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Abstract

In this paper we consider a 1D parabolic singularly perturbed reaction-convection-
diffusion problem, which has a small parameter in both the diffusion term (multi-
plied by the parameter ε2) and the convection term (multiplied by the parameter µ)
in the differential equation (ε ∈ (0, 1], µ ∈ [0, 1], µ ≤ ε). Moreover, the convective
term degenerates inside the spatial domain, and also the source term has a discon-
tinuity of first kind on the degeneration line. In general, for sufficiently small values
of the diffusion and the convection parameters, the exact solution exhibits an inte-
rior layer in a neighborhood of the interior degeneration point and also a boundary
layer in a neighborhood of both end points of the spatial domain. We study the
asymptotic behavior of the exact solution with respect to both parameters and we
construct a monotone finite difference scheme, which combines the implicit Euler
method, defined on a uniform mesh, to discretize in time, together with the classi-
cal upwind finite difference scheme, defined on an appropriate nonuniform mesh of
Shishkin type, to discretize in space. The numerical scheme converges in the maxi-
mum norm uniformly in ε and µ, having first order in time and almost first order in
space. Illustrative numerical results corroborating in practice the theoretical results
are showed.
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1 Introduction

We consider the singularly perturbed initial-boundary value problem

Lu(x, t) = f(x, t), (x, t) ∈ G \ S±,

u(x, t) = ϕ(x, t), (x, t) ∈ S,

l±u(x, t) ≡ ε

[
∂

∂x
u(x+ 0, t)− ∂

∂x
u(x− 0, t)

]
= 0, (x, t) ∈ S±,

(1)

where the differential operator L is given by

Lu(x, t) ≡
{
ε2

∂2

∂x2
+ µx2p+1a(x)

∂

∂x
− b(x, t) ∂

∂t
− r(x, t)

}
u(x, t),

withG = D×(0, T ], D = (−d, d), d > 0, S = G \G and S± = {x = 0}×(0, T ].
We assume that

0 ≤ µ ≤ 1, 0 < ε ≤ 1, µ ≤ ε, (2)

p is a nonnegative integer, a, b and r are sufficiently smooth functions such
that

a(x) > 0, b(x, t) ≥ β > 0, r(x, t) ≥ 2r20, with r0 > 0 for (x, t) ∈ G, (3)

and the source function f(x, t) is continuous on G
+

and G
−

, where G
−

=

[−d, 0]× [0, T ], G
+

= [0, d]× [0, T ], and it has a first kind discontinuity on
the set S±. Moreover, we assume that the data of problem (1) satisfy sufficient
regularity conditions that guarantee the smoothness of the solution on the sets
G

+
and G

−
required in the analysis below.

We denote by S = SL ∪ S0, S0 = S+
0 ∪ S−0 , SL = Sl ∪ Sr, where

S0 = [−d, d]× {t = 0}, S+
0 = [0, d]× {t = 0}, S−0 = [−d, 0]× {t = 0},

Sl = {x = −d} × (0, T ], Sr = {x = d} × (0, T ].

The sets described above are displayed in Figure 1.

Moreover, compatibility conditions at the corners (−d, 0), (0, 0) and (d, 0) are
satisfied that guarantee the required smoothness of the solution in the neigh-
borhoods of these points. We refer to [1] for a discussion of the required reg-
ularity and compatibility conditions in our analysis.

Problems for partial differential equations with discontinuous data are sim-
ple models of diffraction problems. In [2,3] the case of regular equations was
discussed. The analysis of special methods for singularly perturbed problems
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Fig. 1. Sets of the domain

with discontinuous data and degenerating convective terms has been little
developed in the literature. In [4–6] a problem with discontinuous data in
differential equations was analyzed; in [7] a problem with a convective term
degenerating on the domain boundary for a parabolic convection-diffusion
equation was studied. An experimental technique to analyze the ε-uniform
convergence of numerical schemes defined on piecewise-uniform meshes, for a
singularly perturbed elliptic equation when the convective term degenerates
on the boundary, was considered in [8, Chapter 7].

The problem (1), (2) for the simpler case µ = 0 was considered in [9]; in
[1,10,11] a similar problem to (1) for µ = 1 was studied; in those works, it was
proved that the numerical scheme, combining the implicit Euler method on a
uniform mesh in time and the classical upwind scheme on a piecewise uniform
mesh in space, gives a scheme converging ε-uniformly in the maximum norm,
or, in short, uniformly convergent scheme. The analysis is based on a discrete
minimum principle and appropriate estimates of the solution and its partial
derivatives.

In this paper we are interested into extending those results to the more general
case where the small parameters ε and µ affect both the convection and the
diffusion coefficients in the differential equation. This class of problems, but
with smooth coefficients and in the absence of turning point, has been analyzed
in [12].

The paper is structured as follows. In Section 2, we analyze the asymptotic
behavior of the exact solution of the continuous problem (1), proving appro-
priate bounds for its derivatives, which will be used in the analysis of the
uniform convergence of the numerical scheme. In Section 3, we construct the
numerical method, combining the implicit Euler to discretize in time and the
upwind finite difference scheme to discretize in space. We prove that, if a uni-
form mesh in time and a special Shishkin type mesh in space are used, then
the scheme is uniformly convergent and it has first order in time and almost
first order in space. Finally, in Section 4, some numerical results are shown,
which corroborate in practice the efficiency of the method and the order of
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uniform convergence with respect to both parameters ε, µ, according to the
theoretical results.

Henceforth, we denote by Ck,k/2 the space of functions with continuous deriva-
tives with respect to x up to order k and continuous derivatives with respect
to t up to order k/2, and by M a generic positive constant independent of the
parameters ε, µ and also of the discretization parameters N and N0, where N
and N0 are the number of mesh intervals in the variables x and t, respectively.

2 The continuous problem: asymptotic behavior

In this section we study the asymptotic behavior, with respect to ε and µ, of
the exact solution of the continuous problem (1), and we establish appropriate
bounds for its partial derivatives. Using a similar technique to this one in [6],
the following comparison principle can be proved.
Lemma 1. Let assume that the functions u1(x, t), u2(x, t) satisfy

Lu1(x, t) ≤Lu2(x, t), (x, t) ∈ G \ S±,

l± u1(x, t)≤ l± u2(x, t), (x, t) ∈ S±,

u1(x, t) ≥u2(x, t), (x, t) ∈ S.

Then, it holds that u1(x, t) ≥ u2(x, t), (x, t) ∈ G.

We assume that the data of the problem are sufficiently smooth functions and
also that they satisfy compatibility conditions in the corner points (−d, 0),
(d, 0) and (0, 0) in order that the exact solution of (1) belongs to the space

C(G)∩ {C4,2(G
−

)∪C4,2(G
+

)}. We use a truncation error argument to prove
the uniform convergence of the numerical scheme defined below; thus, we need
appropriate bounds of the derivatives of the exact solution which are deduced
in this section.

We begin with a lemma where some coarse bounds for the derivatives of u are
given.
Lemma 2. The solution of the problem (1) satisfies∣∣∣∣∣ ∂k+k0∂xk∂tk0

u(x, t)

∣∣∣∣∣ ≤Mε−k, (x, t) ∈ G− ∪G+
, 0 ≤ k + 2k0 ≤ 4. (4)

PROOF. Using the stretching variables ξ = ε−1 x, τ = t, the solution,
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û(ξ, τ) = û(ξ(x), τ(t)) = u(x, t), of the transformed problem satisfies

{
∂2

∂ξ2
+ µ

ε
(ξε)2p+1â(ξ) ∂

∂ξ
− b̂(ξ, τ) ∂

∂τ
− r̂(ξ, τ)

}
û(ξ, τ) = f̂(ξ, τ),

(ξ, τ) ∈
(
−d
ε
, d
ε

)
\{0} × (0, T ],

∂

∂ξ
û(ξ + 0, t)− ∂

∂ξ
û(ξ − 0, t) = 0, ξ = 0, t ∈ (0, T ].

Noting that µ/ε ≤ 1, a classical theory (see [13] for full details) brings to the
estimate ∣∣∣∣∣ ∂k+k0∂ξk∂τ k0

û(ξ, τ)

∣∣∣∣∣ ≤M, 0 ≤ k + 2k0 ≤ 4,

and transforming back to the original variables, the bound (4) follows. From
estimate (4), it follows that the parameter µ in problem (1), (2) is regular.

Nevertheless, these bounds are not sufficient to deduce the uniform conver-
gence of the numerical scheme. Thus, we decompose the exact solution as

u(x, t) = U+(x, t) + V +(x, t) +WR(x, t), (x, t) ∈ G+
,

u(x, t) = U−(x, t) + V −(x, t) +WL(x, t), (x, t) ∈ G−,
(5)

where U± is the regular component, V ± is the interior layer component, and
WR, WL are the right and left boundary layer components, respectively.

Note that the function u(x, t), considered on the set G
+

, is the solution of the
initial-boundary value problem

Lu(x, t) = f(x, t), (x, t) ∈ G+,

u(x, t) =ϕ(x, t), (x, t) ∈ S+
0 ∪ Sr,

u(x, t) =ϕu(x, t), (x, t) ∈ S±,

(6)

where ϕu(x, t) = u(x, t), (x, t) ∈ S±, and u is the solution of the problem (1).

From (4), it is straightforward that the derivatives with respect to t of the
function ϕu(x, t), (x, t) ∈ S± are ε-uniformly bounded. Moreover, we assume
that the necessary compatibility conditions are fulfilled in the corner points
of the set G

+
.

First, to obtain the required bounds for the regular component U+, we use the
idea of extending the domain problem (see, for example, [1,6]). Let G

+ e
be

an extension of the domain G
+

(for example, one can choose G
+ e

= [−1, 2]×
[0, 1]). The functions a, b, r, f and ϕ are smoothly extended to G

+ e
and the
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new differential operator is denoted by Le. We define U+(x, t) as the restriction

to G
+

of the function U+ e(x, t), (x, t) ∈ G
+ e

, i.e., U+(x, t) = U+ e(x, t),

(x, t) ∈ G
+

, where U+ e(x, t) is the solution of the initial-boundary value
problem

LeU+ e(x, t)=f+ e(x, t), (x, t) ∈ G+ e, (7)

U+ e(x, t)=ϕ+ e(x, t), (x, t) ∈ S+ e,

which is an extension of the problem (6) beyond the sets S±, Sr, considered

on G
+

.

The data of the problem (7), the functions f+ e(x, t), (x, t) ∈ G+
and ϕ+ e(x, t),

(x, t) ∈ S+
0 ∪Sr, on the set G

+
are the same data as in (1). In the rest of G

+ e
,

they are smooth extensions of the data of (1) prescribed on G
+

.

In the second place, the function V +(x, t), (x, t) ∈ G+
, i.e., the singular com-

ponent of the interior layer, is the solution of the problem

LV +(x, t) = 0, (x, t) ∈ G+,

V +(x, t) =ϕV +(x, t), (x, t) ∈ S±,

V +(x, t) = 0, (x, t) ∈ S+
0 ∪ Sr,

(8)

where ϕV + = ϕu(x, t)− U+(x, t), (x, t) ∈ S±.

Third, the left layer component WL(x, t), (x, t) ∈ G
−

is the solution of the
problem

LWL(x, t) = 0, (x, t) ∈ G−,

WL(x, t) = 0, (x, t) ∈ S± ∪ S−0 ,

WL(x, t) =u− U−, (x, t) ∈ Sl,

(9)

and finally, the right layer component WR(x, t), (x, t) ∈ G+
is the solution of

the problem

LWR(x, t) = 0, (x, t) ∈ G+,

WR(x, t) = 0, (x, t) ∈ S± ∪ S+
0 ,

WR(x, t) =u− U+, (x, t) ∈ Sr.

(10)

Now, we analyze the function U+e(x, t), i.e., the solution of (7). To do that,
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we decompose it as

U+e(x, t) = U0(x, t) + εU1(x, t) + ε2vU(x, t), (x, t) ∈ G,

where Ui(x, t), for i = 0, 1, are solutions of the problems

L0 U0(x, t)≡
{
−b(x, t) ∂

∂t
− r(x, t)

}
U0(x, t) = f+e(x, t), (x, t) ∈ G \ S0,

U0(x, t) =ϕ+e(x, t), (x, t) ∈ S0;

L0U1(x, t) =

{
−ε ∂

2

∂x2
− µ

ε
x2p+1a(x)

∂

∂x

}
U0(x, t), (x, t) ∈ G \ S0,

U1(x, t) = 0, (x, t) ∈ S0,

(11)

and vU(x, t) is the solution of the problem

LevU(x, t) =

{
−ε ∂2

∂x2
− µ

ε
x2p+1a(x)

∂

∂x

}
U1(x, t), (x, t) ∈ G,

vU(x, t) = 0, (x, t) ∈ S.
(12)

Taking into account that the derivatives of Ui(x, t), i = 0, 1, are bounded
uniformly with respect to ε and µ, and using the coarse bounds (4) in (12), we

deduce bounds for the partial derivatives of U+e(x, t) on G
+e

, and therefore
it is straightforward that it holds∣∣∣∣∣ ∂k+k0∂xk∂tk0

U+(x, t)

∣∣∣∣∣ ≤M [1 + ε2−k], (x, t) ∈ G+
, 0 ≤ k + 2k0 ≤ 4. (13)

Now we analyze the interior layer component V +(x, t). Using (4) and (13),
we obtain ∣∣∣∣∣ ∂k0∂tk0

ϕV +(x, t)

∣∣∣∣∣ ≤M, (x, t) ∈ S±, k0 = 0, 1, 2.

Defining the barrier function

φ0(x, t) = M exp(−m1ε
−1x), (x, t) ∈ G+

,

where m1 is an arbitrary positive constant such that

m2
1 ≤ 2r20, (14)
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and M is a constant sufficiently large. Note that

Lφ0(x, t) = M exp(−m1ε
−1x)

(
m2

1 −m1
µ

ε
x2p+1a(x)− r(x, t)

)
≤M exp(−m1ε

−1x)(m2
1 − 2r20)

≤ 0.

It follows from the classical minimum principle applied to the domain G
+

that∣∣∣∣∣ ∂k0∂tk0
V +(x, t)

∣∣∣∣∣ ≤M exp(−m1ε
−1x), (x, t) ∈ G+

, k0 = 0, 1, 2, (15)

proving bounds for the derivatives with respect to the time variable.

Lemma 2 provides the following crude bounds for the derivatives of V + in x∣∣∣∣∣ ∂k∂xkV +(x, t)

∣∣∣∣∣ ≤Mε−k (x, t) ∈ G+
, 1 ≤ k ≤ 4. (16)

Although these bounds are not sharp, they are enough for the analysis of the
uniform convergence of our finite difference scheme, since the barrier function
φ0(x, t) decays exponentially from x = 0.

Similarly, for components U−(x, t) and V −(x, t) and theirs derivatives, on the

set G
−

we can obtain the bounds∣∣∣∣∣ ∂k+k0∂xk∂tk0
U−(x, t)

∣∣∣∣∣ ≤M
[
1 + ε2−k

]
, (x, t) ∈ G−, 0 ≤ k + 2k0 ≤ 4,∣∣∣∣∣ ∂k0∂tk0

V −(x, t)

∣∣∣∣∣ ≤M exp(m1ε
−1x) (x, t) ∈ G−, k0 = 0, 1, 2,∣∣∣∣∣ ∂k∂xk V −(x, t)

∣∣∣∣∣ ≤Mε−k, (x, t) ∈ G−, 1 ≤ k ≤ 4.

(17)

Now, we study the left singular component WL. We define the function

φ1(x, t) = M exp(−m1ε
−1(d+ x)) exp

(
m1

β
d2p+1‖a‖[−d,0]t

)
, (x, t) ∈ G−,

where ‖a‖[−d,0] = max−d≤x≤0 a(x). It satisfies φ1(x, 0) ≥ 0, φ1(−d, t) ≥ M ,
φ1(0, t) ≥ 0, and

Lφ1(x, t) = φ1(x, t)

{[
m2

1 − r(x, t)
]

+

[
−m1

µ

ε
x2p+1a(x)−m1

b(x, t)

β
d2p+1‖a‖[−d,0]

]}
.

Note that the expression in the first square brackets is not positive since
m2

1 ≤ 2r20 and r(x, t) ≥ 2r20 and the expression in the second square brackets
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is not positive since −d < x < 0 and µ ≤ ε. Hence,

Lφ1(x, t) ≤ 0

and, from Lemma 1, it follows

|WL(x, t)| ≤ φ1(x, t) ≤M exp(−m1ε
−1(d+ x)), (x, t) ∈ G−.

Using the same argument as this one for the problems associated to

∂k0WL

∂tk0
, k0 = 1, 2,

we obtain∣∣∣∣∣ ∂k0∂tk0
WL(x, t)

∣∣∣∣∣ ≤M exp(−m1ε
−1(d+ x)), (x, t) ∈ G−, k0 = 1, 2. (18)

Finally, we consider the right singular component WR. Now the barrier func-
tion is given by

φ2(x, t) = M exp(−m1ε
−1(d− x)) exp

(
m1

β
d2p+1‖a‖[0,d]t

)
, (x, t) ∈ G+

,

with ‖a‖[0,d] = maxx∈[0,d] a(x). Then, similarly to the analysis made for WL,
we can obtain

|WR(x, t)| ≤ φ2(x, t) ≤M exp(−m1ε
−1(d− x)), (x, t) ∈ G+

,

and∣∣∣∣∣ ∂k0∂tk0
WR(x, t)

∣∣∣∣∣ ≤M exp(−m1ε
−1(d− x)), (x, t) ∈ G+

, k0 = 1, 2. (19)

We will use again in the analysis of the convergence the crude bounds of the
partial derivatives w.r.t. x for both layer components∣∣∣∣∣ ∂k∂xkWL(x, t)

∣∣∣∣∣ ≤M ε−k, (x, t) ∈ G−,
∣∣∣∣∣ ∂k∂xkWR(x, t)

∣∣∣∣∣ ≤M ε−k, (x, t) ∈ G+
,

(20)
with 1 ≤ k ≤ 4.
Theorem 1. Let u(x, t) be the solution of (1) and U± be the regular compo-
nent, V ± be the interior layer component, and WR, WL be the right and left
boundary layer components given in (5). Then, the estimates (13), (15) (16),
(17), (18), (19) and (20) hold, showing the asymptotic behavior of u(x, t) and
its derivatives.

9



3 The numerical scheme: uniform convergence

In this section we construct and analyze the uniform convergence of a finite
difference scheme to solve the problem (1). Let us denote by N0 and N the
number of intervals in t and x, respectively. The rectangular grid is given by
Gh = ω×ω0, where ω0 is a uniform mesh for the time variable, where the step
size is τ = T/N0, and ω is a piecewise uniform mesh of Shishkin type for the
space variable, such that x = 0 ∈ ω, which condenses in a neighborhood of the
interior and boundary layers (see, e.g., [1,6]). We divide the interval [−d, d]
into five parts [−d, −d + σ], [−d + σ, −σ], [−σ, σ], [σ, d − σ] and [d − σ, d],
where the transition parameter σ is defined by

σ = min
[
4−1 d, m−1 ε lnN

]
, (21)

with 0 < m ≤ r0. We approximate on Gh the problem (1) by the finite
difference scheme

Λ z(x, t) = f(x, t), (x, t) ∈ Gh \ S±h ,

z(x, t) =ϕ(x, t), (x, t) ∈ Sh,

Λ± z(x, t)≡ ε
[
δx z(x, t)− δx z(x, t)

]
= 0, (x, t) ∈ S±h ,

(22)

where

Λ z(x, t) ≡
{
ε2 δxx̂ + µx2p+1a(x) δ∗x − b(x, t)δt − r(x, t)

}
z(x, t),

Gh = G ∩Gh, Sh = S ∩Gh, S±h = S± ∩Gh, and

δ∗x z(x, t) =


δx z(x, t), if x > 0,

δx z(x, t), if x < 0,

is the monotone approximation of the first-order derivative
∂

∂x
u(x, t) in the

differential equation, δxx̂ z(x, t) is the second-order central differences on a
nonuniform grid, given by

δxx̂ z(xi, t) = 2
(
hi + hi−1

)−1[
δx z(xi, t)− δx z(xi, t)

]
, (xi, t) ∈ Gh,

δx z(x, t) and δx z(x, t) are the first-order (forward and backward respectively)
difference derivatives

δx z(xi, t) =
(
hi
)−1 [

z(xi+1, t)−z(xi, t)
]
, δx z(x, t) = (hi−1)−1

[
z(xi, t)−z(xi−1, t)

]
,

with hi = xi+1 − xi, hi−1 = xi − xi−1, xi−1, xi, xi+1 ∈ ω and δt z(x, t) =
τ−1[z(x, t)− z(x, t− τ)], (x, t) ∈ Gh.
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To prove the uniform convergence of the finite difference scheme (22), we will
use the following discrete comparison principle.
Lemma 3. The finite difference scheme (22) is ε-uniformly monotone (see,
e.g., [2,14]). Moreover, if the functions z1(x, t), z2(x, t), (x, t) ∈ Gh satisfy
the conditions

Λz1(x, t) ≤Λz2(x, t), (x, t) ∈ Gh \ S±h ,

Λ± z1(x, t)≤Λ± z2(x, t), (x, t) ∈ S±h ,

z1(x, t) ≥ z2(x, t), (x, t) ∈ Sh,

then z1(x, t) ≥ z2(x, t), (x, t) ∈ Gh.

The main result of the paper is the following.
Theorem 2. Let u(x, t) be the solution of (1) and z(x, t) be the solution of
the difference scheme (22) on the grid Gh. Assume that µ ≤ ε. Then, the error
satisfies the estimate

|u(x, t)− z(x, t)| ≤M
[
N−1 lnN +N−10

]
, (x, t) ∈ Gh, (23)

i.e., the difference scheme converges uniformly in ε and µ with first order in
time and almost first order in space.

PROOF. In the proof we distinguish two cases.

In the first one, we assume that σ = d/4, and therefore ε−1 ≤ C lnN . The
truncation error at the interior points of Gh, excluding the interface S±h , is
given by

Λ(u− z) = ε2(δxx̂u− uxx) + µa(x)x2p+1(δ∗xu− ux)− b(x, t)(δtu− ut).

Taking Taylor expansions and using the coarse estimates (4), it is straightfor-
ward to prove that

|Λ(u− z)| ≤M(N−1 lnN +N−10 ), on Gh \ S±h ,

|Λ±(u− z)| ≤M N−1 lnN, on S±h .

Then, from Lemma 3, it follows

|u− z| ≤M
(
N−1 lnN +N−10

)
. (24)

In the second case, we assume that σ 6= d/4. Now, we write the components
of the continuous problem as u = U + V + WL + WR, U = U+ ∪ U−, V =
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V + ∪ V −. Similarly to the continuous problem, we consider a decomposition
of the numerical solution as z = υ+w+wL+wR, υ = υ+∪υ−, w = w+∪w−,
where the discrete regular component υ is the solution of the problem

Λυ = f, in G+
h ∪G−h ,

υ = U, on (S0)h ∪ Slh ∪ Srh,
Λ±υ = ε

[
δx U

+ − δx U−
]
, on S±h ,

(25)

the discrete singular component w is the solution of the problem

Λw = 0, in G+
h ∪G−h ,

w = V = 0, on (S0)h ∪ Slh ∪ Srh,
Λ±w = −Λ±υ on S±h ,

(26)

the discrete singular component wL satisfies

ΛwL = 0, in G−h ,

wL = 0, on (S−0 )h ∪ S±h ,
wL = WL on Slh,

(27)

and the discrete singular component wR satisfies

ΛwR = 0, in G+
h ,

wR = 0, on (S+
0 )h ∪ S±h ,

wR = WR on Srh.

(28)

Using Taylor expansions, the local error associated to the regular component
satisfies

|Λ(υ − U)| ≤M(εN−1 +N−10 ), in G+
h ∪G−h ,

υ − U = 0, on (S0)h ∪ Slh ∪ Srh,
|Λ±(υ − U)| ≤M εN−1, on S±h ,

and therefore, using again the discrete comparison principle, it follows

|(υ − U)| ≤M(εN−1 +N−10 ), on Gh. (29)

Next, we consider the interior layer component. At the boundary, this com-
ponent satisfies

|(w − V )| = 0, on (S0)h ∪ Slh ∪ Srh ,
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and at S±h , we have the estimate∣∣∣Λ±(w − V )
∣∣∣ ≤M N−1 lnN. (30)

We study the error for the grid points in G+ ∪G−. First, we assume that the
grid point is such that |x| ≥ σ. Recall that σ = m−1ε lnN . From (15), (17)
and choosing m1 ≥ m, we obtain

|V (x, t)| ≤Mexp(−m1|x|/ε) ≤MN−1.

To bound its discrete counterpart, we consider the discrete barrier function

φ(xj, t) =



N/2∏
i=j+1

(
1 + r0

hi

ε

)−1
, if 0 ≤ j < N/2,

1, if j = N/2,
j∏

i=N/2+1

(
1 + r0

hi

ε

)−1
, if N/2 < j ≤ N.

It satisfies

ε2δxx̂φ(xj, t) < 2r20φ(xj, t), δxφ(xj, t) > 0, δtφ(xj, t) = 0, in G−h ,

ε2δxx̂φ(xj, t) < 2r20φ(xj, t), δxφ(xj, t) < 0, δtφ(xj, t) = 0, in G+
h .

Thus,

Λφ < 0, in G+
h ∪G−h , Λ±φ < 0, in S±h ,

and therefore the comparison principle proves the following estimate

|w(x, t)| ≤ φ(x, t) ≤MN−r0/m ≤MN−1,

where we have used that m ≤ r0.

From the triangular inequality, we have |w − V | ≤ |w|+ |V |, and therefore

|(w − V )(x, t)| ≤MN−1, |x| ≥ σ, (x, t) ∈ G−h ∪G+
h . (31)

If the grid point is such that |x| < σ, taking Taylor expansions, we deduce
that

|Λ(w − V )(x, t)| ≤M(N−1 lnN +N−10 ), for |x| < σ, (x, t) ∈ G−h ∪G+
h ,

|Λ±(w − V )(x, t)| ≤MN−1 lnN, (x, t) ∈ S±h .

Using the discrete comparison principle, now on the interval [−σ, σ], it follows

|(w − V )(x, t)| ≤M(N−1 lnN +N−10 ), (x, t) ∈ [−σ, σ] ∩ (G−h ∪G+
h ). (32)
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The boundary layer components wL and wR are defined in G− and G+, respec-
tively. Then, the analysis of the convergence of the finite difference scheme on
the Shishkin mesh is standard and we have the estimates

|(WL − wL)| ≤M(N−1 lnN +N−10 ), in G−h ,

|(WR − wR)| ≤M(N−1 lnN +N−10 ), in G+
h .

(33)

From the estimates (29), (30), (31), (32) and (33), it follows

|u− z| ≤M(N−1 lnN +N−10 ),

which is the required result.

4 Numerical experiments

In this section, we show the numerical results obtained for the test problem

ε2uxx + µx3(1 + x2)ux − ut − (3 + xt)u= f(x, t), (x, t) ∈ G \ S±,

ux(x+ 0, t)− ux(x− 0, t) = 0, (x, t) ∈ S±,

u(x, t) = 0, (x, t) ∈ S,

(34)

where G = [−1, 1]× [0, 1], S± = {x = 0} × (0, 1], taking different values of µ
and

f(x, t) =


(1− t2)(x+ ex), if x > 0, t ∈ (0, 1],

−(1 + t)(x2 + 1), if x < 0, t ∈ (0, 1].
(35)

Figure 2 displays the numerical approximation on the piecewise-uniform Shishkin
mesh for ε = 10−2, N = N0 = 32 when µ = ε3/2 = 10−3; from it we see the
interior and the boundary layers.

To approximate the numerical errors we use a variant of the double mesh
principle (see [8]): the approximated error Dε,N,N0

i,n at the grid point (xi, tn) is
calculated by

Dε,N,N0
i,n =

∣∣∣U ε,N,N0
i,n − U ε,2N,2N0

i,n

∣∣∣ , i = 0, 1 . . . , N, n = 0, 1, . . . , N0,

where U ε,N,N0
i,n is the numerical solution obtained on Gh by using the constant

time step τ = 1/N0, and (N + 1) points in the spatial mesh, and U ε,2N,2N0
i,n is

the numerical solution when the time step size is τ/2, and we take (2N + 1)
points in the spatial mesh, but with the same transition parameter as in the
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Fig. 2. Numerical solution of problem (34), (35) for ε = 10−2, µ = 10−3 with
N = N0 = 32 on the Shishkin mesh

original mesh Gh. Both numerical solutions are compared in the coarse grid
Gh. For each fixed value of ε, the maximum global errors Dε,N,N0 are estimated
by

Dε,N,N0 = max
i,n

Dε,N,N0
i,n ,

and therefore, the numerical orders of convergence q are given by

q = q(ε,N,N0) =
log (Dε,N,N0/Dε,2N,2N0)

log 2
.

From these values we obtain the ε-uniform errors DN,N0 and the ε-uniform
orders of convergence quni, respectively, by

DN,N0 = max
ε
Dε,N,N0 , quni = quni(N,N0) =

log
(
DN,N0/D2N,2N0

)
log 2

. (36)

Results of numerical experiments are given in Tables 1–4, where, for simplicity,
we take N = N0.

Table 1 displays the results on a uniform mesh and µ = ε3/2; from it, we see
that the solution of a difference scheme on a uniform mesh does not converge
ε-uniformly.

Table 2 displays the numerical results for errors in the solution of the difference
scheme (22) on the piecewise uniform Shishkin mesh in x taking m = 1/2
with µ = ε3/2. This table shows that the solution of the scheme converges
ε-uniformly with order of the convergence rate close to one in agreement with
the theoretical estimate.

In Tables 3 and 4, the numerical results are given for the same difference
scheme as in Table 2 but with µ = ε in Table 3 and with µ = ε2 in Table
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Table 1
Maximum errors and orders of convergence on a uniform mesh when µ = ε3/2

ε2 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

2−5 0.8244E-2 0.3919E-2 0.1903E-2 0.9367E-3 0.4646E-3 0.2313E-3

1.073 1.042 1.022 1.012 1.006

2−7 0.1388E-1 0.6002E-2 0.2730E-2 0.1294E-2 0.6286E-3 0.3097E-3

1.209 1.137 1.077 1.041 1.021

2−9 0.3161E-1 0.1248E-1 0.5090E-2 0.2242E-2 0.1037E-2 0.4973E-3

1.341 1.294 1.183 1.112 1.061

2−11 0.5521E-1 0.2991E-1 0.1111E-1 0.4293E-2 0.1817E-2 0.8191E-3

0.884 1.428 1.372 1.240 1.149

2−13 0.4255E-1 0.5237E-1 0.2789E-1 0.9800E-2 0.3579E-2 0.1448E-2

-0.300 0.909 1.509 1.453 1.305

2−15 0.1754E-1 0.3947E-1 0.4955E-1 0.2606E-1 0.8710E-2 0.3006E-2

-1.170 -0.328 0.927 1.581 1.535

2−17 0.8315E-2 0.1579E-1 0.3675E-1 0.4717E-1 0.2457E-1 0.7866E-2

-0.926 -1.219 -0.360 0.941 1.643

2−19 0.6745E-2 0.5185E-2 0.1432E-1 0.3460E-1 0.4531E-1 0.2342E-1

0.379 -1.466 -1.272 -0.389 0.952

2−21 0.6314E-2 0.3693E-2 0.4432E-2 0.1319E-1 0.3298E-1 0.4393E-1

0.774 -0.263 -1.573 -1.322 -0.414

2−23 0.6185E-2 0.3307E-2 0.2085E-2 0.3979E-2 0.1235E-1 0.3179E-1

0.903 0.666 -0.933 -1.634 -1.364

2−25 0.6145E-2 0.3198E-2 0.1731E-2 0.1258E-2 0.3647E-2 0.1174E-1

0.942 0.886 0.460 -1.536 -1.687

DN,N0 0.5521E-1 0.5237E-1 0.4955E-1 0.4717E-1 0.4531E-1 0.4393E-1

quni 0.076 0.080 0.071 0.058 0.045

4. We have chosen m = 1/2 in (21) to define the Shishkin mesh. From these
results it follows that the difference schemes converge ε-uniformly with order
of the convergence rate not lower than 0.68 in Table 3 and 1.04 in Table 4.

From results in Tables 2, 3 and 4, it is seen that the rate of the ε-uniform
convergence decreases with growth of µ.

Thus, the results of numerical experiments are in agreement with the theoret-
ical estimate.
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Table 2
Maximum errors and uniform orders of convergence on the Shishkin mesh when
µ = ε3/2

ε2 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

2−5 0.8244E-2 0.3919E-2 0.1903E-2 0.9367E-3 0.4646E-3 0.2313E-3

1.073 1.042 1.022 1.012 1.006

2−7 0.1388E-1 0.6002E-2 0.2730E-2 0.1294E-2 0.6286E-3 0.3097E-3

1.341 1.294 1.183 1.112 1.061

2−9 0.3161E-1 0.1248E-1 0.5090E-2 0.2242E-2 0.1037E-2 0.4973E-3

1.213 1.163 1.114 1.061 1.033

2−11 0.4610E-1 0.2397E-1 0.1082E-1 0.4293E-2 0.1817E-2 0.8191E-3

0.944 1.148 1.334 1.240 1.149

2−13 0.4364E-1 0.2218E-1 0.9537E-2 0.4131E-2 0.1873E-2 0.8960E-3

0.977 1.217 1.207 1.141 1.064

2−15 0.4126E-1 0.2057E-1 0.8469E-2 0.3506E-2 0.1517E-2 0.6992E-3

1.004 1.280 1.272 1.208 1.118

2−17 0.3929E-1 0.1927E-1 0.7641E-2 0.3028E-2 0.1248E-2 0.5509E-3

1.028 1.335 1.335 1.278 1.180

2−19 0.3776E-1 0.1828E-1 0.7118E-2 0.2753E-2 0.1068E-2 0.4443E-3

1.047 1.361 1.370 1.366 1.266

2−21 0.3661E-1 0.1761E-1 0.7011E-2 0.2654E-2 0.1011E-2 0.4084E-3

1.056 1.328 1.401 1.393 1.307

2−23 0.3577E-1 0.1737E-1 0.6937E-2 0.2601E-2 0.9740E-3 0.3852E-3

1.042 1.324 1.415 1.417 1.338

2−25 0.3517E-1 0.1721E-1 0.6884E-2 0.2571E-2 0.9497E-3 0.3700E-3

1.031 1.322 1.421 1.437 1.360

DN,N0 0.4610E-1 0.2397E-1 0.1082E-1 0.4293E-2 0.1873E-2 0.8960E-3

quni 0.944 1.148 1.334 1.197 1.064
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