 - 0 - 0 - 6:13:25 <i>lores de flu</i> 99.8	(<i>jo Set M</i> €: €: F: F: G:	(PC)	Válvulas 1 2	Time	6 7 8 s	Set Ev		16:30 Brror	0:28	

Figura2.1. Sistema de apertura de válvulas y control de flujos.

La termobalanza consta fundamentalmente de una microbalanza situada en la parte superior o cabeza, un reactor de cuarzo, un horno eléctrico donde está situado el reactor, y un sistema de medición y control de la temperatura en el interior del horno, ver Figura 2.2.

Figura2.2. Fotografía del sistema experimental de la TGA y esquema de la balanza termogravimétrica.

El horno puede operar a temperaturas de hasta 1000°C y se calienta por medio de resistencias eléctricas. En su interior se aloja el tubo de cuarzo o reactor, cuyo diámetro interno es de 24mm. Posee un termopar que está conectado a un módulo de control de temperatura, que permite medir y controlar la temperatura del mismo, y por tanto, de la muestra. La temobalanza está conectada a un ordenador que registra continuamente la temperatura, el peso de la muestra y su variación con el tiempo, Figura 2.3.

La muestra sólida se coloca en una cestilla suspendida de un brazo de la termobalanza y se sitúa en la parte inferior del tubo de reacción. La cestilla utilizada tiene 8mm de altura, 14mm de diámetro y está construida con una malla de platino para prevenir su corrosión y para reducir la resistencia a la transferencia de materia en torno al sólido.

Figura 2.3. Programa de recogida de datos de la termobalanza (Lab Weight 3.0).

El reactor de cuarzo está formado por dos tubos concéntricos de 10 y 24mm de diámetro interno. El gas entra por la parte superior y desciende por la parte anular entre estos tubos hasta llegar a la cestilla con la muestra. En este recorrido el gas se calienta hasta alcanzar la temperatura del horno. Una vez el gas llega hasta la cestilla que contiene la muestra, reacciona y abandona la zona por el interior del tubo de diámetro más pequeño.

Para evitar que el mecanismo interno de la termobalanza quede expuesto a los gases de reacción y prevenir la corrosión de las partes electrónicas se introduce en la cabeza de la termobalanza un flujo constante de N_2 (9 lN/h) para evitar que los gases provenientes de la zona de reacción lleguen a la cabeza.

2.2 Descripción del procedimiento experimental

Durante los experimentos en termobalanza se ha llevado a cabo uno o varios ciclos de reducción y oxidación de varias muestras de material del lecho Fe/olivina a 950°C, y que fueron recogidas de diferentes partes de la instalación del CSIC, como el filtro a la salida del combustor, la circulación del combustor al gasificador o la circulación del gasificador al combustor. La reducción de la muestra se consigue haciendo pasar una corriente al 15% de H₂ y 85% N₂, que reduce el hierro de la muestra a Fe elemental, liberando el oxígeno contenido de la muestra oxidada en forma de H₂O. La duración de este ciclo de reducción se lleva a cabo durante aproximadamente 30 minutos, tras los cuales no se producen variaciones en el peso. Para la oxidación de la muestra se utiliza una corriente de aire, que oxida el Fe elemental a Fe₂O₃. Al igual que el ciclo de reducción, el ciclo de oxidación se lleva a cabo durante 30 minutos, tiempo tras el cual la muestra está totalmente oxidada y no se producen variaciones en el peso.

ANEXO 3. BALANCES DE MATERIA Y ENERGÍA PARA LA OBTENCIÓN DEL ESTADO AUTOTÉRMICO.

En este anexo se explican detalladamente todas las consideraciones que se han tenido en cuanta para la resolución de los balances de materia y energía, así como las ecuaciones utilizadas para su determinación, las cuales serán necesarias para el desarrollo del apartado "Gasificación en estado autotérmico".

3.1 Balances de materia

Figura 3.1 Esquema representativo para el cálculo de los balances de materia.

Leyenda

- Uariable conocida por lectura de analizador.
- Uariable conocida y establecida para todos los experimentos.
- Uvariable conocida y dependiente de cada experimento.
- Variable a determinar.

Reactivos de entrada al combustor

En este apartado se conocen los caudales volumétricos normales a la entrada, que se corresponden con los caudales de aire primario y secundario al combustor y con el caudal de N₂ procedente del *loop*. Hay que resaltar que el caudal volumétrico de N₂ procedente del *loop* se divide entre dos, ya que la mitad de este caudal se dirige al combustor y la otra mitad al gasificador Para conocer los flujos molares a la entrada (N_{2,C1} y O_{2,C1}), se ha utilizado la relación de 1mol=22,4 L para gas ideal.

Balance de materia al combustor

Conocida la concentración de los gases a la salida del combustor y el flujo molar de N_2 a la entrada ($N_{2,C1}$), se realiza un balance al N_2 para el cálculo del flujo molar a la salida del combustor (C_2). El N_2 mantiene un comportamiento inerte y entra en una cantidad suficiente para asegurar que el error experimental que se comete es pequeño.

$$C_2 = \frac{N_{2,C1}}{X_{N2,C2}}$$
(mol/h) (E 3.1)

Conocidos el flujo molar (C_2) y los porcentajes en volumen de los compuestos a la salida del combustor, se calcular el caudal molar de cada componente de la siguiente manera:

$$\mathsf{F}_{i} = \mathsf{C}_{2} * \mathsf{X}_{i} \qquad (\text{mol/h}) \tag{E 3.2}$$

Donde:

 $-F_i$ es el caudal molar a la salida del compuesto i. $-X_i$ es el porcentaje en volumen a la salida del compuesto i.

En el caso de los experimentos donde el sólido empleado en los lechos es Fe/olivina, se produce un consumo de O_2 como producto de la oxidación del Fe dentro del combustor. Este consumo de O_2 se calcula por diferencia ya que se conocen los flujos de O_2 a la entrada y salida ($O_{2,C2}$ y $O_{2,C1}$) y el consumo de O_2 dentro del combustor puede calcularse con E 3.4.

$$O_{2 \text{ consumido oxidacion Fe/olivina}} = O_{2,C1} - O_{2,C2} - O_{2 \text{ consumido combustión}} \pmod{h}$$

(E 3.3)
 $C + O_2 \rightarrow CO_2$

 $O_{2 \text{ consumido combustión}} = CO_{2,C2} \text{ (mol/h)} = C_{\text{gasificador}, \text{combustor}} \text{ (mol/h)}$ (E 3.4)

En los experimentos donde el sólido utilizado en los lechos es olivina o arena no se producen reacciones de oxidación y por tanto el C que pasa del gasificador al combustor se corresponde por estequiometria con $CO_{2,C2}$.

***Para la simulación del estado autotérmico, no se emplea la composición obtenida a la salida del combustor experimentalmente, por tanto la composición de esa corriente será definida por nosotros. Como el flujo de C que se quema en el combustor lo estamos definiendo nosotros, en estos casos no será necesario realizar un balance al N₂ para hallar el valor de la corriente C₂. Para este caso concreto se procederá de la siguiente manera:

 $CO_{2,C2}$ = flujo de sólido carbonoso que se ha decidido quemar en el combustor (mol/h)

(E 3.5)
$$N_{2,C2} = N_{2,C1}$$
 (entrada = salida) (mol/h) (E 3.6)

$$O_{2,C2} = O_{2,C1} - CO_{2,C2} \quad (mol/h)$$
 (E 3.7)

En los casos en los que el sólido empleado es Fe/olivina a la corriente $O_{2,C2}$ hay que descontarle el consumo provocado por las reacciones de oxidación. Este consumo se ha considerado que será el obtenido en la ecuación E 3.3, para el caso en el que el sólido carbonoso no ha sido definido por nosotros. Una vez conocidos los flujos de los compuestos que forman la corriente, se aplican las siguientes ecuaciones:

$$C_2 = N_{2,C2} + O_{2,C2} + CO_{2,C2}$$
 (mol/h) (E 3.8)

$$X_{i,C2} = \frac{F_{i,C2}}{C_2} (\%)$$
(E 3.9)

Donde:

 X_i es la composición del compuesto i en la corriente C_2 . $F_{i,C2}$ es el flujo molar del compuesto i en la corriente C_2 (mol/h).

Entrada al gasificador

En este apartado se conocen los caudales volumétricos de N₂ y N₂ procedente del *loop* que entran al gasificador (N_{2,G1} N_{2,G4}) y el caudal másico de agua(H₂O_{G1}). Los caudales molares, se determinan utilizado la relación de gas ideal, al igual que en la entrada al combustor.

Además de estos caudales volumétricos se conoce el flujo másico de biomasa que está entrando en el gasificador. En la tabla 3.1, se muestra la composición másica de la biomasa utilizada en la planta de gasificación del ICB-CSIC. Para obtener el porcentaje másico de H en la composición de biomasa se utiliza E 3.10.

Tabla 3.1 Composición másica de la biomasa

Análisis inmediato	%	%
Humedad	6,3	6,3
Cenizas	1,1	1,1
Volátiles	77,3	77,3
Carbón fijo	15,4	15,4
Análisis elemental		
С	46,6	5,6
H*	6	46,6
Ν	0,2	0,2
S	0	6,3

*Incluido el H de la humedad

$$\% H = 6.3 - \frac{{}^{2g H}/{}_{18g H20}{}^{*6,3(\% humedad)}}{{}^{18g}/{}_{molH20}} = 5.6$$
(E 3.10)

Para el cálculo del flujo molar de cada componente:

$$M_{i} = \frac{M_{biomasa} * X_{i}}{PM_{i}} \qquad (mol/h)$$
(E 3.11)

Donde:

-M_{biomasa}, es el flujo másico de biomasa.
-X_i es el porcentaje másico del componente i

-PM_i es el peso molecular del componente i.

$$G_2 = \sum_{i=1}^{N} M_i \quad \left(\frac{mol}{h}\right)$$
(E 3.12)

Balance de materia al combustor del gas de síntesis

Para determinar los flujos molares de los compuestos que salen del gasificador, se ha realizado un balance de N_2 al combustor del gas de síntesis, debido a que este compuesto mantiene un comportamiento inerte a su paso por este combustor y entra en una cantidad suficiente para asegurar que el error experimental que se comete es pequeño.

$$G_{5} = \frac{(N_{2,G4} + N_{2,G1} + N_{2,G2})}{X_{N2,G5}} (mol/h)$$
(E 3.13)

Conocidos el flujo molar de esta corriente (G_5) y su composición, se halla el flujo molar para cada uno de los componentes de esta corriente al igual que en el apartado de los gases de salida del combustor.

***Al igual que antes en el combustor, para la simulación del estado autotérmico, no se emplea la composición obtenida a la salida del combustor del gas de síntesis experimentalmente, por tanto la composición de esa corriente será definida por nosotros. Como el flujo de C que se quema en este combustor lo estamos definiendo nosotros, en estos casos no será necesario realizar un balance al N₂ para hallar el valor de la corriente G₅. Para este caso concreto se procederá de la siguiente manera:

 $CO_{2,G5}$ = flujo de sólido carbonoso que se ha decidido gasificar (mol/h).

	(E 3.14)
$N_{2,G5} = N_{2,G4} + N_{2,G1}$ (entrada = salida) (mol/h)	(E 3.15)
$O_{2,G5} = O_{2,G4} - CO_{2,G5} \pmod{h}$	(E 3.16)

Al igual que en el caso del otro combustor se calcula el flujo de la corriente G_5 y su composición:

$$C_{2} = N_{2,G5} + O_{2,G5} + CO_{2,G5} \quad (mol/h)$$

$$X_{i,C2} = \frac{F_{i,C2}}{C_{2}} (\%)$$

Tras la determinación de los flujos molares de los compuestos a la salida del combustor del gas de síntesis (G_5 y los compuestos que la forman), se realizar un balance atómico al C para conocer los moles de este elemento a la salida de esta corriente. Los moles de C que salen de este combustor se corresponden con los existentes en la corriente a la salida del gasificador (G_4), de la cual se conoce su composición.

moles C = G₅ *
$$(X_{CO2,G5} + X_{CO,G5})$$
 $(\frac{mol}{h})$ (E 3.17)

$$G_{4} = \frac{\text{moles C}}{(X_{\text{CO},\text{G4}} + X_{\text{CO}2,\text{G4}} + X_{\text{CH4},\text{G4}} + 2*X_{\text{C2H4},\text{G4}} + 2*X_{\text{C2H6},\text{G4}} + 3*X_{\text{C3H8},\text{G4}})} \quad (\frac{\text{mol}}{\text{h}})$$
(E 3.18)

Conocido G_4 y su composición se halla el caudal másico para cada uno de los componentes.

Para finalizar con los cálculos realizados en el balance de materia se determina el error que se está cometiendo, realizando un balance atómico al C, al O y al H en todo el sistema.

% error en C =
$$\frac{F_{C_{entra}} - F_{C_{sale}}}{F_{C_{entra}}} * 100$$
 (E 3.19)

$$\% \operatorname{error} \operatorname{en} O = \frac{F_{O_{entra}} - F_{O_{sale}}}{F_{O_{entra}}} * 100$$
(E 3.20)

% error en H =
$$\frac{F_{H_{entra}} - F_{H_{sale}}}{F_{H_{entra}}} * 100$$
 (E 3.21)

3.2 Balances de calor

Figura 3.2 Esquema representativo de la planta piloto para el cálculo de los balances de calor

Leyenda

- Elujo conocido de corriente gaseosa
- Elujo conocido de corriente líquida
- Elujo conocido de corriente sólida
- Variable establecida
- Uariable por establecer a conveniencia
- Variable desconocida a calcular

Calculo de la entalpia y el calor de una corriente gaseosa

Para el cálculo de las entalpías y los calores de las mezclas gaseosas que tienen lugar en el sistema se ha consultado una guía con las propiedades físicas de los compuestos [27] que intervienen en cualquiera de las corrientes gaseosa. En la tabla 3.2 se adjuntan las propiedades físicas correspondientes a todos los compuestos que intervienen en cualquiera de las corrientes gaseosas.

Tabla 3.2 Propiedades físicas de los compuestos que intervienen en las corrientes gaseosas del sistema.

	$\Delta \mathbf{H}^{\mathbf{o}} \left(\mathbf{KJ/mol} \right)$	Cp _A (J/mol K)	Cp _B (J/mol K)	Cp _C (J/mol K)	Cp _D (J/mol K)
CO	-110,62	30,869	-1,285E-02	2,789E-05	-1,271E-08
\mathbf{H}_2	0	27,143	9,273E-03	-1,380E-05	7,645E-09
CO ₂	-393,77	19,795	7,343E-02	-5,601E-05	1,715E-08
N_2	0	31,150	-1,356E-02	2,679E-05	-1,168E-08
CH ₄	-74,86	19,251	5,212E-02	1,197E-05	-1,131E-08
C_2H_4	52,33	3,806	1,565E-01	-8,348E-05	1,755E-08
C_2H_6	-84,74	5,409	1,781E-01	-6,937E-05	8,712E-06
C ₃ H ₈	-103,92	-4,224	3,062E-01	-1,586E-04	3,214E-08
H ₂ O	-242	32,243	1,923E-03	1,055E-05	-3,596E-09
02	0	28,106	-3,680E-06	1,745E-05	-1,065E-08

Conocido el flujo molar, los componentes y sus respectivas composiciones, para cada una de las corrientes gaseosas, la entalpía y el calor se obtienen con la siguiente ecuación:

$$\Delta H_{\text{mezcla}} = \sum_{i=0}^{n} X_i * \left[\Delta H^{\circ}_{i} + \int_{298}^{T} Cp_i \ dT \right] \quad \left(\frac{J}{\text{mol}} \right)$$
(E 3.22)

Donde:

-Xi es la composición del componente i.

-ΔH_i° es la entalpía de formación estándar del componente i a 25°Cy 1atm. (J/mol)

-T es la temperatura de la corriente gaseosa (K).

-Cp_i es la capacidad calorífica (P cte) del componente i (J/mol K).

 $Cp_i = Cp_{A,i} + Cp_{B,i} * T + Cp_{C,i} * T^2 + Cp_{D,i} * T^3$

Donde:

 $-Cp_{A,i}$, $Cp_{B,i}$, $Cp_{C,i}$ y $Cp_{D,i}$ son las constantes de gas ideal de la ecuación de la capacidad calorífica del componente i.

Resolviendo la integral de E 3.22 nos queda como;

$$\Delta H_{\text{mezcla}} = \sum_{i=0}^{n} X_{i} * [\Delta H^{\circ}_{i} + Cp_{A,i} * (T - 298) + Cp_{B,i} * \frac{(T^{2} - 298^{2})}{2} + Cp_{C,i} \\ * \frac{(T^{3} - 298^{3})}{3} + Cp_{D,i} * \frac{(T^{4} - 298^{4})}{4}] \quad (J/\text{mol})$$

$$Q_{\text{mezcla}} = \Delta H_{\text{mezcla}} * \frac{F_{\text{molar}}}{3600} \quad (W)$$
(E 3.23)

Cálculo de la entalpia y el calor de una corriente líquida

En este caso concreto, la única corriente que aparece en estado líquido es la del agua para gasificar antes de recalentarse con el calor de las corrientes gaseosas recirculadas. Para el cálculo de su entalpía y su calor se ha consultado una guía con las propiedades físicas del agua [27]. En la tabla 3.3 se adjuntan las propiedades físicas para el agua.

	$\Delta \mathbf{H}^{\mathbf{o}} \left(\mathbf{KJ/mol} \right)$	Cp _A (J/mol K)	Cp _B (J/mol K)	Cp _C (J/mol K)
H_2O	-242	32,243	1,923E-03	1,055E-05
	Cp _D (J/mol K)	$\Delta \mathbf{H}^{\mathbf{o}} \operatorname{vap} (\mathbf{J}/\mathbf{mol})$	T ^a c (K)	T ^a eb
H_2O	-3,596E-09	4,068E+04	647,30	373,15

Tabla 3.3 Propiedades físicas del agua.

Conocido el flujo molar de agua, la entalpía y el calor se obtienen de la siguiente forma:

$$\Delta H_{\text{mezcla}} = \sum_{i=0}^{n} X_{i} * \left[\Delta H^{\circ}_{i} + \int_{298}^{T} Cp_{i} \, dT - \Delta H_{\text{vap},i} * \left(\frac{(T_{C,i}-T)}{(T_{C,i}-T_{eb,i})} \right)^{0,386} \right] \quad \left(\frac{J}{\text{mol}} \right)$$
(E 3.24)

Donde:

-Xi es la composición del componente i.

-ΔH_i° es la entalpia de formación estándar del componente i a 25°C y 1 atm. (J/mol)

 $-\Delta H_{vap,i}$ es la entalpía de vaporización del componente i (J/mol k)

-T es la temperatura de la corriente gaseosa (K).

-T_{c,i} es la temperatura crítica del componente i (K).

-T_{eb,i} es la temperatura de ebullición del componente i (K).

-Cp_i es la capacidad calorífica (P cte) del componente i (J/mol K).

$$Cp_i = Cp_{A,i} + Cp_{B,i} * T + Cp_{C,i} * T^2 + Cp_{D,i} * T^3$$

Donde:

 $-Cp_{A,i}$, $Cp_{B,i}$, $Cp_{C,i}$ y $Cp_{D,i}$ son las constantes de gas ideal de la ecuación de la capacidad calorífica del componente i.

Por lo tanto, resolviendo la integral de E 3.24;

$$\begin{split} \Delta H_{mezcla} &= \sum_{i=0}^{n} X_{i} * [\Delta H^{\circ}{}_{i} + Cp_{A,i} * (T-298) + Cp_{B,i} * \frac{(T^{2}-298^{2})}{2} + Cp_{C,i} \\ &\quad * \frac{(T^{3}-298^{3})}{3} + Cp_{D,i} * \frac{(T^{4}-298^{4})}{4} - \Delta H_{vap,i} \\ &\quad * (\frac{(T_{C,i}-T)}{(T_{C,i}-T_{eb,i})})^{0,386}] \quad (J/mol) \end{split}$$

$$Q_{\text{mezcla}} = \Delta H_{\text{mezcla}} * \frac{F_{\text{molar}}}{3600}$$
 (W)

Cálculo de la entalpía y el calor de compuestos sólidos

En este apartado hay que resaltar que para el cálculo de la entalpia y el calor se han tomado unas serie de consideraciones dependiendo del sólido a estudio en cuestión, debido a que para el sólido carbonoso que se transfiere desde el gasificador al combustor o para el material del lecho (arena, olivina, Fe/olivina), se han encontrado propiedades físicas en bibliografías que relacionan la capacidad calorífica con la variación de temperatura a presión constante, sin embargo para la biomasa se ha considerado que la capacidad calorífica se mantiene constante con la variación de temperatura ante la falta de valores mas aproximados.

Entalpia y calor del sólido carbonoso

Para el cálculo de la entalpía y el calor del sólido carbonoso que se dirige del gasificador al combustor se ha consultado una guía con las propiedades físicas [27] para este compuesto.

Propiedades físicas para el carbono: $-\Delta H^{\circ} = 0 \text{ cal/mol}$ $-Cp = 2,627 + 0,002617 * T - \frac{116900}{T^2} \left(\frac{\text{ cal}}{\text{ mol}}\right)$ Por tanto;

$$\Delta H_{\rm C} = \Delta H^{\circ} + \int_{298}^{\rm T} {\rm Cp} \, dT \, \left(\frac{{\rm cal}}{{\rm mol}}\right)$$
(E 3.25)

Resolviendo la integral de la ecuación E 3.25 nos queda como:

$$\Delta H_{\rm C} = \Delta {\rm H}^{\circ} + 2,627({\rm T}-298) + \frac{0,002617({\rm T}^2-298^2)}{2} + \frac{116900}{({\rm T}-298)} \quad (\frac{{\rm cal}}{{\rm mol}})$$

Para pasar el valor de entalpía de $\frac{cal}{mol}$ a $\frac{J}{mol}$ solamente tendríamos que multiplicar por 4,18.

Conocido el flujo molar de carbono que se dirige del gasificador al combustor el calor de la esta corriente se calcula como:

$$Q_{\rm C} = \Delta H_{\rm C} * \frac{F_{\rm C}}{3600} \quad (W)$$

Entalpía y calor de la biomasa

Para poder calcular la entalpía y el calor de la biomasa es necesario calcular previamente la formula empírica y el peso molecular de la biomasa en cuestión.

Cálculo de la fórmula empírica

Para el cálculo de la fórmula empírica se parte del análisis elemental de la biomasa utilizada. A partir de estos se calcula la composición (en % másico) de C, H, O y N (sin tener en cuenta el H₂O, y las cenizas). Si se divide este porcentaje másico de composición entre el peso atómico del elemento, se obtiene el número de moles del elemento. Se realiza esto para todos los elementos. Por último se divide el número de moles de cada elemento entre el número de moles del elemento que menos moles tiene. El valor que se obtenga redondeado a la unidad, es el número de átomos del elemento en la fórmula empírica (de esta manera el elemento que menos moles tiene solo presentará un átomo en la fórmula empírica).

	% con humedad y cenizas	% sin humedad y cenizas	Moles por cada 100g biomasa	Moles de cada elemento
Н	5,7	6,16	6,16	385
С	46,6	50,32	4,19	262
Ν	0,2	0,22	0,016	1
0	40,1	43,30	2,71	169
Total	92,6	100		

Tabla 3.4 Determinación de la formula empírica de la biomasa utilizada.

Formula empírica de la biomasa: C₂₆₂H₃₈₅O₁₆₉N

Cálculo del peso molecular

Partiendo de la fórmula empírica del compuesto, es fácil calcular su peso molecular multiplicando el número de átomos de cada elemento en la fórmula por su peso atómico.

Peso molecular de la biomasa = 6247 (g/mol)

Cálculo de la entalpía de formación

Para el cálculo de la entalpía de formación de un compuesto, es necesario conocer su peso molecular, su fórmula empírica y su poder calorífico. El poder calorífico de la biomasa se obtiene de bibliografía [28], y es el correspondiente a la biomasa que se está utilizando, madera de pino seca (sin considerar la humedad).

PC madera seca= -19000KJ/Kg=-118693KJ/mol

$C_{262}H_{385}O_{169}N + 273,7 O_2 \rightarrow 262 CO_2 + 192,5 H_2O + 0,5 N_2$

Conocido el poder calorífico y la reacción de combustión completa de la biomasa se obtiene la entalpía de formación estándar aplicando la ecuación correspondiente al cálculo del PC:

$$PC = \sum_{i=1}^{n} p_i * \Delta H^{\circ}_{i} - \sum_{i=1}^{n} r_i \Delta H^{\circ}_{i} \quad \left(\frac{KJ}{mol}\right)$$
(E 3.26)

Donde:

-p_i es el coeficiente estequiométrico del producto de combustión i.

-r_i es el coeficiente estequiométrico del reactivo de combustión i.

 $-\Delta H_i^{o}$ es la entalpia de formación estándar del producto o reactivo de combustión i.

Desarrollando y sustituyendo términos se obtiene:

$$\Delta H^{\circ}_{biomasa} = 261 * \Delta H^{\circ}_{CO2} + 192,5 * \Delta H^{\circ}_{H2O} - PC = -31060 \frac{KJ}{mol}$$

Una vez obtenida la formula empírica y los valores del peso molecular y la entalpia de formación estándar de la biomasa es estima el valor de su capacidad calorífica. Para su determinación se ha utilizado la regla de Kopp [29], la cual está apoyada en el conocimiento de su formula estructural, usando la ley de las mezclas como la sumatoria de los productos del subíndice y el aporte individual de cada elemento constituyente. Esto significa que para un compuesto sólido que responde a la fórmula $C\alpha H_{\beta}O_{\gamma}N_{\delta}$ la capacidad calorífica puede obtenerse de la siguiente forma:

$$Cp = \frac{\alpha(7,524) + \beta(9,614) + \gamma(16,720) + \delta(25,916)}{M} \quad (\frac{J}{\text{mol } K})$$
(E 3.27)

Donde:

-M es el peso molecular de la biomasa

Cp de la biomasa seca= 1,36 J/molK

Para el cálculo de la entalpía y el calor de la biomasa seca y sin cenizas, conocido el flujo másico de esta y sus condiciones de operación, se aplica la siguiente ecuación:

$$\Delta H_{\text{biomasa}} = \Delta H^{\circ}_{\text{biomasa}} + Cp * (T - 298) \left(\frac{J}{\text{mol}}\right)$$
(E 3.28)

$$Q_{biomasa} = \frac{\frac{F}{M} * \Delta H_{biomasa}}{3600} \quad (W)$$

_

Entalpía y calor del material del lecho (olivina y olivina-Fe)

Para el cálculo de la entalpía y el calor de los materiales de lecho olivina y Fe/olivina que circulan entre los reactores de lecho fluidizado se ha consultado una guía para obtener las propiedades físicas [27] para ambos compuestos.

Propiedades físicas para la olivina:

 $-\Delta H^{\circ} = -273 \text{ Kcal/mol}$ $-Cp = 33,57 + 0,01907 * T - \frac{879700}{T^{2}} \left(\frac{\text{Kcal}}{\text{K mol}}\right)$

Propiedades físicas para la Fe/olivina:

$$\begin{split} -\Delta H^{o}_{olivina} &= -273 \text{ Kcal/mol} \\ -Cp_{olivina} &= 33,57 + 0,01907 * T - \frac{879700}{T^{2}} \left(\frac{\text{Kcal}}{\text{K mol}}\right) \\ -\Delta H^{o}_{Fe2O3} &= -198,5 \text{ Kcal/mol} \\ -Cp_{Fe2O3} &= 24,72 + 0,01604 * T - \frac{423400}{T^{2}} \left(\frac{\text{Kcal}}{\text{K mol}}\right) \\ -\Delta H^{o}_{FeO} &= -64,6 \text{ Kcal/mol} \\ -Cp_{FeO} &= 12,62 + 0,001492 * T - \frac{76200}{T^{2}} \left(\frac{\text{Kcal}}{\text{K mol}}\right) \end{split}$$

Este último caso en particular es más especial ya que el Fe impregnado en la olivina experimenta cambios en su estado de oxidación dependiendo de si se encuentra en el gasificador o en el combustor. En este caso se ha obtenido el porcentaje molar de cada compuesto a la salida del gasificador y el combustor y se ha calculado el valor de Δ H^o y Cp como la media aritmética de la contribución de cada compuesto. El porcentaje molar a la salida de cada reactor es el obtenido en la parte de resultados de "Experimentación en termobalanza"

A la salida de	el gasificador	A la salida del combustor			
compuesto	% molar	compuesto	% molar		
Olivina	88,3	Olivina	87,6		
Fe ₂ O ₃	4,5	Fe ₂ O ₃	12,4		
FeO	7,2	FeO	0		

Tabla 3.5 Composición molar del Fe/olivina a la salida del gasificador y combustor.

 $-\Delta H^{\circ}_{olivina-Fe}$ (a la salida del gasificador) = -254,6 Kcal/mol

 $-Cp_{olivina-Fe} (a \text{ la salida del gasi icador}) = 29,36 + 0,01575 * T - \frac{712255}{T^2} \left(\frac{Kcal}{mol}\right)$

 $-\Delta H^{o}_{olivina-Fe}$ (a la salida del combustor) = -263,8 Kcal/mol

$$-Cp_{olivina-Fe} (a \ la \ salida \ del \ combustor) = 32,24 + 0,01861 * T - \frac{811225}{T^2} (\frac{Kcal}{mol})$$

Por tanto;

$$\Delta H_{lecho} = + \int_{298}^{T} \Delta H^{\circ}_{lecho} + Cp_{lecho} \, dT \, \left(\frac{cal}{mol}\right)$$
(E 3.29)

Resolviendo la integral para cada uno de los lechos se obtiene:

$$\Delta H_{olivina} = \Delta H^{\circ}_{olivina} + 33,57 * (T - 298) + \frac{0,01907 * (T^2 - 298^2)}{2} + \frac{879700}{(T - 298)} (\frac{cal}{mol})$$

 $\Delta H_{olivina-Fe}$ (a la salida del gasi icador)

$$= \Delta H^{\circ}_{olivina-Fe} + 29,36 * (T - 298) + \frac{0,01575 * (T^2 - 298^2)}{2} + \frac{712255}{(T - 298)} (\frac{cal}{mol})$$

 $\Delta H_{olivina-Fe}$ (a la salida del combustor)

$$= \Delta H^{\circ}_{olivina-Fe} + 32,24 * (T - 298) + \frac{0,01861 * (T^2 - 298^2)}{2} + \frac{811225}{(T - 298)} (\frac{cal}{mol})$$

Para pasar el valor de entalpia de $\frac{cal}{mol}$ a $\frac{J}{mol}$ solamente tendríamos que multiplicar por 4,18.

Conocido el flujo molar de carbono que se dirige del gasificador al combustor el calor de la esta corriente se calcula como:

$$Q_{lecho} = \Delta H_{lecho} * \frac{F_{molar_lecho}}{3600} \quad (W)$$

Balance global de calor al sistema

Para la determinación del calor que es necesario suministrar o retirar de nuestro sistema se ha agrupado todas las corrientes involucradas del sistema en dos bloques, que se corresponden con el calor de gasificación (Q_2) y con el calor de combustión (Q_1), es decir, se ha realizado un balance global de calor al gasificador y otro al combustor, donde son considerados todos los flujos de calor entrantes y salientes para cada uno de los reactores. Para el caso en el que se ha adicionado un filtro catalítico, se ha considerado que el filtro forma parte del gasificador.

Para el balance global al gasificador se han tenido en cuenta los flujos de calor entrante producidos por las corrientes de agua, nitrógeno, biomasa y sólido del lecho procedente del combustor. En cuanto a los flujos de calor salientes en el gasificador se han tenido en cuenta las corrientes del gas de síntesis, el carbono fijo no gasificado y el sólido del lecho que se dirige al combustor. Por tanto el calor en el gasificador es:

$$Q_{\text{gasificador}} = Q_{\text{gas_sintesis}} + Q_{\text{C}} + Q_{\text{_al_combustor}} - Q_{\text{H20}} - Q_{\text{N2}} - Q_{\text{biomasa}} - Q_{\text{_al_gasificador}}(W)$$
(E 3.30)

Para el balance global al combustor se han tenido en cuenta los flujos de calor entrante producidos por las corrientes de oxígeno y nitrógeno procedentes del aire primario y secundario, sólido del lecho procedente del gasificador y el carbono fijo que no se ha gasificado. En cuanto a los flujos de calor salientes en el combustor se han tenido en cuenta las corrientes del gas de combustión y el sólido del lecho que se dirige al gasificador.

$$Q_{combustor} = Q_{gas_combustion} + Q__al_gasificador -Q_{02} - Q_{N2} - Q_C - Q__al_combustor} (W)$$

 $\label{eq:gasificador} \begin{array}{l} -Si \; Q_{gasificador} \; , \; Q_{combustor} \; > 0 \; \; calor \; absorbido \; por \; el \; gasificador/combustor. \\ --Si \; Q_{gasificador} \; , \; Q_{combustor} \; < 0 \; \; calor \; cedido \; por \; el \; gasificador/combustor. \end{array}$

Para obtener el balance global

$$Q_{global} = Q_{gasificador} + Q_{combustor}$$
 (W) (E 3.32)

 $\label{eq:global} \begin{array}{l} -\text{Si}\; Q_{global} > 0 \;\; \text{calor absorbido por el sistema.} \\ -\text{Si}\; Q_{global} < 0 \;\; \text{calor cedido por el sistema.} \end{array}$

Para la resolución del apartado *gasificación en estado autotérmico*, realizado para la planta de gasificación del ICB-CSIC, se ha supuesto que las corrientes de salida calientes procedentes del combustor y del gasificador se han utilizado para calentar las corrientes de entrada frías líquidas y gaseosas (aire a la entrada del combustor, N₂ del loop, H₂O y N₂ a la entrada del gasificador). Para llevar a cabo esta suposición es necesario que se cumpla la siguiente condición:

$$Q_3 + Q_4 > Q_5 + Q_6 \tag{E 3.33}$$

Donde:

$$Q_{3} = Q_{sal_{combustor}} (T^{a} = 1093k) - Q_{sal_{condensador}} (T^{a}_{refrigeracion}) (W)$$
(E 3.34)

$$Q_{4} = Q_{sal_{gasificador}} (T^{a} = 1193k) - Q_{sal_{condensador}} (T^{a}_{refrigeracion}) (W)$$
(E 3.35)

$$Q_{5} = Q_{ent_combustor} (T^{a}_{sal_heater}) - Q_{ent_{calentador}} (T^{a} = 298k) (W)$$
(E 3.36)

$$Q_{6} = Q_{\text{ent}_{\text{gasificador}}} \left(T^{a}_{\text{sal}_{\text{heater}}} \right) + Q_{\text{ent}_{\text{calentador}}} \left(T^{a} = 298 \text{k} \right) (W)$$
(E 3.37)

ANEXO 4. CALCULOS RELIZADOS PARA GASIFICACIÓN EN ESTADO AUTOTÉRMICO

En este anexo se han incluido las tablas con los resultados obtenidos para cada uno de los casos estudiados del apartado "Gasificación en estado autotérmico". Los valores obtenidos se han calculado aplicando las ecuaciones descritas en el *anexo 3*. A continuación se muestra la tabla 4.1 donde se han reflejado las condiciones de operación y composiciones obtenidas de los experimentos utilizados para la resolución del *apartado 4 "Gasificación en estado autotérmico"*.

	Unidades	Olivina	Fe/olivina	Fe/olivina+filtro
Experimento	-	13	30	26
T ^a Gasificador	[°C]	800	800	800
T ^a Combustor	[°C]	900	900	900
Biomasa	[g/h]	250,9	234,1	258,1
Relación	$\left[\alpha / \alpha \right]$	0.64	0.59	0.52
H ₂ O/biomasa	[8/8-bs]	0,04	0,59	0,52
Composición del gas	S			
Gasificador				
CO	[vol% _{bh}]	14,40	13,50	11,80
CO2	[vol% _{bh}]	14,70	15,30	20,10
H2	[vol% _{bh}]	15,40	15,30	23,30
CH4	[vol% _{bh}]	5,70	5,30	4,70
C2H4	[vol% _{bh}]	2,10	1,90	1,70
C2H6	[vol% _{bh}]	0,20	0,20	0,20
СЗН8	[vol% _{bh}]	0,20	0,20	0,10
N2	[vol% _{bh}]	10,10	13,60	9,80
H2O	[vol% _{bh}]	37,20	34,80	28,20
Combustor				
O_2	$[vol\%_{bs}]$	17,5	16,43	15,6
CO ₂	$[vol\%_{bs}]$	1,9	2,39	2,6
CO	$[vol\%_{bs}]$	0	0	0
N2	$[vol\%_{bs}]$	80,6	81,18	81,8
Horno quemador de	el gas de síntesis			
O_2	[vol% _{bs}]	6,10	7,04	11,40
CO ₂	$[vol\%_{bs}]$	14,60	14,23	15,20
CO	$[vol\%_{bs}]$	1,00	0,70	0,23
N2	$[vol\%_{bs}]$	78,30	78,03	73,17
~				
Caudal aire	F13 T # 7	1000	1-00	1000
Combustor AP	[IN/h]	1200	1200	1200
Combustor AS	[IN/h]	240	240	240
Horno quemador	[lN/h]	1050	1050	1050

Tabla 4.1. Condiciones de operación y composición de los vapores para los diferentes casos estudiados.

Como se ha mencionado en el *apartado 4. Gasificación en estado autotérmico*, para cada uno de los diferentes casos se ha seguido el siguiente procedimiento. Conocido el flujo de sólido carbonoso, gracias al análisis inmediato de la biomasa, se ha calculado el balance de materia teórico que se obtendría si el porcentaje molar de *sólido carbonoso gasificado* fuese del 0%, el 25%, el 50%, el 75% y el 100%, manteniendo constantes los

caudales de aire primario y secundario para quemar en el combustor y el caudal de aire para quemar en el combustor del gas de síntesis. En la tabla 4.2 se muestran los flujos de las corrientes que permanecen constantes para todas las simulaciones de los diferentes casos estudiados.

		Pm	g/h (sin humedad	mol/h		
Biomasa caso 1		6247	232,5	0,0372		
Biomasa caso 2		6247	217	217		
Biomasa caso 3		6247	239,2		0,0383	
Aire	al combus	tor	Aire al horno quemador			
	O ₂	N_2		O ₂	N ₂	
lN/h	302	1160	lN/h	220	830	
mol/h	13,5	51,8	mol/h	9,85	37	
N ₂ al gas	sificador	Materia	l del lecho			
lN/h	22,5	Kg/h	8			
mol/h	1					

Tabla 4.2. Flujos de las corrientes que permanecen constantes en la simulación de los casos estudiados.

De esta manera se pueden calcular los flujos molares de los compuestos a la salida del combustor y del gasificador, como se explica en el *anexo 3.1 balance de materia*. Hay que resaltar que la composición del gasificador (tomada de los resultados experimentales) se ha decidido mantener constante para el cálculo de cada uno de los balances de materia teóricos, composición que se muestra en la tabla 4.1

En estas circunstancias el porcentaje de error que se comete haciendo un balance global al C elemental es de 0, ya que se conoce la cantidad de C que entra al gasificador y la que sale por el combustor y el gasificador. Sin embargo, el porcentaje de error que se comete haciendo el balance global al H y al O es diferente de 0. Para hacer cumplir el balance de materia se ha modificado la corriente de agua a la entrada del gasificador. Hay que tener en cuenta que la cantidad de agua necesaria para gasificar el 100% del sólido carbonoso debe ser mayor que la cantidad necesaria para gasificar el 0%.

Una vez realizado el balance de materia y conocidos los porcentajes y flujos molares de todas las corrientes que intervienen en el sistema, se realiza el balance de calor correspondiente para cada uno de los porcentajes de sólido carbono gasificados, como se explica en el *anexo 3.1, balance de calor*.

Como se ha mencionado anteriormente se ha supuesto que las corrientes gaseosa que salen del combustor y gasificador a altas temperaturas, son refrigeradas hasta 300°C para generar calor y recalentar las corrientes de reactivos hasta 500°C. Para que esta suposición sea válida debe cumplirse que el calor generado por los condensadores tiene que ser mayor que el consumido por los calentadores, por lo tanto:

$$\mathsf{Q}_1 + \mathsf{Q}_2 > \mathsf{Q}_3 + \mathsf{Q}_4$$

4.1 Caso1. Olivina como material de lecho

Figura 4.1 Esquema representativo para el cálculo de los balances de materia.

Para llevar a cabo la simulación del estado autotérmico para este caso se ha utilizado el experimento 13. Las entradas de aire al combustor y al horno quemador, biomasa, flujo de lecho circulante entre reactores y nitrógeno al gasificador permanecen constantes durante toda la simulación, y los valores están mostrados en la tabla 4.2 de este anexo.

Como se puede observar en el *anexo 3 (Tabla 3.1, página 52)* el contenido de carbono existente en la biomasa es de un 46,6% en masa, el cual una vez pirolizado, está constituido por carbono volátil y por un sólido carbonoso que representa el 15,4% de la biomasa. Para llevar a cabo esta simulación se ha supuesto 5 situaciones diferentes en las que, todo el carbono volátil es gasificado y el sólido carbonoso se gasificara en porcentajes del 0%, 25%, 50%, 75% y 100%. Como se conoce la cantidad de biomasa a la entrada y los porcentajes de carbono y sólido carbonoso se puede calcular la cantidad de carbono gasificado y quemado en el combustor. En la tabla 4.3 se muestran los flujos de biomasa, de carbono, sólido carbonoso tras pirolizarse la biomasa y su distribución en los reactores para las diferentes situaciones simuladas del caso 1.

	%	másico	g/h		mol/h
Biomasa		-	250,9		
C en la biomasa		46,6	116,92		9,74
Sólido carbonoso tras		15,4	38,64		3,22
pironzarse					
Sólido carbonoso gasifi	cado (%)	mol/h C gasificado		m	ol/h C al combustor
0%			6,52		3,22
25%		-	7,325		2,415
50%			8,13		1,61
75%		8	3,935		0,805
100%			9,74		0

Tabla 4.3. Composición del carbono en la biomasa y su distribución en los reactores para las diferentes situaciones simuladas para el caso1.

Conocidos los flujos de carbono que salen por el combustor y por el gasificador para cada uno de los porcentajes de sólido carbonoso gasificado, se calculan los flujos y las concentraciones de las corrientes que salen del combustor y gasificador como se explica en el *anexo 3.1 balances de materia*, y se minimizan los errores para el balance atómico del O y el H modificando la entrada de H₂O al gasificador. En la tabla 4.4 se muestran los resultados obtenidos tras la resolución del balance de materia para cada una de las 5 situaciones simuladas del caso 1, más el balance de materia para el experimento 13.

% char gasificado		0%			25%			50%	
		%	mol/h		%	mol/h		%	mol/h
Combustor	CO ₂	4,9	3,22	CO ₂	3,7	2,41	CO ₂	2,5	1,61
Compusion	O ₂	15,7	10,29	O_2	17,0	11,09	O_2	18,2	11,90
	N_2	79,3	51,82	N_2	79,3	51,82	N_2	79,3	51,82
		Total	65,33		Total	65,33		Total	65,33
		%	mol/h		%	mol/h		%	mol/h
	CO	14,4	2,35	CO	14,4	2,64	CO	14,4	2,93
		14,7	2,40	CO ₂	14,7	2,69	CO ₂	14,7	2,99
	H_2	15,4	2,51	H_2	15,4	2,82	H_2	15,4	3,13
Gasificador		5,7	0,93	CH ₄	5,7	1,04	CH_4	5,7	1,16
	C_2H_4	2,1	0,34	C_2H_4	2,1	0,38	C_2H_4	2,1	0,43
	C_2H_6	0,2	0,03	C_2H_6	0,2	0,04	C_2H_6	0,2	0,04
	C_3H_8	0,2	0,03	C_3H_8	0,2	0,04	C_3H_8	0,2	0,04
		10,1	1,05		10,1	1,85		10,1	2,05
	h ₂ U	57,2 Tatal	0,00	$\Pi_2 O$	57,2 Tetal	0,01	H ₂ U	57,2 Tetel	7,30
		Total	10,29		Total	16,51		Total	20,52
									. (7
Agua al	<u>g/h</u>	1	nol/h	<u>g/h</u>	1	mol/h	g/h	1	mol/h
gasificador	85		4,72	115		6,34	140		/,/8
	0		TT	0		TT	0		TT
% error B. atómico	10.7	,	H	0		H 9.2	0		H 75
	-10,3)	7,5	-8,8		8,3	-9,0		7,5
		750/			1000/		T	•	4. 17
% char gasificado		75%			100%		Exp	erimen	to 13
% char gasificado		75%			100%		Exp	erimen	to 13
% char gasificado		75% %	mol/h		100% %	mol/h	Exp	erimen %	to 13 mol/h
% char gasificado		75% % 1,2	mol/h 0,80	CO ₂	100% % 0,0	mol/h 0,00	Expo	erimen % 2,40	to 13 mol/h 1,55
% char gasificado Combustor	CO_2 O_2	75% % 1,2 19,4	mol/h 0,80 12,70	$\begin{array}{c} \hline CO_2 \\ \hline O_2 \\ \hline N \\ \end{array}$	100% % 0,0 20,7	mol/h 0,00 13,51	Exp (CO ₂ O ₂ N	% 2,40 17,50	mol/h 1,55 11,32
% char gasificado Combustor	CO ₂ O ₂ N ₂	% 1,2 19,4 79,3	mol/h 0,80 12,70 51,82	CO ₂ O ₂ N ₂	100% % 0,0 20,7 79,3 Tatal	mol/h 0,00 13,51 51,82	Expo CO ₂ O ₂ N ₂	% 2,40 17,50 80,10	mol/h 1,55 11,32 51,82
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% % 1,2 19,4 79,3 Total	mol/h 0,80 12,70 51,82 65,33	CO ₂ O ₂ N ₂	100% % 0,0 20,7 79,3 Total	mol/h 0,00 13,51 51,82 65,33	Exp CO ₂ O ₂ N ₂	% 2,40 17,50 80,10 Total	to 13 mol/h 1,55 11,32 51,82 64,70
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% % 1,2 19,4 79,3 Total	mol/h 0,80 12,70 51,82 65,33	CO ₂ O ₂ N ₂	100% % 0,0 20,7 79,3 Total	mol/h 0,00 13,51 51,82 65,33	Expo CO ₂ O ₂ N ₂	% 2,40 17,50 80,10 Total	to 13 mol/h 1,55 11,32 51,82 64,70
% char gasificado Combustor	CO ₂ O ₂ N ₂	% 1,2 19,4 79,3 Total %	mol/h 0,80 12,70 51,82 65,33 mol/h	CO ₂ O ₂ N ₂	100% % 0,0 20,7 79,3 Total %	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51	Exp CO ₂ O ₂ N ₂	% 2,40 17,50 80,10 Total % 14,4	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO	% 1,2 19,4 79,3 Total % 14,4 14,7	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28	CO ₂ O ₂ N ₂ CO	100% % 0,0 20,7 79,3 Total % 14,4 14,7	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51	Exp CO ₂ O ₂ N ₂ CO	% 2,40 17,50 80,10 Total % 14,4 14,7	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2 79
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂	75% % 1,2 19,4 79,3 Total % 14,4 14,7 15,4	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44	CO ₂ O ₂ N ₂ CO CO ₂ H ₂	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75	Expo CO ₂ O ₂ N ₂ CO CO ₂ H ₂	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄	75% % 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75 1,39	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08
% char gasificado Combustor	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \hline \\ CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ \hline \end{array} $	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \end{array} $ $ \begin{array}{r} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \end{array} $	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75 1,39 0,51	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40
% char gasificado Combustor Gasificador	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \hline \\ CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_6 \\ \end{array} $	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04	$ \begin{array}{c} CO_2 \\ O_2 \\ N_2 \end{array} $ $ \begin{array}{c} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_6 \end{array} $	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51 3,51 3,51 3,51 3,51 3,51 3,51 3,51 3,51 3,51 3,51 0,51 0,05	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75 1,39 0,51 0,05	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8 N2	75% % 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 0,04 2,26	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8 N2	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75 1,39 0,51 0,05 2,46	Exp CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92
% char gasificado Combustor Gasificador	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 0,04 2,26 8,31	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51 3,51 3,75 1,39 0,05 0,05 2,46 9,06	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92 7,06
% char gasificado Combustor Gasificador	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 0,04 2,26 8,31 22,33	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2 Total	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51 3,51 3,51 0,51 0,05 0,05 2,46 9,06 24,34	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	to 13 mol/h 1,55 11,32 51,82 64,70 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92 7,06 18,99
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 2,26 8,31 22,33	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2 Total	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51 3,51 3,51 3,51 0,51 0,05 0,05 2,46 9,06 24,34	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92 7,06 18,99
% char gasificado Combustor Gasificador Agua al	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 2,26 8,31 22,33	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2 Total	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75 1,39 0,51 0,05 2,46 9,06 24,34	Exp CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92 7,06 18,99
% char gasificado Combustor Gasificador Agua al gasificador	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O g/h 168	%₀ 1,2 19,4 79,3 Total %₀ 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,04 0,04 0,04 2,26 8,31 22,33	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2 Total I 1 1 1 1 1 1 1 1 1 1 1 1 1	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51 3,51 3,51 0,05 0,05 2,46 9,06 24,34 mol/h	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O EXP H ₂ O	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92 7,06 18,99 mol/h 8,09
% char gasificado Combustor Gasificador Agua al gasificador	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O H ₂ O	%₀ 1,2 19,4 79,3 Total %₀ 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 2,26 8,31 22,33	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O S/h 195	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2 Total I I I I I I I I I I I I I	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,51 3,51 3,51 0,51 0,05 2,46 9,06 24,34 nol/h	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₄ C ₃ H ₈ N ₂ H ₂ O H ₂ O	%₀ 2,40 17,50 80,10 Total %₀ 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	to 13 mol/h 1,55 11,32 51,82 64,70 2,73 2,79 2,92 1,08 0,40 0,04 1,92 7,06 18,99 mol/h 8,09
% char gasificado Combustor Gasificador Agua al gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O S/h 168	% 1,2 19,4 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	mol/h 0,80 12,70 51,82 65,33 mol/h 3,22 3,28 3,44 1,27 0,47 0,04 2,26 8,31 22,33	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O S/h 195	100% % 0,0 20,7 79,3 Total % 14,4 14,7 15,4 5,7 2,1 0,2 0,2 10,1 37,2 Total I I I I I I I I I I I I I	mol/h 0,00 13,51 51,82 65,33 mol/h 3,51 3,58 3,75 1,39 0,51 0,05 2,46 9,06 24,34 mol/h 10,83	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₃ H ₈ N ₂ H ₂ O G/h 146	% 2,40 17,50 80,10 Total % 14,4 14,7 15,4 5,7 2,1 0,2 10,1 37,2 Total	to 13 mol/h 1,55 11,32 51,82 64,70 mol/h 2,73 2,79 2,92 1,08 0,40 0,04 0,04 1,92 7,06 18,99 mol/h 8,09

Tabla 4.4. Composición y flujos molares de todas las corrientes del sistema para cada una de las diferentes situaciones simuladas para el caso 1.

Una vez conocidos todos los flujos que atraviesan cada una de las corrientes involucradas en el sistema, se calculan sus calores y el balance global al sistema, utilizando las ecuaciones descritas en el *anexo 3.1 balance de calor*, para cada uno de los porcentajes de sólido carbonoso gasificado y para el caso experimental. Para el cálculo del balance global del sistema se ha realizado un balance global al combustor y otro al gasificador donde se ha tenido en cuenta todas las corrientes que atraviesan a cada reactor.

Figura 4.2 Esquema representativo de la planta de gasificación del ICB-CSIC para el cálculo de los balances de calor.

Hay que resaltar que se ha supuesto que las corrientes gaseosas calientes a la salida de ambos reactores, son enfriadas hasta 300°C para generar calor y calentar las corrientes de reactivos hasta 500°C a la entrada. Para comprobar que esta suposición se cumple en la tabla 4.5 se muestran los calores generados por los condensadores, los calores absorbidos por los calentadores y el calor sobrante para cada una de las diferentes situaciones simuladas en este caso.

Calor intercambiado entre las corrientes de salida y entrada de los reactores								
% cl	nar gasificado	0%	25%	50%				
Condensadores Q condensadores (Q ₁ +Q ₂) (W)		503,4	518,5	533,6				
Condensadores	T ^a de enfriamiento (°C)	300	300	300				
Calantadoros	Q absorbido (Q_1+Q_2) (W)	416,4	444,9	468,7				
Calentadores	T ^a de calentamiento (°C)	500	500	500				
Q sobrante ($Q_1+Q_2-Q_3-Q_4$)	(W)	87	73,6	64,9				
% cl	nar gasificado	75%	100%	Exp.13				
Condonsadoros	Q cedido $(Q_1+Q_2)(W)$	548,6	563,7	470,8				
Condensadores	T ^a de calentamiento (°C)	300	300	300				
Calantadoros	Q absorbido (Q_1+Q_2) (W)	495,4	521,1	459,2				
Calentauores	T ^a de calentamiento (°C)	500	500	500				
Q sobrante ($Q_1+Q_2-Q_3-Q_4$)	(W)	53,2	42,6	11,6				

Tabla 4.5. Calores intercambiados entre las corrientes de salida y entrada de los reactores.

Una vez comprobado que se cumple la suposición de recircular las corrientes calientes para recalentar las corrientes reactivas se procede a la resolución del balance de calor. En la tabla 4.6 se muestran los resultados obtenidos para el balance de calor de cada una de las 5 situaciones simuladas para el caso 1, más el balance de calor para el experimento 13.

% char gasificado		0%			25%			50%	
	Corrie	entes de ent	rada	Corrie	ntes de ent	rada	Corrie	ntes de ent	rada
	Corric	T ^a (°C)	O(W)	Corric	T ^a (k)	O(W)	Corric	T ^a (^o C)	O(W)
	aire	500	313	aire	500	313	aire	500	313
	olivina	800	-10769	olivina	800	-10769	olivina	800	-10769
	char	800	13.5	char	800	10	char	800	6.75
Combuston		Total	-10442		Total	-10446		Total	-10449
Combustor									
	Corr	iente de sal	lida	Corr	iente de sal	ida	Corr	iente de sal	lida
		T ^a (°C)	Q(W)		T ^a (°C)	Q(W)		T ^a (°C)	Q(W)
	gases	900	160	gases	900	245	gases	900	330
	olivina	900	-10525	olivina	900	-10525	olivina	900	-10525
		Total	<u>-10364</u>		Total	-10280		Total	-10195
Q combustor (W)		78			166			255	
		10			100			200	
	Corrie	entes de ent	rada	Corrie	ntes de ent	rada	Corrie	ntes de ent	rada
		T ^a (°C)	O (W)		T ^a (°C)	O(W)		T ^a (°C)	O (W)
	N_2	500	7	N_2	500	7	N_2	500	7
	H ₂ O	500	-350	H ₂ O	500	-453	H ₂ O	500	-551
	biomasa	25	-321	biomasa	25	-321	biomasa	25	-321
	olivina	900	-10525	olivina	900	-10525	olivina	900	-10525
Cosificador		Total	-11189		Total	-11292		Total	-11390
Gasilicauoi									
	Corr	iente de sal	lida	Corr	iente de sal	ida	Corr	iente de sal	lida
		T ^a (°C)	Q(W)		T ^a (°C)	Q(W)		T ^a (°C)	Q(W)
	gases	800	-617	gases	800	-693	gases	800	-769
	char	800	13.5	char	800	10760	char	800	6.75
	olivina	800 Total	-10/69	olivina	800 Total	-10/09	olivina	800 Total	-10/69
		100	-11372		Total	-11452		Total	-11551
Q gasificador (W)		-185			-160			-153	
					1000/			•	10
% char gasificado		75%			100%		Exp	erimento	13
% char gasificado	Corrie	75%	rada	Corrig	100%	rada	Expe	erimento	13
% char gasificado	Corrie	75%	rada O(W)	Corrie	100% ntes de ent	rada O(W)	Expo	erimento ntes de ent T ^a (k)	rada
% char gasificado	Corrie	75% entes de ent T ^a (k) 500	rada Q(W) 313	Corrie	100% ntes de ent. T ^a (k) 500	rada Q(W) 313	Expo Corrie aire	ntes de ent T ^a (k) 500	13 rada Q(W) 313
% char gasificado	Corrie aire olivina	75% Intes de ent T^a(k) 500 800	rada Q(W) 313 -10769	Corrie aire olivina	100% ntes de ent T ^a (k) 500 800	rada Q(W) 313 -10769	Expe Corrie aire olivina	ntes de ent T ^a (k) 500 800	rada Q(W) 313 -10769
% char gasificado	Corrie aire olivina char	75% T^a(k) 500 800 800 800	rada Q(W) 313 -10769 3.4	Corrie aire olivina char	100% ntes de ent. T ^a (k) 500 800 800	rada Q(W) 313 -10769 0	Expo Corrie aire olivina char	ntes de ent T^a(k) 500 800 800	rada Q(W) 313 -10769 6.5
% char gasificado	Corrie aire olivina char	75% T^a(k) 500 800 800 Total	rada Q(W) 313 -10769 3.4 -10453	Corrie aire olivina char	100% ntes de ent T ^a (k) 500 800 800 Total	rada Q(W) 313 -10769 0 -10456	Expo Corrie aire olivina char	ntes de ent T ^a (k) 500 800 800 Total	rada Q(W) 313 -10769 6.5 -10449
% char gasificado	Corrie aire olivina char	75% ntes de ent T^a(k) 500 800 800 Total	rada Q(W) 313 -10769 3.4 -10453	Corrie aire olivina char	100% ntes de ent T ^a (k) 500 800 800 Total	rada Q(W) 313 -10769 0 -10456	Expo Corrie aire olivina char	ntes de ent T ^a (k) 500 800 800 Total	13 rada Q(W) 313 -10769 6.5 -10449
% char gasificado Combustor	Corrie aire olivina char Corr	75% antes de ent T^a(k) 500 800 800 Total iente de sa	rada Q(W) 313 -10769 3.4 -10453 lida	Corrie aire olivina char Corr	100% ntes de ent T ^a (k) 500 800 800 Total iente de sal	rada Q(W) 313 -10769 0 -10456 ida	Corrie aire olivina char Corr	ntes de ent T ^a (k) 500 800 800 Total	rada Q(W) 313 -10769 6.5 -10449 lida
% char gasificado Combustor	Corrie aire olivina char Corr	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k)	rada Q(W) 313 -10769 3.4 -10453 lida Q(W)	Corrie aire olivina char Corr	100% ntes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k)	rada Q(W) 313 -10769 0 -10456 ida Q(W)	Expo Corrie aire olivina char Corr	ntes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k)	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W)
% char gasificado Combustor	Corrie aire olivina char Corr gases	75% T*(k) 500 800 800 Total iente de sal T*(k) 900 800	rada Q(W) 313 -10769 3.4 -10453 lida Q(W) 415	Corrie aire olivina char Corr gases	100% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 800	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500	Corrie aire olivina char Corr gases	ntes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k) 900	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 1055
% char gasificado Combustor	Corrie aire olivina char Corr gases olivina	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525	Corrie aire olivina char Corr gases olivina	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Tt (c)	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10525	Corrie aire olivina char Corr gases olivina	ntes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k) 900 900	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525
% char gasificado Combustor	Corrie aire olivina char Corr gases olivina	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110	Corrie aire olivina char Corr gases olivina	100% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025	Expo Corrie aire olivina char Corr gases olivina	antes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k) 900 900 70tal	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194
% char gasificado Combustor Q combustor (W)	Corrie aire olivina char Corr gases olivina	75% mtes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 343	rada Q(W) 313 -10769 3.4 -10453 iida Q(W) 415 -10525 -10110	Corrie aire olivina char Corr gases olivina	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025	Expo Corrie aire olivina char Corr gases olivina	antes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 256	13 rada Q(W) 313 -10769 6.5 -10449 iida Q(W) 331 -10525 -10194
% char gasificado Combustor Q combustor (W)	Corrie aire olivina char Corr gases olivina	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343	rada Q(W) 313 -10769 3.4 -10453 iida Q(W) 415 -10525 -10110	Corrie aire olivina char Corr gases olivina	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025	Expo Corrie aire olivina char Corr gases olivina	ntes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k) 900 900 Total 256	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194
% char gasificado Combustor Q combustor (W)	Corrie	75% entes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 entes de ent	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10525 -10110 rada	Corrie aire olivina char Corr gases olivina	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025	Expo Corrie olivina char Corr gases olivina	ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 ntes de ent	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194
% char gasificado Combustor Q combustor (W)	Corrie	75% entes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 entes de ent T*(k)	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W)	Corrie aire olivina char Corr gases olivina	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k)	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 rada Q(W)	Expo Corrie olivina char Corr gases olivina	T*(k) 500 800 800 Total iente de sal T*(k) 900 900 900 Total 256 ntes de ent T*(k)	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W)
% char gasificado Combustor Q combustor (W)	Corrie	75% entes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 entes de ent T*(k) 500	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10525 -10110 rada Q(W) 7	Corrie aire olivina char Corr gases olivina Corrie N ₂	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 rada Q(W) 7	Expo Corrie olivina char Corr gases olivina Corrie N ₂	T*(k) 500 800 800 Total iente de sal T*(k) 900 900 900 Total Z56 ntes de ent T*(k) 500	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7
% char gasificado Combustor Q combustor (W)	Corrie	75% entes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 entes de ent T*(k) 500 500 500	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 225	Corrie	100% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 rada Q(W) 7 -731 -731	Corrie	Tail ntes de ent Tail 500 800 800 Total iente de sal Tail 900 900 900 Total 256	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -221
% char gasificado Combustor Q combustor (W)	Corrie	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 mtes de ent T*(k) 500 500 25 000	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 -321	Corrie	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 000	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 rada Q(W) 7 -731 -321 -221 -10767	Expo Corrie olivina char Corr gases olivina Corrie N ₂ H ₂ O biomasa	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 000 25 000	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321
% char gasificado Combustor Q combustor (W)	Corrie	75% antes de ent T*(k) 500 800 800 Total iente de sal r*(k) 900 900 Total 343 antes de ent T*(k) 500 500 25 900 Tota	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 -321 -10525	Corrie	100% ntes de ent T*(k) 500 800 800 Total iente de sal r*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 rada Q(W) 7 -731 -321 -10525 -10525	Expo Corrie aire olivina char Corri gases olivina Corrie N ₂ H ₂ O biomasa olivina	rimento ntes de ent T ^a (k) 500 800 Total iente de sal iente de sal T ^a (k) 900 900 Total 256 900 25 900 Total	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 mtes de ent T*(k) 500 500 25 900 Total	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 -321 -10525 -10525 -11477	Corrie	100% ntes de ent T*(k) 500 800 800 Total iente de sal r*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 rada Q(W) 7 -731 -731 -321 -10525 -10525 -11570	Expo Corrie	Tail ntes de ent T°(k) 500 800 800 Total iente de sal T°(k) 900 900 900 70tal 256 900 25 900 700 500 500 500 500 25 900 Total	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% mtes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 mtes de ent T*(k) 500 500 25 900 Total	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 -321 -10525 -11477	Corrie	100% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 rada Q(W) 7 -731 -321 -10525 -11570	Expo Corrie	Tail Tail Tail 500 800 800 Total iente de sal Tail iente de sal Tail 256 ntes de ent Tail 500 500 500 500 500 500 500 500 25 900 Total	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% mtes de ent T*(k) 500 800 800 800 Total iente de sal T*(k) 900 900 Total 343 mtes de ent T*(k) 500 500 25 900 Total iente de sal T*(k)	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 -321 -10525 -11477 ida Q(W)	Corrie	100% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 -10025 -10025 -10525 -10525 -11570 ida Q(W)	Expo Corrie	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 900 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 g(W) 7 -506 -321 -10525 -11345
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% mites de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 343 mites de ent T*(k) 500 500 25 900 Total iente de sal T*(k) 800	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 7 -638 -321 -10525 -11477 ida Q(W) -845	Corrie	100% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal iente de sal T*(k) 500 500 25 900 Total iente de sal T*(k) 800	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 -10025 -10025 -10525 -10525 -10525 -11570 ida Q(W) -922	Corrie	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 900 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345 lida Q(W) -766
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% antes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 343 antes de ent T^a(k) 500 500 25 900 Total iente de sal T^a(k) 800 a 00 b	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 rada Q(W) 7 -638 -321 -10525 -11477 ida Q(W) -845 3.4	Corrie	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal iente de sal T*(k) 500 500 25 900 Total iente de sal T*(k) 800 800	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 -10025 -10025 -10525 -10525 -10525 -10525 -11570 ida Q(W) -922 0	Expr Corrie	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 900 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 800 800 800 800 800 800 80	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345 lida Q(W) -766 6.5
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% antes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 343 antes de ent T^a(k) 500 500 25 900 Total iente de sal T^a(k) 800 800 800	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 7 -638 -321 -10525 -11477 ida Q(W) -845 3.4 -10769	Corrie	100% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal t*(k) 800 800 800 800	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 -10025 -10025 -10525 -10525 -10525 -11570 ida Q(W) -922 0 -10769	Corrie	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 900 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total 1 ^a (k) 800 800 800 800 800 800 800 80	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345 lida Q(W) -766 6.5 -10769
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% entes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 343 entes de ent T*(k) 500 25 900 Total iente de sal T*(k) 800 800 R00 R00 R00 R00 R00 R00 R00 R00	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 7 -638 -321 -10525 -11477 ida Q(W) -845 3.4 -10769 -11611	Corrie	100% ntes de ent T*(k) 500 800 800 Total iente de sal r*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal r*(k) 800 800 800 800 Total	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 -10025 -10025 -10525 -10025 -10525 -10759 -10769 -11691	Corrie	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 900 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 800 Total	13 rada Q(W) 313 -10769 6.5 -10449 lida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345 lida Q(W) -766 6.5 -10769 -11529
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 343 ntes de ent T*(k) 500 500 25 900 Total iente de sal T*(k) 800 800 Total 125	rada Q(W) 313 -10769 3.4 -10453 ida Q(W) 415 -10525 -10110 7 -638 -321 -10525 -11477 ida Q(W) -845 3.4 -10769 -11611	Corrie	100% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 431 ntes de ent T*(k) 500 500 25 900 Total iente de sal T*(k) 800 800 800 800 Total 121	rada Q(W) 313 -10769 0 -10456 ida Q(W) 500 -10525 -10025 -10025 -10025 -10025 -10525 -10525 -10525 -11570 ida Q(W) -922 0 -10769 -10769 -11691	Corrie	rimento ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 256 900 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 800 105 105 105 105 105 105 105 1	13 rada Q(W) 313 -10769 6.5 -10449 Iida Q(W) 331 -10525 -10194 rada Q(W) 7 -506 -321 -10525 -11345 Iida Q(W) -766 6.5 -10769 -11529

Tabla 4.6. Calores de todas las corrientes que atraviesan el combustor y el gasificador, y balance global térmico al combustor y gasificador para cada una de las diferentes situaciones simuladas para el caso 1.

4.2 Caso2. Fe/olivina como material de lecho

Para el caso2, se ha empleado Fe/olivina como material del lecho (experimento 30) en lugar de la olivina del caso 1. El procedimiento seguido para la obtención de los flujos de calor para los reactores y, en las diferentes situaciones simuladas y para el experimento 30, se corresponde con el descrito para el caso 1. A continuación se muestran las tablas (4.7-4.10) correspondientes para la obtención de los calores que definan el estado autotérmico para el caso 2.

Tabla 4.7. Composición del carbono en la biomasa y su distribución en los reactores para las diferentes situaciones simuladas para el caso1.

		%	g/h	mol/h	
Biomasa		-	234,1		
С		46,6	109,09	9,09	
Sólido carbonoso		15,4	36,05	3	
Sólido carbonoso gasificado (%)		mol/h C gasificado		mol/h C al combustor	
			Busilieuus	moi/m e ui combustoi	
0%			6,06	3	
0% 25%			6,06 6,84	3 2,25	
0% 25% 50%			6,06 6,84 7,59	3 2,25 1,5	
0% 25% 50% 75%			6,06 6,84 7,59 8,34	3 2,25 1,5 0,805	

% char gasificado		0%			25%			50%	
		0/0	mol/h		0/0	mol/h		0/0	mol/h
~	CO	4 71	3.00	CO	3 53	2 25	CO	2 35	1 50
Combustor	0_2	14.12	9.01	$\frac{CO_2}{O_2}$	15.30	9.77	$\frac{CO_2}{O_2}$	16.47	10.52
	N2	81.17	51.82	<u>N2</u>	81.17	51.82	<u>N2</u>	81.17	51.82
	- 12	Total	63.84	- 12	Total	63.84	- 12	Total	63.84
			,						,.
		%	mol/h		%	mol/h		%	mol/h
	СО	13,50	2,11	СО	13,50	2,37	СО	13,50	2,63
	CO ₂	15,30	2,39	CO ₂	15,30	2,69	CO ₂	15,30	2,98
	H_2	15,30	2,39	H_2	15,30	2,69	H_2	15,30	2,98
Gasificador	CH ₄	5,30	0,83	CH ₄	5,30	0,93	CH ₄	5,30	1,03
Gasincadoi	C_2H_4	1,90	0,30	C_2H_4	1,90	0,33	C_2H_4	1,90	0,37
	C_2H_6	0,20	0,03	C_2H_6	0,20	0,04	C_2H_6	0,20	0,04
	C_3H_8	0,20	0,03	C_3H_8	0,20	0,04	C_3H_8	0,20	0,04
	N_2	13,60	2,13	N_2	13,60	2,39	N_2	13,60	2,65
	H_2O	34,80	5,44	H_2O	34,80	6,11	H_2O	34,80	6,78
		Total	15,65		Total	17,58		Total	19,51
A guo al	a/h		mol/h	g/b		mol/h	g/b		nol/h
Agua ai gasificador	<u>g/n</u> 55		3.06	g/n 82		1101/11 1 56	<u>g/n</u> 105		5.83
gasification	55		5,00	02		ч,50	105		5,05
	0		н	0		н	0		н
% error B. atómico	36		-2.4	3		-0.1	12		-0.05
	3,0		2,1	5		0,1	1,2		0,05
	75%								
% char gasificado		75%			100%		Exp	eriment	to 30
% char gasificado		75%			100%		Exp	eriment	to 30
% char gasificado		75% %	mol/h		100% %	mol/h	Expe	eriment %	to 30 mol/h
% char gasificado	CO ₂	75% % 1,18	mol/h 0,75	CO ₂	100% % 0,00	mol/h 0,00	Expe	eriment % 2,39	mol/h 1,53
% char gasificado	CO ₂ O ₂	75% % 1,18 17,65	mol/h 0,75 11,27	CO ₂ O ₂	100% % 0,00 18,83	mol/h 0,00 12,02	Expo	% 2,39 16,43	mol/h 1,53 10,49
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% % 1,18 17,65 81,17	mol/h 0,75 11,27 51,82	CO ₂ O ₂ N ₂	100% % 0,00 18,83 81,17	mol/h 0,00 12,02 51,82	Expe CO ₂ O ₂ N ₂	% 2,39 16,43 81,18	mol/h 1,53 10,49 51,82
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% 1,18 17,65 81,17 Total	mol/h 0,75 11,27 51,82 63,84	CO ₂ O ₂ N ₂	100% 9% 0,00 18,83 81,17 Total	mol/h 0,00 12,02 51,82 63,84	Expe CO ₂ O ₂ N ₂	% 2,39 16,43 81,18 Total	mol/h 1,53 10,49 51,82 63,84
% char gasificado Combustor	CO ₂ O ₂ N ₂	% 1,18 17,65 81,17 Total	mol/h 0,75 11,27 51,82 63,84	CO ₂ O ₂ N ₂	100% % 0,00 18,83 81,17 Total	mol/h 0,00 12,02 51,82 63,84	Expo CO ₂ O ₂ N ₂	% 2,39 16,43 81,18 Total	to 30 mol/h 1,53 10,49 51,82 63,84
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% 1,18 17,65 81,17 Total	mol/h 0,75 11,27 51,82 63,84 mol/h	CO ₂ O ₂ N ₂	100% % 0,00 18,83 81,17 Total	mol/h 0,00 12,02 51,82 63,84 mol/h	Expo CO ₂ O ₂ N ₂	% 2,39 16,43 81,18 Total	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% 1,18 17,65 81,17 Total % 13,50	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 2,29	CO ₂ O ₂ N ₂	100% % 0,00 18,83 81,17 Total % 13,50	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15	Expo CO ₂ N ₂ CO CO	% 2,39 16,43 81,18 Total % 13,50	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂	75% 1,18 17,65 81,17 Total % 13,50 15,30	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 2,28	CO ₂ O ₂ N ₂ CO CO ₂	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 2,57	Expo CO ₂ N ₂ CO CO ₂	% 2,39 16,43 81,18 Total % 13,50 15,30 15,20	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CU	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 5,20	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14	CO ₂ O ₂ N ₂ CO CO ₂ H ₂	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 5,20	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 3,57 1,24	Expo CO ₂ N ₂ CO CO ₂ H ₂ CU	% 2,39 16,43 81,18 Total % 13,50 15,30 15,30 5,20	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C·H	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 5,30 1,90	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,41	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C.H	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 1,90	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 3,57 1,24 0,44	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C.H	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87 0,99 0,36
% char gasificado Combustor Gasificador	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \end{array} $ $ \begin{array}{r} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_4H_4 \\ C_5H_4 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ C_5H_5 \\ $	75% 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 5,30 1,90 0,20	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 1,14 0,41 0,04	$ \begin{array}{c} CO_2 \\ O_2 \\ N_2 \end{array} $ $ \begin{array}{c} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_4 \end{array} $	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 0,20	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 1,24 0,44 0,05	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90 0,20	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 0,99 0,36 0,04
% char gasificado Combustor Gasificador	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \hline CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_6 \\ C_3H_5 \end{array} $	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 15,30 1,90 0,20 0,20	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,41 0,04	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₂ H ₅	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 3,57 1,24 0,44 0,05	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₂ H ₅	% 2,39 16,43 81,18 Total % 13,50 15,30 15,30 1,90 0,20 0,20	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87 0,99 0,36 0,04 0,04
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8 N2	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 1,90 0,20 0,20 13,60	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,41 0,04 2,91	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₃	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 1,90 0,20 0,20 13,60	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 3,57 1,24 0,44 0,05 3,18	Expo CO ₂ 0 ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₃	% 2,39 16,43 81,18 Total % 13,50 15,30 1,90 0,20 0,20 13,60	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 0,99 0,36 0,04 0,04 2,55
% char gasificado Combustor Gasificador	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20 13,60 34,80	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,41 0,04 2,91 7,46	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 0,20 0,20 0,20 13,60 34,80	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 1,24 0,44 0,05 0,05 3,18 8,13	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,39 16,43 81,18 Total % 13,50 15,30 15,30 5,30 1,90 0,20 13,60 34,80	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8 N2 H2O	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 0,20 0,20 0,20 13,60 34,80 Total	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 1,14 0,41 0,04 2,91 7,46 21,45	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8 N2 H2O	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20 13,60 34,80 Total	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 1,24 0,44 0,05 3,18 8,13 23,38	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90 0,20 0,20 13,60 34,80 Total	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52 18,75
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20 0,20 13,60 34,80 Total	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,04 0,04 2,91 7,46 21,45	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 13,60 34,80 Total	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 1,24 0,44 0,05 3,18 8,13 23,38	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90 0,20 13,60 34,80 Total	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52 18,75
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20 13,60 34,80 Total	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 1,14 0,41 0,04 2,91 7,46 21,45	$ \begin{array}{c} CO_2 \\ O_2 \\ N_2 \\ \end{array} $ $ \begin{array}{c} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_4 \\ C_2H_6 \\ C_3H_8 \\ N_2 \\ H_2O \\ \end{array} $	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20 13,60 34,80 Total	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 1,24 0,44 0,05 3,18 8,13 23,38	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90 0,20 13,60 34,80 Total	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52 18,75
% char gasificado Combustor Gasificador Agua al gasificador	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	75% 1,18 17,65 81,17 Total % 13,50 15,30 13,60 34,80 Total П 13,60 10,10	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,04 2,91 7,46 21,45	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 1,90 0,20 0,20 13,60 34,80 Total	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 3,57 1,24 0,44 0,05 0,05 3,18 8,13 23,38	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O Expo B CO CO CO CO CO CO CO CO CO CO	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90 0,20 13,60 34,80 Total	to 30 mol/h 1,53 10,49 51,82 63,84 2,53 2,87 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52 18,75 nol/h
% char gasificado Combustor Gasificador Agua al gasificador	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \end{array} $ $ \begin{array}{r} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_6 \\ C_3H_8 \\ N_2 \\ H_2O \\ \end{array} $ $ \begin{array}{r} g/h \\ 130 \\ \end{array} $	75% 1,18 17,65 81,17 Total % 13,50 15,30 13,60 34,80 Total	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,04 2,91 7,46 21,45	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O S/h 155	100% % 0,00 18,83 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 0,20 0,20 0,20 0,20 0,20 13,60 34,80 Total I I I I I I I I I I I I I	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 1,24 0,44 0,05 3,18 8,13 23,38 mol/h	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O g/h 130	% 2,39 16,43 81,18 Total % 13,50 15,30 5,30 1,90 0,20 0,20 13,60 34,80 Total	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52 18,75 nol/h 7,2
% char gasificado Combustor Gasificador Agua al gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H4 C	75% % 1,18 17,65 81,17 Total % 13,50 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 15,30 13,60 34,80 Total ■ 13,60 34,80 10 10 10 10 10 10 10 10 10 1	mol/h 0,75 11,27 51,82 63,84 mol/h 2,89 3,28 3,28 1,14 0,04 2,91 7,46 21,45 mol/h	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H4 C	100% % 0,00 18,83 81,17 Total % 13,50 15,30 13,60 34,80 Total	mol/h 0,00 12,02 51,82 63,84 mol/h 3,15 3,57 3,57 1,24 0,44 0,05 3,18 8,13 23,38 mol/h	Expo CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O G/h 130	% 2,39 16,43 81,18 Total % 13,50 15,30 15,30 5,30 1,90 0,20 13,60 34,80 Total In 0 0 0 0 0 0 0 0 0 0 0 0 0	to 30 mol/h 1,53 10,49 51,82 63,84 mol/h 2,53 2,87 2,87 2,87 0,99 0,36 0,04 0,04 2,55 6,52 18,75 nol/h 7,2

Tabla 4.8. Composición y flujos molares de todas las corrientes del sistema para cada una de las diferentes situaciones simuladas para el caso 2.

Calor intercambiado entre las corrientes de salida y entrada de los reactores								
% cł	nar gasificado	0%	25%	50%				
Condongodonog	Q condensadores (Q ₁ +Q ₂) (W)	497,4	513	528,6				
Condensadores	T ^a de enfriamiento (°C)	300	300	300				
Calentadores	Q absorbido (Q_1+Q_2) (W)	386,8	412,5	434,4				
Calentadores	T ^a de calentamiento (°C)	500	500	500				
Q sobrante ($Q_1+Q_2-Q_3-Q_4$) ((W)	110,6	100,5	94,2				
% cł	nar gasificado	75%	100%	Exp.30				
Condonsadoros	Q cedido $(Q_1+Q_2)(W)$	544,2	559,9	521,6				
Condensadores	T ^a de calentamiento (°C)	300	300	300				
Calantadoros	Q absorbido (Q_1+Q_2) (W)	458	482	443,9				
Calentauores	T ^a de calentamiento (°C)	500	500	500				
Q sobrante ($\overline{Q_1+Q_2-Q_3-Q_4}$)	(W)	86,2	77,9	77,7				

Tabla 4.9. Calores intercambiados entre las corrientes de salida y entrada de los reactores.

% char gasificado		0%			25%			50%	
	Corrio	ntos do ont	rada	Corrio	ntos do onti	rada	Corrio	ntos do onti	rada
	Corrie	Ta(OC)		Corrier	Ta(L)		Corrie	Ta(OC)	
	•	I (C)	Q(W)	•	I (K)	Q(W)		I(C)	<u>Q(W)</u>
	aire	500	313	aire	500	313	aire	500	313
	Fe/olivina	800	-10370	Fe/olivina	800	-10370	Fe/olivina	800	-10370
	char	800	12,6	char	800	9,45	char	800	6,3
Combustor		Total	-10044		Total	-10048		Total	-10051
Combustor						-			
	Corri	iente de sa	lida	Corri	ente de sali	ida	Corri	ente de sal	ida
		T ^a (°C)	$\mathbf{Q}(\mathbf{W})$		T ^a (C ^o)	Q(W)		T ^a (°C)	Q(W)
	gases	900	171	gases	900	250	gases	900	329
	Fe/olivina	900	-10417	Fe/olivina	900	-10417	Fe/olivina	900	-10417
		Total	-10246		Total	-10167		Total	-10088
O combustor (W)		_201			110			_37	
Q compusion (11)		-201			-11)			-37	
	Comion		atus da	Comion	tog do on	tue de	Comion	400 do 00	tua da
	Corrier	ites de el		Corrien	tes de en	trada	Corrien	tes de en	
		$T^{a}(^{\circ}C)$	$\mathbf{Q}(\mathbf{W})$		$T^{a}(^{\circ}C)$	$\mathbf{Q}(\mathbf{W})$		T ^a (^o C)	Q(W)
	N ₂	500	7	N ₂	500	7	N_2	500	7
	H ₂ O	500	-242	H_2O	500	-336	H ₂ O	500	-415
	biomasa	25	-300	biomasa	25	-300	biomasa	25	-300
	Fe/olivina	900	-10417	Fe/olivina	900	-10417	Fe/olivina	900	-10417
Configudor		Total	-10952		Total	-11046		Total	-11125
Gasilicauor									
	Corrie	ente de s	alida	Corrie	nte de sa	alida	Corrie	ente de sa	alida
		T ^a (°C)	Q(W)		T ^a (°C)	Q(W)		T ^a (°C)	Q (W)
	gases	800	-565	gases	800	-634	gases	800	-704
	char	800	12.6	char	800	9.45	char	800	6.3
	Fe/olivina	800	-10370	Fe/olivina	800	-10370	Fe/olivina	800	-10370
		Total	-10922	1 0/ 011 / 1114	Total	-10995	10,011,1114	Total	-11068
			10/22		7 0	10770		- 7	11000
O gogifigodor (W)		<i>y</i> y							
Q gasilicator (W)		<u>_</u> _			50			57	
					50			57	•••
% char gasificado		75%			100%		Ехре	erimento	30
% char gasificado	Correio	75%		Correito	100%		Expe	erimento	30
% char gasificado	Corrie	75% ntes de ent	trada	Corrier	100%	rada	Expe	erimento	30 rada
% char gasificado	Corrie	75% ntes de ent T^a(k)	rada Q(W) 313	Corrier	100% ntes de entr T ^a (k)	rada Q(W) 313	Expe Corrie	erimento ntes de ent T ^a (k)	30 rada Q(W) 313
% char gasificado	Corrie aire	75% ntes de ent T^a(k) 500 800	rada Q(W) 313	Corrier aire	100% ates de entr T ^a (k) 500 800	rada Q(W) 313 -10370	Expe Corrie aire Ec/oliving	erimento ntes de entr T ^a (k) 500 800	30 rada Q(W) 313 -10370
% char gasificado	Corrie aire Fe/olivina	75% ntes de ent T ^a (k) 500 800 800	rada Q(W) 313 -10370 315	Corrier aire Fe/olivina	100% ntes de entr T ^a (k) 500 800 800	rada Q(W) 313 -10370 0	Expe Corrie aire Fe/olivina	erimento ntes de ent T^a(k) 500 800 800	30 rada Q(W) 313 -10370 64
% char gasificado	Corrie aire Fe/olivina char	75% ntes de ent T*(k) 500 800 800 Total	Q(W) 313 -10370 3,15 -10054	Corrier aire Fe/olivina char	100% ntes de entr T^a(k) 500 800 800 Total	rada Q(W) 313 -10370 0 -10057	Expe Corrie aire Fe/olivina char	erimento ntes de ent. T ^a (k) 500 800 800 Total	30 rada Q(W) 313 -10370 6,4 -10051
Combustor	Corrie aire Fe/olivina char	75% ntes de ent T^a(k) 500 800 800 Total	Q(W) 313 -10370 3,15 -10054	Corriei aire Fe/olivina char	100% ntes de entr T^a(k) 500 800 800 Total	rada Q(W) 313 -10370 0 -10057	Expe Corrie aire Fe/olivina char	erimento ntes de ent: T ^a (k) 500 800 800 Total	30 rada Q(W) 313 -10370 6,4 -10051
Combustor	Corrie aire Fe/olivina char Corri	75% ntes de ent T*(k) 500 800 800 Total iente de sal	arada Q(W) 313 -10370 3,15 -10054 lida	Corrier aire Fe/olivina char Corri	100% tes de entr T*(k) 500 800 800 Total ente de sal	rada Q(W) 313 -10370 0 -10057	Expe Corrie aire Fe/olivina char Corri	T*(k) 500 800 800 Total	30 rada Q(W) 313 -10370 6,4 -10051 ida
Combustor	Corrie aire Fe/olivina char Corri	75% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k)	rada Q(W) 313 -10370 3,15 -10054 lida Q(W)	Corrier aire Fe/olivina char Corri	100% ntes de entr T*(k) 500 800 Total ente de salt T*(k)	rada Q(W) 313 -10370 0 -10057 ida Q(W)	Expe Corrie aire Fe/olivina char Corri	erimento ntes de ent T°(k) 500 800 Total ente de sal T°(k)	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W)
Combustor	Corrie aire Fe/olivina char Corri gases	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409	Corrier aire Fe/olivina char Corri gases	100% tes de entr T*(k) 500 800 Total ente de sal T*(k) 900	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488	Expe Corrie aire Fe/olivina char Corri gases	T ^a (k) 500 800 800 Total ente de sal T ^a (k) 900	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327
Combustor	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417	Corrier aire Fe/olivina char Corri gases Fe/olivina	100% tes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417
Combustor	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008	Corrier aire Fe/olivina char Corri gases Fe/olivina	100% tes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 Total	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090
Q gasincador (W) % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 46	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008	Corrier aire Fe/olivina char Corri gases Fe/olivina	100% ntes de enti T°(k) 500 800 Total ente de sali T°(k) 900 900 Total 128	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 70tal -39	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090
Q gasificado % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 46	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008	Corrier aire Fe/olivina char Corri gases Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T°(k) 500 800 800 Total ente de sal T°(k) 900 900 Total -39	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090
Q gassificado % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 46	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008	Corrier	100% tes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T°(k) 500 800 800 Total ente de sal T°(k) 900 900 900 Total -39	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090
Q gassificado % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 46 ntes de ent T*(k)	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W)	Corrier	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T°(k) 500 800 Total ente de sal T°(k) 900 900 Total -39 ntes de ent T°(k)	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W)
Q gassificado % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char gases Fe/olivina Corrie N2	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7	Corrier	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada Q(W) 7	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 -39 entes de ent: T*(k) 500	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7
Q gassificado % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7 -502	Corrier	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada Q(W) 7 -589	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 70tal -39 entes de ent: T*(k) 500 500 500	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450
Q combustor (W) Q combustor (W)	Corrie aire Fe/olivina char gases Fe/olivina Corrie N2 H2O biomasa	75% ntes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 46 ntes de ent T^a(k) 500 500 25	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300	Corrier	100% Ites de entr T*(k) 500 800 Total ente de salt T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada Q(W) 7 -589 -300	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina Corrie N ₂ H ₂ O biomasa	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 900 Total ente de sal T*(k) 900 900 Total -39 entes de ente T*(k) 500 500 25	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300
Q gasificado % char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina	75% ntes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 46 ntes de ent T^a(k) 500 500 25 900	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417	Corrier aire Fe/olivina char Corrier gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25 900	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417	Expe Corrie Fe/olivina char Corrie gases Fe/olivina N2 H2O biomasa Fe/olivina	T*(k) 500 800 800 800 800 70tal ente de sal T*(k) 900 900 70tal -39 ntes de ent T*(k) 500 500 500 500 500 900	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417
Q combustor (W) Q combustor (W)	Corrie aire Fe/olivina char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 46 ntes de ent T*(k) 500 500 25 900 Total	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -10017 -11212	Corrier	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25 900 Total	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina Corrie N ₂ H ₂ O biomasa Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 900 Total -39 ntes de ent T*(k) 500 500 500 500 500 500 500 500 700 700	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina	75% ntes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 46 ntes de ent T^a(k) 500 500 25 900 Total	rada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -10017 -10017 -10017	Corrier aire Fe/olivina char Corrier gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25 900 Total	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299	Expe Corrie aire Fe/olivina char Corrie gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 70tal ente de sal T*(k) 900 70tal -39 ntes de ent: T*(k) 500 500 500 500 700 700	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500 25 900 Total iente de sal	rada Q(W) 313 -10370 3,15 -10054 iida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -11212	Corrier aire Fe/olivina char Corri gases Fe/olivina N2 H2O biomasa Fe/olivina	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25 900 Total ente de sal	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299 ida	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 70tal ente de sal T*(k) 900 70tal -39 ntes de ent: T*(k) 500 500 500 500 500 700 Total	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 500 500 25	rada Q(W) 313 -10370 3,15 -10054 iida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -11212 iida Q(W) 7 -502 -300 -10417 -11212	Corrier aire Fe/olivina char Corri gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% Ites de entr T*(k) 500 800 Total ente de salt T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25 900 Total ente de salt T*(k) 500 500 25 900 Total	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299 ida Q(W) 0 -10417 -11299	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -39 ntes de ent T*(k) 500 500 25 900 Total ente de sal T*(k)	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160 ida
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char Corri gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 25 900 Total iente de sal T ^a (k) 800 800 800 800 800 800 800 800 800 80	rada Q(W) 313 -10370 3,15 -10054 iida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -11212 iida Q(W) 7 -572 -300 -10417 -11212	Corrier aire Fe/olivina char Corri gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina Corri	100% Ites de entr T*(k) 500 800 Total ente de sali T*(k) 900 900 Total 128 Ites de entr T*(k) 500 25 900 Total ente de sali T*(k) 800 800 800 800 800 800 800 800 800 80	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299 ida Q(W) -843 -0	Expe Corrie	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -39 ntes de ent T*(k) 500 500 25 900 Total ente de sal T*(k) 800	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160 ida Q(W) 6 -1067 -1067 -1067 -1070 -10051 -1070 -10
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 800 800 800 800	rada Q(W) 313 -10370 3,15 -10054 iida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -11212 iida Q(W) 7 -572 -300 -10417 -11212	Corrier aire Fe/olivina char Corri gases Fe/olivina N2 H2O biomasa Fe/olivina Corri gases Corri	100% Ites de entr T*(k) 500 800 Total ente de sali T*(k) 900 900 Total 128 Ites de entr T*(k) 500 25 900 Total ente de sali T*(k) 800 800 800 800 800 800 800 800 800 80	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299 ida Q(W) -843 0 10270	Expe Corrie	T*(k) 500 800 800 Total ente de sal T*(k) 900 900 70tal ente de sal T*(k) 900 70tal -39 ntes de ent T*(k) 500 500 500 500 500 500 500 500 70 800 800 800 800	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160 ida Q(W) 6,4 -10090
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 800 800 Total T ^a (k) 800 800 Total T ^a (k) 800 800 Total T ^a (k) T (k)	arada Q(W) 313 -10370 3,15 -10054 lida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -11212 lida Q(W) -774 3,15 -10370 -11141	Corrier aire Fe/olivina char Corri gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina Corrier Qases Corrier Pagases Corrier Pagases Corrier Corri	100% Ites de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 128 Ites de entr T*(k) 500 25 900 Total ente de sal T*(k) 800 800 800 800 800 800 800 800 800 80	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -589 -300 -10417 -11299 ida Q(W) -843 0 -843 0 -10370	Expe Corrie	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -39 ntes de ent T*(k) 500 500 25 900 Total ente de sal T*(k) 800 800 800 800 800	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160 ida Q(W) -676 6,4 -10370 -1047 -11160
Q combustor (W) Q combustor (W) Gasificador	Corrie aire Fe/olivina char char gases Fe/olivina Corrie N2 H2O biomasa Fe/olivina Fe/olivina Corrie gases char Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 46 ntes de ent T ^a (k) 500 500 25 900 Total iente de sal T ^a (k) 800 800 Total 1	rada Q(W) 313 -10370 3,15 -10054 iida Q(W) 409 -10417 -10008 rada Q(W) 7 -502 -300 -10417 -11212 iida Q(W) -774 3,15 -10370 -11141	Corrier aire Fe/olivina char Corri gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina Corri gases char Fe/olivina	100% Ites de entr T*(k) 500 800 Total ente de sali T*(k) 900 900 Total 128 Ites de entr T*(k) 500 500 25 900 Total ente de sali T*(k) 800 800 800 800 800 800 800 800 800 80	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -300 -10417 -11299 ida Q(W) -10417 -11299 ida Q(W) -843 0 -10370 -10370	Expe Corrie	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -39 ntes de ent T*(k) 500 500 25 900 Total ente de sal T*(k) 800 800 800 800 800 Total 110	30 rada Q(W) 313 -10370 6,4 -10051 ida Q(W) 327 -10417 -10090 rada Q(W) 7 -450 -300 -10417 -11160 ida Q(W) -676 6,4 -10370 11040

Tabla 4.10. Calores de las corrientes que atraviesan el combustor y el gasificador, y balance global térmico al combustor y gasificador para cada una de las diferentes situaciones simuladas para el caso 2.

4.3 Caso3: Fe/olivina como material del lecho más la adición de un filtro catalítico

Para el caso, se ha empleado Fe/olivina como material del lecho más la adición de un filtro catalítico (experimento 26). El procedimiento seguido para la obtención de los flujos de calor para los reactores, en las diferentes situaciones simuladas y para el experimento 26, se corresponde con el descrito para el caso 1. A continuación se muestran las tablas (4.11-4.14) correspondientes para la obtención de los calores que definan el estado autotérmico para el caso 3.

		Pm		Pm g/h (sin humedad y cenizas)		mol/h		
Biomasa	6247 239,2		239,2 0,038		0,0383			
Aire	al comb	ustor		Aire al horno quemador				
	C	02	N_2		O_2	N_2		
lN/h	30)2	1160	lN/h	220	830		
mol/h	13	3,5	51,8	mol/h	9,85	37		
N ₂ al gas	sificador		Materia	l del lecho				
lN/h	22	2,5	Kg/h	8				
mol/h	1	1			-			

Tabla 4.11. Valores de las corrientes que permanecen constantes para toda la simulación del caso 3.

% char gasificado	0%			25%			50%		
		%	mol/h		%	mol/h		%	mol/h
	CO	5.19	3.31	CO2	3.89	2.48	CO	2.59	1.66
Combustor	0,	13.64	8,71	0_2	14,9	3 9.53	0_2	16.23	10,36
	N ₂	81,17	51,82	N ₂	81,1	7 51,82	N ₂	81,17	51,82
		Total	63,84	_	Tota	al <u>63,84</u>	-	Total	63,84
		%	mol/h		%	mol/h		%	mol/h
	CO	11,80	1,94	CO	11,8	0 2,18	CO	11,80	2,42
		20,10	3,31	CO_2	20,1	0 3,72	CO_2	20,10	4,13
	H_2	23,30	3,84	H_2	23,3	0 4,31	H_2	23,30	4,79
Gasificador	CH_4	4,70	0,77	CH_4	4,70	0, 0, 87	CH_4	4,70	0,97
	C_2H_4	1,70	0,28	C_2H_4	1,/0	0 0,31	C_2H_4	1,70	0,35
	C_2H_6	0,20	0,03	C_2H_6	0,20	0,04	C_2H_6	0,20	0,04
	<u>С3П8</u> N	0,10	0,02	<u>С3П8</u> N	0,10	0,02		0,10	0,02
	H ₂	28.20	4 65	H ₂	28.2	0 5 22	H ₂	28.20	5 79
	1120	Total	16/16	1120	Tota	$1 \frac{18}{19}$	1120	Total	20.52
		10141	10,40		1014	II 10,49		Total	20,32
Agua al	g/h	1	mol/h	g/h		mol/h	g/h	1	mol/h
gasificador	54		3	80		4,44	108		6
						,			
% error B atómico	0		H	0		H	0		Н
	1,6		-0,3	0,2		0,7	-0,3		2,3
				1000/					
% char gasificado		75%			1000		Fyn	arimon	to 26
% char gasificado		75%			100%	//0	Exp	erimen	to 26
% char gasificado		75% %	mol/h		100%	/o mol/h	Exp	eriment	to 26 mol/h
% char gasificado	CO ₂	75% % 1,30	mol/h 0,83	CO ₂	100%	//o mol/h 0 0,00	Expo	eriment % 2,60	to 26 mol/h 1,65
% char gasificado	CO ₂	75% % 1,30 17,53	mol/h 0,83 11,19	CO ₂	100% % 0,00 18,8	mol/h 0 0,00 3 12,02	Expo CO ₂ O ₂	eriment % 2,60 15,60	to 26 mol/h 1,65 9,88
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% % 1,30 17,53 81,17	mol/h 0,83 11,19 51,82		100% % 0,00 18,8 81,1	mol/h 0 0,00 3 12,02 7 51,82	Exp CO ₂ O ₂ N ₂	% 2,60 15,60 81,80	to 26 mol/h 1,65 9,88 51,82
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% % 1,30 17,53 81,17 Total	mol/h 0,83 11,19 51,82 63,84	CO ₂ O ₂ N ₂	100%	mol/h 0 0,00 3 12,02 7 51,82 al 63,84	Expo CO ₂ O ₂ N ₂	% 2,60 15,60 81,80 Total	mol/h 1,65 9,88 51,82 63,35
% char gasificado Combustor	CO ₂ O ₂ N ₂	% 1,30 17,53 81,17 Total	mol/h 0,83 11,19 51,82 63,84	CO ₂ O ₂ N ₂	100% % 0,00 18,8 81,1 Tota	mol/h 0 0,00 3 12,02 7 51,82 1 63,84	Expo CO ₂ O ₂ N ₂	% 2,60 15,60 81,80 Total	to 26 mol/h 1,65 9,88 51,82 63,35
% char gasificado Combustor	CO ₂ O ₂ N ₂	75% % 1,30 17,53 81,17 Total %	mol/h 0,83 11,19 51,82 63,84 mol/h	CO ₂ O ₂ N ₂	100% % 0,00 18,8 81,1 Tota %	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h	Expo CO ₂ O ₂ N ₂	% 2,60 15,60 81,80 Total %	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO	75% 1,30 17,53 81,17 Total % 11,80	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66	CO ₂ O ₂ N ₂ CO	100% % 0,00 18,8 81,1 Tota % 11,8	mol/h 0 0,00 3 12,02 7 51,82 1 63,84 mol/h 0 2,90	Exp CO ₂ O ₂ N ₂ CO	% 2,60 15,60 81,80 Total % 11,80	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h 2,33
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂	75% % 1,30 17,53 81,17 Total % 11,80 20,10	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54	CO2 O2 N2 CO CO2	100% % 0,00 18,8 81,1 Tota % 11,8 20,1	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95	Exp CO ₂ O ₂ N ₂ CO CO ₂	% 2,60 15,60 81,80 Total % 11,80 20,10	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂	75% 1,30 17,53 81,17 Total % 11,80 20,10 23,30	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26	CO ₂ O ₂ N ₂ CO CO ₂ H ₂	100% % 0,00 18,8 81,1 Tota % 11,8 20,1 23,3	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 4,06	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄	100% % 0,00 18,8 81,1 Tota % 11,8 20,1 23,3 4,70	mol/h 0 0,00 3 12,02 7 51,82 11 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ T	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93
% char gasificado Combustor	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 23,20	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,25	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ CH ₄ C ₂ H ₄	100% % 0,00 18,8 81,1 Tota 11,8 20,10 23,3 4,70 1,70	mol/h 0 0,00 3 12,02 7 51,82 11 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,42	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,34
% char gasificado Combustor Gasificador	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \end{array} $ $ \begin{array}{r} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ QH_6 \\ Q$	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6	100% % 0,00 18,8 81,1 Tota 20,1 23,3 4,70 1,70 0,20	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,05	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ³	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 0,20 0,10 0,20	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H6 C3H8	100% % 0,00 18,8 81,1 Tota 20,10 23,3 4,70 1,70 0,20 0,10	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,02	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 280	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,02
% char gasificado Combustor Gasificador	CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,21	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \\ \hline CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_4 \\ C_3H_8 \\ N_2 \\ H_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ $	100% % 0,00 18,8 81,1 Tota 20,1 23,3 4,70 1,70 0,20 0,10 9,80	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,02 0 2,41 0 6,04	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,21 6,37	$\begin{array}{c} CO_2 \\ O_2 \\ N_2 \\ \hline \\ CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_4 \\ C_2H_6 \\ C_3H_8 \\ N_2 \\ H_2O \\ \end{array}$	100% % 0,00 18,8 81,1 Tota 11,8 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,22	mol/h 0 0,00 3 12,02 7 51,82 11 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,02 0 2,41 0 6,94	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	75% 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,211 6,37 22,55	CO2 O2 N2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	100% % 0,00 18,8 81,1 Tota 11,8 20,1 23,3 4,70 1,70 0,20 0,10 9,80 28,2 Tota	mol/h 0 0,00 3 12,02 7 51,82 1 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,05 0 0,05 0 2,41 0 6,94 1 24,59	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56 19,71
% char gasificado Combustor Gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,21 6,37 22,55	$ \begin{array}{c} CO_2 \\ O_2 \\ N_2 \end{array} $ $ \begin{array}{c} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_6 \\ C_3H_8 \\ N_2 \\ H_2O \\ \end{array} $	100% % 0,00 18,8 81,1 Tota 20,10 23,3 4,70 1,70 0,20 0,10 9,80 28,2 Tota	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,02 0 2,41 0 6,94 al 24,59	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56 19,71
% char gasificado Combustor Gasificador Agua al gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C2H6 C3H8 N2 H2O S/h	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total I	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,21 6,37 22,55	$ \begin{array}{r} CO_2 \\ O_2 \\ N_2 \end{array} $ $ \begin{array}{r} CO \\ CO_2 \\ H_2 \\ CH_4 \\ C_2H_4 \\ C_2H_4 \\ C_2H_6 \\ C_3H_8 \\ N_2 \\ H_2O \\ \end{array} $ $ \begin{array}{r} g/h \\ 165 \end{array} $	100% % 0,00 18,8 81,1 Tota % 11,8 20,1 23,3 4,70 1,70 0,20 0,10 9,80 28,2 Tota	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,02 0 2,41 0 6,94 al 24,59 mol/h 9,17	Exp CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O	% 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56 19,71 nol/h
% char gasificado Combustor Gasificador Agua al gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O S/h 135	75% 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total I I I I I I I I I I I I I	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,21 6,37 22,55	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O S/h 165	100% % 0,00 18,8 81,1 Tota % 11,8 20,1 23,3 4,70 1,70 0,20 0,10 9,80 28,2 Tota	mol/h 0 0,00 3 12,02 7 51,82 al 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,02 0 0,02 0 2,41 0 6,94 al 24,59 mol/h 9,17	Exp CO ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O g/h 106	eriment % 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to 26 mol/h 1,65 9,88 51,82 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56 19,71 mol/h 5,9
% char gasificado Combustor Gasificador Agua al gasificador	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C2H4 C3H8 N2 H2O g/h 135	75% % 1,30 17,53 81,17 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total I I I I I I I I I I I I I	mol/h 0,83 11,19 51,82 63,84 mol/h 2,66 4,54 5,26 1,06 0,38 0,05 0,02 2,21 6,37 22,55 mol/h 7,5	CO2 O2 N2 CO CO2 H2 CH4 C2H4 C2H4 C2H4 C3H8 N2 H2O G/h 165	100% % 0,00 18,8 81,1 Tota % 11,8 20,1 23,3 4,70 1,70 0,20 0,10 9,80 28,2 Tota	mol/h 0 0,00 3 12,02 7 51,82 1 63,84 mol/h 0 0 2,90 0 4,95 0 5,73 0 1,16 0 0,42 0 0,05 0 0,02 0 2,41 0 6,94 1 24,59 mol/h 9,17	Exp CO ₂ O ₂ N ₂ CO CO ₂ H ₂ CH ₄ C ₂ H ₄ C ₂ H ₆ C ₃ H ₈ N ₂ H ₂ O G/h 106	eriment % 2,60 15,60 81,80 Total % 11,80 20,10 23,30 4,70 1,70 0,20 0,10 9,80 28,20 Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to 26 mol/h 1,65 9,88 51,82 63,35 63,35 mol/h 2,33 3,97 4,60 0,93 0,34 0,04 0,02 1,93 5,56 19,71 nol/h 5,9

Tabla 4.12. Composición y flujos molares de todas las corrientes del sistema para cada una de las diferentes situaciones simuladas para el caso 3.

Calor intercambiado entre las corrientes de salida y entrada de los reactores							
% cl	nar gasificado	0%	25%	50%			
Condongadonog	Q condensadores (Q ₁ +Q ₂) (W)	484,4	498	512			
Condensadores	T ^a de enfriamiento (°C)	300	300	300			
Calantadoros	Q absorbido (Q_1+Q_2) (W)	387,3	412	438,7			
Calentadores	T ^a de calentamiento (°C)	500	500	500			
Q sobrante ($Q_1+Q_2-Q_3-Q_4$)	97,1	86	73,3				
				-			
% cl	75%	100%	Exp.26				
Condonsadoros	Q cedido $(Q_1+Q_2)(W)$	525,4	539,1	502,5			
Condensadores	T ^a de calentamiento (°C)	300	300	300			
Calantadoros	Q absorbido (Q_1+Q_2) (W)	464,4	493	421,6			
Calentauores	T ^a de calentamiento (°C)	500	500	500			
Q sobrante ($Q_1+Q_2-Q_3-Q_4$)	(W)	61	46,1	80,9			

Tabla 4.13. Calores intercambiados entre las corrientes de salida y entrada de los reactores.

% char gasificado	0%		25%			50%			
	Corrientes de entrada		Corrie	ntes de enti	rada	Corrie	Corrientes de entrada		
	001110	T ^a (°C)	O(W)	001110	T ^a (k)	Q(W)	Corrie	T ^a (°C)	O(W)
	aire	500	313	Aire	500	313	aire	500	313
	Fe/olivina	800	-10370	Fe/olivina	800	-10370	Fe/olivina	800	-10370
	char	800	13,9	Char	800	10,4	char	800	6,95
Combustor		Total	-10043		Total	-10047		Total	-10050
Compusion	~			~			~ ~ ~		
	Corri	ente de sa	lida O(W)	Corri	ente de sal		Corri	ente de sal	ida O(W)
		1°(°C)	$\mathbf{Q}(\mathbf{W})$		I [•] (C [*])	Q(W)		P(°C)	Q(W) 212
	gases Fo/olivino	900	10417	gases Fo/olivino	900	10417	gases Fo/olivino	900	10417
	re/onvina	Total	-10278	re/onvina	Total	-10417	re/onvina	Total	-10417
		007	-10270		1 4 4	-101/1		F 4	-10104
Q combustor (W)		-233			-144			-54	
	Corrie	ntes de ent	trada	Corrie	ntes de ent	rada	Corrie	ntes de ent	rada
		T ^a (°C)	Q(W)		T ^a (°C)	Q (W)		T ^a (°C)	Q(W)
	N_2	500	7	N_2	500	7	N_2	500	7
	H ₂ O	500	-244	H ₂ O	500	-334	H ₂ O	500	-431
	biomasa	25	-330	biomasa	25	-330	biomasa	25	-330
	Fe/olivina	900	-10417	Fe/olivina	900	-10417	Fe/olivina	900	-10417
Gasificador		Total	-10984		Total	-11074		Total	-11171
Gasificauor						-			
	Corri	iente de sa	lida	Corri	ente de sal	ida	Corri	ente de sal	ida
		T*(°C)	Q(W)		T*(°C)	Q(W)		T*(°C)	Q(W)
	gases	800	-662	gases	800	-744	gases	800	-825
	char	800	13,9	Char	800	10,4	char	800	6,95
	Fe/olivina	800	-10370	Fe/olivina	800	-10370	Fe/olivina	800	-10370
		Total	-11018		Total	-11104		Total	-11188
Q gasificador (W)		-35			-30			-18	
0/ 1 +6+ 1		770/			1000/		Г	• 4	26
% char gasificado		75%			100%		Expe	erimento	26
% char gasificado	Corrie	75% ntes de ent	trada	Corrie	100%	rada	Expe	erimento ntes de ent	26 rada
% char gasificado	Corrie	75% ntes de ent T ^a (k)	rada Q(W)	Corrie	100% ntes de entr T ^a (k)	rada Q(W)	Expe Corrie	erimento ntes de ent Tª(k)	26 rada Q(W)
% char gasificado	Corrie	75% ntes de ent T ^a (k) 500	rada Q(W) 313	Corrier	100% ntes de entr T ^a (k) 500	rada Q(W) 313	Expe Corrier aire	erimento ntes de ent T ^a (k) 500	26 rada Q(W) 313
% char gasificado	Corrie aire Fe/olivina	75% ntes de ent T ^a (k) 500 800	rada Q(W) 313 -10370	Corrier Aire Fe/olivina	100% ntes de entr T ^a (k) 500 800	rada Q(W) 313 -10370	Expe Corrier aire Fe/olivina	erimento ntes de ent T ^a (k) 500 800	26 rada Q(W) 313 -10370
% char gasificado	Corrie aire Fe/olivina char	75% ntes de ent T^a(k) 500 800 800	rada Q(W) 313 -10370 3,5	Corrier Aire Fe/olivina Char	100% ates de entr T^a(k) 500 800 800	rada Q(W) 313 -10370 0	Expe Corrier aire Fe/olivina char	erimento ntes de ent T ^a (k) 500 800 800	26 rada Q(W) 313 -10370 6,9
% char gasificado	Corrie aire Fe/olivina char	75% ntes de ent T^a(k) 500 800 800 Total	rada Q(W) 313 -10370 3,5 -10053	Corrier Aire Fe/olivina Char	100% ntes de entra T*(k) 500 800 Total	rada Q(W) 313 -10370 0 -10057	Expe Corrie aire Fe/olivina char	ntes de ent T ^a (k) 500 800 800 Total	26 rada Q(W) 313 -10370 6,9 -10050
% char gasificado Combustor	Corrie aire Fe/olivina char	75% ntes de ent T^a(k) 500 800 800 Total	rada Q(W) 313 -10370 3,5 -10053	Corrie Aire Fe/olivina Char	100% ntes de entr T*(k) 500 800 800 Total	rada Q(W) 313 -10370 0 -10057	Expe Corrie aire Fe/olivina char	rimento ntes de ent T ^a (k) 500 800 800 Total	26 rada Q(W) 313 -10370 6,9 -10050
% char gasificado Combustor	Corrie aire Fe/olivina char Corri	75% ntes de ent T*(k) 500 800 800 Total iente de sal T*(k)	rada Q(W) 313 -10370 3,5 -10053 lida	Corrie Aire Fe/olivina Char Corri	100% ntes de entr T*(k) 500 800 800 Total ente de sal T*(k)	rada Q(W) 313 -10370 0 -10057 ida Q(W)	Expe Corrie aire Fe/olivina char Corri	erimento ntes de ent T ^a (k) 500 800 800 Total ente de sal T ^a (k)	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W)
% char gasificado Combustor	Corrie aire Fe/olivina char Corri	75% ntes de ent T ^a (k) 500 800 800 Total iente de sal T ^a (k) 900	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400	Corrie Aire Fe/olivina Char Corri	100% tes de entr T*(k) 500 800 800 Total ente de sal T*(k) 900	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488	Expe Corrie aire Fe/olivina char Corri	rimento T ^a (k) 500 800 800 Total ente de sal T ^a (k) 900	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310
% char gasificado	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 800 Total ente de sal T*(k) 900 900	Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417	Corrie Aire Fe/olivina Char Corri gases Fe/olivina	100% tes de entr T*(k) 500 800 800 Total ente de sal T*(k) 900 900	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T°(k) 500 800 800 Total ente de sal T°(k) 900 900	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417
% char gasificado	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 800 Total ente de sal T*(k) 900 900 Total	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017	Corrie Aire Fe/olivina Char Corri gases Fe/olivina	100% test de entr T*(k) 500 800 800 Total ente de sal T*(k) 900 900 Total	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T°(k) 500 800 800 Total ente de sal T°(k) 900 900 Total	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107
% char gasificado Combustor O combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 3 7	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017	Corrie Aire Fe/olivina Char Corri gases Fe/olivina	100% tes de enti T*(k) 500 800 800 Total ente de sal T*(k) 900 900 Total 1277	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T°(k) 500 800 Total ente de sal T°(k) 900 900 Total 5'7	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107
% char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 37	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017	Corrie Aire Fe/olivina Char Corri gases Fe/olivina	100% ntes de entr T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total 127	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T°(k) 500 800 Total ente de sal T°(k) 900 900 Total -57	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107
% char gasificado Combustor Q combustor (W)	Corrie aire Fe/olivina char Corri gases Fe/olivina	75% ntes de ent T ^a (k) 500 800 Total iente de sal T ^a (k) 900 900 Total 37	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017	Corrie Aire Fe/olivina Char Corri gases Fe/olivina	100% tes de enti T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T°(k) 500 800 Total ente de sal T°(k) 900 900 Total -57	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107
% char gasificado Combustor Q combustor (W)	Corrie	75% ntes de ent T ^a (k) 500 800 Total tente de sal T ^a (k) 900 900 Total 37 ntes de ent	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017	Corrier Aire Fe/olivina Char Corri gases Fe/olivina	100% tes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 tes de entr T*(k)	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total -57 ntes de ent	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada
% char gasificado Combustor Q combustor (W)	Corrie	75% ntes de ent T ^a (k) 500 800 Total cente de sal T ^a (k) 900 900 Total 37 ntes de ent T ^a (k)	rada Q(W) 313 -10370 3,5 -10053 iida Q(W) 400 -10417 -10017 -10017 arada Q(W)	Corrier Aire Fe/olivina Char Corri gases Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada Q(W)	Expe Corrie aire Fe/olivina char Corri gases Fe/olivina	erimento ntes de ent T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total -57 ntes de ent T ^a (k)	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7
% char gasificado Combustor Q combustor (W)	Corrie	75% ntes de ent T ^a (k) 500 800 Total cente de sal T ^a (k) 900 900 Total 37 ntes de ent T ^a (k) 500 500	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 -10017 rada Q(W) 7	Corrier Aire Fe/olivina Char Corrier gases Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada Q(W) 7 7	Expe Corries	erimento ntes de ent T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total -57 ntes de ent T ^a (k) 500 900 500 900 500 900 500 500	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 2(0)
% char gasificado Combustor Q combustor (W)	Corrie	75% ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 37 ntes de ent T*(k) 500 500 25	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525	Corrier Aire Fe/olivina Char Corrier gases Fe/olivina Corrier N ₂ H ₂ O	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 rada Q(W) 7 7 -629 230	Expe Corries	erimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 500	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 220
% char gasificado Combustor Q combustor (W)	Corrie	75% ntes de ent T^a(k) 500 800 Total cente de sal T^a(k) 900 900 Total 37 ntes de ent T^a(k) 500 500 25	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330	Corrier Aire Fe/olivina Char Corrier gases Fe/olivina Corrier N ₂ H ₂ O biomasa	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -9929 -004 -004 -004 -004 -004 -004 -004 -00	Expe Corries	erimento ntes de ent T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total -57 ntes de ent T ^a (k) 500 500 25	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -330
% char gasificado Combustor Q combustor (W)	Corrie	75% ntes de ent T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total 37 ntes de ent T ^a (k) 500 500 25 900	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417	Corrier Aire Fe/olivina Char Corrier gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25 900	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -0417 -629 -330 -10417	Expe Corrier Fe/olivina char Corrier gases Fe/olivina Corrier N2 H ₂ O biomasa Fe/olivina	erimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 500 25 900	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T^a(k) 500 800 Total cente de sal T^a(k) 900 900 Total 37 ntes de ent T^a(k) 500 500 25 900 Total	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417 -11265	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25 900 Total	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -929 -330 -10417 -629 -330 -10417 -11369	Expe Corrier aire Fe/olivina char Corrier gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	erimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 500 25 900 Total	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total 37 ntes de ent T ^a (k) 500 25 900 Total ente de sal	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417 -11265	Corrier Aire Fe/olivina Char Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 25 900 Total ente de sel	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -629 -330 -10417 -11369	Expe Corrier aire Fe/olivina char Corrier gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 25 900 Total ente de sel	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 37 ntes de ent T*(k) 500 500 25 900 Total iente de sal T*(k)	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417 -11265 lida	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25 900 Total ente de sal T*(k)	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -629 -330 -10417 -11369 ida Q(W)	Expe Corrier aire Fe/olivina char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	erimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 500 25 900 Total ente de sal	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109 ida
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T^a(k) 500 800 Total iente de sal T^a(k) 900 900 Total 37 ntes de ent T^a(k) 500 500 25 900 Total iente de sal iente de sal T^a(k) 800	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417 -11265 lida Q(W) -907	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25 900 Total ente de sal T*(k) 800	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -629 -330 -10417 -11369 ida Q(W) -989	Expe Corrier aire Fe/olivina char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 25 900 Total 25 900 Total ente de sal T*(k) 800	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109 ida Q(W) -793
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T^a(k) 500 800 Total Ta(k) 900 900 Total 37 ntes de ent T^a(k) 500 500 25 900 Total 37 ites de ent T^a(k) 500 500 25 900 Total itente de sal T^a(k) 800 800	rada Q(W) 313 -100370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417 -11265 lida Q(W) -907 3,5	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 25 900 25 900 Total ente de sal T*(k) 800 800	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -629 -330 -10417 -11369 ida Q(W) -989 0	Corrier aire Fe/olivina char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 25 900 Total 25 900 Total ente de sal T*(k) 800 800	26 rada Q(W) 313 -10370 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109 ida Q(W) -793 6 9
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T^a(k) 500 800 Total Tal T	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 rada Q(W) 7 -525 -330 -10417 -11265 lida Q(W) -907 3,5 -10370	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina Fe/olivina	100% ntes de entr T*(k) 500 800 Total ente de sal T*(k) 900 900 Total 127 ntes de entr T*(k) 500 500 25 900 Total ente de sal T*(k) 800 800 800 800	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -11369 ida Q(W) -989 0 -10370	Corrie aire Fe/olivina char gases Fe/olivina Corrie N ₂ H ₂ O biomasa Fe/olivina	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 25 900 Total 25 900 Total ente de sal T*(k) 800 800 800 800	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109 ida Q(W) -793 6,9 -10370
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T*(k) 500 800 Total iente de sal T*(k) 900 900 Total 37 ntes de ent T*(k) 500 500 25 900 Total iente de sal T*(k) 800 800 800 Total	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 -10017 rada Q(W) 7 -525 -330 -10417 -11265 lida Q(W) -907 3,5 -10370 -11273	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina Fe/olivina	100% intes de entr T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total 127 intes de entr T ^a (k) 500 500 25 900 Total ente de sal T ^a (k) 800 800 800 800 800 800 800 8	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -11369 ida Q(W) -989 0 -10370 -11359	Corrie aire Fe/olivina char gases Fe/olivina Corrie N ₂ H ₂ O biomasa Fe/olivina Corrie	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 25 900 Total 25 900 Total ente de sal T*(k) 800 800 800 800	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109 ida Q(W) -793 6,9 -10370 -10370
% char gasificado Combustor Q combustor (W) Gasificador	Corrie	75% ntes de ent T^a(k) 500 800 Total Tal T^a(k) 900 900 Total 37 ntes de ent T^a(k) 500 500 25 900 Total 37 sente de sal T^a(k) 800 800 R00 800 R00 R00 R	rada Q(W) 313 -10370 3,5 -10053 lida Q(W) 400 -10417 -10017 -10017 -10017 -10417 -525 -330 -10417 -11265 lida Q(W) -907 3,5 -10370 -11273	Corrier Aire Fe/olivina Char gases Fe/olivina Corrier N ₂ H ₂ O biomasa Fe/olivina Fe/olivina	100% intes de entr T ^a (k) 500 800 Total ente de sal T ^a (k) 900 900 Total 127 intes de entr T ^a (k) 500 500 25 900 Total ente de sal T ^a (k) 800 800 800 800 800 10	rada Q(W) 313 -10370 0 -10057 ida Q(W) 488 -10417 -9929 -330 -10417 -11369 ida Q(W) -989 0 -10370 -10370 -11359	Expe Corrier aire Fe/olivina char gases Fe/olivina N ₂ H ₂ O biomasa Fe/olivina Fe/olivina	rimento ntes de ent T*(k) 500 800 Total ente de sal T*(k) 900 900 Total -57 ntes de ent T*(k) 500 25 900 25 900 Total ente de sal T*(k) 800 800 800 800 800	26 rada Q(W) 313 -10370 6,9 -10050 ida Q(W) 310 -10417 -10107 rada Q(W) 7 -369 -330 -10417 -11109 ida Q(W) -793 6,9 -10370 -10370

Tabla 4.14. Calores de las corrientes que atraviesan el combustor y el gasificador, y balance global térmico al combustor y gasificador para cada una de las diferentes situaciones simuladas para el caso 3.

ANEXO 5. EL ENTORNO DE HYSYS

En este apartado se describen detalladamente las consideraciones que se han tenido en cuanta para la realización del diseño en Hysys de la planta de gasificación para procesar 1500 Kg/h. Como se ha mencionado anteriormente, el diseño ha sido inspirado en la planta de gasificación del ICB-CSIC, por lo tanto para definir el proceso se han realizado los siguientes puntos:

1) Componentes empleados

Para realizar el diseño se han empleado compuestos que en su mayoría forman parte de la base de datos del programa, sin embargo ha sido necesario crear "compuestos hipotéticos" para aquellos que no aparecían, como son:

- Biomasa, para simular las reacciones que tienen lugar en el gasificador.
- Olivina, para simular la parte proporcional contenida en la Fe/olivina.
- Cenizas, para simular la parte proporcional contenida en la biomasa.

• Fe_2O_3 , para simular la parte proporcional contenida en la Fe/olivina a su paso por gasificador y combustor, y la reacción de reducción que experimenta en el gasificador.

• FeO, para simular la parte proporcional contenida en la Fe/olivina a su paso por gasificador, y la reacción de oxidación que experimenta en el combustor.

Para la creación de los compuestos hipotéticos (salvo las cenizas y la olivina que no intervienen en ninguna reacción) es necesario como mínimo el peso molecular, la entalpia de formación y la capacidad calorífica.

Hipotético	PM (Kg/Kmol)	Densidad (Kg/m ³)	AH ^o f (KJ/Kmol)	а	b
biomasa	6247	700	-3,106·10 ⁷	1,36	0
olivina	303,7	2700	$-1,143 \cdot 10^{6}$	0,69	3,913.10-4
Cenizas (SiO ₂)	60	2650	$-8,5\cdot10^{5}$	1,32	0
Fe ₂ O ₃	159,6	2500	$-8,2973 \cdot 10^5$	0,6474	4,2.10-4
FeO	71,8	2500	$-2,701 \cdot 10^5$	0,7347	8,686·10 ⁻⁵

Tabla 5.1. Propiedades definidas para los compuestos hipotéticos.

a y b son los coeficientes de la capacidad calorífica del compuesto hipotético:

$\mathbf{C}\mathbf{p} = \mathbf{a} + \mathbf{b} * \mathbf{T}$ en (KJ/Kg K)

2) Reacciones del sistema

Al carecer de los datos cinéticos de las reacciones que tienen lugar en el sistema se han creado reacciones de conversión para definir las reacciones de gasificación que tienen lugar en el gasificador, las reacciones de reformado de alquitranes e hidrocarburos que se experimentan en el filtro catalítico, las reacciones de oxidación/reducción de la Fe/olivina y las reacciones de combustión que tienen lugar en el combustor y en el motor. Como base de cálculo se ha utilizado el experimento 26, utilizado para el caso 3 (Fe/olivina más filtro catalítico) del *apartado 4, "Gasificación autotérmica"*.

2.1) Reacciones en el gasificador + filtro catalítico

Dentro de este reactor se han simulado las reacciones que tienen lugar en el gasificador de lecho fluidizado y en el filtro catalítico. Al conocer el balance de materia y por tanto la composición de la corriente del gas de síntesis a la salida del filtro se puede definir la reacción de estequiometria que transforma a la biomasa en dicha corriente. Hay que resaltar que dentro de esta reacción se engloba a la reacción de pirolisis de la biomasa, las reacciones de gasificación y las reacciones de reformado que tienen lugar dentro del filtro catalítico como si este formara parte del gasificador.

$$C_{262}H_{385}O_{169}N + 53 H_2O + 40,1 O_2 \rightarrow 0,013 C_{10}H_8 + 69,45 CO + 118,5 CO_2 + 137,3 H_2 + 27,7 CH_4 + 9,9 C_2H_4 + 1,3 C_2H_6 + 0,5 C_3H_8 + 21,7 C$$
(E 5.1)
$$X_{\text{biomasa}} = 100\%$$

Además, en este reactor tiene lugar la reacción de reducción de Fe₂O₃ a FeO.

$$Fe_2O_3 \to 2FeO + \frac{1}{2}O_2$$
 (E 5.2)

 $X_{Fe2O3} = 60\%$ valor obtenido en los estudios en termobalanza.

2.2) Reacciones en el combustor

Las reacciones que tienen lugar en el combustor son la oxidación del FeO a Fe_2O_3 y la combustión completa del sólido carbonoso, ambas reacciones se muestran a continuación:

$$FeO + \frac{1}{4}O_2 \rightarrow \frac{1}{2}Fe_2O_3 \tag{E 5.3}$$
$$X_{FeO} = 100\%$$

$$C + O_2 \to CO_2 \tag{E 5.4}$$

 $X_C = 100\%$

2.2) Reacciones en el motor

La reacción que tiene lugar en el motor es la de combustión del gas de síntesis. Como el gas de síntesis está compuesto por una serie de compuestos oxidables, se ha definido la reacción de combustión completa de cada compuesto individualmente:

$$H_2 + \frac{1}{2}O_2 \to CO_2 + H_2O$$
 (E 5.5)

$$CO + \frac{1}{2}O_2 \to CO_2 \tag{E 5.6}$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 (E 5.7)

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$
 (E 5.8)

$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$
 (E 5.9)

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$
 (E 5.10)

$$C_{10}H_8 + 12O_2 \to 10CO_2 + 4H_2O \tag{E 5.11}$$

Xgas de síntesis = 100%

3) Condiciones de operación utilizadas y reactores seleccionados

- La temperatura de gasificación, del combustor o la de entrada de los reactivos, se corresponden con las utilizadas en el apartado de régimen autotérmico, 800, 900 y 20°C respectivamente.
- Se han recirculado las corrientes gaseosas a la salida del gasificador y combustor hasta la temperatura de 160°C, para recalentar mediante intercambiadores de calor el agua para gasificar, el N₂ del "loop" y el aire al carbonoso a 400, 325 y 550°C respectivamente.
- La presión de diseño que se ha seleccionado es de 1,20 bar para toda la instalación, y se ha considerado que no existen pérdidas de carga.
- El paquete fluidodinámico seleccionado para la simulación de los resultados es el "PRSV". Este modelo es el idóneo para simular procesos con compuestos hidrocarburos, para sistema moderadamente reales y que mejor representa composiciones pobre y mezclas. Además te permite obtener resultados de forma más rápida que otros modelos como el Peng-Robinson.

- Tanto el gasificador y el combustor de lechos fluidizados, como el motor para el tratamiento del gas de síntesis han sido simulados con reactores de conversión.

4) Motor seleccionado

El motor que se ha elegido para el tratamiento posterior de los gases es un motor para biogás que pertenece a la casa Jenbarcher y que presenta las siguientes características:

Modelo	Potencia	Potencia	Energía	Rendimiento	Rendimiento	
	eléctrica (KW)	térmica (KW)	invertida (KW)	eléctrico (%)	total (%)	
JMS 620 GS-BL	2118	2548	5513	38,4	84,6	

Tabla 5.2. Características del motor seleccionado [30].

Se ha seleccionado este motor ya que el gas de síntesis que se va introducir posee una energía de 5609 KW y por lo tanto es el que mejor se asemeja a las necesidades de la planta. Como se puede deducir a partir de los datos reflejados en la tabla 5.2, el porcentaje de pérdidas de este motor es del 15,4% y el rendimiento térmico es del 46,2%.

4) Flujos de corriente

El flujo de las corrientes de reactivos que entran al gasificador, como el agua para gasificar y el N_2 del "loop", así como la cantidad de sólido carbonoso que se quema en el combustor, se han obtenido por escala molar a partir de los flujos empleados para el estado autotérmico del caso 3 (Fe/olivina más adición de un filtro catalítico).

La cantidad de Fe/olivina que circula del combustor al gasificador es de 50000 Kg/h, mientras que la cantidad de Fe/olivina que circula a la inversa es de 49782 Kg/h (debido a las pérdidas de oxígeno que experimenta la Fe/olivina con las reacciones de reducción en el gasificador). El caudal de la corriente de aire que se ha introducido para la combustión en el combustor y el arrastre del sólido, es de 2600 kg/h. Este caudal garantiza que se produzca el arrastre del sólido y proporciona una concentración de O₂ a la salida del combustor entre un 5-7%, valores que mantienen las instalaciones de doble reactor, como la planta de Güssing, Austria [4]

A continuación se muestra la tabla 5.3, donde se pueden apreciar los flujos de las principales corrientes del sistema.

Gas de	síntesis	Gas de combustión			
compuestos	% molar	compuestos	% molar		
CH ₄	4,69	N ₂	88,75		
N ₂	9,74	O ₂	5,71		
H ₂	23,40	CO_2	5,54		
H ₂ O	28,29		·		
СО	11,78				
CO ₂	20,11				
C_2H_4	1,68				
C_2H_6	0,22				
C ₃ H ₈	0,09				
$C_{10}H_8$	0,002				
Flujo másico (Kg/h)	Flujo molar (Kmol/h)	Flujo másico (Kg/h)	Flujo molar (Kmol/h)		
2861	131,1	2536	87,1		
	Circulación	de Fe/olivina			
Del FR*	al AR**	Del AR al FR			
compuestos	% molar	compuestos	% molar		
olivina	77,8	olivina	85		
Fe ₂ O ₃	7,14	Fe ₂ O ₃	15		
FeO	13,19				
sólido carbonoso	1,74				
Flujo másico (Kg/h)	Flujo molar (Kmol/h)	Flujo másico (Kg/h)	Flujo molar (Kmol/h)		
49782	277	50000	253,7		
	Reactivos de entra	ada a los reactores			
	Bion	nasa			
compuestos	% másico	Flujo másico (Kg/h)	Flujo molar (Kmol/h)		
Biomasa seca	92,6	1500	5,7		
Humedad	6,3				
Cenizas	1,1				
corriente	entrada	Flujo másico (Kg/h)	Flujo molar (Kmol/h)		
Agua	gasificador	785	43,7		
N ₂	"loop"	529	18,8		
aire	combustor	2600	90,1		

Tabla 5.3. Principales flujos y composiciones de las corrientes del diseño en Hysys.

*FR = Gasificador

**AR = Combustor

5) Ecuaciones para el cálculo de calores y rendimientos

Q obtenido = Qcedidoa reactivos + Qintercambiadores + Qmotor (E 5.12)

Q para obtener agua sanitaria a 80° C = Qintercambiadores + Qmotor (E 5.13)

Rendimiento de la planta = $\frac{W_{electrico} + Q_{obtenido}}{Q_{combustible}} * 100$ (E 5.14)

Rendimiento a gas de sintesis =
$$\frac{Q_{gas}}{Q_{combustible}} * 100$$
 (E 5.15)

Rendimiento electrico de la planta =
$$\frac{W_{eléctrico}}{Q_{combustible}} * 100$$
 (E 5.16)
Rendimiento térmico de la planta = $\frac{Q_{obtenido}}{Q_{combustible}} * 100$ (E 5.17)

BIBLIOGRAFÍA

- [1] H.A.M. Knoef, biomass technology group B.V; Introduction, in "Handbook biomass gasification".(2005), chapter 1.
- [2] A. Gómez-Barea, Bleckner, Progress in Energy and Combustion Science: Modeling of biomass in fluidized bed (2009) pag.444-509.
- [3] H.A.M. Knoef, biomass technology group B.V; Practical aspects of biomass gasification, in "Handbook biomass gasification".(2005), charter 3.
- [4] Henrik Laudal Iversen and Benny Gøbel; Update on gas cleaning technologies, in "Handbook biomass gasification".(2005), charter 9.
- [5] Pfifer C., H. Hofbauer R. Rauch, In bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier, Industrial and Engineering Chemistry Research 43 (2004) 1634-1640.
- [6] Pier Ugo Foscolo, Antonio Germanà, Nader Jand, Sergio Rapagnà: Design and cold model testing of a biomass gasifier consisting of two interconnected fluidized bed; Powder Technology (2007) pag.179-188
- [7] Christoph PFEIFER, Isabella AIGNER. Biomass and coal steam gasification in a dual fluidized bed: gas production and utilization. International Workshop Co-gasification of coal, biomass and waste. 12-13 November 2009, CIEMAT, Madrid, Spain.
- [8] Sergio Rapagnà, Katia Gallucci, Manuela Di Marcello, Pier Ugo Foscolo, Manfred Nacken, and Steffen Heidenreich; In situ Catalytic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier; Energy & Fuels (2009) pag. 3804-3809
- [9] Nacken M., L. Ma, K. Engelen, S. Heidenreich, G.V. Baron; Development of a tar reforming catalyst for integration in a ceramic filter element and use in hot gas cleaning; Industrial and Engineering Chemistry Research, 46 (2007) pag.1945-1951.
- [10] Ma L., H. Verelst, G.V. Baron, Integrated high temperature gas cleaning: Tar removal in biomass gasification with a Catalysis Today, 105 (2005) pag.729-734.
- [11] Lopamudra Devi, Krzysztof J. Ptasinski, Frans J.J.G. Jansen: A review of the primary measures for tar elimination in biomass gasification process.
- [12] Simell, P., Stahlberg, P., Kurkela E., Albretch J., Deutch S., Sjostrom K., Biomass and Bioenergy 18 (2000) p.19-38
- [13] Joann J. Manayà, José L. Sánchez, Alberto Gonzalo, and Jesús Arauzo; Air Gasification of Drived Sewage in a Fluidized Bed: Effect of the Operating Conditions and In-bed Use of Alumina; Energy and Fuels (2005), 19, pag.629-636.
- [14] Nader Jand, Vicenzo Brandani and Pier Ugo Foscolo; Thermodynamic Limits and Actual Product Yields and Composition in Biomass Gasification processes; Ind. Eng. Chem. Res. (2006), pag.834-843.
- [15] Jose Corella, Jose M. Toledo, and Rita Padilla; Olivine or Dolomite as In-Bed-Additive in Bioass Gasification with Air in a Fluidized Bed: Which is better?; Energy fuel, (2004); pag.713-720.

- [16] Rauch R., C. Pfeifer, K. Bosch, H. Hofbaur, D. Swierczy'nski, C. Courson, A.Kiennemann, Comparison of differents olivine's for biomass steam gasification, Science in Thermal and Chemical Biomass conversion, A.V. Bridgwater and D.G.B. Boocock (Eds.), CPL Press Vol1 (2006) 799-809.
- [17] M. Siedlecki, R. NieuWstraten, E. Simeone, W. de Jong, and A.H.M. Verkooijen; Effect of magnesite as Bed Material in a 100kW Stea- Oxigen Blown Circulating Fluidized-Bed Biomass Gasifier on Gas Composition and Tar Formation; (2009)
- [18] Zhongkui Zhao, J.N. Kuhn, Larry G.Felix, Rachid B. Slimane, Chun W. Choi, and Umit S. Ozkan; Thermally Impregnated Ni-olivine Catalysts for tar removal by Steam Reformin in Biomass Gasifiers.(2008) p.717-723
- [19] Ana Olivares, María P. Aznar, Miguel A. Caballero, Javier Gil, Eva Francés, and José Corella; Biomass Gasification: Produced Gas Upgrading by In-bed Use of Dolomite; Ind.Eng. Chem.1997, 36, pag 5220-5226.
- [20] Rapagnà S., N. Jand, A.Kienneman, P.U. Foscolo, Steam gasification of biomass in a fluidized-bed of olivine particles, Biomas and Bioenergy, 19(2000) 187-197.
- [21] S.Rapagnà, H. Provendier, C. Petit, A. Kiennemann, P.U. Foscolo; Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification; Biomass and Bioenergy, (2002) pag.277-388.
- [22] S. Rapagnà, N. Jand and P.U. Foscolo; Catalytic Gasification of Biomass to Produce Hydrogen rich gas; Int. J. Hydrogen Energy, vol23, No7, (1998) pag551-557
- [23] Luc P. L. M. Rabou, Robin W. R. Zwart, Berend J. Vreugdenhil, and Lex Bos; Tar in Biomass Producer Gas, the Energy research Centre of The Netherlands (ECN) Experience: An Enduring Challenge; Energy Fuels(2009), 23, pag.6189-6198.
- [24] Jun Han, Heejoon Kim; The reduction and control technology of tar during biomass gasification/pyrolysis: An overview; Renewable and Sustainable Energy Reviews, (2008), pag.397-416.
- [25] Morris M. Waldheim L. Faaij A. and Ståhl K. ; Status of large-scale biomass gasification and prospects in "Handbook biomass gasification".(2005), chapter 5.
- [26] H. Hofbauer and H. Kenoef; Success stories on biomass gasification in "Handbook biomass gasification";(2005), chapter 6.
- [27] Fried Sauert, Ernst Schultze-Rhonhof, Wang Shu Sheng; Thermochemical Data of Pure Substances in Ihsan Barin, part I; Weinheim (1989).
- [28] <u>http://onsager.unex.es/Apuntes/Termo/Tablas-Tema-3.pdf</u>
- [29] <u>http://www.cubasolar.cu/biblioteca/Ecosolar/Ecosolar10/HTML/articulo01.htm</u>
- [30] <u>http://www.jenbacher.com/spain/motores.htm</u>