000061430 001__ 61430
000061430 005__ 20200221144134.0
000061430 0247_ $$2doi$$a10.1063/1.4941835
000061430 0248_ $$2sideral$$a93679
000061430 037__ $$aART-2016-93679
000061430 041__ $$aeng
000061430 100__ $$aHuízar-Félix, A. M.
000061430 245__ $$aAssemblies of magnetite nanoparticles extracted from magnetotactic bacteria: A magnetic study
000061430 260__ $$c2016
000061430 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061430 5203_ $$aSelf-assembly has emerged as a suitable technique for tuning the properties of nanoparticles. In this work, we report the self-assembly of magnetosomes assisted by an external magnetic field. The magnetosomes are magnetite nanoparticles biomineralized by magnetotactic bacteria Magnetospirillum gryphiswaldense. These nanoparticles present truncated cubo-octahedral morphology with a mean diameter of ˜36 nm and are surrounded by a lipid bilayer membrane with a thickness ˜2-4 nm. The use of the appropriate preparation conditions, such as initial colloidal concentration and magnetic fields applied during deposition allowed us to obtain very reproducible self-assembled 2D patterns. Homogeneous ensembles of magnetosomes onto silicon and carbon surfaces are composed of elongated structures in the form of wide chains that cover a large area of the substrates. Transmission electron microscopy image and off-axis electron holography showed the map of the stray magnetic fields produced by these assemblies. The induced magnetic anisotropy was analyzed by measuring the hysteresis loops of the assemblies at different angles in a magneto-optical Kerr effect magnetometer. The evolution of the coercive field and remanence verified the presence of well-defined patterns. The experimental results were analyzed on the based of a biaxial model.
000061430 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-55049-C2-1-R
000061430 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000061430 590__ $$a3.411$$b2016
000061430 591__ $$aPHYSICS, APPLIED$$b28 / 147 = 0.19$$c2016$$dQ1$$eT1
000061430 592__ $$a1.673$$b2016
000061430 593__ $$aPhysics and Astronomy (miscellaneous)$$c2016$$dQ1
000061430 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061430 700__ $$aMuñoz, D.
000061430 700__ $$aOrue, I.
000061430 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, C.$$uUniversidad de Zaragoza
000061430 700__ $$0(orcid)0000-0002-4599-3013$$aIbarra, A.
000061430 700__ $$aBarandiarán, J. M.
000061430 700__ $$aMuela, A.
000061430 700__ $$aFdez-Gubieda, M.
000061430 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000061430 773__ $$g108, 6 (2016), 063109 [5 pp.]$$pAppl. phys. lett.$$tAPPLIED PHYSICS LETTERS$$x0003-6951
000061430 8564_ $$s2086591$$uhttps://zaguan.unizar.es/record/61430/files/texto_completo.pdf$$yVersión publicada
000061430 8564_ $$s138616$$uhttps://zaguan.unizar.es/record/61430/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061430 909CO $$ooai:zaguan.unizar.es:61430$$particulos$$pdriver
000061430 951__ $$a2020-02-21-13:05:09
000061430 980__ $$aARTICLE