TELECOM

ﬁ netatmo

[]
universite

PARIS-SACLAY

MASTER THESIS REPORT

Presented by

Santiago Ramirez Aretio

For the Master of Science Computer Science for Communication
Networks (CCN)

Internship did from 1 March to 29 August at

Netatmo

Android Native implementation of Netatmo Weathermap
application.

Director of the internship: Sergey Vakulenko

Academic Supervisor: Mr Paul Gibson

Table of content

110 0 18 L) N Page 1
1.1 ADOUE NETATIMIO. ...t eneeette ettt ettt et et et et e e e e ae e Page 1
1.2 About Netatmo Weather Station..........cooeiiiiiiiiiiiiii i eeeeeaens Page 2
1.3 Android Native Weathermap........c.oviueiiiiiniiiiiiiei i e eeieeeaeees Page 3

2 StAte Of the ATt. . et e Page 4
2.1 Presenter-Interactor design Patterm.euuirutineerneiteneieeteaeeeenaenens Page 4
2.2 Dagger dependenCy iNJeCtOT.uuirntitiitteteateeteiteateetenteeeennenneeneenans Page 7

N 0\ (0 1 1110) 1 N Page 7

2.2.2 Dependency iNJECHIOMN. . ..uuueneentete et eeteett et ertee et eeeeaeenaeeeennanaes Page 8

G BN 5T 1L B To o Page 9
2.3 NEt UK. .o e Page 10

3 Project Work deSCIiption.couuiiiuiiii et e et e e e e eaaaas Page 13
3.1 Application flow diagram..........couivuiiiiitiiiiiii e Page 13
3.2 Page 16

(O0) 11 T4 2 ¥ 10 0] 1 13

3.2.1 Getting PUDIC StAtIONS. ... tuutettt ettt et e e et e e e eeeaaeenaans Page 16
3.2.2 Cache System eXPeriment.o.eeuueuueutenteeeaneeteneeeneeieeneeeennenann Page 17
3.2.3 Map diviSion Problem.........couiviiitiiiiiii e Page 19
3.2.4 Map Z0Om Problem.oiieiii i i e Page 23
3.2.5 Choosing subregion size experiment Page 25
3.3 Application arChiteCture.cvvuiii i aaeens Page 27
3.3.1 Baseline application architecture...............cooeviiiiiiiiiiiiiiiniiieneee Page 27
3.3.2 First approach application architecture.............c.ccocvviieiiiiiiiiiieinnnnn Page 27
3.3.3 Final application architeCture............ooeviriiiiiiiiiiiiiii i e, Page 28
3.4 Weathermap implementation...........o.ovuiviiiiiiiiii i Page 31
O @00) Lad 1113 o) 1 PP Page 39

5 RELEIONCES. ...t e Page 40

1 Introduction

The aim of this section is to introduce Netatmo, the company where this project has been carried
out. This project is related to a particular product called Netatmo Weather Station. For
understanding the context of the project, this particular product is further explained. Finally the
project is introduced.

1.1 About Netatmo

Netatmo is a revolutionary smart home company, developing groundbreaking, intuitive and
beautifully-designed connected consumer electronics. Truly smart, Netatmo’s innovative products
provide a seamless experience that helps users create a safer, healthier and more comfortable home.
Netatmo carefully designs the mechanics, electronics and embedded software of all its products to
the highest standards. Netatmo also creates the mobile and web applications that fully realise their
potential. Since 2012 Netatmo has released four devices, all of them infused with intelligence and
delivering state-of-the-art features:

* The Netatmo Weather Station for Smartphone allows users to keep track of what is
happening in their indoor and outdoor environments in more than 170 countries. It is the
world’s largest collaborative weather station network.

* The Netatmo Thermostat for Smartphone, designed by Philippe Starck, allows users to
control their heating remotely from a smartphone. With analysis of their daily routine, the
Thermostat for Smartphone allows users to save 37% on energy heat their home.

* Welcome, the indoor security camera with face recognition technology, puts names to the
faces it sees. The camera notifies the user exactly who’s at home, their loved ones or a
stranger.

» Presence, Netatmo’s outdoor security camera, detects and reports on people, cars and
animals. The camera understands what it sees and lets the user know exactly what is
happening outside his home.

Netatmo is a key player in the smart home industry, with products available through various
distribution networks worldwide, from both major retailers and BtoB channels. In November 2015
Netatmo completed a series B funding round of €30 million. The company previously raised €4.5
million in 2013.

1.2 About Netatmo Weather Station

The Netatmo Weather Station is a personal weather station with air quality measurements that that
can be consulted via an iOS or Android application called Netatmo Weather Station. This product
contains a set of sensors to monitor living environment (temperature, barometric pressure, humidity,
CO2 concentration, noise pollution...).

(1) (4)

[]

(2) 2) -
] -

Fig 1. Weather Station Modules

Weather Stations owners provide Wi-Fi connection to their stations and measurements are
transmitted wirelessly to a Netatmo private server. Measurements are indefinitely stored in a
database where they are always available. Weather Station owners can access their measurements
using a mobile application that interacts with Netatmo private servers. Figure 1 shows all Netatmo
Weather Station modules:

(1) Indoor Module: Measures temperature, humidity, CO2, pressure and sound intensity.

(2) Outdoor Module: Measures temperature, humidity and pressure.

(3) Wind Gauge Module: Measures wind speed.

(4) Rain Gauge Module: Measures amount of rain which falls.
All modules communicate with Indoor module using a RF proprietary protocol. Indoor module send
all measurements to Netatmo server using its Wi-Fi interface.
Netatmo Weather Station users can make their station public. The location and measures of a public

station can be accessed by everybody using Netatmo public API. For privacy reasons indoor
measures are not shared by public stations.

1.3 Android Native Weathermap

Netatmo Weathermap is a web application where public stations are displayed on an interactive
map. Users can view measurements from stations along the world.

== Yo @ e 5507 00
netatmo .tz Jy PR A TR Le.® %ee
v B D B e DO @
@T<@ Kli.:_lrg@‘ @)J ”____H@;‘/@ i é " g\ @_@
@?nt; (? @ Ngdi'ms@ @@ poﬁj } Belarus ‘}’ ! %] 1@ 155
@ m% ﬁv@?f iy s::; @ @ @@W ‘ i KL@) 1 [o
g L e e @
P 9709 BIENE au 0B
@-mncu lk\@ﬂ%—m? R@énla%'@ é@ 1 % 5
! V{/ @’,) cﬂni-ﬂ@;_\ﬁ :") 5‘ 1 T @
B 0.8 T80 i oo
819 T TPt I8 e P8
N @('%"“ T) 5] @' ‘“@r@w@?@ Turkey @{m’_
—— s I ’ = @ % 1@) T €|
[Py e T @<0wns
« Q—mw L - Map da :::.:VL.-e.-u:;“o:a:f\{: BN ‘Tems of Use

Figure 2: Weathermap web application screenshot

Netatmo Weather Station includes the Weathermap web application as an independent module using
a WebView. A WebView can be seen as a web browser that is attached to the screen in an Android
application. This solution introduces an extra software layer that limits the Weathermap
performance on Android devices. This implementation also does not allow the rest of the

application to interact with the Weathermap.

The main goal of this project is to implement and integrate an Android native version of the
Weathermap using Android SDK and GoogleMaps API. A native implementation involves the

possibility of a deeper integration of the Weathermap and a better performance.

Here is the list of tasks carried out during the project:
-Implement an Android native Weathermap using Android SDK and GoogleMaps API.
-Integrate of the Weathermap into the existing Weather Station application.

-Add a new feature to the existing application. Users can set public stations as favorites
and access to their data without going through the Weathermap.

-Integrate Netflux system in the existing application.

-Test and verify the implemented application.

2 State of the art

In this section are explained the most innovative tools and techniques that have been used for
developing this project. Some design patterns and libraries tools that are part of the state of the art
in Android developing are described in this section.

2.1 Presenter-Interactor design pattern

A very generic scenario in all mobile applications is to have some data that the user can visualize
and modify. The main objective of this architecture is to make all visual elements (Views)
independent of their data source. He can achieve this separation by removing all logic from the
views and make then behave like a passive interface that displays data and routes user events.

Three different layers or domains may be defined in order to achieve this separation. In Figure 3
there is a schema where we can see these tree layers called Presentation layer , Domain Layer and
Data Layer. Each layer has a different mission and works separately from the others.

Presentation Domain Data
Layer Layer o8 Layer
. D
g &%
c c 2
. £ £
< fr
View, display Q. | Interactor, data | @ Database, API
data transformation = ©
logic

Figure 3: Layer separation

In this document, all schemes and graphs has been designed to follow the color code shown in
Figure 3. Red color for all modules and components related to presentation layer. Green for all
modules and components related for domain layer and finally blue color for data layer.

Presentation Layer

All views and logic related to visual resources, animations and user interaction are included in this
layer. In this architecture each view will contain its own presenter and each presenter will contain
its own view. The presenter is a component in charge of provide data to its view and communicate
user interactions detected by its view to the application logic. The data provided by the presenter
must be ready to display in order to keep all data processing logic out of this layer.

Domain Layer

All business logic of the application is included in this layer. In terms of android project structure,
this layer is composed by pure Java modules without any android dependencies. Each presenter
contains an interactor in this layer. The interactor is the component in charge of recollect and
provide data to its present on demand. Due to the fact that there is a one to one relationship between
views and presenters and between presenters and interactors, we can say that it exists a one to one
relationship between views and interactors. The presenter acts as an interface between the view and
the interactor.

Data Layer
All raw data needed for the application belong to this layer. As the data may be stored on the device
or in a remote database accessed by an API, this layer also contains all cache implementations and

networking tasks. The main purpose of this layer is to make the data origin transparent for the
interactors.

In this project, presenters and interactors has been designed according to the following interfaces:

<<Java interface>> <<Java interface>>
Presenter<T> Interactor<T>

void setPresenter(Presenter<T>);
void presentData(T); void requestData();
void reset();

Figure 4. Presenter and Interactor interfaces

Generic types has been used to describe the interface in order to implement each pair of presenter-
interactor with a different data type according to the visual information needed in each view. The
presenter-interactor interaction during the time is described in the following schema:

presenter<Data> interactor<Data>
<§ni w iini£>
4 \
>
S E
g5 (1)
o .9
ac
a
1 setPresenter(this)(z)
I

new userEvent

©)

requestData() 4)

process
event

A

(5)

get and
process data

Lresentbata(bata) (6)

data

(7)

render

setPresenter(null)

(8)

Figure 5: Interaction in time between presenter and interactor

(1) When the presenter is created and initialized,
its interactor dependency is injected

(2) After injection the presenters registers itself
to its interactor calling setPresenter method.

(3) When the view associated to the presenter
receives a user event, the presenter does some
processing to discover if new data is needed
according to the event information.

(4) If new data is needed, the presenter calls
requestData method. Its important to notice that
this call is not blocking. After calling
requestData, the presenter is free to process new
user events.

(5) As soon as requestData is called, the
interactor starts to execute all logic necessary to
get the requested data from the data layer. Once
the data is recovered, it process the data to
transform it in in ready to display data.

(6) When the data is ready, it is delivered to the
presenter by the interactor using presentData
method.

(7) The presenter renders the received data to all
visual elements of its view.

(8) This process is repeated meanwhile the vie is
attached to the screen. When the view is about to
be destroyed, the presenter is unregistered from
its interactor by calling setPresenter method
with null parameters.

Thanks to this architecture an application may be easier maintainable and readable. If we do this

layer separation:

- Its easier to fix problems if we can distinguish between errors in the presentation layer and the

data logic layer.

- Due to the fact that each view is independent of the others, it's possible to test all possible
visual cases of our application by testing each view individually with fake data.

- If the data provider of our application changes (a change in a web service or in the database

structure) its not necessary to change any view.

2.2 Dagger dependency injector

Dagger is an open source library for Java and Android that implements a dependency injection
framework. Although it is not as powerful as other dependency injectors, Dagger is widely used
noways for Android development due to its good performance in low-end devices.

This section introduces dependency injection problem in order to expose the motivation and the
benefits of using Dagger. It is not the aim of this section making a tutorial about how to use this
library.

2.2.1 Motivation

A dependency can be described as a coupling between two modules of a software project. In object
oriented languages there is a dependency between two classes if one of them uses the other to do
something.

The single responsibility principle states that every module or class should have responsibility
over a single part of the functionality provided by the global software system, and that
responsibility should be entirely provided by the module or class. This term is based on the
principle of cohesion described by Tom DeMarco[1] and Meilir Page-Jones[2] and it was
introduced by Robert C Martin[3] in 2003. Nowadays this principle is highly respected by the state
of the art of object oriented software.

In order to create testable projects the single responsibility principle must be respected. Unit testing
requires that, when testing a module, it must be isolated from the rest of modules. If the module
under test has dependencies, we have to substitute with mocks. However, depending on how
dependencies are implemented, we can not achieve this substitution. For instance imagine that we
want to test ModuleA in the following code:

public class ModuleA{
private ModuleB moduleB;

public ModuleA(){
moduleB = new ModuleB();
}

public void doSomething(){
moduleB.doSomethingElse();
}

It's not possible to test doSomething method without testing doSomethingElse method. We would
not be able to know what method fails if the test fails. Every dependency class initialization is a
hard dependency that we need to avoid according to the single responsibility principle. In order to
make the last code testable we need to introduce some changes:

public class ModuleA{
private ModuleB moduleB;

public ModuleA(ModuleB moduleB){
this.moduleB = moduleB();
¥

public void doSomething(){
moduleB.doSomethingElse();
}

}

Now the dependency is created via constructor. ModuleA can be individually tested by providing a
mocked ModuleB in the initialization.

This strategy is a particular case of the dependency inversion principle that will be further
explained in the next section. The problem now is where instantiate the dependencies that will be
passed as a constructor attribute when creating a new object. We can find other problem if there are
classes with a high number of dependencies. In that case the number of attributes added to the
constructor would be too hight to have a readable code.

Dependency injectors have been created as an answer to this problems. Dependency injectors are
modules in charge of providing dependency instances to the rest of modules. Using them it's
possible to localize the creation of modules in a single point in a software project.

2.2.2 Dependency injection

Dependency injection is a software design pattern that implements inversion of control[4] for
resolving dependencies. A dependency is an object that is used by another.

An injection consist in providing a dependency to a dependent object. In this context the dependent
object can be described as a client that will use the dependency object as a service. As a
consequence, the client object does not need to find the service, create it or initialize it.

Dependency injection involves four roles:

» Service (an object to be used by others)

* Client (an object that uses other object)

* Interface (the way that a service is published for being used by clients)
* Injector (in charge of providing services to clients)

The interfaces are the types the client expects its dependencies to be. Interfaces allow clients to
know how to use the injected service. Given a dependency, if the code of the service changes but its
interface remains constant, I wont be necessary to recompile the client.

The injector introduces the services into the client. In a complex system where a dependent objects
may be a dependency for other objects, injector is also in charge of creating and solving the
dependency graph in order to instantiate and inject objects in the correct order.

The client is not allowed to call the injector code. As a consequence the injection mechanism used is
transparent for the client. The client only needs to know how to use a service, not how to construct
it.

2.2.3 About Dagger

Most dependency injectors frameworks such as Spring rely on reflection to create and inject
dependencies. This type of injectors have the same qualities as the reflection, they are very
powerful and versatile but also very time consuming.

Dagger, on the contrary, uses a pre-compiler that creates all the necessary classes to create and
inject dependencies. It implements the full stack injector with generated code. The guiding principle
is to generate code that mimics the code that a programmer would write to initialize dependences.
As no reflection is needed, Dagger is less time and resources consuming and, as a consequence, is
optimal for low-level devices such as mobile devices.

2.3 Netflux

A very common scenario in mobile applications can be described as a data model that is accessed
by multiple visual elements in order to display information to the user. This model usually changes
because of user interactions or by automatic actualizations. For implementing a robust application,
when there is a change in a part of the model, it is necessary to notify the new model information to
all elements that consumes that part of the model at the same time. If not, its possible to have a
dangerous state where two application components have different versions of the same data source.

Netflux system has been developed by Netatmo in order to solve this problem. Netflux system has
two main functionalities:

-Provide an interface to the rest of the application for modifying the data model.

-Notify each change in the model to all elements that consumes that part of the model in order
to be sure that all elements see the same version of the data model.

Netflux models application data as a tree graph. This model matches very well in object oriented
programing environments where data objects contain other data objects as attributes. In the
following figure we can observe a data model example where a student is modeled as:

Figure 6: Data model tree graph example

Classes dependency can be translated into a tree graph. Each node in the graph N, contains a part
of the entire model M (N,)=M,. The rootnode N, contains the entire model. In the example in
Figure 6 M, would be the student contact info.

Each node acts as a notifier. Components in the application can be subscribed to some nodes if they
interested in the information contained in them. When a change in some node occurs, that node is in
charge of notify the change to all its subscribers. Let L(N;) denote the set of listeners subscribed

tonode N;.

10

Each node contains a reference to its parent. Let P(N,) denote the parent node of node N, .
This reference is null for the root node. For instance, in the example in Figure 6 we have
P(N,)=N, . In the same manner, each node contains a reference to all of its children nodes. Let
C(N;) denote the set of children nodes of node Ni. This reference is null for the end nodes. For
instance, in the example in Figure 6 we have C(N,)={N,, N} .

Each node implements a function called reduce that receives as parameter some data in its parent
data domain and extracts all information that belongs to its data domain. For instance, in the
example in Figure 6 function N,.reduce(M,) would return the contact info contained in a

instance of student data model M P

Each node implements a function called map for each of its children nodes. This function receives
as parameters some data in the node domain and some data in the child data domain and returns a
new version of the first parameter where information contained in the second parameter is included.
For instance, in the example in Figure 6 function N,.map(M,, M) would return the contact info

contained in M , updated with a new mail address contained in M, .

The rest of the application can modify the data model by calling changeModel function
implemented in each node. The change to be performed is represented as an instance of the node
data domain and it is passed as a parameter. This function is also in charge of propagate the change
throughout the graph. The propagation chain finish when it reaches the root node. In that moment
the entire model has rebuilt according with the the change that has been introduced.

N,.changeModel (M)

if M#=M;*"
if AP(N,)

My« P(N,;).map(M(P(N,)), M) (create parent new data model)

parent

P(N,).changeModel (M py.,,) (propagate model change)
else

N, .notify (M) (start notification process if root node)

end

end

Once the entire model has been modified, its necessary to notify the change to all components in the
application that are listening to the part of the model that has been modified. For achieving this
each node implements a function called notify. This function creates a propagation chain that starts
from the root node and reaches all nodes whose model has been changed. During this propagation
each node also stores, if necessary, the new model.

11

N, .notify (M}")

if M#M"
M, < M (store new model)
Y I1eL(N)):
l.update(M®) (notify subscribers)
end
V N, eC(N,):

M < Ny.reduce(M;*") (create child new data model)
I.update(M) (propagate notification)

i

end
end

For instance, we can imagine that in the scenario described in Figure 6 a component wants to update
university contact info. However this update involves a change in the mail information but not in
the telephone information. In this case the component would call N.changeModel (M) where
parameter Mz contains the desired new contact info. After the call a propagation chain would be
started as described in Figure 7.

N,..changeModel (M}™)

Figure 7: changeModel chain propagation Figure 8: notify chain propagation

When root node is reached, notification chain starts as described in Figure 8. Nodes that are
represented in green are the ones that would perform notifications to its listeners.

12

3 Project work description

In this section it is exposed and explained all the work done during the execution of the project.
First the the final application visual result is shown. Then all considerations that have been taken
during the workflow are detailed. This section also explains the architecture of the implemented
application. Finally programing details about Weathermap implementation are deeply explained.

3.1 Application flow diagram

The aim of this section is to show the changes introduced in Netatmo Weather Station application
from the point of view of the final user. Visual details and functionalities of the baseline application
and the final application are shown by a flow diagram.

Figure 9 shows the flow diagram of the baseline application. Login screen is the first screen that a
user see when launching the application for the first time. When the user logins (1) Dashboard
screen is shown.

Dashboard screen is the main screen of the application. Is the first screen when launching the
application if the user is already logged in. This screen displays all measures from the selected
station. This screen contains a hidden navigation drawer that can be displayed as described in (2).
Navigation drawer contains the list of stations that the user owns. By clicking in one element of the
list the selected station changes (3). Navigation drawer also allows users to open the Weathermap
web application (4).

There are three elements on the Dashboard screen, outdoor view, forecast view and indoor view. By
swapping outdoor view (5) different measures from different exterior modules are displayed. By
swapping indoor view (6) different measures from different indoor modules are displayed. By
clicking forecast view (7) a new screen is displayed with extra forecast details. User can view old
measures from the selected station on an interactive graph by changing device orientation (8).

Figure 10 shows a flow diagram that contains all changes introduced in the application. In the new
version login screen contains a new button (9) for using the native Weathermap without longing in.
A new slide has been added to the indoor swap view. This slide is a map where selected sttation
location is displayed. By clicking on this slide (10) native Weathermap is displayed and centered in
the location of the selected station.

In the new application, when navigation drawer is displayed (11), it also shows the list of public
stations that the user has set as favorites. When clicking on a favorite station on the list (12),
dashboard screen is updated with public data. As indoor measures are private, the only slide shown
in the indoor swap view is the map. A user may delete a station from the list of favorites by clicking
on the star-shaped button (13).

Navigation drawer also contains a link to open the native Weathermap (14) where it exists a button
to display (15) and hide (18) Weathermap controls screen. This screen allows users to change the
measurements displayed on the map to rain (16) or wind (17). If user clicks on a station displayed
on the Weathermap (19), dashboard information is updated with the measurements of the clicked
station. In this state, a user may add the clicked station to the list of favorites by clicking on the star-
shaped button (13).

13

14

Graph screen

‘ 20.8 267 Office in Paris v Température

Boss's Office

Login screen

i P4 401918

netatmo

Station Météo

P Outdoor swap surface (5)

+ Office in Paris o

lly a3 minutes 1

CREER UN COMPTE SE CONNECTER 1 L °
- O - 401 v
DECOUVERTE (A 224°7455°

Forecast screen 0099 19" 30%

094 401918

VEN 26 AOUT SAM 27 AOUT

16° 38° 18° 34° fD=aT AR s

Boss's Office

26.4»

237°727s

Reception Coffee Machine

27 270

806 53 941 54

831 34, 56

PLUIE (mm)
2,0

WebView Weathermap

L 7P RERG 0 94 W 1912

& Netatmo Weathermap <

netatmo

| Office in Paris

\ i V) Te
Office in Paris @' ?' o T : ®
lly a3 minutes X £ S 7
a T ‘%
Giverny @ 3 Q. ¢
x i s
0®=.9 =% ' ¢e
g S T Oy g
X B &

Figure 9: Baseline application flow diagram

Dashboard screen

Login screen

0 9 40 2018 0 P4 H19:11
- Office in Paris i
EE e
Station Météo &
4 0‘1 v
226°7455°
Indoor swap surface
ss POINT DE ROSEE HUMIDITE
10097 19 30*
27 270
& 3% | 18 34 | 1 s | e ew 806 58 o 2
Boss's Office
WEATHERMAP o— 2 6'4’
23,7276 S
§
831 34¢ 56 (<)
DECOUVERTE b -

(11) (10)

0 94 4 W 2019

Weathermap native Weathermap controls
X P FE

0 94 4 W 20:20

(9) = Search 4

vgenleull N
Sain@enis
Office in Paris
Iy o e en .m @ Aub@l
9 Cour!‘ boie =

Cha\oue

0
v

netatmo

Neuilly-sur-Seine

9 =
9
e ﬁ Paris 15

Issy-lesMoulineaux

| office in Paris 38°

Seévres

é e c'a"'e e lwéup % VENT

@ - PLuE ‘

TEMPERATURE

Googleyrsay

O 94 4 W 20:47
= Saragosse = Saragosse ° 5
= g‘, < = ,19”,,, 1) = Search $
e T
W1, o W1, o
S: 39 S: 39
'S .1V [y .1V France
PRESSION RESSENTIE HUMIDITE PRESSION RESSENTIE HUMIDITE
10155 38° 20" 1015+ 38" 20" ¢ y
I J) < N) 2
o + dorre —
2 e Barcr’ ine

&=
Madrid
Ae
Portugal Valence

15

X Eroagng o
—— Sugde 4 Listonne i
— = 2] T ——m f 5 n O \ (Sewne
] p - JNA.°, D "
y Finla:de ¢ 'dlaga
(o bvh anar
o v v
7 COGULLAD) =, T COGULLAD
Bt n L0/ Cecahianca

LA ALMOZARA
Google
OEn

°Y ;

Favorite station data

LA ALMOZARA

°u
Googlen

Public station data

QY

S
Mer Baltique

Eston E

Rain selected

Google

Figure 10: Final application changes flow diagram

0. e
Godgle

Wind selected

3.2 Considerations

This section shows the process that has been followed for deciding all implementation variables of
the Weathermap. All theoretical and technical considerations made for solving the problems found
during the project are explained in this section.

3.2.1 Getting pubic stations data

Netatmo private REST service provides a method for getting public stations data in a certain
rectangular region. This method receives some parameters in order to choose what type of stations
we want, how many and in which region. The following table shows a list of parameters that can be
used:

Parameter |Description Possible values
(- North east latitude in degrees of the requested rectangular | —90=<¢,;<90
region. [WGS 84] O ne> Doy
Psw South west latitude in degrees of the requested rectangular | —90=<¢,, <90
region. [WGS 84] Qs < D ng
Ane North east longitude in degrees of the requested —180<A,,<180
rectangular region.[WGS 84] Ae>Agw
Agy South west longitude in degrees of the requested —180<A4,;<180
rectangular region.[WGS 84] Ane>Agy
N, Max number of stations to receive. 0<N <1000
type All received stations will contain this type of measure. temperature, rain, wind

For instance, if we send a request with parameters:
Pn=60°,0,,=—60°,4,,=100° and A,=-—100°

We would receive stations in rectangular area showed in Figure 11. The parameter condition
@5, <0,; implies an important restriction when using GoogleMaps that uses a Mercator

projection with cyclic longitude implementation. That means that its possible to see in the screen
the rectangular area showed in Figure 12. In that case the parameter condition @, <@, is not
satisfied. If we want to receive stations in the rectangular area shown in Figure 12 it's necessary to
perform two request. Each request correspond with a rectangular area that satisfies the condition. In
this case the parameters for the requests would be:

reql: ¢,;=60°,9,,=—60°,1,,=80° and Ay,=—180°
req2: ¢,;=60°,0,,=—60°,1,,=180° and Ay,=100°

16

NE (A=80°,

>

, . =60°) |
| & -
NE (A=100°, 9=60°) |

S8 €

SW (A=-140°, ¢=-60°) ‘

SW (A=100°, ¢p=-60°)

Figure 11: rectangular map region example Figure 12: rectangular map region example

3.2.2 Cache system experiment

Looking for stations in a certain area on database is an expensive task in terms of time and
resources. When a request is processed by a backend server, the response is stored in cache during
30 minutes. When a new request arrives, if its parameters matches a response in cache, it is not
necessary to process the request. Location parameters are compared with a precision of 4 decimals.

Initially, two ways for implementing the Weathermap has been considered:

a) Each time that user moves the map, a single request that matches the screen is done.
This way is very simple and robust. However the number of possible request parameters is
infinite and as a consequence backend cache system would be never used.

b) Each time that user moves the map, the new map region that is visible in the screen is
divided in a set of subregions. If we achieve to normalize these subregions by making them
equal for all devices, backend cache system could be used. This way is more complex than
the first one and, as a consequence, it could potentially introduce unexpected errors.

Choosing one strategy is a trade off between simplicity and performance. Using cache potentially
mean a reduction in the waiting time since the user moves the map until the information is
presented. If this time reduction is negligible compared to the delay introduced by the network, the
complexity introduced by the second strategy would not be worth.

In order to measure the benefits of using cache an experiment has been made. Using three different

devices, several requests has been made with different parameters. In the following table are
described all request done during the experiment:

17

request time (ms)

Var Description Number

Device model {Motorola Nexus 6, BQ Aquaris E5, Huawei Ascend G620s} |3

P> Psw s Mg s Asw ®ne| [53.75° 0 >00
Psw|=| 51.4° |4)| O k=0,1,...,499

, =

Ave| [13.36° 0.001°
Ay 9.49° 0.001°
N, {4,9,16,25,36,49,81,100, 144,196, 225 } 11
type temperature 1
iterations Each request has been sent two consecutive times. This way the |2

first request uses cache and the second one don't.
Total number of requests = 3-500-11-1-2=33000

For each request backend execution time T,, has been measured as well as total time T,, since
it was sent until the information is attached to the screen. We can assume that T, is the addition
of backend execution time, network delay T, andthetime T, ., required for the device for

precessing the response and display the information on the screen. With this assumption
T jovicet T envork €an be calculated as:

device networ

Ty v =Tooice* Tromsork = Teor— T

device network — — tot exec

The following graphs show the different time measures obtained for different number of stations
requested with a 95% confidence interval:

3500 T T 2000 T T
Total request time Total request time : :
— Backend execution time — Backend execution time
3000 |L——Network and device exeoution ime | . i_.....i....J ..] —— Network and device execution time
1500 R T
2500 oo e T 2 RIS SR : : : 5
2000 b [...................... R 2
3 H H g [N N N N
3 B H 15
] 1 : B E 1000 Froreree g RO P e
T : f @ H H . .
] : : @ :
] : : g
+

0 50 100 150 200 25!
number of stations requested

0 50 100 150 200
number of stations requested

Figure 13: Times measured without cache . . .
g Figure 14: Times measured without cache

18

250

Figure 13 shows T, , T,, and T, as a function of N, for requests without cache. As
expected all times increase when N, increase due to the fact that more data is needed to be
searched, transmitted and processed. We can observe that T, increases faster than T, , , that
means that the higher number of stations requested, the more influence execution time has over the

total request time. In fact, from a number of stations bigger than 25, more than 50% of total time is
due to execution time.

Figure 14 shows T, , T,, and T,,6 as a function of N for requests with cache. We can

observe that in this case execution time is negligible because no deep database search is needed and
as a consequence almost 100% of the total time is due to networking and device processing tasks.

As conclusion, execution time is not negligible. As is expected to display between 30 and 50
stations depending on device screen size, according with this results its possible to save more than
50% of the total request time using cache. Of course, for having this time reduction it's also
necessary that the request sent is in cache. However due to the big number of active Weather Station
users per day and their graphical distribution its very probably that one user navigates on the same
region where other user was navigating 30 minutes ago. Because of the results, we have decided to
use the strategy that profits backend cache system.

3.2.3 Map division problem

Lets imagine that two users are navigating in the same world map region. The facto that screens
have different size and proportion makes impossible that both users see exactly the same map
region in their screens. In addition, GoogleMaps camera position coordinates are codified with
double precision what makes it even more impossible. Figure 15 shows a picture to illustrate this
situation where rectangles represent the portion of map seen in each screen. If both users make a
single request that matches their screen coordinates, the probability of find a response in cache is
almost zero.

~ @/ M -

2 [|

Figure 15: Screens overlapped example 1 Figure 16: Screens overlapped example 2

To benefit backend cache system it's necessary that all devices navigating in the same world map
region make requests with the same parameter values. This condition involves a discretization of
the infinite set of all possible world map areas into a finite subset. As backend method only allows
to receive public stations in a rectangular area, subset areas must be rectangular shaped.

19

The simplest way of doing it Is to divide the entire world map area into subareas using a
rectangular grid. In Figure 16 world map has been divided using a rectangular grid. In this situation,
if each user makes one request for each subregion that is intersected by its screen, green subregions
could be shared in the cache system.

First approach

The first strategy that has been considered was based on using geographical coordinates to create a
grid similar to the parallel and meridian system. The grid is build by the intersection of vertical
parallel lines and horizontal parallel lines. Vertical parallel lines are AA degrees equally spaced
and horizontal parallel lines are A¢ degrees equally spaced.

GoogleMaps uses WGS 84 Web Mercator projection for displaying bi-dimensional maps. Earth

surface parametrized by WGS 84 datum and protected onto a rectangular bi-dimensional plane. The

height and width of the pane is 256 units. Each point expressed in geographical coordinates
(A,0) has a projection (x,y) on this plane according to the following equations:

X=P,(3)=222 (34n)
128 (0] M
n
y=Py((p):T m—In|tan 2t

Where latitude and longitude are expressed in radians. Horizontal component x has a lineal
dependency with longitude, as a consequence, if parallel vertical lines are equally spaced in
longitude, the projected vertical lines will be also equally spaced on the map. However vertical
component y does not have lineal dependency with latitude. As a consequence parallel horizontal
lines wont be equally spaced on the map. This behavior can be observed on Figure 17 where world
map has been divided using a grid with parameters Ap=A4A=30°

1507w 1207 g0° 0* g0° 120" E180°
Goe ﬁﬂ"

go°

30"

30°

G

b
5
507

a0°
1800w 1200 G o GO 120t E150°
£ 994 Encyclopaedia Britannica, Inc.

Figure 17: Map divided by constant step in geographical coordinates

20

As protected lines are not equally spaced the area of each subregion is different. On Figure 17 we
can see that the area of subregions placed on the center is smaller that the are of subregions placed
on the top and bottom. As a consequence, if we request the same number of stations for each
subregion the density of stations will be different for each one. We can use projection formulas in
order to know if this density distortion will have a significant visual impact on the Weathermap.

Lets consider a grid with a certain latitude separation A¢g and longitude separation AA. If we
consider a particular rectangular whose center coordinates are (A,,p,) we can calculate its area A
in projected units as a function of its center coordinates:

‘ 3 (}\NE:\(gNE) \ 3 (Xng :XNE)
Aol | (}‘o’@o) ,,,,,,, Projection Ayl [(Xo’ytv) ,,,,,,
Y. fg)\sw;q)%sw)) :’(XSW: YSW)

AA Ax

A()\o,(Po):AX'Ay:(XNE_XSW)'(YNE_YSW):(PX()\NE)_PX()‘sw))'(Py(QDNE)_Py(‘PSW)) ()
Applying projection equations (1) and doing the following substitution:

A=A, +AA[2
Agw=A,—AAI2
Pae=9,+A¢/2
Psw=9,—A¢/2

3)

finally we obtain:

20, +Ap+m
tan| ———

2
A0, Alp)=[22 ar1n

4
20,—Ap+n “)

tan
4

21

As expected, rectangular region area does not depend on its center longitude. The minimum area
rectangle would be placed on ¢ ,=0 meanwhile the maximum area rectangle would be placed in

the higher latitude represented in the map. As maximum latitude represented by WGS 84 Web
Mercator projection is 85° we can do an approach and suppose that the maximum area rectangle is
placed on ¢ ,=85°—Ap/2 . If we request the same number of station for all subregions, the

visual impact on the Weathermap can be measured by the density difference ratio K between the
biggest subregion area and the smallest subregion area:

A(85°—Ap/2)
A(0)

K(4g)= ()

If we apply equation (4) in (5) we can observe that K only depends on A¢. The following graph
displays K as a function of A¢:

0 20 40 50 g0 100 120 140 180 180
latitude step(™

Figure 18: Area distortion for different division step values

We can observe that for A¢ values bigger than 85° the density distortion is bigger than 2. This
means that if we divide the map using a grid with more than two horizontal lines, the area of some
subregions would be at least twice the area of other subregions. This theoretical results shows that
this strategy for creating a grid is not correct from a visual point of view.

Final strategy

For obtaining a grid where all rectangles are constant in the projected domain, its necessary to
define vertical and horizontal parallel lines equally spaced in projected domain. Now the grid is
defined by the intersection of vertical parallel lines equally spaced by Ax projected units with
horizontal parallel lines equally spaced by Ay units. For an easier implementation we have chosen
Ax = Ay = Al creating a square grid.

For getting public stations data with this strategy, two unit conversations are needed. Figure 19
shows the process since the user changes screen position until request are made:

22

Geographical coordinates Projected domain Geographical coordinates

/ N

M | - | (3)reverse

(1)projection | g projection. < D

L]

S

111

N —

(2)calculate intersected
subregions

(4)send a request for each
intersected subregion

Figure 19: Map division in projected units process

(1) When user moves the screen into a new map position, new position rectangle is projected using
WGS 84 Web Mercator projection equations.

(2) The projected screen is transformed into a subset of subregions defined by the grid. This subset
is calculated as the intersection of the projected screen with all subregions of the grid.

(3) Geographical coordinates of each intersected subregion are calculated. WGS 84 Web Mercator
projection equations are bijective and as a consequence they can be used directly for perform this
projection reverse step.

(4) Finally, for each intersected subregion, a request is sent using its geographical coordinates in
order to receive public stations.

3.2.4 Map zoom problem

GoogleMaps implements a zoom system. User can increase and reduce map zoom level by
spreading and pinching on the screen. This means that, for the same device screen, the represented
map region area may be different depending on the zoom level. Or in the other way, the same region
in projected units would be represented with a different size depending on the zoom level.

If a single grid is used as described in last section, the number of stations displayed on the map
would be different depending on the zoom level. For a good visual performance of the Weathermap
the desired behavior involves a constant number of stations displayed on the screen regardless the
zoom level.

A single grid with constant parameters Ax and Ay is no longer valid. Grid parameters must be a
function of the zoom level z in order to adapt grid squares size :

Ax(z)=Ay(z)=Al(z)
For finding a valid adaptation function first is necessary to know how zoom system is implemented
in GoogleMaps. Zoom level z is codified by a real number between 1 and 20. Given a map region

defined in projected units, this value determines the number of pixels used for representing that
region. The bigger the zoom value is, the more pixels will be used. When user performs a spreading

23

gesture on the screen, zoom level is increased by a quantity of units proportional to the spreading
movement distance. In the same manner, when user performs a pinching gesture, zoom level is
decreased by a quantity of units proportional to the pinching movement distance.

New equations are defined in order to project each geographical point into a bi-dimensional position
in terms if pixels. These equations are based on WGS 84 Web Mercator projection equations (1) and
are defined as:

Xpixelzzsz()\):2217?[—8(A+n)
128 ©)
—?Z —nZ T, Q
yPier_z Py((p)_z u n—In|tan Z"‘E

We can observe a base 2 exponential dependency between the projected pixel position and the zoom
level. This means that for a given geographical point, if we increase zoom level by one unit, its
projection components in terms of pixels will be multiplied by 2.

For compensate this exponential effect, grid parameters must have an exponential dependence of
zoom values:

Mx(z)=2y(2)=2"L, (7)

Where L, may be interpreted as the size of the squares in a grid when zoom value is zero. We can
configure the size of the squares by changing L, value.

Using equations in (7) we obtain an adaptive grid where square regions size is constant in terms of
screen pixels. As the set of possible values of zoom levels is infinite, using directly equation in (7)
would create a infinite set of grids and the probability of using backend system would be zero.

In order to get a finite set of grids its necessary to transform the infinite zoom domain z into a finite

domain zZ . We can achieve this discretization with a quantification function with uniform

quantification step Az

z+Az/[2
Az

A

N

Az (8)

Equation described in (8) transforms a zoom value into the closest multiple of Az value.
Choosing the optimal Az value is a trade off between probability of using cache system and
visual performance :

- The bigger Az wvalue is, the less number of possible zoom values and as a consequence
the less number of possible grids. If the number of grids is reduced, the total number of
subregions is reduced too and its more probable that two users navigate on the same
subregion.

-If Az is small, the grid size change when the user zooms in or zooms out would be small
too. This means that the change in the number of stations in the screen would be smooth.

We have decided to choose the biggest Az wvalue that involves a transition smooth enough to

create a pleasant visual sensation. Different Az values have been tasted with different users that
have made a qualitative assessment of the performance. Finally Az=1 has been chosen.

24

3.2.5 Choosing subregion size experiment

The only parameter that remains to be defined is the base length L, of the squares in the grid. The

goal is to choose a value that optimizes the time since the user moves the screen until the
information is attached on the screen. A priori we can make some assumptions:

-The bigger is the value of L, the fewer subregions would be intersected by user screen and, as a
consequence, fewer requests would be needed consuming less network resources. Moreover, as
each request would receive an HTTP response, the more request are made the more overhead
introduced by HTTP headers.

-On the other hand, as the goal is having a constant public stations density on the screen, the more
number of intersected subregions the fewer number of station are needed in each request.
Simulation results in Figure 13 show that the execution time in backend server can be significantly
reduced by requesting small number of stations. As backend server processes requests in parallel,
making a big number of request may involve a global time reduction.

-Results in Figure 13 also show that the time required by the device to process a server response can
be reduced by requesting small number of stations. In the same manner, if the responses are
processed in the device in parallel, global time may be also reduced by using small L, values.
However making assumptions about Android parallelization issues may be dangerous because of
the big variety of microprocessors on the market.

As this optimization problem involves too many variables for being solved in a theoretical way, an
experiment has been made in order to find the optimal L, value. Three Android devices have been
used with very different computing capabilities to do the experiment as representative as possible.
For different world map regions a constant number of public stations has been requested using
different values of L, . The following table shows the details about the experiment:

Var Description Number
Device model {Motorola Nexus 6, BQ Aquaris E5, Huawei Ascend G620s} |3
L, {720,640,560,480,400,320,280,240,200,160,120,80 } 12
Screen regions 0| [53.750 0 30

Osw || 514° |l 0 | rzo1..30
Awe| [13.36°] |0.001°
Ay | | 949°| |o.001°

N, 100 to be divided between each subregion. 1
type temperature
iterations Each request has been sent two consecutive times. This way the |2

first request uses cache and the second one don't.

Total number of requests = 3-30-12-:2=2160 (requests for each subregion are not considered)

25

The following graphs shows the different time measures obtained for different values of L, with a
95% confidence interval:

7000 T
|| — Total request time without using cache
Total request time using cache
6000 [~ """""""""""""" """""""""""""" """""""""""""" 1
5000 - o -
n
é . . .
E 4000 |-k e R S 1
B
[}
=
g : : :
Z8000 [N e R A I A R
I : : :
2
2000 [NI oo T """""""""""" e
000 [rrmreerrere e N Job Y KRR 1
) : . ;
0 200 400 600 800

Lo

Figure 20: Time measured for different square sizes

We can observe that for values of L, smaller than 200 the total request time is very big for both
cases. This may be caused of the big overhead introduced by making a lot of requests.

For the curve where cache is used we can observe that it exists a minimum at L,=280. For

values bigger than 480 total request time starts to grow lineally. This behavior may be due to the
fact that at this operation point the number of stations requested per request is very big and backend
executions time makes the most significant contribution to the global request time.

On the other hand, the curve where cache is not used remains almost constant for values of L,
bigger than 200. As no backend processing is needed, execution time is not a constrain.

Although according to the results L,=280 is the optimal point in terms of time, L,=480 has

been used for implementing the system. As can be observed on the results, the mean request time
for L,=480 is only 100ms higher than for L,=280. However, using L,=480 we are

receiving potentially stations in a bigger area than using L ,=280 and, as consequence, its more
probable that user moves into a new region that is already included in a previous request.

26

3.3 Application architecture

The aim of this section is not to explain in depth the implementation of the application. The overall
architecture is explained from a low level point of view in order to understand how new features
have been added.

3.3.1 Baseline application architecture

t REST request/response

|

Graph

Interactor 1 Interactor 2 Interactor N
Interactor

Figure 21: Baseline application architecture

Following the presenter-interactor design pattern, presentation, domain and data layer can be
identified in red, green and blue colors respectively. Each view contains an interactor and works
independently from other views.

Interactors are in charge of recover and process data that will be presented to the presentation layer.
The only interactor that comunicates with networking modules is the graph view interactor. The
rest of them communicate with data manager module. This module implements a cache system to
optimize the number of requests needed by the application. When an interactor request data to the
data manager module, this checks if that data is already in cache. If not, it performs the API calls
necessaries to receive all the requested data.

27

Data manager has been designed for getting and storing actualized data such as last measurements,
user profile or weather station status. However the amount of data needed by the graph is much
bigger due to the fact that using graph involves a big collection of historical measures. Graph
interactor do not use data manager module because managing graph data requires more resources
and a more sophisticated cache system.

The network connection with the REST server has been implemented using HTTP Volley library.
Module HTTPS client uses the resources in that library to perform REST requests and to receive
responses. This module is also in charge of parsing server JSON responses and transforming them
into Java objects.

The rest of the application can interact with the networking layer through Private API request

manager. This module is an interface to publish the REST methods that are available in the server.
This module is also in charge of checking that all the parameters for each request are correct.

3.3.2 First approach application architecture

t REST request/response

WeatherMap

[TE—— Interactor 1 Interactor 2 Interactor N Graph

Interactor

Figure 22: First approach application architecture

28

Software incremental strategy [5] has been used to implement the desired new features. The aim of
this strategy is to create a new software system based on a existing one without changing the
behavior of the existing system.

The main idea is to create a new architecture that satisfies the desired new requirements without
changing the existing implementation. The baseline application was released 2 years ago and has
been deeply tested. With this strategy if a new bug appears after implementing the new features, we
can be sure that the error is due to the new code.

All data used in the baseline application belongs to a user private context. That means that the data
displayed only can be read by the owner of the station. However for implementing the new features
a new type of public data is necessary:

-Weathermap: Its necessary to receive location and measures of stations that do not belong to
the user.

-PreviewVisualization: When the user selects a station it is necessary to update the dashboard
with extra information.

-Add Favorites: When the user adds a station to favorites, user station list is updated and
pushed to the server. From that moment all data from the added station belongs to the user
private data context.

The existing module Private API request manager only implements methods to receive user
private data. As the objective is not modify the existing architecture, a new API module has been
included instead of expanding the existing one. It is called Public API request manager and is in
charge of provide an interface for publishing all server methods needed to get public data.

Preview data manager module has the same role as data manager module but with public data. It
implements a cache system and isolates interactors from networking tasks.

In this architecture, interactors communicate with both data managers. They are in charge of
choosing the correct data manager depending on the state of the application when a view request
data. Thanks to this architecture based on presenter-interactor design pattern all visual elements
have been fully reused because, from the point of view of presentation layer, the data precedence is
transparent.

The behavior of the Weathermap is very similar to the graph. Both require a big amount of data
during a short period of time. Because of this Weathermap architecture follows the same schema as
the graph. Weathermap interactor contains an exclusive data manager in order to cache and request
data more efficiently.

29

3.3.3 Final application architecture

Netatmo programmers team have developed a new deliver information system called Netflux. More
details about this system can be found in section 2.3. I was also in charge of including this new
system in the Weather Station application.

¢ REST request/response

1

1

Graph
Interactor

WeatherMap
Interactor

Interactor 1 Interactor 2 " = = Interactor N

Request
Data .
Present

Figure 23: Final application architecture

Now there is no separation between public and private data. Netflux data model contains both kind
of data and have access to public and private APIs. When an interactor needs data, netflux module
extracts from the data model the piece of information requested. When the model changes, maybe
for a new REST response or maybe for new application state, netflux module notifies the change to
all interactors that are interested in the part of the model that has been changed.

Netflux module only changes the way of storing and delivering application data. The rest of the
architecture such as presentation and networking layer remain constant.

30

3.4 Weathermap implementation

In this section Weathermap implementation will be deeply explained. This is the only component of
the application that is explained with code details in this document because:

-It represents the core of my work during the internship.

-It has been designed and implemented entirely by me

-The rest of my contribution to the application has been modifying other components that
have been designed and implemented by other programmers of the company.

I the following figure we can see the class diagram for the Weathermap implementation. Only
public methods are included:

\ WeatherMap.class

zg:g ffftrztsag'(‘))_”se'e“e‘j(sm“g id); LocationStateManager.class
void retryLastRequest(); void startService(); WmapDataListManager.class
void showMap(); void stopService();
void hideMap();

void isMapDisplayed();

void handleOnBackPressed();

A

void managelnputStations(List<PublicData>);
void processDataOutOfBounds(MapBounds)
List<PublicData> getStationsToDelete();
PublicData getNextStationToDraw();

. ’ . ' . void setUserData(UserData);
void presentPublicData(List<PublicData>), PreferencesManager.class PublicData getStationByMarker(Marker)

oid presentUserData(UserData); - - ; .
void ¢) <— void startService(); void clear();

void shareAction(); id Service():
void onPreferenceChange(Preference); void stopService();

void startRequestTimer(MapBounds);

A

oid onLocationSettingsChange(LocationState); W f
*KL mapApi.class
A A A WeatherMaplinteractor.class PAP
‘ - void getPublicMeasures(Tag,Params);
void requestUserData(); void cancelRequestsByTag(Tag);
IconFactory.class void requestPublicData(MapBounds);
Bitmap getlcon(PublicData); xg:g f:;;r(e)lsenter(Presenter); SquareFactory.class
void onPubiicDataReceived(List<SquareData>); List<Square> getSquares(MapBounds);
= A A
MapView.class | ‘ .
void Init(); PublicDataCacheManager.class
void onCameraChange(MapBounds); Netflux module List<SquareData> getSquaresinCache(List<Square>);
void drawMarker(Marker); void addDataToCache(SquareData);
void clear(); void clearCache();
Bitmap takeScreenShot();

AutocompleteTextView.class

void setAdapter(AutocompleteAdapter);
boolean isSettingsShowed();

boolean isWmapSettingsShowed(); Recognizerintent.class \
void setLocationButtonState(LocationState);

WmapControllersView.class

void startSpeechRecognizer(); ‘

Figure 24: Weathermap implementation class diagram

Single responsibility paradigm has been used for the design. Each class corresponds with a single
functionality and functionalities are not shared between classes. However, due to the nature of the
Weathermap behavior, all functionalities are highly coupled. For example user location service must
interact with presentation layer to display user position in the map or user preferences service must
interact with the graphical interface to provide an output of the preferences selected.

Other criteria followed in the design is that each class corresponds with a project specification. This
way if there is a change in a particular specification, only a class needs to be changed.

31

WeatherMap.class

This class is the core of the implementation. It centralizes communications between other classes
and provides an interaction mechanism for the rest of the application. All components in the
application interact with the Weathermap trough this class.

We can divide methods in this class into “exterior” and “interior”. Exterior methods are used by
other classes in the application that do not belong to the Weathermap implementation. Interior
methods are used by other Weathermap implementation classes.

Exterior methods:

-void setStationSelected(String id);

This method is used for setting the current selected station that is displayed on dashboard.
The parameter is an id that is unique for each existing station.

-void refresh();

This method forces the Weathermap to refresh the information displayed on the screen. There is a
timer service in the application that forces all visual elements to be refreshed periodically.

-void retryLastRequest();

This method is used when a connection problem has been detected. When called, the last request
performed is repeted.

-void showMap() / hideMap(),
Make the Weathermap visible/invisible with an animation.
-void isMapDisplayed();
Returns true if Weathermap is visible
-void handleOnBackPressed();
This method handles what to do when the user clicks the go back Android button. The action to be
done depends on the status of the graphical interface of the Weathermap. For example if settings are

showed the action is to close it or if Autocomplete suggestions are displayed the action is to hide
them.

32

Interior methods:
-void presentPublicData(List<PublicData>);

Called by WeatherMaplnteractor to deliver ready to display data about public stations. PublicData
class represents a public station.

-void presentUserData(UserData);
Called by WeatherMaplnteractor to deliver information about the user. UserData class contains all
data related to the user such as the list of stations, measure units preference or language. Some
functionalities depend on this information.

-void shareAction();

This method is called when share button is clicked. When called, a screen-shot of the map is taken
and delivered to the current Activity to start a sharelntent.

-void onPreferenceChange(Preference);

Called when a user setting has been changed. Preference contains information about the change. In
this method all elements are configured according to the new user preference.

-void onLocationSettingsChange(LocationState);
Called when location permission has been changed. LocationState represents a permission state.
-void startRequestTimer(MapBounds),
WeatherMap class contains a timer. When this method is called, if the timer is stopped, it is
launched. If not, the timer is restarted. When the timer expires a request is performed in order to
receive public stations data in a certain world region given by MapBounds.
This mechanism avoids to send unnecessary requests when the user is navigating with short and
consecutive touches on the screen. A request is sent if, during a certain period of time from the last
touch event, there are no new touch events. This period of time is configured in the timer and has
been set to 750 ms.
IconFacory.class
This class is in charge of providing icons that will be displayed on the Weathermap. Due to the fact
that graphical resources related to icons are stored as vectors, this class implements logic to
transform a vector into a bitmap taking into account different screen resolutions and Android
version compatibility issues.

-Bitmap getlcon(PublicData);

Given a public station, this method returns a bitmap that contains the icon to be draw. PublicData
contains all data related with the measurements of a received public station.

33

Map View.class

This class contains and controls all graphical resources related to the map. As GooglaMaps API has
been used, this class contains a GoogleMap instance. This class, provided by GooglaMaps API, is
an interface to configure and control a GoogleMap in an Android application.

-void init();

This method initializes and configure GoogleMap instance. Native GoogleMaps is a free service but
it requires application level authentication using an access token. During this method authentication
process is performed. After authentication, GoogleMap instance is configured to listen map camera
changes events and clicks on markers(icons).

-void onCameraChange(MapBounds),

This method is called when there is map camera change. Parameter MapBounds contains the
bounds of the new camera position in geographic coordinates.

-void drawMarker(Marker);

This method draws an icon on the map. Marker class is provided by GoogleMaps API and contains
the location of the icon and the bitmap to be draw with.

-void clear();
This method delete all icons draw on the map.
-Bitmap takeScreenShot();

This method takes a screen-shot of the current state of the map and returns it as a bitmap. All icons
are included. This method is used when the user clicks on share button.

WmapControllersView.class

This class manages all graphical interface elements except the map. It is in charge detecting user
interactions with each button and create transition animations according to each user event. It
implements public methods used by WeatherMap to know the current graphical interface state.

This class also manages the bar on the top of the Weathermap. The bar is a complex graphical
element that implements an auto-complete search mechanism and the possibility of search a place
by voice. An exclusive class has been created for each functionality.

AutocompleteTextView implements an auto-complete text view using GooglePlaces API. When the
user writes a sequence of characters, a GooglePlaces request is sent in order to obtain a list of
suggested places based on the input sequence. This process requires application authentication and
is performed by an instance of AutocompleteAdapter that is initialized by WmapControllersView.
AutocompleteAdapter implements an adapter interface for AutocompleteTextView fin order to
display suggestions when they are ready.

34

About voice search, Google provides a class called RecognizerIntent that automatically creates a
new Activity that internally uses GoogleSpeechRecognition service. The recognition result is
received by WmapControllersView.

-boolean isSettingsShowed();
returns true is preference settings are displayed.
-boolean isWmapSettingsShowed();
returns true is change measurement buttons are displayed.

-void setLocationButtonState(LocationState);

This method changes location button image according to the application location state given by
LocationState.

WmapDataListManager.class

This class resolves the next problem. Imagine that in a certain moment there are some public
stations draw on the map. The user touch the screen and navigates to a new map region where some
station are already draw. We will receive new public stations data for this new area that are already
draw on the map. The simplest solution is to delete all stations and redraw all when new data
received, however this solution is inefficient and generates an annoying blinking effect in those icon
that are deleted and redraw. WmapDataListManager implements a better solution, when new
stations arrives, it decides what stations need to be draw, what stations need to be deleted and what
stations remain constant. This class also makes all user station being displayed on the map.

We can formalize the problem to understand better the implementation of this class. Consider M as
the set of stations that are displayed on the map in a certain moment. Then the user navigates and
we receive a set of stations R to be displayed in the new region. As user stations must be displayed,
if we define U as the set of user stations, the set of stations that need to be displayed is given by R U
U. Following Figure 25 we can affirm:

Stations that are in M and in R U U belongs to the set of stations N that have to remain constant.

N=Mn(RUU)

Stations that are in M but not in R U U belongs to the set of stations C that have to be deleted.

C=M-(RUU)=M-N

35

Stations that are in R U U but not in M belongs to the set of stations D that have to be draw.

D=(RUU)-M=(RUU)-N

Figure 25

According to the formulas, when a new set of stations R arrives, the operations to be performed are:

R'<RUU
N <«MNR'
C<M-N
D <R'—N

(step 1)

After deleting all stations in C, sets should be actualized as follows:

C-4Q
step 2
M <N (step 2)
After drawing a station d from D, sets should be actualized as follows:

D < D—{d]
step 3

M « M+{d} (step 3)

After drawing the last station sets should satisfy:

D=4
M=R'

We have solved the problems using set notation. All operations that has been used such as union,
intersection addition and substation are already defined in Java List abstract class. Programming the
algorithm described above using Java List interface is trivial.

-void managelnputStations(List<PublicData>),

This method receives a list of new public stations to be displayed and calculates what stations in the
map must be deleted and what new stations must be draw. It runs algorithm step 1.

36

-List<PublicData> getStationsToDelete();
Returns a list with the stations that must be deleted. It also runs algorithm step 2.
-PublicData getNextStationToDraw();
Returns a new station to be draw or null if the list is empty. It also runs algorithm step 3.
-void setUserData(UserData);
This method is used to set the user station list.
-PublicData getStationByMarker(Marker);
Returns the public station associated to a certain marker given as a parameter. Marker represents an
icon draw on the map. This method is used by WeatherMap to recover a public station info when its

icon is clicked. If there is no station in the list whose marker associated match the parameter, the
method returns null.

LocationStateManager.class
The functionality of this class is to interact with the OS to determine if the application has location
rights to get user geographical position. It also listens OS events in order to detect location settings
changes.

-void startService();
When this method is called, this class starts to listen OS events.

-void stopService();

When this method is called, this class stops listening OS events.

PreferenceManager.class
This class is in charge of loading user preferences for Weathermap configuration. It also listens to
changes in user preferences. Basically, when user changes a setting concerning to Weathermap, this
class notifies the change to WeatherMap.

-void startService();
When this method is called, this class starts to listen user settings changes.

-void stopService();

When this method is called, this class stops listening user settings changes.

37

WeatherMapInteractor.class

This class implements an interactor for WeatherMapView. It is in charge of collecting all data
needed by Weathermap and processing the data to make it ready to be displayed.

When user information is needed, WeatherMapInteractor request user data to the Netflux module.
However, when new public stations data is needed, this class interacts directly with networking
layer thought WmapApi.
As seen in section 3.2, to profit backend cache system, map bounds request parameters must be
transformed into a set of square bounds that are normalized to all screen densities. When its
presenter request new public data in a certain bounds, this class uses SquareFactory in order to
obtain the set of normalized squares associated to the requested bounds.
WeatherMaplnteractor also implements a local cache system for public data using an instance of
PublicDataCacheManager. Once the squares are calculated, PublicDataCacheManager determines
for what square regions there is already data in cache and for what square regions a new request is
necessary. When a new public stations data arrives from networking layer, it is associated to a
certain square region and stored in cache.
-void requestUserData();
When this method is called, WeatherMapInteractor starts getting user data from Netflux system.
-void requestPublicData(MapBounds);
When this method is called, WeatherMapInteractor starts getting public stations data.
-void setPresenter(Presenter);
Sets the presetner associated to this interactor.

-void onPublicDataReceived(List<SquareData>);

This method is called by networking layer when a public data response is ready.

38

4 Conclusions

This section contains a list of things that I have learned during the execution of this project. The
elements of this list does not strictly belong to the domain of Computer Science. They are useful
lessons about how the work environment works.

-Documentation is probably the most important step during the execution of a project. It is
important to understand very well the problem you are trying to solve. In this case, knowledge
about map projection has been useful to predict potential problems during implementation.

-Simulations and tests are very important in order to detect possible problems. In this case the
implemented application was tested by people outside the project. This allowed to find many
mistakes I had missed.

-Communication between team members is crucial. Different people with different
backgrounds were involved in this project. Marketing people, designers and programmers have
a different points of view about how to manage a project. Specifications were created in an
iterative process where all opinions where taken into account and, from my opinion, that is the
key to carry out a project with the highest possible quality.

39

5 References

[1] DeMarco, Tom. (1979). Structured Analysis and System Specification. Prentice Hall. ISBN 0-
13-854380-1.

[2] Page-Jones, Meilir (1988). The Practical Guide to Structured Systems Design. Yourdon Press
Computing Series. p. 82. ISBN 978-8120314825.

[3] Martin, Robert C. (2003). Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall. pp. 95-98. ISBN 0-13-597444-5.

[4] Ralph E. Johnson & Brian Foote (June—July 1988). "Designing Reusable Classes". Journal of
Object-Oriented Programming, Volume 1, Number 2. Department of Computer Science University
of Illinois at Urbana-Champaign. pp. 22-35.

[5] Kung-Kiu Lau, Keng-Yap Ng, Tauseef Rana, and Cuong M. Tran. Incremental construction of
component-based systems. In Proceedings of the 15th ACM SIGSOFT Symposium on Component
Based Software Engineering, CBSE 2012, part of Comparch ’12 Federated Events on Component-
Based Software Engineering and Software Architecture, Bertinoro, Italy, June 25-28, 2012, pages
41-50, 2012.

40

41

