«2s Universidad
181 Zaragoza

Trabajo Fin de Grado

Sistema de Informacion/Entretenimiento para
vehiculo con soporte de voz y diagnostico

Autor

Juan Antonio Cepero Chicote

Director

Dario Suarez Gracia

Escuela de Ingenieria y Arquitectura

2017

MASTER

W
Q
<
w
N
Qo
<
2 =
©
W
Q
=
Ty
W
Q
)
o
<
<
=

Ingenieria y Arquitectura

.iil Escuela de DECLARACION DE
Universidad Zaragoza AUTORIA Y ORIGINALIDAD

{Este documento debe acompafar al Trabajo Fin de Grado {TFG)/Trabajo Fin de
Maéster {TFM) cuando sea depositado para su evaluacion).

D./D2. Juan Antonio Cepero Chicote

v

con n2 de DNI 72898976-Q en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)

Sistema de Informacidn/Entretenimiento para vehiculo con soporte de voz v

diagndstico

'

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 19 de Septiembre de 2016

Fdo: Juan Antonio Cepero Chicote

Resumen ejecutivo

El presente proyecto presenta el disefio un sistema de informacion/entretenimiento instalable en
cualquier vehiculo. Esta formado por un computador de bajo coste y una pantalla tactil facilmente
acoplables al salpicadero de un coche y cumple un doble objetivo: permite conocer los parametros
propios de la conduccion (aceleracion, RPM...) en tiempo real, asi como mantener en todo
momento la seguridad de los ocupantes del vehiculo evitando que el conductor deba soltar las
manos del volante para interactuar con el sistema ya que permite su control mediante la voz. Por
otra parte, el sistema también ofrece otra serie de funcionalidades, como la de centro multimedia
conectado al sistema de altavoces del automdvil, o permitir el acceso a Internet (siempre que se
disponga de conexion a la Red). Ademas, su disefio modular permite afadir facilmente
extensiones en el futuro por cualquier interesado.

El “cerebro” del sistema es un computador de bajo coste, Raspberry Pi 3, con un Sistema
Operativo derivado de Debian Linux, la cual ofrece un enorme potencial y versatilidad al proyecto
debido a lo extendido que estd su uso entre la Comunidad Maker, y la gran cantidad de
documentacion disponible en la Red. En lo referente al Sistema Operativo, se encuentra
almacenado en una tarjeta microSD para permitir que el proyecto sea mucho mas flexible y
escalable en funcionalidades que los Sistemas de Infotenimiento propietarios que integran
algunos vehiculos de serie, cuyos Sistemas Operativos cerrados no permiten la adicion de mas
caracteristicas.

Todo el software que se ha utilizado es Open Source, y el que se ha desarrollado mantiene esa
misma licencia, ya que otro de los objetivos principales de este proyecto es dejarlo a disposicion
de quien desee utilizarlo en algin repositorio de cédigo de forma publica. La idea es que otros
usuarios puedan reproducir el trabajo aqui realizado con relativamente poco esfuerzo. Esta es la
direccidn del repositorio en el que se encuentra todo el codigo desarrollado:

https://github.com/cepero/Carputer

Sobre la Raspberry Pi corre una aplicacién, compuesta por diversas partes, desarrollada en el
proyecto, que centraliza las citadas funcionalidades y simplifica su uso. En el disefio de esta
aplicacién se han tenido en cuenta varios Principios Generales de Disefio de Interfaces para que
sea lo mas funcional e intuitiva posible, ademas de visualmente atractiva. Esta aplicacion, escrita
en lenguajes PHP y Python, permite el manejo de todas las caracteristicas disponibles en el
sistema, bien mediante periféricos tradicionales como ratén y teclado, bien mediante la pantalla
tactil integrada, o bien mediante comandos por voz.

Se han empleado Metodologias Agiles para el desarrollo de todo el proyecto, el cual se ha
compuesto de 5 tareas principales:

1- Comunicacion con el vehiculo para extraccion y procesado de datos provenientes del
motor, mediante el uso del puerto OBDII del coche y el protocolo Bluetooth.

2- Presentacion de la informacion del vehiculo.

3- Control del sistema mediante comandos por voz.

4- Integracion del sistema en el salpicadero de un vehiculo

5- Pruebas de integracion entre los distintos sistemas.

Dada la naturaleza de este proyecto, podria decirse que estd directamente relacionado con una
buena parte de las competencias del Grado en Ingenieria Informatica, desde la interaccion con un
sistema embebido, hasta el desarrollo software con tecnologias Web, por lo que cubre buena parte
de la titulacion en su conjunto.

https://github.com/cepero/Carputer

A mis padres, por haberme traido hasta donde estoy ahora.

A Laura, por apoyarme durante el trayecto.

Agradecimientos

En primer lugar, agradecer a Eduardo Jarabo Bain, de la empresa Instalaciones EdJar, su
inestimable ayuda a la hora de integrar el sistema en el vehiculo. Su compromiso e implicacion,
ademas de su infinita paciencia han permitido no solo la finalizacién de este Trabajo de Fin de
Grado, sino también la transmision de una serie de conocimientos de gran valor al alumno.

También dar las gracias al director de este trabajo, Dario Suarez Gracia, por creer en mi y apoyar
el proyecto desde el primer dia. Sus consejos y multiples aportaciones han conseguido mejorar
enormemente diferentes aspectos de este proyecto.

Agradecer a mi padre, Juan A. Cepero Andrés, el gran apoyo que me ha prestado. Su interés
constante en el proyecto y su inestimable ayuda en algunos puntos del desarrollo del mismo han
sido claves, ya que, de haberlo hecho en solitario, no se hubiesen alcanzado los resultados que se
presentan a continuacion.

A mi madre, M2 Lorena Chicote Garcia, y a mi hermana, Lorena |. Cepero Chicote, por sus
valiosos comentarios y propuestas de mejora relacionadas con el disefio de la interfaz. Sois las
dos unas excelentes betatesters.

A Laura de Miguel Delgado, por su enorme apoyo y comprension durante todo el proceso de
desarrollo. Gracias por ser mi burbuja de oxigeno y conseguir hacerme reir constantemente.

indice

Indice

I 1011 (o [F 1ol o] o ST TTSRRPR 5
2. MOLIVACION ...ttt st et st e st et neereane e 7
I L1 = o [o o[- AN o SRR 9
4. Requisitos Funcionales/NO FUNCIONAIEScccooviiiiiiiiniicce e 17
5. MELOAOIOGIA ...t 19
5L HEITAMIENTAS ...ttt ettt nenne s 20
5.2.Gestion del Proyecto. Diagrama de Gantt..........c.ccovvevveiiiievicie s se e 21
6. Arquitectura del SISTEMA.........cccviiiiicice e e 23
6.1.Vision General del SISTEMA........cccviiiireieeisee e 23
6.2. Adquisicion y Procesado de Datos del MOtOrccccocvevevieeeiicie i 25
6.3 CONLIOI POF VOZ ... 28
6.4. Aplicacion que centraliza los servicios disponibles............ccccceiviivieiencnercienan, 31
6.5. Integracion en el VENICUIO.............cooiiiiiiiic e 32
R O Tod 11T [OSSPSR 37
8. BIblIOgrafia......cciciiciiiic s 39
S Y o) (1 SO OO TP P P UPR PP 40
9.1.Explicacion en detalle de las decisiones de diSefi.........ccccvvevveiiiiicieiieveseeieees 40
9.1.1.Comunicacion con el puerto OBDcccoviiriniiineiese e 40
9.1.2.Refresco de la pagina PHP de visualizacion de datos............cc.cceeeverieienennns 44
9.1.3.Procesado de COMandOS PO VOZ.........ccceviirierieiienieniesieesesiesiesiesse e 46
9.1.4.Control por voz estio “Ok GOOGIe”cocceriiiiiiiiiiiiiiieiee e 47
0.2 FOU0S ...ttt bt bbbt nbe e 49

indice

indice de Figuras

Indice de Figuras

1. Proyecto OBD-PY ..ottt et 10
2. Reproductor multimedia integrado en el salpicadero..........c.cccoveerirnneninnnencne 10
3. PrOYECIO 1=CArUS ...ttt 11
4. Proyecto CarbeITY. ...ttt 11
5. Tesla INfOotainmENt.........ccoviiiiiieicesee e 12
6. Volkswagen Entertainment SYSIEM...........cceeiiirriinninieisse s 13
7. ReNAUIE R-LINK.....iiiicicice e 13
8. Radio Pioneer AVIC-8200NEXcccuruierirerieesieesieesiesessesessesessesessessssessssessssesens 14
9. Radio Kenwood DDXI7LEBTScovieiiieiiieieesieiesieeseereseesesseesiesessessssessssessnsesens 15
10. Tabla comparativa de las opciones analizadas..............ccoeveririeieenenineienessieenesins 16
11. Tabla de Requisitos FUNCIONAIEScoviviirieiiiiiiee e 17
12. Tabla de Requisitos NO FUNCIONAIES............cceiiirieiiiiisieecseeiee s 18
13. Vision general del SIStEMA..........ccccuiiiiiiiieicice e 24
14. Diagrama de secuencia de la comunicacion con el motor..............cccccoceevevevenenenn. 26
15. Parte OBD en funcionamiento (Km/h)ccoceiiiiiiniiinienneseceeee e 27
16. Parte OBD en funcionamiento (RPM)ccoeiiriiiiniininineenseee e 27
17. Diagrama de alto nivel del procesado de comandos por VOz.............ccccceveeveverenean. 28
18. Tabla comparativa entre diferentes softwares de reconocimiento de voz................ 28
19. Tabla de comandos diSPONIDIESccciriiiiririieee e 29
20. Interfaz de la aplicacion desarrollada.............ccccoeoirirriniinciieeee s 31
21. Aspecto inicial del SalpPiCAErOcccoveiiiiiciiece e 32
22. Primer Circuito (Vista de frente)cccvoveerieiirieiiceree e 33
23. Primer CirCUito (VISta traSera)cooeivirieeirieieieisisieee st es 34
24, SEQUNAO CITCUITOveviiiteieiiieiee ettt 34
25. Montaje del circuito en el VENICUIOccoviirieiicice e 35
26. Resultado final (pantalla plegada)...........coveeieerieiniciiieieee e 36
27. Resultado final (pantalla levantada)ccoeovrieireierieiiseiseie e 36
28. Tabla comparativa de opciones de comunicacién Python-PHPccccccceveunie. 41
29. Diagrama de alto nivel de la comunicacion con el motorcc.cceveevveevvierienennas 42
30. Diagrama de secuencia de la comunicacion con el motor..........ccccccvveivveivrernnnene. 43
31. Diagrama de secuencia del mecanismo Memcache...........cocevveeveereinseiesereseenes 44
32. Interfaz visualizacion datos del motor 1 — Velocidadcccoceevvviinininniccenine 45
33. Interfaz visualizacion datos del motor 2 — RPMccccooviiiineennisee e 45
34. Diagrama de alto nivel del procesado de los comandos de voz.............cccceervrennen. 46
35. Diagrama de alto nivel del estilo de comunicacion “Ok Google”cc......... 48
36. Detalle de la Raspberry Pi 3y latrasera de la pantalla tactilcccccceevennnine 49
37. Espacio disponible en el cajén portaobjetos del vehiculo del alumno..................... 49

indice de Figuras

38.
39.
40.
41.
42.
43.
44,

Lectura de parametros OBD en modo tEXE0..........ccurvririeiireiinieiserieeseee e 50
Prueba extrema realizada en la interfaz OBDccocovvviiiniiniiine e 50
Primeras pruebas de control Por VOZ (1)cccveveveeiieii i 51
Primeras preubas de control POr VOZ (2)ccooveeiiiereneeieese s 51
Detalle del reductor de Velocidadccocviveriiiiie i 52
Salpicadero del vehiculo en pleno proceso de desmontado..........cccccevvvvveieierenenne. 52
Colocacion de la pantalla tACtilccccovveviiiiiiieiecce e 53

1. Introduccién

1. Introduccion

Hoy en dia la mayoria de vehiculos de alta gama integran en su interior lo que se conoce como
Sistema de Infotenimiento (o Infotainment System en Inglés). Estos sistemas suponen una
integracion vertical de hardware y software que ofrecen a los ocupantes del vehiculo acceso tanto
a informacion importante durante la conduccion (informacion del trafico, GPS, velocidad
actual...), como todo tipo de entretenimiento (videos, musica...). Bien es cierto, que, aunque la
tendencia en la integracion de estos sistemas se estd extendiendo a otras gamas de vehiculos, su
uso es aun minoritario. Esto es debido principalmente a la elevada edad media del parque
automovilistico espafiol, tal y como se recoge en [1] y [2].

Practicamente la totalidad de fabricantes de coches han desarrollado sistemas de este tipo, con
mayor o menor grado de satisfaccidn para sus usuarios. Sin embargo, el comin denominador de
todos estos sistemas es que su software asociado es propietario e imposible de modificar para
afladir méas caracteristicas. En secciones sucesivas de esta memoria se repasaran algunos de estos
sistemas y se compararan entre si para comprobar las funcionalidades que ofrece cada uno de
ellos.

Es por eso que este Trabajo de Fin de Grado pretende dar solucion a algunos de los inconvenientes
gue presentan este tipo de sistemas, como la utilizacién de Software cerrado, o el elevado
desembolso necesario para su adquisicion. No se pretende en ningin momento competir con
aquellos, sino simplemente dejar patente que un Ingeniero en Informatica puede desarrollar un
sistema similar en muchos puntos, e incluso mejorarlo en algunos, todo ello con un coste
econémico muy reducido.

Para poder alcanzar este objetivo, se han reutilizado y adaptado algunas librerias Open Source
que se encontraban disponibles en Internet y de las cuales se hablara mas adelante. A
continuacion, se describe brevemente la estructura de las sucesivas secciones de esta memoria:

Capitulo 2: Motivacion - En este apartado se explicaran los motivos por los que el alumno
ha decidido realizar este Trabajo de Fin de Grado.

Capitulo 3: Estado del Arte — Se analizaran aqui algunos sistemas o proyectos similares
al que se pretende realizar.

1. Introduccién

Capitulo 4: Requisitos — Se recogeran aqui los Requisitos, tanto Funcionales, como no
Funcionales que debe cumplir el proyecto.

Capitulo 5: Metodologia — En esta seccion se tratara la forma en la que se ha abordado la
realizacion del proyecto, herramientas utilizadas, gestion del tiempo, etc.

Capitulo 6: Arquitectura del Sistema — Se detallardn aqui las partes principales que
constituyen este proyecto.

Capitulo 7: Conclusiones — En este apartado se recogeran las conclusiones que el alumno
ha obtenido tras la realizacion del proyecto.

Capitulo 8: Bibliografia — Aparecen aqui todas las referencias que se han empleado para
la realizacién del presente proyecto.

Capitulo 9: Anexos — Se recogen bajo esta seccion la explicacion pormenorizada de
algunas decisiones de disefio que se han ido tomando, asi como algunas fotografias del
sistema ya montado.

2. Motivacion

2. Motivacion

La motivacion principal de este proyecto es dotar a cualquier vehiculo de “inteligencia” con un
coste lo mas reducido posible, permitiendo asi que personas no necesariamente relacionados con
la Ingenieria Informatica, puedan disfrutar de sistemas de informacién/entretenimiento sin tener
que realizar un gran desembolso o tener que cambiar su vehiculo.

Es importante indicar que el tema en torno al que gira este Trabajo de Fin de Grado (TFG), ha
sido propuesto por el alumno, y que éste tenia la idea de la realizacion de este proyecto desde
hace tiempo, y consider6 que podia encajar a la perfeccion con la realizacion de su TFG. Debido
a la extension temporal de este tipo de trabajos, este TFG constituye la base e implementa las
directrices y los modulos principales de un sistema de Infotenimiento para, en un futuro, afiadir
otras funcionalidades menos importantes. Algunas de estas posibles funcionalidades futuras son
por ejemplo navegacion GPS, conexion con los Smartphones de los ocupantes del vehiculo,
camara trasera para ayuda en el aparcamiento, etc. Seria perfecto también que incluso otros
individuos colaboren en el futuro con este proyecto. Por tanto, la arquitectura del sistema que se
va a desarrollar esta compuesto principalmente por tres partes bien diferenciadas: Adquisicion y
procesado de parametros del motor durante la conduccion, control del sistema mediante comandos
por voz y finalmente la integracion del sistema en un vehiculo real. Se desarrollard también una
aplicacion que centralice los servicios disponibles por el momento y que permita la inclusion de
forma sencilla de otros servicios en un futuro.

De esta forma, un usuario sin mucha experiencia técnica puede modernizar su vehiculo para
aprovechar las ventajas que ofrece un sistema de este tipo, algo que hasta ahora solo esta
disponible en vehiculos nuevos o de gama alta, o cambiando la radio integrada por una méas
moderna y a un precio mucho mas elevado (y probablemente con menos funcionalidades).

Otra importante motivacion ha sido la de intentar que el presente proyecto tenga la mayor calidad
y robustez posible, empleando para ello técnicas de Ingenieria del Software, y algunas
herramientas totalmente desconocidas para el alumno hasta ahora, lo cual ha aportado un pequefio
plus motivacional.

2. Motivacion

3. Estado del Arte

3. Estado del Arte

Una de las fases iniciales de este proyecto fue la de recopilacion de informacion de diversas
fuentes (principalmente en la Web) en busca de proyectos similares o trabajo que se pudiera
aprovechar. La realizacién de esta tarea en etapas muy tempranas del desarrollo permiti6é conocer
el entorno relacionado con el proyecto y resulté de vital importancia.

La conclusidn a la que lleg6 el alumno después de realizar esta busqueda fue que actualmente no
existen proyectos tan completos como el que se propone aqui. Sin embargo, si que es verdad que
algunas partes de este trabajo (como la comunicacién con el motor o una parte del control por
voz) se han basado en bibliotecas y trabajo previo ya existente (bibliotecas Py-obd ([3]) y
PocketSphinx ([4]), de las cuales se hablara mas adelante). El alumno consiguié adaptar dichas
bibliotecas para su uso dentro de un mismo proyecto. También se descubrié la existencia de
soluciones comerciales (tanto hardware como software de pago, algunas de las cuales se
mencionaran mas adelante en este apartado) que cubrian parte de los requisitos de este proyecto,
aunque su aplicacion hubiese impedido la flexibilidad y escalabilidad necesarias en este proyecto,
ademas de ir en contra de la filosofia Open Source del mismo.

Entrando mas en detalle, se aprovechd una biblioteca escrita en Python y disponible en
repositorios publicos para conectar la Raspberry Pi al puerto OBDII del vehiculo (del cual se
hablara mas adelante en la seccion 6.2 de esta memoria). Esta biblioteca se conoce como Py-obd.
Por otra parte, también se aproveché otra biblioteca publica, esta vez escrita en C, llamada
PocketSphinx, que se encarga del reconocimiento de patrones de voz. No se encontr ningln
trabajo o prototipo en el que esta biblioteca se emplee para controlar un sistema de Infotenimiento
por medio de la voz, y fue necesario un trabajo importante de adaptacion al presente proyecto.

En definitiva, el Estado del Arte en el momento de comenzar con este TFG se reducia a soluciones
comerciales, tanto hardware como software, poco flexibles y precios desorbitados, y a algunos
pequefios proyectos parecidos, pero sin las funcionales que este TFG presenta.

El hecho de haber aprovechado un par de bibliotecas software extraidas de la Red acelerd
considerablemente el desarrollo del proyecto, y carecia de sentido implementar las
funcionalidades de ambas desde cero cuando ya existia algo de forma publica y cubria los
requisitos necesarios para este proyecto.

3. Estado del Arte

A continuacion, aparecen una serie de ejemplos de sistemas o proyectos parecidos al que se
pretende desarrollar. Se ha intentado que en estos ejemplos aparezcan tanto soluciones “Hagalo
usted mismo” (Do It Yourself en inglés), como soluciones comerciales:

OBD-Pi

Este fue uno de los primeros proyectos relacionados que se encontraron. Se trata de un proyecto
DIY en el que el usuario “CowFish” integra en el salpicadero una Raspberry Pi (el primer modelo
que salié al mercado) y la conecta a la unidad central de su vehiculo. El resultado que obtiene es
parecido al que se pretende desarrollar, aunque Unicamente tiene la funcionalidad de extraccion
de pardmetros del motor. En [5] se puede consultar toda la informacion relativa a este proyecto:

A

572.26 3028

21.00 105

Figura 1 - Proyecto OBD-Pi

Reproductor multimedia DIY con pantalla tactil

El usuario Eric Kester queria sustituir la radio de su antiguo vehiculo y decidié montar todo un
centro multimedia con la ayuda de una Raspberry Pi y una pantalla tactil. De nuevo este proyecto
Unicamente cubre una de las funcionalidades que se pretenden implementar en el presente TFG.
En [6] se puede consultar cémo lo hizo:

Figura 2 — Reproductor multimedia integrado en salpicadero

10

3. Estado del Arte

i-Carus

Es la primera de las soluciones comerciales que se han encontrado. Ademas, es probablemente la
méas completa en cuanto a funcionalidades. Sin embargo, el problema principal es su elevado
precio, ademas de la poca flexibilidad que ofrece, ya que todo el software (incluido el Sistema
Operativo) viene precargado en una tarjeta SD y no es posible modificarlo. Este proyecto incluye
no solo el citado software propietario, sino que también incluye el dispositivo hardware como tal
en el que se aloja, muy similar a una radio de coche en formato 2DIN con pantalla tactil. En [7]
se encuentra la pagina principal de este proyecto:

Figura 3 — Proyecto i-Carus

Carberry

Representa otra solucién comercial, pero con un enfoque muy diferente al de i-Carus. Carberry
es fundamentalmente un escudo (o shield en inglés), que se conecta a una Raspberry Pi y le dota
de una enorme capacidad de comunicacién, integrando conectividad GPS, posibilidad de
conexion con el motor para extracciéon de datos... Sin embargo, no ofrecen ningun tipo de
solucion software, por lo que debe ser el comprador el que consiga exprimir las posibilidades del
hardware que ha adquirido. En [8] aparece la pagina del proyecto:

Figura 4 — Proyecto Carberry

11

3. Estado del Arte

Seguidamente, se adjuntan otra serie de ejemplos de Sistemas de Infotenimiento, esta vez
desarrollados por fabricantes de coches, e integrados de serie en algunos de sus vehiculos. El
objetivo es que se puedan comparar los sistemas/ejemplos comentados anteriormente con
soluciones realizadas por equipos de desarrollo muy numerosos, y con gran cantidad de recursos,
tanto temporales como econdémicos, como pueden ser los integrados por grandes casas
comerciales de vehiculos:

Tesla Infotaintment:

El sistema integrado en los vehiculos eléctricos de la marca americana Tesla estd compuesto por
una enorme pantalla tactil de 17 pulgadas en formato vertical, capaz de mostrar todo tipo de
informacién, desde GPS hasta llamadas telefénicas, pasando por la posibilidad de controlar todos
los elementos del vehiculo desde la propia pantalla (ya que no tiene controles fisicos, todo se
realiza desde esta pantalla tactil). Una gran ventaja de este sistema es que, debido al enorme
tamafio de esta pantalla, permite mostrar dos aplicaciones a la vez en formato pantalla partida.
Este sistema viene de serie en un par de modelos al alcance de muy pocos bolsillos. En [9] se
puede consultar la informacion relativa a este sistema.

Figura 5 — Tesla Infotaintment

Volkswagen Entertainment System:

Este sistema, integrado en algunos modelos de la marca desde 2012 (aprox.) tiene funcionalidades
multimedia (como radio o posibilidad de acceder a los contenidos del Smartphone de los
pasajeros) y de GPS. Para el control de este sistema, la marca ha integrado en el volante una serie
de botones que permite el desplazamiento por los menus de forma muy simple, lo cual supone un
punto a favor para este sistema. También integra un control por voz ligeramente primitivo y con
no demasiadas opciones. Todo esto, ademas de informacion complementaria se puede consultar
en [10].

12

3. Estado del Arte

Figura 6 — Volkswagen Entertainment System

Renault R-Link:

Finalmente se va a hacer un repaso por el sistema ofrecido por la marca francesa Renault. Su gran
baza es que no solo esta disponible en vehiculos de las gamas mas altas, sino que su integracion
puede hacerse en cualquiera de sus vehiculos (con el desembolsando correspondiente por
supuesto). En cuanto a funcionalidades, permite bastante personalizacion a nivel estético,
navegacion GPS, realizacion de llamadas desde la propia pantalla y a nivel multimedia permite
también el acceso al contenido de un Smartphone. Al igual que el sistema de Volkswagen,
también incluye un pequefio sistema de reconocimiento de patrones de voz, aungue de nuevo, sin
exprimir todas las posibilidades que este tipo de control ofrece. En [11] aparece la pagina principal
de este sistema.

Figura 7 — Renault R-Link

13

3. Estado del Arte

Para finalizar esta seccion, aparecen otro tipo de soluciones comerciales, esta vez de fabricantes
de equipos de sonido para el automdvil. Al igual que sucedia con las soluciones propuestas por
las casas automovilisticas, el precio es, de nuevo aqui un factor muy a tener en cuenta si se quiere
adoptar uno de estos sistemas:

Pioneer AVIC-8200NEX:

Este dispositivo hardware representa una alternativa a la hora de sustituir la radio integrada de
serie en el vehiculo. Esta formado por una pantalla multitactil de 7 pulgadas, ocupando un espacio
2DIN en el frontal del salpicadero del vehiculo (por lo tanto, no es facilmente instalable en todo
tipo de vehiculos, ya que muchos emplean parte de este espacio para colocar controles de aire
acondicionado/calefaccion). En cuanto a funcionalidades, se encuentra en sintonia con las
soluciones anteriormente comentadas, permite la navegacion GPS, acceso al contenido
multimedia de los Smartphones de los ocupantes, y control por voz. En [12] se puede encontrar
mas informacién acerca de este dispositivo.

/ ’_—\
)

Figura 8 — Radio Pioneer AVIC-8200NEX

Kenwood DDX9716BTS

Esta es otra opcion, muy similar a la anterior, tanto en formato como en funcionalidades. Como
elementos diferenciadores, permite un mayor ajuste durante su instalacion para reducir posibles
brillos al mirar la pantalla, asi como la posibilidad de incorporarle una serie de cAmaras (que se
adquieren por separado) para ayudar en el aparcamiento. De nuevo permite conexion con los
teléfonos inteligentes de los pasajeros, pero en este modelo no se permite la interaccion por voz,
lo cual resta algo de valor al mismo. En [13] se puede encontrar toda la informacion relacionada
con esta opcion.

14

3. Estado del Arte

Figura 9 — Radio Kenwood DDX9716BTS

Muchas de las soluciones comerciales presentadas hasta ahora, tienen en comin la compatibilidad
con Smartphones de los ocupantes del vehiculo, permitiendo acceder a determinadas aplicaciones
almacenadas en estos. Esta opcion es posible gracias a tres formas principales de conexién: En
primer lugar, dotar al sistema/dispositivo de tecnologia propietaria de mirroring del Smartphone,
aungue esta opcion es cada vez mas minoritaria. Y en segundo Yy tercer lugar, aprovechar los
ecosistemas creados por Google con Google Auto (para teléfonos Android) y por Apple, con
Apple Car (para dispositivos ios). De esta forma, es posible la interaccion con los teléfonos
inteligentes de los pasajeros (ios, Android, o ambos simultdneamente), lo cual puede ofrecer
ventajas muy interesantes frente a dispositivos que no dispongan de esta caracteristica.

A continuacion, aparece una tabla comparativa que enfrenta todas las soluciones comentadas
anteriormente con el sistema que se pretende desarrollar en este TFG. En esta tabla aparecen las
funcionalidades de los diferentes sistemas, asi como su precio aproximado, con el fin de comparar
(nunca competir) el presente proyecto con soluciones comerciales disponibles actualmente:

15

3. Estado del Arte

Renault R-Link

<

Integrado de serie (desde 12.000€)

Nombre Parametros OBD Q:UMN_ por GPS thw__%%ﬁw% Camara >ﬂmﬂﬂﬁ__wo Woﬂmamww Precio (aprox.)
OBD-pi b 4 X %0¢€
Reproductor muttimedia DIY) ¢ X X 90€
i-Carus ,\ x Opcional 200 €
Carberry 4\ x Opcional 90 €
Tesla Infotainment /\ /\ 1\ Integrado de serie (desde 66.000€)
Volkswagen Entertainment System ,\ /\ Opcional Integrado de serie (desde 11.000€)
v v
v | ¥

NN N NN NS¢

RN [%¢ | %

A NRNENENENR 42 2 b 4

RN NN ¢ ¢3¢ (¢

Pioneer AVIC-8200NEX: Opcional 1.400 €
Kenwood DDX9716BTS Opcional Opcional x 035€
Sistema que se propone en este TFG x x 110€

Figura 10 — Tabla comparativa entre las opciones analizadas

16

4. Requisitos Funcionales y No Funcionales

4. Requisitos Funcionales y No Funcionales

En esta seccidn se van a recoger los Requisitos, tanto Funcionales, como no Funcionales,
ordenados por importancia. Los tres Requisitos Funcionales mas importantes a cumplir
en la realizacion de este TFG son, en primer lugar, la conexién con el motor del vehiculo
para complementar y mejorar la informacion que se recibe durante la conduccion, lo cual
permite que ésta sea mas eficiente. En segundo lugar el control del sistema mediante
comandos de voz, ya que la seguridad al volante es algo primordial y estar manejando el
sistema, bien mediante ratén y teclado, bien mediante la pantalla tactil puede suponer un
riesgo. Y finalmente la integracion real en un vehiculo, para que el sistema tenga una
utilidad real y préctica, y su realizacion no se limite a lidiar con problemas derivados del
desarrollo de software. A continuacion se muestran las tablas con los Requisitos
Funcionales y No Funcionales:

Requisitos Funcionales:

NUmero Requisito Descripcion
L Permitir la extraccion y procesado de datos propios de la
Conexidn con el . . .
RF1 motor conduccion como puedan ser velocidad actual o revoluciones por
minuto.
Permitir el manejo del sistema de forma eficiente y sin necesidad
RF2 Control por voz -
de usar la pantalla tactil o un teclado para ello.
RF3 Integracmn en Integracion real en el vehiculo del alumno.
vehiculo
RE4 Reproductor Instalacion de un reproductor multimedia (audio, videos...) que
multimedia aproveche el sistema de altavoces del vehiculo.

Figura 11 — Tabla de Requisitos Funcionales

17

4. Requisitos Funcionales y No Funcionales

Requisitos No Funcionales:

Numero Requisito Descripcion
RNF1 | Coste reducido Minimizar el presupuesto necesario para desplegar este sistema.
La conduccion no
. La seguridad del vehiculo, asi como la de sus ocupantes no se vera
RNF2 | se vera comprometida en ningin momento
comprometida P g '
RNF3 | Instalaci6n simple Cualquier persona sera capaz de _reproducw la instalacion (tanto
hardware como software) de este sistema.
e Cualquier persona, sin necesidad de tener conocimientos de
RNF4 | Utilizacion simple Informatica, seré capaz de utilizar este sistema.
RNE5 Diversos métodos | El sistema podra controlarse tocando en la pantalla tactil, mediante
de control comandos por voz o empleando raton y teclado.
Facilmente . . _— . .
Resultara muy sencillo la adicion de nuevas funcionalidades, tanto
RNF6 | escalable en . .
N por el alumno, como por cualquier otra persona que asi lo desee.
funcionalidades
RNE7 Disponible de La parte Software de este proyecto se dejara a disposicion de quien
forma publica lo desee en un repositorio de codigo.
anpg | Somoe e | &4 SR Son et s e oo oyt
de cara al futuro g P y proy
cara al futuro.

Figura 12 — Tabla de Requisitos No Funcionales

18

5. Metodologia

5. Metodologia

Para el desarrollo de las diferentes fases de este TFG se han empleado las denominadas
Metodologias Agiles, apoyadas sobre Prototipos Rapidos. De esta forma, para cada fase se ha
empezado desarrollando un prototipo muy simple que poco a poco ha ido ganando en
funcionalidades, hasta obtener el resultado final. Esto ha permitido que el alumno desarrolle el
proyecto con gran eficiencia. Los tres bloques principales de los que se compone este trabajo han
sido desarrollados secuencialmente, empezando por la parte de adquisicién y procesado de
parametros del motor para a continuacion, pasar al control por voz, y dejando para el final la
integracion en el vehiculo. Se ha seguido este orden porque se considera el mas légico y eficiente,
empezando por el nivel més bajo y cercano al hardware, para avanzar después hacia el software.
Cada bloque no se ha empezado hasta que no ha sido completado el anterior, documentacion
incluida (se ha producido algun ligero solape entre documentacion de un bloque y el comienzo
del siguiente).

En las tres partes constitutivas de este proyecto se ha tenido en mente el Ciclo de Vida clasico de
la Ingenieria del Software, y se ha prestado especial atencion a las dos primeras fases de este, al
Andlisis y al Disefo. La fase de Anélisis de cada una de las fases ha consistido en la recopilacion
de la informacién necesaria, y la adquisicién los conocimientos necesarios para abordar cada una
de las partes del proyecto. Durante la fase de Disefio, se han desarrollado diferentes Prototipos
Répidos para las dos primeras partes del proyecto, y un pequefio prototipo “fisico” para la tercera
parte, que ha permitido simular el lugar donde se iba a integrar la pantalla en el vehiculo para
poder trabajar en el circuito sin necesidad de estar dentro del vehiculo. Algunos de los citados
prototipos fueron desechados, pero otros se fueron refinando hasta formar la version final.

También se realizaron diferentes prototipos en la fase de Disefio de la Interfaz de la aplicacion
centralizadora de funcionalidades. Al final, y después de consultar entre algunos conocidos, se
escogio el que mejor se adaptaba a las necesidades del proyecto, sobre todo por simplicidad y
facilidad de uso del mismo. El resto de prototipos seran reaprovechados en un futuro, ya que se
desea que la interfaz pueda ser configurable por el usuario del sistema (aungue esto queda fuera
de los limites de este TFG).

19

5. Metodologia

5.1 Herramientas

Las herramientas empleadas para el desarrollo del cdigo necesario para este proyecto han tratado
de agilizar este proceso lo maximo posible. Se ha trabajado mediante un cliente SSH para acceder
a la Raspberry Pi, escribiendo el cédigo (principalmente el c6digo escrito en lenguaje PHP) en un
computador de sobremesa con Windows y el entorno de desarrollo Adobe Dreamweaver, y una
vez que el cddigo estaba listo, se enviaba a la Raspberry Pi por medio de un servidor FTP
configurado a tal efecto. De esta forma, el grueso del codigo pudo generarse de forma muy rapida
con un buen entorno de desarrollo, mientras que los cambios/ajustes menores se realizaron de
forma local en la Raspberry Pi por medio de SSH.

Para la depuracién del codigo generado se han empleado diversos prototipos, desarrollados a tal
efecto. Se ha simulado por ejemplo el comportamiento de la visualizacién de los datos
provenientes del motor en situaciones muy extremas, simulando que el vehiculo viajaba a
200km/h (algo que por supuesto no se ha puesto en practica en la realidad). Para realizar esto, se
ha disefiado un test de caja negra que imitaba el comportamiento del motor, por lo que al aplicarlo
al sistema, este pensaba que realmente se encontraba conectado al coche, aunque no fuera asi.
También se ha experimentado con la interaccién por voz, realizando diversas secuencias de
comandos en diferentes ambientes (silencio, ruido de motor, conversacion de fondo...) para
comprobar su correcto funcionamiento. Como se comentara en el apartado 6.3 de esta memoria,
también se han realizado diferentes pruebas de control mediante comandos en Inglés y en Espafiol,
obteniendo mejores resultados en el reconocimiento empleando el Inglés.

Finalmente, las herramientas empleadas en la instalacién del sistema en el vehiculo han sido las
tipicas que se puedan encontrar en un taller mecanico (aunque por supuesto sin tanta variedad ni
especificidad en las herramientas como la que se pueda encontrar alli), varios tipos de
destornilladores para retirar el frontal del salpicadero, pistola termofusible para fijar algunos
componentes... Merece la pena comentar aqui, que también se han desarrollado diferentes
programas en Python para automatizar la puesta en marcha del sistema en el vehiculo.

20

5. Metodologia

5.2 Gestion del Proyecto. Diagrama de Gantt

En esta seccion va a detallarse la organizacion temporal que se ha seguido para el desarrollo de
este proyecto. Para ello se va a emplear un diagrama de Gantt que se detallara a continuacion.

Como puede observarse en el diagrama adjunto al final de esta seccion, ademas de las tres partes
ya comentadas de las que se compone este TFG (Conexion con el Motor para extraccion de datos,
Control por VVoz e Integracion en el vehiculo), se han representado también, el Trabajo previo
realizado y el Trabajo Final necesario para la terminacion del trabajo. Asimismo, cada uno de
estas cinco partes ha sido dividido en sub-apartados, para asi poder afinar lo mas posible el tiempo
gue ha sido necesario para realizar cada parte del proyecto. Los datos (temporales) necesarios
para la realizacion de este diagrama se han extraido de unas notas rapidas que el alumno escribia
en forma de bitacora, cada vez que dedicaba algo de tiempo al desarrollo de cualquiera de las
partes.

Analizando en detalle el diagrama, resulta evidente que el tiempo que se pudo dedicar en los
meses de Febrero a Mayo (con mucha mayor carga lectiva), fue mucho menor que el dedicado en
los meses de Julio (cuando se le dedico la mayor parte del tiempo disponible por el alumno) y
Agosto (se tuvo que empezar a compaginar con el estudio para exdmenes de la convocatoria de
Septiembre). Es por esto que las dos primeras partes (Trabajo previo y OBD) se extienden mucho
mas en el tiempo que, por ejemplo, las partes de Control por voz e Integracién en el vehiculo.

La columna en blanco colocada entre el 15 de Mayo y el 3 de Julio representa el parén que ha
sufrido el proyecto por tener que dedicar el alumno el tiempo necesario al resto de asignaturas y
a sus correspondientes examenes en la convocatoria de Junio.

Por supuesto, y aunque no aparezca de forma explicita en el diagrama, al finalizar cada una de las
tres fases principales del proyecto, se dedicaron multitud de horas a la realizacion de tests, tanto
de cada parte por separado, como de la integracién y comunicacion entre ellas. Algunos de estos
tests han sido comentados en la seccion 5.1 de esta memoria.

Finalmente, y a modo de conclusidn, seria interesante indicar que a pesar de que en el diagrama
adjunto no se aprecia bien, las tres partes principales de este trabajo han supuesto un esfuerzo
similar, lo que se traduce directamente en el nimero de horas dedicadas a cada una de ellas. Sin
embargo, la cantidad de horas diarias que se pueden dedicar a un proyecto de estas caracteristicas
en los meses estivales, es de lejos mucho mayor que durante el periodo lectivo, con la consiguiente
aceleracion en las etapas finales. De esta forma, durante los meses de Julio y Agosto se dedicaron
una media de entre 4 y 5 horas diarias al proyecto, algo que en periodo escolar resultaria imposible
debido al resto de asignaturas que se deben cursar simultdneamente. Durante el citado periodo
lectivo (meses de Febrero a Junio), se pudo dedicar de media menos de una hora diaria al proyecto,
debido a los motivos anteriormente citados.

21

5. Metodologia

28-feb 06-mar 13-mar 20-mar 27-mar

03-abr

10-abr

17-abr

24-abr 01-may 08-may 15-may

03-jul

10-jul

17-jul

24-jul

31-jul

07-ago 14-ago 2l-ago 28-ago 04-sep 1l-sep 18-sep

Trabajo previo

Consulta del Estado del Arte

Estudio de la documentacién necesaria
Puesta en marcha del proyecto
Redaccion de la propuesta

OBD

Instalacion del software necesario
Conexidn con el vehiculo y pruebas
Procesado y gestion de lainformacion
Integracion en la aplica

Control por voz

Instalacidn del software necesario
Configuracién y primeras pruebas
Ajustes finales y resto de pruebas
Integracion en la aplicacion

Integracién en el vehiculo

Desarrollo de prototipo para pruebas
Preparacion del vehiculo

Montaje de los componentes
Instalacion final en el vehiculo y pruebas

Trabajo final

Escritura de la memoria

Resto de la documentaciéon

6. Arquitectura del Sistema

6. Arquitectura de Sistema

Como ya se ha comentado anteriormente, el presente TFG estd compuesto por tres partes
principales, dos de ellas integramente software (Adquisicion de Datos del Motor y Control por
Voz), mientras que la tercera, la integracion en el vehiculo, es algo mas hardware. En este apartado
se va a describir en primer lugar la interaccion entre estas tres partes para, a continuacion, detallar
el funcionamiento de cada una de ellas por separado, ademas de la inclusién de las dos primeras
en una aplicacion que centraliza los servicios disponibles. Asimismo, en esta seccion también se
comentaran algunas funcionalidades extra incluidas en la citada aplicacion.

6.1 Vision General del Sistema

A continuacién, se adjunta un diagrama de alto nivel en el que se reflejan las tres partes
constituyentes de este proyecto, asi como las interacciones entre ellas:

23

6. Arquitectura del Sistema

Integracién en vehiculo

Altavoces del /
vehiculo .
Obd

Control por voz Lectura pardmetros motor

sng

(R

Kepn py

Servidor Web Apache

Figura 13 — Visién general del sistema

Como puede observarse en el diagrama anterior quedan reflejados todos los Requisitos
Funcionales de este proyecto. Estos requisitos ya se detallaron en una seccion previa, pero gracias
a este diagrama se puede observar, desde muy alto nivel, como interaccionan entre ellos, asi como
poder distinguir a la perfeccidn las partes constituyentes del presente proyecto.

24

6. Arquitectura del Sistema

6.2 Adquisicion y Procesado de Datos del Motor

Si se atiende a la cronologia del desarrollo, esta fue la primera de las partes constituyentes del
proyecto en estar disponible. Esta parte es la que cubre el primer Requisito Funcional detallado
en la seccién correspondiente, es decir la conexion con el motor para obtener los parametros
tipicos de la conduccién. En el Anexo de esta memoria se explican pormenorizadamente las dos
decisiones de disefio que se han tomado para la realizacion de esta parte, el mecanismo de
Memcache, y el refresco de la pagina de visualizacién mediante AJAX, por lo que se avanzara
rdpidamente en estos dos puntos.

Para comunicar el sistema con el vehiculo se utiliza el protocolo estandarizado OBDII ([14]). Este
protocolo permite la monitorizacion y control completo del motor y otros dispositivos del
vehiculo mediante una serie de cddigos, denominados PID’s (parameter ID’s). Actualmente se
encuentra en su segunda version. Cada PID tiene una mision concreta, desde indicar un posible
fallo en uno de los pistones hasta indicar la velocidad actual a la que viaja el vehiculo.
Consultando el valor que almacenan algunos de estos PID’s es posible averiguar parametros como
velocidad instantanea, o las revoluciones a las que se mueve el motor. Para ello es necesario
conocer el PID exacto que se desea consultar, para lo cual existen tablas que relacionan el nimero
de cada PID con el parametro que monitorizan. La version del protocolo OBDII disponible en el
automovil del alumno permite inicamente la lectura de estos valores de los PID’s, no asi el envio
de 6rdenes para, por ejemplo, subir o bajar las ventanillas, o incluso arrancar el motor o pisar el
freno de forma remota (lo cual podria llegar a ser bastante problematico desde el punto de vista
de la seguridad).

La Raspberry Pi se conecta a la red ODBII mediante un dispositivo Bluetooth colocado en el
puerto ODB del vehiculo lo cual permite el envio de la informacion necesaria. Gracias a la
conexion inalambrica se puede situar la Raspberry Pi en cualquier parte del vehiculo.

Es por este motivo que ha sido necesario instalar el software de gestioén Bluetooth necesario para
poder comunicarse con el citado adaptador OBD. El adaptador es un Unotec OBDII Diagnostico
y el resto de sus caracteristicas se pueden encontrar en [16]. El hecho de que la Raspberry Pi del
alumno se tratara del modelo 3, dificultd ligeramente esta comunicacion, al llevar el médulo
Bluetooth integrado en la placa, en lugar de emplear un adaptador Bluetooth USB como en
modelos anteriores (la conexion no se realizaba exactamente igual ya que también se conect6 con
una Raspberry Pi Model 2 y un adaptador Bluetooth USB para unas pruebas preliminares y resultd
ser méas sencillo con este modelo).

En segundo lugar, se va a hablar sobre la biblioteca Py-obd, disponible de forma libre en Internet.
La principal caracteristica de esta aplicacion, es que es capaz de acceder a la mayoria de los PID’s
del protocolo OBDII (del cual se ha hablado anteriormente), con lo cual se hizo posible acceder
a los parametros del motor deseados, concretamente: Velocidad, medida en kilémetros por hora,
Revoluciones del motor, medidas en revoluciones por minuto, y Aceleracién, medida mediante
la posicién de la palanca del acelerador (en un porcentaje). Asi, tras ajustar algunos parametros
de la biblioteca, y de reescribir algunas lineas, fue posible el acceso a dichos pardmetros en tiempo
real (aunque en formato texto en una terminal Linux, por lo que era necesario mostrarlos de una
forma algo més funcional y de acuerdo al disefio de interfaces).

25

6. Arquitectura del Sistema

Es aqui donde fue necesario establecer la comunicacion entre la biblioteca Py-obd y la parte PHP
del proyecto, y es donde entra en juego la primera decisién de disefio descrita en detalle en el
Anexo. Como se comentara en el citado apartado, finalmente se ha solucionado este problema
encapsulando los datos extraidos del motor en peticiones HTTP muy ligeras, que se envian al
servidor PHP, y ahi se almacenan en Memcache, que a grandes rasgos es un espacio reservado
de memoria caché accesible desde distintos puntos de la arquitectura. Una vez que se han
almacenado pueden ser accedidos de forma muy rapida por la pagina PHP que muestra y refresca
los datos por pantalla. Esta decision fue tomada debido a la gran cantidad de datos por unidad de
tiempo necesarios para dar la impresion al usuario de estar visualizando informacidn en tiempo
real durante la conduccién. El envio de estas peticiones HTTP con los datos instantaneos del
motor se realiza cada 10ms, y en cada peticion se envian cuatro valores en coma flotante (lo cual
supone una tasa aproximada de 25,6 Kilobits/s). En el Anexo de esta memoria aparecen otras
alternativas que se estudiaron para implementar esta comunicacién. A continuacion se muestra
un diagrama de secuencia que detalla el camino que siguen los datos desde que son extraidos del
motor hasta que son mostrados en tiempo real en la pagina PHP:

Automovil

PyOBD

cache.php Memcache

obd.php

loopwhile not end)

1: peticion
2 - respuestaldatos)

3 - peticionHTTP(datos
: su::tu;;lIi::alrf'.ﬂemc:;su:hefu:l;;l'[naU

WE - consultarMemcache
b : refrescar‘w"istafdams]bu

Este bucle se ejecuta cada 10 ms

Figura 14 — Diagrama de secuencia de la comunicacién con el motor

De nada sirve esto Gltimo, si la Vista no es capaz de ir actualizdndose a medida que van llegando
nuevos datos. Para ello se tomé la segunda decision de disefio, explicada en detalle en el Anexo
de esta memoria, el refresco mediante AJAX. Se empled esta tecnologia para poder refrescar la
visualizacidn de los datos del motor de forma muy réapida (al ritmo al que van llegando los nuevos
datos a Memcache) y sin necesidad de recargar la pagina entera. Cada 10 ms, el servidor AJAX
actualiza una pequefia parte de la pagina PHP con los datos provenientes del motor que se
encuentran almacenados en Memcache. Se ha decidido emplear AJAX debido a la gran velocidad
de refresco que debe tener la pagina de visualizacion.

26

6. Arquitectura del Sistema

El resultado obtenido finalmente, tras juntar todos estos elementos resulta bastante satisfactorio.
Es posible replicar en la pantalla conectada a la Raspberry Pi la mayoria de los datos que aparecen
en el cuadro de instrumentos del vehiculo, ademéas de algunos otros. A continuacion, se muestran
algunas fotografias del vehiculo en funcionamiento y mostrando los datos correspondientes:

Figura 15 — Parte OBD en funcionamiento (Km/h)

Figura 16 — Parte OBD en funcionamiento (RPM)

Los problemas principales a los que hubo que enfrentarse en esta parte fueron principalmente la
conexion entre la Raspberry Pi 3 y el adaptador OBD para acceder a los pardmetros del motor
(debido a la novedad de esta version de integrar el moédulo Bluetooth en lugar de depender de uno
USB, lo cual hacia esta conexion mucho menos flexible), asi como obtener una comunicacion
muy répida y eficiente entre la biblioteca Py-obd y la parte PHP para su visualizacion (fue
necesario explorar multitud de posibilidades antes de dar con el mecanismo de Memcache, las
cuales se han explicado en el Anexo).

27

6. Arquitectura del Sistema

6.3 Control por Voz

La segunda parte del proyecto en estar operativa fue el Control por Voz. Asimismo, representa la
parte que cubre el segundo Requisito Funcional detallado en la seccion 4 de esta memoria. De
nuevo aqui se describen brevemente las dos decisiones de disefio principales que se han empleado,
ya que seran explicados en detalle en el Anexo de esta memoria. Estas decisiones son la
Comunicacion entre dos procesos por medio de un fichero, y el Estilo de comunicacién asincrono
empleando un comando de activacién y otro de fin. A continuacién se muestra un diagrama de
muy alto nivel en el que se muestra la idea principal del sistema de control por voz.

* [

Scrpt Python
con ordanes

Libreria
asociadas a

ck hin

FocketSphi _\ P cada comando
. por voz
Fichero | _——
Intermedio

Figura 17 — Diagrama de alto nivel del procesado de los comandos de voz

Para implementar el control por voz se evaluaron diversas opciones, cuyas caracteristicas se
detallan en la tabla siguiente. El requisito principal para poder emplear alguna de estas librerias
en el proyecto es que fuera capaz de funcionar sin conexidn a Internet, lo cual limité enormemente
las posibilidades, dejando como Unica candidata la libreria PocketSphinx. Si de cara al futuro se
decide implementar una conexion a Internet en el vehiculo se podria valorar el cambio a
cualquiera de las otras opciones.

Nombre offline | OPe"" Comentarios Referencia
source
PocketSphinx Sj si No necesita una conexion a Internet para [4]
detectar palabras conocidas.
Jasper No Si Muy configurable. [16]
Practicamente el mismo software que el
Google STT No Si implementado en teléfonos Android. [17]
Tiene limite diario de uso.
. Conectado permanentemente a la base de
Voice L .
. . conocimiento Wolfram, lo cual permite
Recognition by No Si [18]
. ofrecer respuestas a algunas preguntas en
Oscar Liang i
lenguaje natural.

Figura 18 — Tabla Comparativa entre diferentes softwares de reconocimiento de voz

28

6. Arquitectura del Sistema

Una vez instalada y configurada esta biblioteca, se puede proceder al reconocimiento de las
palabras conocidas por la misma, por medio de un micréfono USB. El alumno no dispone de este
tipo de micréfonos (se dispone de un par con entrada auxiliar de 3.5mm), por lo que se ha
empleado a modo de dispositivo de entrada una webcam USB con micréfono integrado, cuyo
funcionamiento es igual que el de un micréfono a todos los efectos. La configuracion de la entrada
de audio no ha resultado para nada sencilla, debido principalmente a la escasa y en algunos casos
contradictoria documentacion disponible.

Después de realizar multitud de pruebas, ajustando parametros tanto en la captura de la entrada
de audio, como en la propia biblioteca PocketSphinx, se ha llegado a la conclusion de que el
comportamiento de este reconocedor mejora considerablemente cuando las palabras a reconocer
pertenecen al idioma Inglés. Con palabras en castellano, confundia habitualmente palabras como
“Entrar” y “Motor”, por lo que se ha optado por comunicarse con el sistema en inglés. A
continuacion aparece la lista de palabras que el sistema es capaz de reconocer, asi como la accion
que se espera que desempefie:

Ok Comando de activacion
Polo
End Comando de finalizacion
Right Simular una pulsacion de la tecla Derecha
Left Simular una puslacién de la tecla lzquierda
Up Simular una pulsacién de la tecla Arriba
Down Simular una pulsacién de la tecla Abajo
Enter Simular una pulsacion de la tecla Intro
Scape Simular una pulsacion de la tecla Escape
Music Acceder a la parte multimedia desde cualquier pantalla
Radio Acceder a la parte multimedia desde cualquier pantalla
Motor Acceder a la parte OBD desde cualquier pantalla
Shutdown Apagar el sistema desde cualquier pantalla

Figura 19 — Tabla de comandos disponibles

Se han escogido estas palabras para el control por voz y no otras, ya que resulta necesario
desplazarse por el menu de opciones en la aplicacion que centraliza todos los servicios
disponibles. De esta forma, es posible desplazarse en las cuatro direcciones, seleccionar e ir hacia
atras mediante comandos por voz, ademas de integrar algunos accesos directos a las opciones méas
importantes como puedan ser la Adquisicion de datos del motor o el Reproductor multimedia.

Cuando el sistema fue capaz de reconocer una serie de palabras, se hizo necesario asignar una
accion o significado a cada una de ellas. Para ello, se ha desarrollado ad hoc un script en Python
que realiza exactamente esa mision. Aqui es donde entra en juego la tercera decision de disefio
explicada en profundidad en el Anexo, la comunicacion entre la biblioteca PocketSphinx y este
script mediante el uso de un fichero intermedio. Esta decision de disefio basa su funcionamiento
en un fichero en el que PocketSphinx escribe cada vez que reconoce una palabra y desde el que
el citado script en Python lee constantemente. Cuando el script Python detecta que se ha
reconocido una nueva palabra, le asigha una de las opciones que tiene implementadas. Es en este
script donde se ha implementado el estilo de comunicacién con palabra clave de inicio y de fin,
que representa la cuarta y Ultima decision de disefio. Esta decision se detalla en el Anexo de esta
memoria.

29

6. Arquitectura del Sistema

Se ha decidido implementa también una funcionalidad interesante, que permite indicar al usuario
mediante un sistema de iconos en pantalla cuando el sistema se encuentra “escuchando”, es decir,
el tiempo que transcurre entre que se pronuncia el comando de activacion y el de finalizacién. De
esta forma, los usuarios pueden saber en todo momento si el comando por voz que acaban de
pronunciar ha sido entendido o no por el sistema.

Las opciones disponibles en este script se corresponden con las funcionalidades de la aplicacion
que centraliza todos los servicios del Sistema (y de la cual se hablard un poco mas adelante), es
decir: Posibilidad de apagar el sistema, acceder directamente a la parte OBD, acceder a la parte
multimedia, asi como desplazarse en las cuatro direcciones en los menus, aceptar la opcién
seleccionada e ir hacia atrds. Algunas de estas opciones han sido implementadas mediante la
ejecucién de comandos en bash dentro del propio script Python (por ejemplo, apagar el sistema o
acceder a la parte multimedia), sin embargo, para el desplazamiento por los mends, seleccionar
opcion e ir hacia atras, se ha empleado la biblioteca Uinput, que se encarga de simular mediante
software la pulsacion de teclas en un teclado. De esta forma, si se desea ir hacia la derecha, el
comando por voz “Right” se mapea con una pulsacion en la tecla derecha del teclado, ofreciendo
asi mucha libertad de movimiento dentro de los mends de la aplicacion.

Los principales problemas que han aparecido en esta parte se han debido principalmente a la
captura de la entrada de audio mediante un micr6fono (Webcam USB en este caso). Se tuvieron
que probar diversas opciones (la mayoria de las cuales referidas a una Raspberry Pi 2, no el
modelo 3 como la del alumno), hasta que al final, después de configurar algunos parametros, se
consiguié grabar y reproducir sonido. Resulta curioso que una caracteristica tan extendida en otros
sistemas (computadores de sobremesa o dispositivos mdviles) resulte tan complicada en un
dispositivo de las caracteristicas de una Raspberry Pi. Una vez superado esto, el resto no supuso
grandes dificultades.

30

6. Arquitectura del Sistema

6.4 Aplicacion que centraliza los servicios disponibles

Con las dos partes anteriores finalizadas, se hizo necesaria su integracion dentro de una aplicacion
desde la que poder acceder a ambas, ademas de ofrecer algunas otras opciones que se detallaran
a continuacion. Esta aplicacién ha sido desarrollada en lenguaje PHP y desplegada sobre el mismo
Servidor Web en la que se tenia alojada la parte PHP de la adquisicidn de datos del motor (se trata
de un servidor Apache que corre localmente en la Raspberry Pi).

La aplicacion consta de nueve opciones, algunas de las cuales aln no estan disponibles, pero se
ha decidido colocarlas ya para ahorrar tiempo en el futuro cuando se decida implementar dichas
funcionalidades. Las opciones que se ofrecen en el momento de la redaccién de esta memoria son:
Apagar el sistema mediante un botén, acceso completo al Sistema Operativo Raspbian si el
usuario lo desea, acceso a Internet (siempre que la Raspberry Pi disponga de un punto de acceso
a Internet), un reproductor para disfrutar de contenidos multimedia, y finalmente, el acceso a la
informacién proveniente del motor. EI control por voz queda integrado a la perfeccion en esta
aplicacion, y permite su manejo sin necesidad de tocar la pantalla tactil o emplear raton y teclado.

La aplicacion al completo ha sido disefiada para poder ser controlada mediante pulsaciones
simples de ratén (o en la pantalla tactil) o mediante un teclado. Esto es asi debido a que los
elementos necesarios se han hecho “pinchables” y, ademas, todos ellos constituyen una suerte de
“carrusel” por el que el usuario se puede ir desplazando si decide usar teclado. Ademas, debido a
esto ultimo, el control por voz permite a la perfeccién el manejo de la misma, ya que se han
conseguido generar pulsaciones de teclado por software frente a algunos eventos de voz.

El aspecto de la aplicacion disefiada aparece en las siguiente imagen, y debido a la forma en la
gue se ha desarrollado, resultaria muy sencillo de cambiar su interfaz estética por otra que pueda
gustar mas al usuario. Aungue aun no esta disponible, podria ser interesante disponer entre varias
“skins” o aspectos configurables e intercambiables por el usuario.

Figura 20 — Interfaz de la aplicacion desarrollada

El desarrollo de esta parte no ha supuesto grandes problemas al alumno, més alla de descubrir la
biblioteca Uinput para simular pulsaciones de teclado mediante software.

31

6. Arquitectura del Sistema

6.5 Integracion en el vehiculo

Una vez que todas las partes anteriores quedaron terminadas se comenzo a integrar el sistema en
el salpicadero de un vehiculo real, concretamente en el del alumno, un VVolkswagen Polo de 2004.
Esta es la parte correspondiente al tercer Requisito Funcional que se detall6 en la seccién 4 de
esta memoria. Las partes “fisicas” a colocar en el vehiculo fueron principalmente la pantalla tactil
y la Raspberry Pi, ademas claro de todos los cables necesarios, desde la alimentacién de ambos
dispositivos, hasta la salida de audio auxiliar para que el sonido salga por los altavoces del coche
(la radio del vehiculo dispone de entrada auxiliar de 3.5mm).

En la siguiente foto puede apreciarse cdmo era el salpicadero del vehiculo escogido antes de
empezar a colocar ningun componente.

Figura 21 — Aspecto inicial del salpicadero

La primera idea fue la de colocar la pantalla tactil en el frontal del salpicadero, en el hueco 2DIN
retirando para ello la radio y la bandeja portaobjetos y ocupando el hueco que dejan. Sin embargo,
el inconveniente de esta aproximacion era donde colocar entonces con la radio del vehiculo, ya
que era necesaria en el proyecto si se deseaba que el sonido saliera por los altavoces del vehiculo
(por contar con el citado conector de 3.5mm). Ademas, era necesario desviar demasiado la vista
de la carretera para mirar hacia la pantalla tactil, lo cual podria poner en riesgo la conduccion.

Asi que finalmente se opté por colocar la pantalla tactil en el cajon portaobjetos de la parte
superior del salpicadero. La principal dificultad de esta segunda idea, era la necesidad de variar
la posicién de la pantalla para poder levantarla y recogerla (como sucede en algunos coches de
alta gama), ya que no se queria dejar fija y siempre visible. Para ello, se empez6 planteando un
circuito eléctrico que moviera un motor, primero en un sentido de giro para levantar la pantalla,
y posteriormente en el sentido contrario para recogerla.

32

6. Arquitectura del Sistema

Se realizaron dos implementaciones distintas de este circuito, variando los componentes
electrénicos que lo constituian. Esto fue asi debido a que la primera aproximacion no funcionaba
segun lo esperado, ya que sufria una pequefa realimentacion en uno de sus componentes que
hacia que el motor girara en un sentido, pero no en el contrario. Es importante recalcar en este
punto, la inestimable ayuda que el alumno recibi6 de manos de Eduardo Jarabo Baln, de la
empresa “EdJar Instalaciones”, tanto en el asesoramiento a la hora de adquirir el material, como
a la hora del montaje del circuito. A continuacidn, se va a pasar a describir el funcionamiento de
las dos versiones de este pequefio circuito:

El primer circuito consistié en la construccion de una pequefia placa integrada en la que soldaron
diferentes componentes. Concretamente, estos componentes fueron dos relés, empleados uno para
controlar el giro del motor en un sentido, y el otro para controlarlo en el otro sentido, asi como un
fusible y un portafusible para proteger el circuito de posibles picos de tension, dos finales de
carrera, empleados para que al llegar a la posicion deseada el motor se pare, y un par de botones,
uno para activar el giro en un sentido y otro para el otro sentido. Como se ha comentado
anteriormente, uno de los relés sufria una pequefia realimentacion, por lo que dejaba de funcionar
impidiendo el giro en uno de los sentidos. A continuacion, se puede observar una foto de este
primer circuito desarrollado.

Porta-Fusibles (el fusible que protege el
circuito aun no esta colocado)

|

Conectores para cables de
= alimentacion y de los finales de
carera

Figura 22 — Primer circuito (vista de frente)

33

6. Arquitectura del Sistema

Yo R R e R
.
! T
LT
3)

Figura 23 — Primer circuito (vista trasera)

Para el segundo circuito se decidi6 simplificar todo lo posible el primer disefio y se pudieron
reutilizar algunos de sus componentes. Este nuevo disefio se basa en el uso de un conmutador de
tres posiciones, que permiten el giro del motor en un sentido o en otro y su parada, asi como dos
finales de carrera, empleados con el mismo fin que en la primera version, es decir, para que el
motor, al llegar a un tope se pare y no continte girando indefinidamente. Seguidamente se adjunta
una foto de esta segunda version.

Finales de
carrera

Conmutador de tres posiciones

Figura 24 — Segundo circuito

34

6. Arquitectura del Sistema

Tanto el primero como el segundo disefio se alimentan igual, mediante un par de cables extraidos
de la caja de fusibles del vehiculo (estos cables se instalaron en un taller certificado debido al
riesgo que supone operar en esta parte del automoévil, ademés de los escasos conocimientos del
alumno en este campo). Este par de cables ofrecen 5 voltios de tensién que permiten alimentar
tanto el circuito comentado como un segundo adaptador de mechero que se ha colocado para
alimentar la Raspberry Pi y la pantalla por medio de USB.

Por supuesto, uno de los primeros pasos en la realizacion de este trabajo fue la medicién del
espacio disponible y el reparto de los componentes en los diferentes lugares que ocuparian méas
adelante, asi como la construccion de un pequeno prototipo “fisico” sobre el que poder colocar y
ajustar las diferentes piezas sin necesidad de encontrarse el alumno en el vehiculo.

Una vez construido el circuito en el exterior del vehiculo, y habiendo comprobado su correcto
funcionamiento, se pudo empezar a colocar en el sitio que iba a ocupar. Para ello, fue necesario
desmontar la totalidad del frontal, desatornillando multitud de tornillos y separando varias
pestafias. En este punto, el trabajo se volvi6 bastante incomodo, debido al reducido espacio de
trabajo, y a la poca maniobrabilidad de la que se disponia en el interior del vehiculo. Sin embargo,
poco a poco los componentes del circuito fueron encajando en sus posiciones y tras muchos
ajustes, se consiguio que el circuito funcionara colocado en el salpicadero del vehiculo. En este
punto aun no se habia colocado la pantalla tactil ni la Raspberry Pi en su lugar definitivo. A
continuacion se muestra una foto del montaje:

Figura 25 — Montaje del circuito en el vehiculo

Después de algunas pruebas de funcionamiento, se llegé a la conclusion de que era fundamental
reducir la velocidad de giro del motor, ya que, a pesar de que el motor giraba a muy pocas
revoluciones por minuto (80 concretamente), la amplitud del giro necesario era muy pequefia,
apenas con un cuarto de vuelta bastaba para levantar la pantalla los 90 grados deseados. Sin esta
reduccion de velocidad, se corria demasiado riesgo, ya que la pantalla tactil podria golpear en el
salpicadero y, al tratarse de un componente delicado, podria romperse y dejar de funcionar. Es
por eso que, después de barajar diferentes opciones, se optd por adquirir un nuevo componente,
concretamente un reductor de velocidad para motores de Corriente Continua. Este reductor se
puede encontrar en [19].

35

6. Arquitectura del Sistema

Una vez que todos los componentes se encontraban en su sitio, se empezaron a realizar diversas
pruebas; se probd el sistema de giro con y sin la pantalla tactil para que se ajustara bien al espacio
disponible, se configuré adecuadamente el reductor de velocidad para que el motor girara de
forma correcta, se buscaron posibles vibraciones con la pantalla desplegada y el coche en
movimiento... Se muestran a continuacion varias imagenes del sistema final, integrado en el

vehiculo del alumno:
“ﬁ: — . T

-~

Figura 26 — Resultado final (pantalla plegada)

Figura 27 — Resultado final (pantalla levantada)

Durante la realizacion de esta parte del TFG se han presentado varios problemas, el primero de
ellos fue la pequefia realimentacién de la primera version del circuito, lo cual retras6 enormemente
todo el resto de esta parte. El hecho de trabajar en un entorno “fisico” de muy reducidas
dimensiones provoco también algin quebradero de cabeza al alumno. Y finalmente la necesidad
de reducir la velocidad de giro del motor tampoco facilitd nada las cosas. Finalmente, y tras no
poco esfuerzo, se ha conseguido un sistema de giro para la pantalla tactil del proyecto que queda
perfectamente integrado en el salpicadero, y ademéas se han obtenido una serie de valiosos
conocimientos, no directamente relacionados con el terreno informatico, lo cual siempre resulta
muy satisfactorio.

36

7. Conclusiones

7. Conclusiones

Se haimplementado un sistema de Infotenimiento que cumple con creces los objetivos planteados
al comienzo del proyecto. Estando todo terminado, y finalmente en su sitio, se puede decir que
las sensaciones generales han sido realmente positivas. La integracion e interaccion entre las
partes constitutivas de este proyecto, producen una enorme sinergia entre ellas, dotando de un
gran valor afiadido al producto final.

Se han adquirido multitud de conocimientos, principalmente en el terreno informatico al tener
que tratar con protocolos desconocidos para el alumno (OBDII), o software novedoso con el que
no se ha estado en contacto durante los cuatro afios que ha durado el Grado. Asimismo, y dada la
naturaleza de este proyecto, también se han adquirido una serie de conocimientos, no directamente
relacionados con la Informatica, como por ejemplo algunas competencias basicas de electrénica
que seran de enorme utilidad para el alumno en un futuro. Debido a su envergadura, el presente
se trata de uno de los proyectos mas grandes al que el alumno se ha enfrentado hasta ahora. Este
proyecto también ha permitido redescubrir la enorme importancia de las primeras fases de la
Ingenieria del Software, el Andlisis y el Disefio. Generalmente son fases a las que no se les
dedican los recursos necesarios, y en este caso, planificando adecuadamente desde un primer
momento, se ha podido ahorrar una increible cantidad de tiempo.

En cuanto a las dificultades encontradas, el principal escollo a salvar han sido la calibraciéon y
ajustes que han sido necesarios en la fase de integracion del sistema en el vehiculo. La escasa
experiencia en temas electrénicos, asi como la incomodidad del lugar de trabajo, dificultaron
bastante esta tarea, sin embargo, el hecho de tener que lidiar con un problema en un entorno
“fisico”, al que el alumno no esta acostumbrado, ha sido realmente interesante y muy
aprovechable. El resto de dificultades, que aparecieron en las otras dos partes del proyecto (en las
partes “mas software”), fueron resueltas con mayor o menor esfuerzo.

Una de las primeras conclusiones a las que el alumno ha llegado, ha sido la de que, dedicando el
tiempo y esfuerzo necesarios, se pueden lograr resultados realmente buenos. Se ha conseguido
desarrollar (con ayuda de algunas bibliotecas ya implementadas) un sistema de Infotenimiento
que dista poco de las soluciones comerciales integradas en los vehiculos mas modernos o de alta
gama, todo ello a un precio muchisimo méas reducido, y en muchos aspectos mejor y mas flexible
que aquellos.

37

7. Conclusiones

La segunda conclusion es que para proyectos de un tamarfio similar a este y mas grandes, resulta
de vital importancia reutilizar trabajo ya disponible, ya que permite avanzar mucho mas rapido y
evita el “tener que reinventar la rueda”. Por supuesto, la utilizacion de estas bibliotecas debe
realizarse de forma ética, indicando en todo momento a sus autores y respetando su Licencia si la
tuviera, como aqui se ha hecho. Si en el tiempo dedicado a este TFG hubiese sido necesario
implementar cualquiera de las dos bibliotecas de terceros que se han empleado (Py-obd para el
acceso a los datos del motor y PocketSphinx para el reconocimiento de voz), el proyecto en lugar
de estar compuesto por tres partes, a duras penas hubiese estado compuesto por una de ellas.

Finalmente, y como ya se dijo en las primeras secciones, el alumno va a seguir desarrollando
nuevas funcionalidades para el sistema de cara al futuro. Debido a la arquitectura desarrollada,
donde la flexibilidad es un pilar fundamental, se espera que, una vez desarrolladas estas nuevas
caracteristicas, su integracion en el sistema no provoque demasiados quebraderos de cabeza. Es
una verdadera lastima no tener aln disponible alguna caracteristica mas, pero los recursos
temporales son finitos, y se considera que se ha realizado una gestion bastante eficiente de los
mismos.

38

8. Bibliografia

8. Bibliografia

[1] http://www.eleconomista.es/ecomotor/motor/noticias/6887322/07/15/Cuantos-coches-hay-
en-Espana-El-parque-crecio-en-2014-por-primera-vez-desde-2012.html

[2] http://www.elmundo.es/motor/2016/04/07/570625cee2704efc4c8b458d.html
[3] https://github.com/Pbartek/pyobd-pi

[4] http://cmusphinx.sourceforge.net/

[5] http://www.instructables.com/id/OBD-Pi/

[6] http://www.popularmechanics.com/cars/how-to/al15446/diy-touchscreen-dashboard-
raspberry-pi/

[7] http://i-carus.com/

[8] http://www.carberry.it/

[9] https://www.tesla.com/en_EU/

[10] https://www.volkswagen.es/es.html

[11] http://www.renault.es/

[12] https://www.pioneerelectronics.com/PUSA/Car/GPS-Navigation/AVIC-8200NEX
[13] http://www.kenwood.es/car/multimedia/receptores/DDX9716BTS/?view=details
[14] https://es.wikipedia.org/wiki/OBD#OBD_II

[15] https://www.pccomponentes.com/unotec-obdii-diagnostico-para-coche-bluetooth-pc-
android

[16] http://jasperproject.github.io/
[17] https://cloud.google.com/speech/
[18] https://oscarliang.com/raspberry-pi-voice-recognition-works-like-siri/

[19] https://www.amazon.es/CEBEK-Regulador-Velocidad-Motores-
Cargas/dp/BO17WE9POIl/ref=sr_1 2?ie=UTF8&(id=1474645131&sr=8-
2&keywords=regulador+de+velocidad+cebek

39

http://www.eleconomista.es/ecomotor/motor/noticias/6887322/07/15/Cuantos-coches-hay-en-Espana-El-parque-crecio-en-2014-por-primera-vez-desde-2012.html
http://www.eleconomista.es/ecomotor/motor/noticias/6887322/07/15/Cuantos-coches-hay-en-Espana-El-parque-crecio-en-2014-por-primera-vez-desde-2012.html
http://www.elmundo.es/motor/2016/04/07/570625cee2704efc4c8b458d.html
https://github.com/Pbartek/pyobd-pi
http://cmusphinx.sourceforge.net/
http://www.instructables.com/id/OBD-Pi/
https://www.tesla.com/en_EU/
https://www.volkswagen.es/es.html
http://www.renault.es/
http://www.kenwood.es/car/multimedia/receptores/DDX9716BTS/?view=details
https://es.wikipedia.org/wiki/OBD#OBD_II
https://www.pccomponentes.com/unotec-obdii-diagnostico-para-coche-bluetooth-pc-android
https://www.pccomponentes.com/unotec-obdii-diagnostico-para-coche-bluetooth-pc-android
http://jasperproject.github.io/
https://cloud.google.com/speech/
https://oscarliang.com/raspberry-pi-voice-recognition-works-like-siri/

9. Anexos

9. Anexos

9.1 Explicacion en detalle de las decisiones de disefio

En esta seccién se va a describir con detalle las decisiones de disefio que se han tomado durante
la realizacion de este trabajo. Acompafiando a la explicacion de cada una de ellas se adjunta uno
o0 varios diagramas explicativos, con el fin de dejar lo mas claro posible su funcionamiento. Las
dos primeras decisiones explicadas en esta seccion se corresponden a la parte de adquisicion de
datos del motor, mientras que las dos Gltimas a la parte de control por voz. Estas decisiones ya
han sido comentadas brevemente en la seccién de Arquitectura del Sistema, aunque ahora se entra
mucho mas en detalle en lo referente a su funcionamiento.

9.1.1 Comunicacion con el puerto OBD

En primer lugar, se va a detallar la decisién de disefio que se ha empleado para la comunicacién
entre la Raspberry Pi y el motor del automévil. En un apartado anterior de esta memoria, se han
detallado algunas de las caracteristicas de esta comunicacion (protocolo, software empleado,
etc...). La comunicacion y adquisicion de los datos del motor la realiza una biblioteca escrita en
Python, llamada Py-obd, que ha sido encontrada en la web y adaptada a las necesidades del
alumno. El problema principal que tuvo que solventarse en esta parte fue el envio de los datos
adquiridos por dicha biblioteca a la aplicacion que los procesa y muestra, la cual esté escrita en
PHP. A modo de resumen, el problema consiste en comunicar los datos generados (adquiridos del
motor) por un servicio Python corriendo en segundo plano, con una pagina PHP que debe
refrescarse constantemente para mostrar los parametros de la conduccidon en tiempo real. Pues
bien, esta comunicacién no result6 para nada sencilla. Se intentaron diversas opciones, (algunas
de las mas representativas se recogen cronoldgicamente en la tabla adjunta) hasta que al final se
descubrid un mecanismo denominado Memcache, el cual permite almacenar variables en
Memoria Cache software para asi poder acceder a ellas desde diferentes puntos de la arquitectura.
Es decir, permite la creacion de un “espacio” en memoria cache mediante software, en el cual se
pueden almacenar variables para ser compartidas entre diferentes entidades, en este caso concreto,
dos paginas PHP.

40

9. Anexos

Nombre de la
opcion

Descripcién

Ventajas aparentes

Problemas encontrados

Separar la biblioteca
Py-obd en dos partes

La primera parte seria la
encargada de realizar la conexion
con el puerto OBD y solo se
ejecutaria una vez. La segunda
parte realizaria peticiones
instantaneas al motor y se
gjecutaria dentro de un bucle en la
pagina PHP.

Sencillez debido a la
estructura original de
la biblioteca Py-obd.

Era necesario enviar un objeto
Python muy complejo de una parte
a la otra. La unica forma de hacerlo

era serializando dicho objeto y

Python no permite la serializacion
de objetos tan complejos.

Enviar los datos
desde la biblioteca
Python al PHP por

medio de una
peticiéon HTTP

Los datos se enviarian
encapsulados en una peticion
HTTP que seria recogida por el
servidor PHP para asi poder
actualizar la visualizacion de los
datos.

Velocidad de respuesta
ofrecida por las
peticiones HTTP.
Sencillez al
implementar tanto en
Python como en PHP.

El servidor PHP no sabia qué hacer
con la peticién HTTP que recibia,
ya que no era capaz de actualizar

con esos datos una pagina
(peticidn) que ya habia resuelto.

Enviar los datos
desde la biblioteca
Python al PHP por

medio de una
peticion HTTP y una
variable de sesién

Los datos se enviarian
encapsulados en una peticion
HTTP que actualizaria una
variable de sesidn encargada de
actualizar la visualizacion de los
datos.

Velocidad y sencillez
de las peticiones
HTTP. Sencillez al
implementar tanto en
Python como en PHP.

Por motivos de seguridad, la sesion
de PHP no se comparte entre
diferentes peticiones. Es decir,
existian dos sesiones diferentes
incapaces de comunicarse.

Comunicar la
biblioteca Python y
el servidor PHP
mediante sockets

La biblioteca Py-obd crearia y
abriria el socket, enviando los
datos a medida que los fuera
obteniendo. EI PHP se mantendria
a la espera de que llegaran
peticiones para procesarlas y
actualizar la vista.

Comunicacion
aparentemente sencilla
entre procesos.

Se presentaron aqui diversos
problemas de permisos, ya que el
usuario duefio de los dos servicios

comunicados por el socket debia ser
el mismo, algo que no era asi, y no
fue posible modificarlo.

Enviar los datos
desde la biblioteca
Python al PHP por

medio de una

peticion HTTP y

Memcache

Esta idea es muy similar a la
opcion con peticion HTTP y
variable de sesion, pero con un
mayor nivel de abstraccién, ya
gue si que permitia la
comunicacion de variables entre
dos sesiones diferentes.

Velocidad y sencillez
de las peticiones
HTTP. Sencillez al
implementar tanto en
Python como en PHP.

Este fue el método elegido. Lo méas
dificil de esta opcidn fue
descubrirla, debido a la escasa
documentacion de la que dispone.
También hubo un pequefio
problema de versiones
desactualizadas que se pudo
resolver facilmente.

Figura 28 — Tabla comparativa de opciones de comunicacioén Python-PHP

Detallando el proceso de intercambio de informacién con la solucién alcanzada, se tiene en primer
lugar la biblioteca Py-obd que, al ser adaptada a las necesidades del alumno, se encuentra
corriendo en segundo plano. Este proceso se lanza cuando se entra en la opcién correspondiente
de la aplicacion desarrollada que centraliza los servicios disponibles. Esta biblioteca se encarga
de crear la conexidn con el motor empleando un adaptador Bluetooth conectado al puerto OBD
del vehiculo y a la Raspberry Pi. La citada biblioteca se encarga de realizar peticiones de datos al
puerto OBD del vehiculo cada 10 milisegundos. Los datos obtenidos en cada peticion al motor se
encapsulan en una peticion HTTP que se envia a una pagina PHP que procede a su procesado. En
esta primera pagina PHP, se introducen o actualizan los datos recibidos en la peticion HTTP y se
almacenan en Memcache, con el objetivo de que sean accesibles desde otra pagina PHP que sera

41

9. Anexos

la encargada de mostrarlos. Esta segunda pagina PHP que visualiza los datos debe refrescarse
constantemente para actualizar los datos que se muestran en cada momento. Este refresco se
realiza mediante tecnologia AJAX, y es la segunda decision de disefio que se va a detallar. A
continuacion, aparecen un par de diagramas que detallan lo comentado hasta ahora, el primero de
ellos muestra una vision de alto nivel de la parte de Conexién con el Motor del proyecto, mientras
que el segundo representa como se ha realizado la comunicacion por medio de un Diagrama de
Secuencia.

- p

Memcache

cache php obd php

4 N .

A

Figura 29 — Diagrama de alto nivel de la comunicacion con el motor

42

9. Anexos

Automovil

PyOBD

cache.php

Memcache

obd.php

loopwhile not end)

1: peticion
2 - respuestaldatos)

3 - peticionHTTP(datos
. actualizarMemcachefdatnﬂD

WS - consultarMemcache
6 : refrescarVistafdatnsLU

Este bucle se egjecuta cada 10 ms

Figura 30 — Diagrama de secuencia de la comunicacion con el motor

Esto representa la parte del Modelo de la arquitectura Modelo-Vista-Controlador que se explicara
en la segunda decision de disefio.

43

9. Anexos

9.1.2 Refresco de la pagina PHP de visualizacion de
datos

Como se ha comentado en la decision de disefio explicada anteriormente, la pagina PHP que
muestra los datos procedentes del motor debe refrescarse automéaticamente para poder mostrar,
en cada momento los datos correspondientes a ese instante. Uno de los requisitos fundamentales
para ello es que el refresco sea lo mas réapido posible, por lo que la opcién de recargar
constantemente la pagina PHP no es una opcion valida, ademas de que se verian “parpadeos”
mientras se carga la totalidad de la pagina. Es por eso que se ha optado por refrescar Unicamente
una parte de la pagina mediante tecnologia AJAX. Esta técnica, basada en Javascript y XML
asincronos, permite precisamente eso, refrescar una parte de la pagina cargando nuevos datos
procedentes del servidor de forma asincrona, todo ello de forma rapida y transparente para el
usuario. El funcionamiento de AJAX es muy sencillo, realiza una peticion asincrona a otra pagina
PHP, y esta le devuelve como respuesta los datos necesarios para recargar la pagina desde la que
ha salido la peticion. En este proyecto concreto, la peticion se realiza a una pagina PHP que
consulta en Memcache para ver si el valor de los datos ha cambiado con respecto a la ultima
peticién, en cuyo caso los devuelve para su mostrado.

Se ha decidido usar este sistema de refresco de pantalla con el fin de respetar al méximo la
arquitectura de Modelo-Vista-Controlador. Como puede observarse, la parte AJAX desempefia el
papel de Controlador, Memcache y la pagina PHP que la consulta representan el Modelo, mientras
gue la pagina que visualiza los datos realiza las funciones de la Vista.

Gracias a este sistema, se ha conseguido simular de forma simple y muy eficiente el
comportamiento de un cuadro de mandos de un vehiculo, en el que en todo momento se conocen
los datos actuales de la conduccion. A continuacion, se muestra un diagrama de secuencia con la
interaccién AJAX entre las dos paginas PHP, acompafiado de un par de capturas de pantalla de la
interfaz desarrollada.

AJAX cache.php Memcache vista.php

.D 2 - peticion T]
I:I‘B - respuestaldatos)

1 : peticion

Tri - respuesta(nuevosDatos)

5 - actmalizaVista(nuevosDatos)

I 1

Figura 31 — Diagrama de secuencia del mecanismo Memcache

44

9. Anexos

Figura 32 — Interfaz visualizacién datos del motor 1 - Velocidad

Figura 33 — Interfaz visualizacion datos del motor 2 - RPM

9. Anexos

9.1.3 Procesado de comandos por voz

La tercera decision de disefio que se ha tomado para el desarrollo de este TFG permite asociar
acciones a algunos comandos de voz, lo cual permite un control casi total del sistema, asi como
una forma muy sencilla de agregar nuevos comandos en el futuro. Para ello, ha sido necesario que
la biblioteca que se ha utilizado para el reconocimiento de voz, PocketSphinx (escrita en C y de
la que ya se ha hablado en el apartado anterior), comunique las palabras que reconoce a un script
en Python desarrollado ad hoc por el alumno, para realizar las acciones oportunas. De nuevo, aqui
se trata de comunicar dos procesos escritos en diferentes lenguajes (al igual que sucedia entre la
biblioteca de adquisicion de datos del motor y la parte de visualizacion de los mismos). La
diferencia principal con respecto a la comunicacion necesaria en la parte OBD es que aqui no es
necesario que la comunicacion sea tan veloz.

Se ha optado por tanto por utilizar un fichero de texto intermedio en el que la biblioteca de
reconocimiento va escribiendo a medida que va reconociendo palabras, y a su vez el script de
Python lee en bucle en busca de cambios en dicho fichero. Si el script de Python detecta que
PocketSphinx ha reconocido una nueva palabra, la procesa y ejecuta la accién asociada a ella.

La razén principal por la que se ha tomado la decision de emplear un fichero, en lugar de un
sistema de comunicacion mas complejo, como el que fue necesario en la primera decision de
disefio explicada, ha sido principalmente la sencillez de este sistema. Al no necesitar mucha
velocidad en la comunicacién, el propuesto es probablemente el método mas sencillo y con menor
tasa de errores, asi como muy depurable si apareciese algin error.

A continuacion, se muestra un diagrama de muy alto nivel, que recoge el sistema de comunicacién
implementado.

4

3

Script Python
con ordenes

Libreria
asociadas a

ckatSphin

PocketSphi ™, P cada comando
. por voz
Fichero | __—
Intermedio

Figura 34 — Diagrama de alto nivel del procesado de los comandos de voz

46

9. Anexos

9.1.4 Control por voz estilo “Ok Google”

Finalmente, la cuarta y ultima decision de disefio que se va a detallar, modela el estilo de
comunicacion por voz con el sistema que se ha implementado. Debido a las caracteristicas del
proyecto, uno de los requisitos fundamentales de esta parte era que el sistema no podia actuar en
cuanto detectara una palabra conocida, ya que cualquier conversacion entre los pasajeros del
vehiculo podria interferir con el correcto funcionamiento del mismo.

Se ha decidido por tanto desarrollar un sistema que permanezca escuchando en busca de una
palabra clave para, a continuacion, escuchar los siguientes comandos por voz y ejecutar sus
acciones asociadas. Este comportamiento se mantiene hasta que se detecta otra palabra clave de
finalizacidn, ante la cual, el sistema de reconocimiento de voz vuelve a estado “latente”. De esta
forma, el usuario puede estar seguro de que el control por voz Unicamente se activa cuando él lo
desee, evitando asi posibles malos funcionamientos.

A pesar de gue el citado, es el método mediante el que funciona el sistema final, se han valorado
otras opciones, llegando incluso a implementar un par de ellas en etapas tempranas del desarrollo.
Una de estas opciones Unicamente escuchaba el siguiente comando por voz tras reconocer la
palabra clave, lo cual hacia al sistema altamente ineficiente.

Seguidamente se adjunta un Diagrama de Transiciones que representa el funcionamiento tanto de
esta version preliminar, como de la version final, permitiendo apreciar a la perfeccion la diferencia
entre ambos:

47

9. Anexos

~——»| Escuchando

i Comando "Polo™?

Si

l

Escuchar siguiente
comando

Escribir comanda en
fichero intermedio

12 Version

Figura 35 — Diagrama de alto nivel del estilo de comunicacion “Ok Google”

48

l

> Escuchando

iComando "Polo™?

Si

l

Escuchar siguiente
comando

L J

Escribir comando en
fichero intermedio

iComando "End™?

Si
. 00/

Version Final

9. Anexos

9.2 Fotos

En este apartado se incluyen algunas fotos tomadas durante el desarrollo del proyecto. Cada una
se acompafia de una breve descripcion de lo que representan:

Figura 36 — Detalle de la Raspberry Pi 3 y latrasera de la pantalla tactil

Esta foto fue tomada al poco tiempo de adquirir la pantalla tactil para la Raspberry Pi. Como puede observarse, esta se conecta a
través del puerto DSI integrado en la placa.

Figura 37 — Espacio disponible en el cajén portaobjetos del vehiculo del alumno.

Este reducido espacio ha sido el lugar donde se ha colocado la pantalla tactil y el circuito que la levanta y baja.

49

9. Anexos

-
Figura 38 — Lectura de parametros OBD en modo texto

Una de las primeras pruebas satisfactorias de lectura de pardmetors en modo texto. La interfaz gréafica adn no estaba desarrollada
en el momento de tomar esta fotografia.

Figura 39 — Prueba extrema realizada en la interfaz OBD

Se simulé que el vehiculo viajaba a 160 Km/h. Por supuesto esta prueba se realiz6 fuera del vehiculo, haciendo creer a la interfaz
que esos datos llegaban del motor cuando realmente no era asi.

50

9. Anexos

Figura 40 — Primeras pruebas de control por voz (1).

En esta imagen aparece la webcam empleada por el alumno para captar los comandos por voz.

Figura 41 — Primeras preubas de control por voz (2).

Aqui se puede ver al alumno visualizando mediante SSH la interpretacion que realiza el sistema ante los comandos por voz. En la
terminal de la izquierda aparece lo que detecta la libreria PocketSphinx y en la derecha el filtrado y asingacion de la accién. A
continuacion se muestra un extracto de cada una de las terminales:

51

9. Anexos

Terminal izquierda: Terminal derecha:
No te he escuchado Right
Escuchando Right
Right Enter
Escuchando
Right
Escuchando

Enter

Figura 42 — Detalle del reductor de velocidad.

Fue necesaria la integracion de este componente para evitar que la pantalla tactil sufriera dafios debido a la gran velocidad de
rotacion a la que giraba el motor que la levantaba y ocultaba. Esta foto esta tomada al poco de adquirir este componente.

52

9. Anexos

Figura 43 — Salpicadero del vehiculo en pleno proceso de desmontado.

Hubo que retirar todo el frontal del salpicadero del vehiculo del alumno para poder colocar el circuito que levanta y oculta la
pantalla tactil.

Figura 44 — Colocacion de la pantalla tactil

Esta foto se tomé poco después de terminar el circuito que levanta y oculta la pantalla. El salpicadero aln esta desatornillado y
con todos los cables a la vista.

53

