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1. INTRODUCTION
In this article we present the design and implementation of a Matlab object-oriented
software library for working with polynomials. We focus our efforts mainly on provid-
ing algorithms for a fast and accurate evaluation of polynomials in Bernstein form and
for an efficient construction of polynomials in this form.

Horner’s algorithm is the usual method for evaluating polynomials. It has linear
complexity. In some recent articles it has been shown that this algorithm is outper-
formed by other algorithms from the point of view of accuracy (see [Delgado and Peña
2009]). In particular, from [Farouki and Rajan 1987], [Mainar and Peña 1999], [Farouki
and Goodman 1996] and [Delgado and Peña 2009] it can be concluded that the de
Casteljau algorithm is the most accurate algorithm among some polynomial evalua-
tion algorithms, including the Horner algorithm. The de Casteljau algorithm evaluates
polynomials represented in the Bernstein form, and is the usual polynomial evaluation
algorithm in Computer Aided Geometric Design (C.A.G.D.). In [Tsai and Farouki 2001]
Tsai and Farouki presented a C++ object-oriented library of numerical algorithms for
polynomials in Bernstein form including the de Casteljau algorithm. Nevertheless, the
de Casteljau algorithm evaluates a polynomial of degree n with O(n2) elementary op-
erations in contrast to the O(n) elementary operations of the Horner algorithm. In
[Delgado and Peña 2009] it was also analyzed the Volk and Schumaker (VS) algorithm
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(see [Schumaker and Volk 1986]), which, like de Casteljau, evaluates polynomials in
the Bernstein form, and, like Horner, is a nested algorithm. As we recall in Section 2,
the conditioning for the representations used by the de Casteljau and VS algorithms
coincides. Besides, the VS algorithm evaluates a polynomial of degree n represented in
Bernstein form with O(n) elementary operations like Horner method. In [Delgado and
Peña 2009] it was proved that the de Casteljau and VS algorithms are more accurate
than Horner algorithm. In fact, Example 3.7 shows this property even for polynomi-
als represented in monomial form through a conversion algorithm from monomial to
Bernstein basis that we include in Section 3. In addition, in [Tsai and Farouki 2001]
the algorithm for the division of polynomials can present an undesired behaviour for
polynomials whose true degree is lower than the degree of the Bernstein basis used in
its representation. In Subsection 3.3 we explain this problem and propose a solution.

The article has the following layout. Section 2 recalls the error analysis for Horner,
de Casteljau and VS algorithms. We also recall the compensated algorithms recently
introduced in [Langlois and Louvet 2007] and [Jiang et al. 2010] for Horner and de
Casteljau algorithms. In addition to the three usual ways of constructing a polynomial
(default, copy and straightforward by providing the coefficients), in Section 3 we also
provide two efficient constructions of a polynomial in Bernstein form when the polyno-
mial is not given with this representation. The first construction computes with high
accuracy the coefficients from the interpolation conditions. The second construction
uses the conversion algorithm from monomial to Bernstein bases mentioned above.

A compensated VS algorithm with a dynamic error estimate is presented in Sec-
tion 4, and a sketch of the proof is given in the accompanying electronic appendix. It
is used in the cases where the VS algorithm is not accurate enough (detected by its
relative running error) and where de Casteljau algorithm is too expensive (due to the
high degree of the polynomial). Examples show that this estimate provides reliable
approximation of the true error when evaluating bad conditioned polynomials. Sec-
tion 5 includes the corresponding adaptative evaluation algorithm and the examples
justifying it.

The structure of the software library, the implementation of functions with common
operations with polynomials and some issues about the design and implementation
related to Matlab peculiarities may be found in the user manual accompanying the
software.

2. BACKGROUND ON EFFICIENT POLYNOMIAL EVALUATION ALGORITHMS
In this section, we survey results on efficient polynomial evaluation algorithms, includ-
ing the running error bounds used in the adaptative evaluation algorithm presented
in this article, which provides its corner stones.

Let U = (u0, . . . , un) be a basis of the space of polynomials Pn of degree at most n.
If p ∈ Pn then there exists a unique real sequence of real coefficients c = (c0, . . . , cn)
such that p(t) =

∑n
i=0 ciui(t) for all t ∈ I. Given an algorithm for the evaluation of a

polynomial p(t) of this form, one obtains the computed value fl(p(t)) in floating point
arithmetic. In practical computations it is also desirable to obtain an error bound or
estimate for the approximation of the exact evaluation p(t) given by fl(p(t)). When we
evaluate a polynomial by an algorithm, the success on the accuracy of the obtained
approximation depends first, on the calculations performed by the algorithm, that is,
the backward error, and second, on the difficulty of the evaluated polynomial, that is,
the condition number of the polynomial with respect to the representation used in the
evaluation algorithm.
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We can consider that the computed fl(p(t)) can be expressed as fl(p(t)) =
∑n

i=0(1 +
δi)ciui(t), where δ = (δi)ni=0 is a perturbation in c. Then for any t ∈ I

|p(t)− fl(p(t))| =
∣∣

n∑

i=0

δiciui(t)
∣∣ ≤ ||δ||∞

n∑

i=0

|ciui(t)|. (1)

The number SU (p(t)) :=
∑n

i=0 |ciui(t)|, acts as a condition number for the evaluation
of p at the point t using the basis U (see [Farouki and Goodman 1996], [Farouki and
Rajan 1987], [Lyche and Peña 2004], [Peña 2002] and [Peña 2006]). Then (1) can be in-
terpreted as an upper bound of the forward error of evaluation of the form of a product
of the backward error and the condition number (cf. [Higham 2002]).

The most well-known polynomial evaluation algorithm is the Horner algorithm. It
uses mn := (mn

0 (t),m
n
1 (t), . . . ,m

n
n(t)), t ∈ [0, 1], the monomial basis of the space Pn

given by mn
i (t) = ti, i = 0, 1, . . . , n, and let us consider p(t) =

∑n
i=0 ci m

n
i (t). But there

are also other polynomials evaluation algorithms: de Casteljau and VS algorithms for
polynomials represented using the Bernstein basis (see [Farin 2002] and [Schumaker
and Volk 1986]), the DP algorithm for polynomials represented in the DP basis (see
[Delgado and Peña 2003] and [Delgado and Peña 2006]), the Clenshaw algorithm for
polynomials represented in orthogonal bases (see [Delgado and Peña 2009]), . . . Let us
now consider the Bernstein basis bn := (bn0 (t), b

n
1 (t), . . . , b

n
n(t)), t ∈ [0, 1], of Pn given by

bni (t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, . . . , n, (2)

and let p(t) =
∑n

i=0 ci b
n
i (t) ∈ Pn. This representation is associated with a well-

known evaluation algorithm in C.A.G.D.: the de Casteljau algorithm. In order to
evaluate polynomials in Bernstein form with the low computational cost of nested
algorithms, the following basis and algorithms can be used. The VS basis zn :=
(zn0 (t), z

n
1 (t), . . . , z

n
n(t)), t ∈ [0, 1], of Pn is given by zni (t) = ti(1 − t)n−i, i = 0, 1, . . . , n,

and let p(t) =
∑n

i=0 ci z
n
i (t) ∈ Pn. Since each function of the VS basis is a multiple of

the corresponding Bernstein polynomial, the corresponding condition numbers coin-
cide Szn(p(t)) = Sbn(p(t)) for all p ∈ Pn and t ∈ [0, 1]. In [Farouki and Goodman 1996] it
was proved that the Bernstein basis is optimally conditioned for polynomial evaluation
among the bases of nonnegative polynomials on [0, 1] in the sense that there does not
exist (up to positive scaling) another basis of nonnegative polynomials on [0, 1] that is
better conditioned at every point t ∈ [0, 1] for every polynomial p(t) of the space (see
[Farouki and Goodman 1996]). It is also known that (Szn(p(t)) =)Sbn(p(t)) ≤ Smn(p(t))
at every point t ∈ [0, 1]. On the other hand, in [Delgado and Peña 2009] it has been per-
formed a comparison between the polynomial evaluation algorithms mentioned above.
It shows that the algorithms associated to the Bernstein bases are the most accurate
algorithms, that is, de Casteljau and VS algorithms.

The VS algorithm has linear time complexity, whereas the de Casteljau algorithm
has quadratic time complexity. Nevertheless, in [Delgado and Peña 2009] it was also
shown that, in the case of extremely ill-conditioned polynomials, the de Casteljau al-
gorithm can outperform VS algorithm in terms of accuracy.

Taking into account the forward error bounds in pp. 40-41 of [Higham 2002], [Mainar
and Peña 1999] and Theorem 4.2 of [Delgado and Peña 2009], and the relative error
bound in Theorem 3.1 of [Delgado and Peña 2009], we get the following forward er-
ror bounds for the relative errors when evaluating the polynomial by the Horner, de
Casteljau and VS algorithms:

∣∣∣∣
fl(p(t))− p(t)

p(t)

∣∣∣∣ ≤ k · n · u SU (p(t))

|fl(p(t))| +O(u2), (3)
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assuming that |fl(p(t))| > uk · n · SU (p(t)) and k nu < 1, with k = 2 for Horner and de
Casteljau, k = 4 for VS, U = mn for Horner and U = bn for de Casteljau and VS, where
u is the unit roundoff. In conclusion, the relative error bounds of de Casteljau and
VS algorithms are lower than that of Horner algorithm due to the better conditioning
of their bases. This is confirmed by the numerical experiments in this article and in
[Delgado and Peña 2009].

Running error bounds for these algorithms were also obtained in [Mainar and Peña
1999] and [Delgado and Peña 2009]. In Algorithm 1 we recall the de Casteljau case,
which will be used in the implementation of our adaptative evaluation algorithm, as
recalled in Section 5. With the symbols ⊕, ⊖, ⊗ and ⊘ we represent the floating point
addition, subtraction, multiplication and division.

Algorithm 1 De Casteljau algorithm for the evaluation of p ∈ Pn at t
Require: t ∈ [0, 1] and (ci)ni=0
Ensure: res ≈

∑n
i=0 cib

n
i (t)

f0
j (t) := cj , j = 0, . . . , n

fr
j (t) = (1− t)⊗ fr−1

j (t)⊕ t⊗ fr−1
j+1 (t), j = 0, . . . , n− r, r = 1, . . . , n

res = fn
0 (t)

The following result with a running relative error bound is a consequence of Theo-
rem 5.2 of [Delgado and Peña 2009] and (3).

THEOREM 2.1. Let us consider the Bernstein basis bn and the associate de Casteljau
algorithm (Algorithm 1). Let p(t) =

∑n
i=0 ci b

n
i (t) and assume that 2nu < 1, where u is

the unit roundoff. Then we have that |res− p(t)| ≤ uπn
0 , where πn

0 is given by π0
j = 0 for

all j ∈ {0, 1, . . . , n} and πr
j = (1 − t)πr−1

j + tπr−1
j+1 + (1 − t)|fr−1

j (t)| + t|fr−1
j+1 (t)| + |fr

j (t)|
for all r ∈ {1, . . . , n} and j ∈ {0, 1, . . . , n− r}. Moreover, if |res| > uπn

0 , then
∣∣∣∣
res− p(t)

p(t)

∣∣∣∣ ≤ u
πn
0

|res| +O(u2). (4)

As for the VS algorithm, presented in Section 4 (Algorithm 3), the next result follows
from Theorem 4.3 of [Delgado and Peña 2009] and (3).

THEOREM 2.2. Let us consider the VS basis zn and the associated VS algorithm
(Algorithm 3). Let p(t) =

∑n
i=0 ci z

n
i (t) and assume that 4nu < 1, where u is the unit

roundoff. Then |p(t) − res| ≤ u π̃ + O(u2), where, if t ≥ 1/2, π̃ = fl(tn)πn + |pn|(n −
1)fl(tn) + |res|, π0 = 0 and, for i = 1, . . . , n, πi = πi−1 q + 2|pi−1| q + |pi|, and, if t < 1/2,
then π̃ = fl((1 − t)n)π0 + |p0|(n − 1)fl((1 − t)n) + |res|, πn = 0 and for i = 1, . . . , n,
πn−i = πn+1−i q + 2|pn+1−i| q + |pn−i|. Moreover, if |res| > u π̃, then

∣∣∣∣
res− p(t)

p(t)

∣∣∣∣ ≤ u
π̃

|res| +O(u2). (5)

Given an algebraic expression defined by additions, subtractions, multiplications
and divisions and assuming that each initial real datum is known to high relative
accuracy, then it is well known that the algebraic expression can be computed to high
relative accuracy if it is defined by sums of numbers of the same sign, products and
quotients (cf. p. 52 of [Demmel et al. 1999]). In other words, the only forbidden oper-
ation is true subtraction, due to possible cancellation in leading digits. Moreover, in
(well–implemented) floating point arithmetic high relative accuracy is also preserved
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even when we perform true subtractions when the operands are original (and so, ex-
act) data (cf. p. 53 of [Demmel et al. 1999]). Observe that the linear approximation to
the running relative error bounds of the two previous theorems can be calculated to
high relative accuracy.

Graillat, Langlois and Louvet presented a compensated Horner algorithm for the
evaluation of a polynomial represented in the monomial basis [Langlois et al. 2005],
[Langlois and Louvet 2007]. The compensated algorithm is accurate for not too ill-
conditioned polynomials. In fact, the compensated version of an algorithm delays the
effects of the bad conditioning in the accuracy of the results. The key tool to obtain more
accurate results is to apply what Ogita, Rump and Oishi call error-free transformations
(see [Ogita et al. 2005]). A compensated version of the de Casteljau algorithm for the
evaluation of a polynomial in Bernstein form was derived in [Jiang et al. 2010]. Let
us recall the typical improvement of these compensated algorithms for the evaluation
accuracy. If we have an evaluation algorithm of a polynomial p(t) represented in a basis
U with a forward error bound of the form:

|p(t)− fl(p(t))| ≤ (|p(t)|SU (p(t)))×O(u),

then the compensated algorithm produces a computed evaluation fl(p(t)) satisfying

|p(t)− fl(p(t))| ≤ |p(t)|u+ (|p(t)|SU (p(t)))×O(u2).

In this article we propose an adaptative evaluation algorithm using the VS algorithm
except when the relative error bound requires more accuracy. In this case, we apply
either the de Casteljau algorithm or the compensated VS algorithm, presented in Sec-
tion 4, depending on the computational cost. Since VS and de Casteljau algorithms
require a polynomial represented in the Bernstein form, we devote the following sec-
tion to efficient constructions of polynomials in this form.

3. EFFICIENT CONSTRUCTIONS OF POLYNOMIALS IN BERNSTEIN FORM
We have seen in the previous section that the most accurate algorithms for the eval-
uation of polynomials use the Bernstein representation of polynomials. Hence, all the
three nonstraightforward constructors for polynomials we will provide in the software
library aim to providing the coefficients c0, . . . , cn of the polynomial p(t) =

∑n
i=0 cib

n
i (t)

with high accuracy. In this section, we present recent algorithms existing in the litera-
ture for constructing with high accuracy the Bernstein representation of a polynomial
from its interpolation conditions and a new method for converting a polynomial in
monomial form to its Bernstein representation. In Subsection 3.3 we show how to con-
struct the polynomial in Bernstein form resulting from the division of two polynomials.

3.1. Recent algorithms for constructing the Bernstein representation of a polynomial from
its interpolation conditions

Given the interpolation conditions let us construct the corresponding interpolation
polynomial in Bernstein form. Given a sequence of parameters t = (ti)0≤i≤n verify-
ing 0 < t0 < t1 < · · · < tn < 1 and a sequence of points q = (qi)0≤i≤n, it is well
known that there exists a unique p(t) ∈ Pn satisfying p(ti) = qi for 0 ≤ i ≤ n. The con-
structor we provide, given t and q, computes with high accuracy the coefficients vector
c = (c0, c1, . . . , cn) such that the polynomial p(t) =

∑n
i=0 cib

n
i (t) satisfies the interpo-

lation conditions. Given a polynomial in the Bernstein form p(t) =
∑n

i=0 cib
n
i (t), the

interpolation conditions can be formulated as the following Bernstein-Vandermonde
linear system of equations (BV linear system): B(c0, c1, . . . , cn)T = (q0, q1, . . . , qn)T ,

where B = M

(
bn0 , b

n
1 , . . . , b

n
n

t0, t1, . . . , tn

)
is the collocation matrix of the basis (bn0 , b

n
1 , . . . , b

n
n) at
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t0, t1, . . . , tn. From now on, we will refer to a matrix like B as a Bernstein-Vandermonde
(BV) matrix. A matrix is said to be totally positive (TP) if all its minors are nonnega-
tive. It is well known that a nonsingular TP matrix and its inverse can be factorized as
the product of bidiagonal matrices (see [Gasca and Peña 1996]). BV matrices are non-
singular stochastic TP matrices (see [Marco and Martı́nez 2007]). In [Koev 2007], as-
suming that bidiagonal decomposition of the inverse A−1 of a TP matrix A is given with
high relative accuracy, Koev presents algorithm for solving linear systems of equations
of the form Ax = b, with high accuracy. In [Koev 2013] we can get the library TNTool de-
veloped by Koev. This software is distributed under the GNU General Public License.
The library implements in Matlab the algorithms in [Koev 2007] and [Koev 2005] for
TP matrices. In particular, the function TNSolve(C,b) of this library, given the bidiag-
onal decomposition C of the inverse A−1 of a TP matrix A with high relative accuracy,
returns the solution x of the linear system Ax = b with high accuracy. So, we only need
to obtain the bidiagonal decomposition of the inverse of a BV matrix with high relative
accuracy in order to solve the above BV linear system of equations with high accuracy,
obtaining in this way the corresponding interpolation polynomial in Bernstein form.
In [Marco and Martı́nez 2007] a bidiagonal factorization of the inverse of a BV matrix
is provided, as the following result recalls.

THEOREM 3.1. Let B be a BV matrix. Then B−1 admits a factorization of the form
B−1 = G1G2 · · ·GnD−1FnFn−1 · · ·F1, where Fi (GT

i , resp.) is the (n+1)×(n+1) lower tri-
angular and bidiagonal matrix coinciding with the corresponding identity matrix, up to
the entries (i+1, i), (i+2, i+1), . . . , (n+1, n), which are −mi,i−1,−mi+1,i−1, . . . ,−mn,i−1

(−m̃i,i−1,−m̃i+1,i−1, . . . ,−m̃n,i−1, resp.) and D = diag(p11, p22, . . . , pn+1,n+1), with

mij =
(1− ti)n−j(1− ti−j−1)

(1− ti−1)n−j+1

∏i−1
k=i−j(ti − tk)

∏i−2
k=i−j−1(ti−1 − tk)

, for 0 ≤ j < i ≤ n,

m̃ij =
n− i+ 1

i

tj
1− tj

, for 0 ≤ j < i ≤ n,

pii =

(
n

i

)
(1− ti)n−i

∏i−1
k=0(1− tk)

i−1∏

k=0

(ti − tk), for 0 ≤ i ≤ n.

The elements mij , m̃ij , pii can be computed with high relative accuracy, as was
pointed out in [Marco and Martı́nez 2007], where the corresponding algorithm was
proposed. The library TNTool contains the function TNBDBV(t) (contributed by J.-J.
Martı́nez) implementing this algorithm, which provides the bidiagonal decomposition
C of the BV matrix with nodes t with high relative accuracy. Then, the solution of the
BV linear system can be computed by obtaining the bidiagonal decompositions of its
coefficient matrix with C=TNBDBV(t) with t = (t0, . . . , tn) and then c=TNSolve(C,q). The
corresponding way of calling the constructor of our class for building up the interpo-
lation polynomial is polynomial(t,p). In this case, the constructor calls to the non-
member interpolation(t,p) function. interpolation(t,p) first calls the nonmember
function bd(t), which contains the implementation of TNBDBV and provides the bidi-
agonal decompositions of the correspondig BV matrix. Then, interpolation uses the
code in TNSolve for the decomposition of the BV matrix to obtain the solution of the
BV linear system.

3.2. A new method for converting a polynomial in monomial form to its Bernstein
representation

The usual form for representing a polynomial uses the monomial basis. But, since the
more accurate algorithms for the evaluation of polynomials use the Bernstein basis,
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it would be desirable to obtain a stable algorithm in order to construct a polynomial
in monomial form to its Bernstein representation. It is well known (see [Farin 2002])
that

tj =
n∑

k=j

(k
j

)
(n
j

)bnk (t), for j = 0, 1, . . . , n.

We can express the previous formula in matrix form as follows:
(1, t, . . . , tn) = (bn0 (t)b

n
1 (t), . . . , b

n
n(t))A, (6)

where A = (aij)1≤i,j≤n+1 is the lower triangular matrix defined by aij =
(i+j−2

j−1

)
/
( n
j−1

)

if j ≤ i and by aij = 0 otherwise. Now we need an auxilliary result.
LEMMA 3.2. The matrix A of (6) can be factorized in the following two ways:

A = PLD2 and A = D1P̃LD2,

where D1 = diag(20, 21, . . . , 2n), D2 = diag(1/
(n
0

)
, 1/

(n
1

)
, . . . , 1/

(n
n

)
), PL = (

(i
j

)
)0≤i,j≤n is

the lower triangular Pascal matrix and P̃L = (
(i
j

)
/2i)0≤i,j≤n.

In Section 2 of [Alonso et al. 2013], a bidiagonal decomposition of the lower triangu-
lar Pascal matrix PL was presented.

LEMMA 3.3. (cf. Lemma 1 of [Alonso et al. 2013].) The lower triangular Pascal ma-
trix PL = (

(i
j

)
)0≤i,j≤n admits the following bidiagonal matrix factorization:

PL = Fn . . . F1,

where Fi is the (n+1)× (n+1) matrix with 1’s in the (i+1, i), (i+2, i+1), . . . , (n+1, n)
and in the diagonal entries.

The following result presents the bidiagonal factorization of the matrix P̃L of Lemma
3.2.

LEMMA 3.4. The triangular matrix P̃L = D−1
1 PL = (

(i
j

)
/2i)0≤i,j≤n, where D1 =

diag(20, 21, . . . , 2n), admits the following bidiagonal matrix factorization:

P̃L = F̃n . . . F̃1,

where F̃i is the (n+1)×(n+1) matrix with 1’s in the diagonal entries (1, 1), . . . , (i, i) and
1/2’s in (i+1, i), (i+2, i+1), . . . , (n+1, n) and (i+1, i+1), (i+2, i+2), . . . , (n+1, n+1)
entries.

PROOF. Let us prove by induction on i = 0, 1, . . . , n− 1 that

D1F̃nF̃n−1 · · · F̃n−i = FnFn−1 · · ·Fn−iD1,i (7)

where D1,i is the (n+1)× (n+1) matrix diag(20, 21, . . . , 2n−2−i, 2n−1−i, . . . , 2n−1−i) and
the matrices Fi are defined in Lemma 3.3. For i = 0 we have that D1F̃n = FnD1,0. Now
let us assume that formula (7) holds for i ∈ {0, 1, . . . , n−2} and let us prove that it also
holds for i+1. For this purpose, let us calculate D1F̃nF̃n−1 · · · F̃n−1−i. By the induction
hypothesis we have that

D1F̃n · · · F̃n−iF̃n−1−i = (D1F̃n · · · F̃n−i)F̃n−1−i = FnFn−1 · · ·Fn−iD1,iF̃n−1−i. (8)

So, now we only need to check that D1,iF̃n−1−i = Fn−1−iD1,i+1 and the induction fol-
lows. By formula (7) for i = n−1, taking into account that D1,n−1 is the identity matrix,
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and by Lemma 3.3, we have that D1F̃n · · · F̃1 = Fn · · ·F1 = PL. Hence, we conclude that
F̃n · · · F̃1 = D−1

1 PL = P̃L.
Taking into account the results in lemmas 3.2, 3.3 and 3.4, we can obtain bidiagonal

factorizations of matrix A.
THEOREM 3.5. The matrix A = (

(i
j

)
/
(n
j

)
)0≤i,j≤n admits the following factoriza-

tion: A = D1F̃n . . . F̃1D2, where the matrices F̃i are given in Theorem 3.4, D1 =
diag(20, 21, . . . , 2n) and D2 = diag(1/

(n
0

)
, 1/

(n
1

)
, . . . , 1/

(n
n

)
).

We now include the conversion algorithm associated to the factorization of Theorem
3.5.

Algorithm 2 MONOMIAL2BERNSTEIN algorithm for the conversion of a polynomial
in monomial form to its Bernstein representation
Require: (di)ni=0
Ensure: (ci)ni=0 such that

∑n
i=0 dim

n
i (t) ≈

∑n
i=0 cib

n
i (t)

for i = 0 to n do
ci = di ⊘

(n
i

)

end for
for r = 1 to n do

for i = 1 to n+ 1− r do
cn+1−i =

1
2 ⊗ cn−i ⊕ 1

2 ⊗ cn+1−i

end for
end for
for i = 1 to n do

ci = ci ⊗ 2i

end for

Remark 3.6. Observe that the product F̃n · · · F̃1 in Theorem 3.5 (corresponding to
the steps of Algorithm 2 up to the first and last step) is a product of stochastic bidi-
agonal matrices. This implies that the associated operations are convex combinations
and so they are very stable. Let us justify it. The growth factor of a numerical algo-
rithm is usually defined as the quotient between the maximal absolute value of all the
elements that occur during the execution of the algorithm and the maximal absolute
value of all the initial data. It is well known that the growth factor is a stability indi-
cator of the algorithm. Since each elementary step of the corner cutting algorithm is a
convex combination of two numbers previously computed, the growth factor is optimal
(that is, 1) and overflow is avoided.

The previous algorithm has been implemented as monomial2Bernstein(d) Matlab
function, which is called from the constructor of the class when using the command
Polynomial(d,’m’), where ’m’ means monomial, or shorter Polynomial(d).

The next example compares the results obtained when evaluating a polynomial rep-
resented in its monomial form by the usual Horner algorithm versus evaluating it
by de Casteljau and VS algorithms after converting the polynomial into its Bernstein
form through Algorithm 2

EXAMPLE 3.7. Let us consider the polynomial (see p. 753 of [Jiang et al. 2010])
p(t) = (t− 3/4)7 (t− 1) We evaluate this polynomial by the usual Horner algorithm
with double precision at 400 points equally distributed between 0.70005 and 0.79995,
both included. In addition, we convert the polynomial above into its Bernstein form
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Fig. 1. Errors when evaluating p(t)

by Algorithm 2 and then we evaluate it by the de Casteljau and VS algorithms. We
also obtain the exact value of the polynomial at those 400 points by using a symbolic
computation software and compute the relative errors of the three previous procedures
for the evaluation. Figure 1 shows the relative errors.

We can observe that, in spite of the conversion from monomial basis to Bernstein
basis, de Casteljau and VS algorithms provide in general better aproximations of the
values of the polynomial than the Horner algorithm.

3.3. Constructing the quotient polynomial of a division in Bernstein form
In the public member function mrdivide(obj1,obj2), we overload the operator / in
order to divide polynomials in Bernstein form taking into account the algorithm in
[Tsai and Farouki 2001]. As we have mentioned in the introduction, that algorithm
can present an undesired behaviour for polynomials whose true degree is lower than
the degree of the Bernstein basis used in its representation. This algorithm provides
the quotient and the remainder of the division by solving a linear system of equations.
Given a polynomial in the monomial basis, its exact degree is obviously determined.
However, in some occasions, a polynomial represented in the Bernstein basis of n de-
gree can, in fact, be represented exactly in a Bernstein basis of degree lower than n.
For example, t =

∑n
i=0(i/n)b

n
i (t) for any integer n ≥ 1. In particular, if we perform the

division
∑4

i=0(i/4)b
4
i (t)/

∑3
i=0(i/3)b

3
i (t) with the algorithm in [Tsai and Farouki 2001]

the coefficient matrix of the corresponding linear system is singular:
⎛

⎜⎝

0 0 1 0
1/3 0 2/3 1/3
1/3 1/3 1/3 2/3
0 1 0 1

⎞

⎟⎠

This fact can occur when the exact degree of some of the two polynomials involved in
the division is lower than the degree of the basis used to represent it. In these cases
the linear systems have infinite solutions. Depending on the version of Matlab we are
using, we can either get one of these solutions arbitrarily or get no solution. In order
to solve this problem, the degree of the Bernstein bases used in the representations
has to be reduced to the true exact degree of the polynomial. So, we have included the
member function degreeReduction(), which first checks the true exact degree of the
polynomial and then returns the same polynomial expressed in the Bernstein basis
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of least degree possible. To check the true exact degree of a polynomial in Bernstein
form p(t) =

∑n
i=0 cib

n
i (t), we have used the first formula of Property 14 of Section 5.1 of

[Farouki 2012] (page 392). So, the true exact degree of p(t) is n− r for some r ≥ 1 if and
only if ∆n−rc0 ̸= 0 and ∆kc0 = 0 for k = n−r+1, . . . , n, where ∆k is the k-th progressive
difference. In the case of existing such an r ≥ 1, using the second formula of Property
14 of Section 5.1 of [Farouki 2012], we can express p(t) like p(t) =

∑n−r
i=0 cn−r

i bn−r
i (t)

where

cn−r
i =

i∑

j=0

(−1)i−j

(i−j+r−1
r−1

)(n
j

)
(n−r

i

) cj .

Therefore, in mrdivide(obj1,obj2) we apply first the degree reduction function to the
two polynomials obj1 and obj2 in order to avoid the previous problems and so, the
remainder with true exact degree less than the degree of polynomial obj2 and the
correspondig quotient are obtained.

4. VS COMPENSATED ALGORITHM
This section presents the computationally efficient VS algorithm, shows how to com-
pensate its rounding errors and includes a dynamic error estimate.

4.1. The Volk-Schumaker algorithm
In [Schumaker and Volk 1986] a nested type algorithm for the evaluation of bivariate
polynomials of total degree n was presented. This algorithm has been adapted for the
evaluation of polynomials with linear time complexity. The VS algorithm evaluates
polynomials in Pn represented in the VS basis zn with O(n) computational cost. Al-
gorithm 3 shows the VS algorithm. This algorithm has been implemented as a usual
Matlab function [y,errBound]=Vs(coeff,x), with coeff a vector with the coefficients
of the corresponding polynomial with respect to the Bernstein basis, x the point or
vector of points where the polynomial is evaluated at. The function, in addition to the
approximated values of the polynomial at the points in x, also returns realistic upper
bounds on the corresponding relative errors through the relative running error bounds
in Theorem 2.2.

4.2. Error-free transformations
In our algorithm we shall use the error-free trasformations TwoSum and TwoProduct
(see [Ogita et al. 2005]) for computing sums and products. In [Knuth 1998] Knuth in-
troduced the algorithm TwoSum for the summation, whereas in [Dekker 1971] Dekker
presented the algorithm TwoProduct, due to G.W. Veltkamp, for the product. On the
other hand, for computing quotients we shall use the error-free transformation DivRem
introduced in [Pichat and Vignes 1993]. Algorithms 6, 4 and 7 show these three al-
gorithms (TwoSum, TwoProduct and DivRem), which have been included in the software
library as usual Matlab functions.

Error analyses of these three algorithms have been shown in Theorem 3.4 of [Ogita
et al. 2005] and Théorème 3.14 of [Louvet 2007]. The following theorem summarizes
these results.

THEOREM 4.1. Let F be the set of standard floating point numbers corresponding
to a certain floating point arithmetic. If a, b ∈ F, then:

i. [x, y] = TwoSum(a, b) satisfies

a+ b = x+ y, x = a⊕ b, |y| ≤ u|x|, |y| ≤ u|a+ b|.
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Algorithm 3 VS algorithm for the evaluation of a polynomial p at a point t
Require: t ∈ [0, 1] and (ci)ni=0
Ensure: res ≈

∑n
i=0 ciz

n
i (t)

if t ≥ 1/2 then
q = (1⊖ t)⊘ t
p0 = c0
for i = 1 to n do
pi = pi−1 ⊗ q ⊕ ci

end for
fn = pn
for i = 1 to n do
fn−i = fn+1−i ⊗ t

end for
res = f0

else
q = t⊘ (1⊖ t)
pn = cn
for i = 1 to n do
pn−i = pn+1−i ⊗ q ⊕ cn−i

end for
f0 = p0
for i = 1 to n do
fi = fi−1 ⊗ (1− t)

end for
res = fn

end if

Algorithm 4 TwoProduct algorithm
Require: a, b
Ensure: [x, y] such that x+ y = a · b

1: x = a⊗ b
2: [a1, a2] = Split(a)
3: [b1, b2] = Split(b)
4: y = a2 ⊗ b2 ⊖ (((x ⊖ a1 ⊗ b1) ⊖ a2 ⊗

b1)⊖ a1 ⊗ b2)

Algorithm 5 Split algorithm
Require: a
Ensure: [x, y] such that x+ y = a

1: c = factor⊗ a %factor = 227 +1
in IEEE 754

2: x = c⊖ (c⊖ a)
3: y = a⊖ x

Algorithm 6 TwoSum algorithm
Require: a, b
Ensure: [x, y] such that x+ y = a+ b
x = a⊕ b
z = x⊖ a
y = (a⊖ (x⊖ z))⊕ (b⊖ z)

Algorithm 7 DivRem algorithm
Require: a, b
Ensure: [q, r] such that a = b · q + r
q = a⊘ b
[x, y] = TwoProduct(q, b)
r = (a⊖ x)⊖ y

ii. [x, y] = TwoProduct(a, b) satisfies, if not underflow occurs,

a · b = x+ y, x = a⊗ b, |y| ≤ u|x|, |y| ≤ u|a · b|.
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iii. [q, r] = DivRem(a, b) satisfies, if not underflow occurs,
a = b · q + r, q = a⊘ b, |r| = u|b · q|, |r| ≤ u|a|.

4.3. Compensated VS algorithm with a dynamic error estimate
We now present the main result of this section: a compensated VS algorithm with a
dynamic error estimate (see Algorithm 8). Algorithm 8 has been implemented in the
library as the usual Matlab function CompVs(coeff,x), where coeff is a vector with
the coefficients of the polynomial to be evaluated with respect to the Bernstein basis
and x is the point or vector of points where the polynomial is evaluated at.

Given k ∈ N0 such that ku < 1, let us define γk := ku/(1 − ku) = ku +O(u2), where
u is the unit roundoff.

THEOREM 4.2. Let p(t) =
∑n

i=0 ci z
n
i (t) ∈ Pn and t ∈ [0, 1]. Then, when Algorithm 8

is performed in floating point arithmetic with unit roundoff u we obtain
i) if t ≥ 1/2

p(t) = V S(t, (c0, . . . , cn)) +
[
t× pM (t) + pMα (t)

]
,

where pM and pMα are n− 1 degree polynomials given by

pM (t) =
n−1∑

i=0

lMi+1t
i(1− t)n−1−i and pMα (t) =

n−1∑

i=0

αM
i ti,

with lMi+1 = ((ρ+ βM )/t)× pi + πM
i+1 + σM

i+1, and if t < 1/2

p(t) = V S(t, (c0, . . . , cn)) + [(1− t)× pm(t) + pmα (t)]

where pm and pmα are n− 1 degree polynomials given by

pm(t) =
n−1∑

i=0

lmi ti(1− t)n−1−i and pmα (t) =
n−1∑

i=0

αm
i ti,

with lmi = ((βm − ρ× q)/(1− t))pi+1 + πm
i + σm

i .
ii) a floating point approximation res to the exact value p(t) where

|p(t)− res| ≤ γ2 |p(t)|+ 4γ2
4np̃(t) and |p(t)− res|

|p(t)| ≤ γ2 + 4γ2
4nSbn(p(t)).

if no underflow occurs.
The proof of the previous theorem can be seen in the accompanying electronic ap-
pendix.

Remark 4.3. Taking into account (3) and that γk = k u+O(u2), we can deduce the
following linear approximations of the bounds of the relative errors in Theorem 4.2 ii):

|p(t)− res|
|p(t)| ! 2u+ 64n2u2 fl(p̃(t))

|res|
if |res| " 2u |res|+ 64n2u2 fl(p̃(t)).

In the Matlab function implementing the compensated VS algorithm, the computa-
tion of the dynamic estimate has also been included. Although rounding errors have
not been taken into account for the linear approximation to the dynamic estimate, we
can observe that its computation is substraction-free and so it is computed with high
relative accuracy. However, evaluation is affected by the truncation due to the linear
approximation.
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Algorithm 8 VS compensated algorithm for the evaluation of p ∈ Pn at t
Require: t ∈ [0, 1] and (ci)ni=0
Ensure: res ≈

∑n
i=0 ciz

n
i (t)

[r, ρ] = TwoSum(1,−t)
if t ≥ 1/2 then

[q,βM ] = DivRem(r, t)
p0 = c0
for i = 1 to n do
[ai,πM

i ] = TwoProd(q, pi−1)
[pi,σM

i ] = TwoSum(ai, ci)
lMi = ((ρ⊕ βM )⊘ t)⊗ pi−1 ⊕ πM

i ⊕ σM
i

end for
fn = pn
for i = 1 to n do
[fn−i,αM

n−i] = TwoProd(fn+1−i, t)
end for
res = f0 ⊕ t⊗ V S(t, (lM1 , . . . , lMn ))⊕Horner(t, (αM

0 ,αM
1 , . . . ,αM

n−1))
else

[q,βm] = DivRem(t, r)
pn = cn
for i = 1 to n do
[an−i,πm

n−i] = TwoProd(q, pn+1−i)
[pn−i,σm

n−i] = TwoSum(an−i, cn−i)
lmn−i = ((βm ⊖ ρ⊗ q)⊘ (1⊖ t))⊗ pn+1−i ⊕ πm

n−i ⊕ σm
n−i

end for
f0 = p0
for i = 1 to n do
[fi,αm

i ] = TwoProd(fi−1, 1⊖ t)
end for
res = fn ⊕ r ⊗ V S(t, (lm0 , . . . , lmn−1))⊕Horner(t, (αm

n , . . . ,αm
1 ))

end if

5. NUMERICAL EXPERIMENTS AND THE ADAPTATIVE EVALUATION ALGORITHM
This section includes numerical experiments that motivate our polynomial adaptative
evaluation algorithm presented at the end.

5.1. Numerical experiments
In Example 3.7 we have seen that the de Casteljau algorithm can provide more accu-
rate evaluations than Horner algorithm even if the polynomial is given in its mono-
mial form and it must be converted into its Bernstein form before being evaluated
through the de Casteljau algorithm. In fact, if the polynomial is given in its Bernstein
form, the evaluations provided by the de Casteljau algorithm are much more accurate
than the ones provided by the Horner algorithm (see [Delgado and Peña 2009]). In or-
der to propose an efficient evaluation algorithm we must study the performance of de
Casteljau, compensated de Casteljau, VS and compensated VS algorithms. First, let
us compare these four algorithms by evaluating the polynomials p(t) in Example 3.7
and q(t) = p(1− t).

EXAMPLE 5.1. We have evaluated the polynomials p(t) = (t− 3/4)7 (1−t) and q(t) =
(t− 1/4)7 t at 400 points equally distributed in [0.74995, 0.75005] and [0.24995, 0.25005],
respectively, by the de Casteljau, VS algorithm and their compensated versions in dou-
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Fig. 2. Errors when evaluating p(t) and q(t)
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Fig. 3. Estimate of the relative errors when evaluating p(t) and q(t)

ble precision. Then we have obtained the exact values of the polynomials at those points
and we have computed the corresponding relative errors. Figure 2 shows the relative
errors corresponding to the four algorithms. We can observe that the compensated ver-
sions of VS and de Casteljau algorithms behave much better than the usual VS and
de Casteljau algorithms. In fact, both compensated versions of the VS and de Casteljau
algorithms provide errors of the same magnitude as we can see in the figure. In turn,
the curves of the errors for VS and de Casteljau algorithms overlap.

We have also evaluated both polynomials at 400 points equally distributed in
[0.74005, 0.75995] and [0.24005, 0.25995], respectively, by the compensated VS algorithm
in double precision, obtaining the linear approximation of the bound presented in Re-
mark 4.3, which can be considered as an estimate of the error because of the truncation
and rounding errors. We have also obtained the exact values of the polynomials at those
points and we have computed the corresponding relative errors. In Figure 3 we show
the relative errors and the corresponding estimate for these errors. We can observe that
the estimate of the errors present a better behaviour at the points where the polynomials
are worse conditioned. In turn, at these points compensated algorithms also present the
greatest improvements on the accuracy over their not compensated versions.
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Fig. 4. Relative errors when evaluating r(t)
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Fig. 5. Relative errors when evaluating s(t)

We have seen in the previous example that the compensated version of an algorithm
provides more accurate results than the not compensated version with the drawback
of a greater computational cost. The example also shows that both compensated VS al-
gorithm and compensated de Casteljau algorithm have a very similar behaviour with
respect to error. Although this is the most frequent behaviour, for some few polynomi-
als this fact can vary. Let us see a couple of these examples.

EXAMPLE 5.2.

a) We have evaluated the polynomial r(t) =
(
t− 1

2

)20
t at 400 points equally distributed

in [0.40005, 0.59995] by the de Casteljau, VS algorithm and their compensated versions
in double precision. Then we have obtained the exact values of the polynomials at those
points and we have computed the corresponding relative errors. Figure 4 shows these
errors. We can observe that de Casteljau, its compensated version and VS algorithms
have a very similar behaviour with respect to the error, whereas the compensated VS
algorithm provides the best approximations.

b) We have evaluated the polynomial s(t) = (t− 1/2)20 at 400 points equally distributed
in [0, 1] by the de Casteljau, VS algorithm and their compensated versions in double
precision. Then we have obtained the exact values of the polynomials at those points
and we have computed the corresponding relative errors. Figure 5 shows the relative
errors. We can observe that the de Cateljau algorithm and its compensated version
have a good and similar behaviour with respect to error, whereas the compensated VS
algorithm also provides very accurate approximations except at points very close to
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Table I. Errors and execution times for random polynomials
Degree

10 20 30 40 50

Cast.
Time (sec) 4.4057e-03 1.5202e-02 3.3820e-02 5.6417e-02 8.8246e-02

Mean rel. error 2.0558e-15 4.3251e-15 4.4042e-15 8.0022e-15 1.3028e-14
Max. rel. error 7.8412e-15 2.3901e-14 1.0987e-14 2.4916e-14 8.2453e-14

comp.
Cast.

Time (sec) 1.8609e-02 7.0303e-02 1.5848e-01 2.7072e-01 4.2927e-01
Mean rel. error 5.4403e-16 8.2449e-16 6.4405e-16 5.2037e-16 8.3408e-16
Max. rel. error 5.7845e-15 7.8514e-15 9.5099e-15 2.9006e-15 5.9944e-15

VS
Time (sec) 1.7140e-03 2.9853e-03 4.4099e-03 5.5108e-03 6.9082e-03

Mean rel. error 1.2956e-15 1.7470e-15 3.4802e-15 3.0818e-15 4.6449e-15
Max. rel. error 2.9565e-15 4.2721e-15 8.5307e-15 1.1587e-14 1.1329e-14

comp.
VS

Time (sec) 1.2789e-02 2.1592e-02 3.1637e-02 3.9230e-02 4.9360e-02
Mean rel. error 7.9047e-16 1.5601e-15 1.7146e-15 2.3832e-15 2.5049e-15
Max. rel. error 5.0133e-15 9.6988e-15 7.2205e-15 6.1460e-15 7.1527e-15

0.5, which is the root of multiplicity 20 of the polynomial. On the other hand, the VS
algorithm has not an acceptable behaviour.

The next example compares errors and running times for random polynomials.

EXAMPLE 5.3. In this example we have considered 100 polynomials of degree 10,
50 polynomials of degree 20, 40 polynomials of degree 30, 30 polynomials of degree 40
and 20 polynomials of degree 50, all of them represented in the corresponding Bernstein
basis. The coefficients of all the polynomials with respect to the Bernstein basis have
been generated randomly as integers in the interval [−100, 100] according to a uniform
distribution. Then we have evaluated 20 times each one of the polynomials at 21 points
uniformly distributed in [0, 1] by the de Casteljau and VS algorithms, and their corre-
sponding compensated versions. We have measured the execution time for each one of
the algorithms when evaluating all the polynomials of a fixed degree at the 21 points
considered for 20 times. Then, we have divided the time obtained by 20 and by the num-
ber of generated polynomials for the corresponding degree. We have also computed the
corresponding relative errors. Table I shows the measured times, the mean of relative
errors and the maximal relative error for each of the degrees considered.

5.2. The adaptative evaluation algorithm
As a conclusion from the previous examples and many more, we can say that, in gen-
eral, VS and de Casteljau algorithms provide similar approximations with respect to
accuracy. The same occurs with its compensated versions. In general, the de Caslte-
jau and VS algorithms provide accurate enough approximations except for very ill-
conditioned polynomials, where their compensated versions can be very useful. So, in
order to decide how to evaluate a polynomial we must analyze the computational cost of
the four evaluation algorithms. The de Casteljau algorithm evaluates a n degree poly-
nomial using n(n+1)/2+1 sums and n(n+1) products (quadratic complexity), whereas
the VS algorithm uses n + 1 sums, 2n products and 1 quotient (linear complexity). So,
taking into account that routine TwoSum precises of 6 sums, routine TwoProduct of 6
products and 11 sums and, routine DivRem of 6 products, 13 sums and 1 quotient, the
compensated de Casteljau algorithm performs (33/2)n(n+1)+7 sums and (15/2)n(n+1)
products, that is a total of 24n(n+1)+ 7 elementary operations. Analogously, the com-
pensated VS algorithm consists of 33n+ 20 sums, 16n+ 4 products and n+ 2 quotient,
that is, a total of 50n+ 26 operations, for the evaluation of a n degree polynomial.

Although we have observed in the previous examples that VS and de Casteljau al-
gorithms can have a bad behavior with respect to the error, this phenomenon is not
usual, but only bounded to very ill-conditioned polynomials. So, first we will evaluate
polynomials by the VS algorithm since it has a lower computational cost than the de
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Fig. 6. Computational cost of compensated VS and de Casteljau algorithms

Casteljau algorithm. With the error bound we will decide whether the obtained ap-
proximations are accurate enough or not. For the points where the error test is not
satisfactory we have three alternatives: de Casteljau algorithm or some compensated
version of VS and de Casteljau algorithms. The compensated version of the de Castel-
jau algorithm is very expensive computationally and, taking into account that in most
of the cases it provides results with an accuracy very similar to those provided by the
compensated VS algorithm, we rule out. In the previous example we have seen that
VS and de Calteljau have a very similar behaviour and probably we would expect it
since both algorithms use representations sharing the same condition number. But
for a few polynomials the de Casteljau algorithm can provide more accurate evalua-
tions since it is formed by linear convex combinations and has a optimal growth factor
of 1 (see [Delgado and Peña 2009] for more details). So we must decide between the
de Casteljau and the compensated VS algorithm. In examples 5.1 and 5.2, we have
seen that the compensated VS algorithm can outperform the de Casteljau algorithm.
In general, for ill-conditioned polynomials, we can expect more accurate results from
the compensated VS algorithm, but for low degrees VS compensated algorithm has a
greater computational cost than de Casteljau algorithm. We can check that for degrees
n ≤ 32 de Casteljau algorithm has a lower computational cost than the correspond-
ing to the compensated VS algorithm, whereas for other degrees the compensated VS
algorithm is more efficient (in Figure 6 we have drawn the degree of the polynomial
versus the number of elementary operations for both algorithms). Execution times of
Table I confirms this theoretical observation on the computational costs. Taking into
account that most of the polynomials are not ill-conditioned, if n ≥ 33 we evaluate the
polynomials by the compensated VS algorithm, and otherwise, first we evaluate them
by the de Casteljau algorithm and only the points where the corresponding test error
is not satisfactory are evaluated by the compensated VS algorithm. Algorithm 9 has
implemented this idea with an adaptative algorithm.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. SKETCH OF THE PROOF OF THEOREM 4.2
Sketch of the proof of i) in Theorem 4.2 Applying TwoSum error-free transformation
for the substraction r = 1⊖ t we have [r, ρ] = TwoSum(1,−t), where

r = 1− t− ρ, |ρ| ≤ u|1⊖ t|, |ρ| ≤ u|1− t| (1)

by i) of Theorem 4.1. In the case that t ≥ 1/2, VS algorithm computes q = (1−⊖t)⊘ t.
If we compute the quotient in the previous expression by the error-free transformation
DivRem one has, by iii) of Theorem 4.1, that [q,βM ] = DivRem(r, t) = DivRem(1 ⊖ t, t),
where q = (1⊖ t)⊘ t and

1⊖ t = t× q + βM , |βM | ≤ u|t× q|, |βM | ≤ u |r|. (2)

At the ith iteration we have that pi = pi−1⊗q⊕ci with p0 = c0. Applying in the previous
expression error-free transformations TwoProd and TwoSum we obtain by i) and ii) of
Theorem 4.1

[ai,π
M
i ] = TwoProd(q, pi−1) and [pi,σ

M
i ] = TwoSum(ai, ci),

where

ai = q ⊗ pi−1 and ai = q × pi−1 − πM
i ,

pi = ai ⊕ ci and pi = ai + ci − σM
i .

By the previous formulas we have that pi = q × pi−1 + ci − πM
i − σM

i . By this formula
and taking into account that from (1) and (2) we deduce that q = (1− t)/t− (ρ+ βM )/t,
we can deduce that

i∑

j=0

cj

(
1− t

t

)i−j

− pi =
1− t

t
×

⎡

⎣
i−1∑

j=0

cj

(
1− t

t

)i−1−j

− pi−1

⎤

⎦

+

(
ρ+ βM

t
× pi−1 + πM

i + σM
i

)

Denoting lMi = ρ+βM

t × pi−1 + πM
i + σM

i and iterating the previous formula for i =
1, . . . , n, taking into account that p0 = c0, we have

n∑

i=0

ci

(
1− t

t

)n−i

− pn =
n−1∑

i=0

lMi+1

(
1− t

t

)n−1−i

. (3)

Finally, the last step of the VS algorithm is res = pn ⊗ fl(tn). In order to calculate res
we have to perform n products as pointed out by the second loop: fn−i = fn+1−i ⊗ t.
Applying the error-free transformation for this product, that is TwoProd, we obtain
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[fn−i,αM
n−i] = TwoProd(fn+1−i, t), where, by ii) of Theorem 4.1, fn−i = fn+1−i× t−αM

n−i.
Iterating the previous formula for i = 1, . . . , n we obtain

f0 = pn × tn −
n−1∑

i=0

αM
i ti

Multiplying formula (3) by tn and taking into account the previous formula and that
by the last step of the algorithm res = f0 we derive

p(t) =
n∑

i=0

ci t
i(1− t)n−i = pn × tn + t×

n−1∑

i=0

lMi+1 t
i(1− t)n−1−i

= res+ t×
n−1∑

i=0

lMi+1 t
i(1− t)n−1−i +

n−1∑

i=0

αM
i ti.

The case where t < 1/2 is symmetric and analogous to the previous case.
In order to prove ii) of Theorem 4.2 we need some auxilliary results. Let us denote

the polynomials
∑n−1

i=0 lMi+1t
i(1− t)n−1−i and

∑n−1
i=0 lmi ti(1− t)n−1−i by pM (t) and pm(t),

respectively. In the proof we shall deal with quantities satisfying that their absolute
value is bounded above by γk. Following [Higham 2002] we denote by θk such quanti-
ties, and let us take into account that, by Lemma 3.3 of [Higham 2002], the following
property holds: (1 + θk) (1 + θj) = 1 + θk+j . A straightforward, but tedious application
of these properties allows us to prove the following Lemma A.1.

LEMMA A.1. Under the hypotheses in Theorem 4.2 we have that

p̃M (t) ≤ 2γ4n p̃(t),
n−1∑

j=0

|αM
j | · |tj | ≤ γ4np̃(t),

if t ≥ 1/2, and

p̃m(t) ≤ 2γ4n p̃(t),
n−1∑

j=0

|αm
n−j | · |tj | ≤ γ4np̃(t),

if t < 1/2.
LEMMA A.2. Under the hypotheses in Theorem 4.2 we have that

∣∣t⊗ V S(t, (lM1 , . . . , lMn ))− t× p̃M (t)
∣∣ ≤ γ4n−3|t|p̃M (t) (4)

and ∣∣∣∣∣∣
Horner(t, (αM

0 ,αM
1 , . . . ,αM

n−1))−
n−1∑

j=0

αM
j · tj

∣∣∣∣∣∣
≤ γ2n−2

n−1∑

j=0

|αM
j | · |tj | (5)

if t ≥ 1/2, and
∣∣(1⊖ t)⊗ V S(t, (lm0 , . . . , lmn−1))− (1− t)× pm(t)

∣∣ ≤ γ4n−2|1− t|p̃m(t)

and ∣∣∣∣∣∣
Horner(t, (αm

n ,αm
n−1, . . . ,α

m
1 ))−

n−1∑

j=0

αm
n−j · tj

∣∣∣∣∣∣
≤ γ2n−2

n−1∑

j=0

|αm
n−j | · |tj |

if t < 1/2.
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PROOF. Both formulas follow straightforwardly from the error analysis fo VS and
Horner algorithms in Section 2.

Sketch of the proof of ii) in Theorem 4.2 If t ≥ 1/2, the absolute forward error
corresponding to the approximation of p(t) given by Algorithm 8 is

|res− p(t)| = |(1 + θ2)(f0 + t⊗ V S(t, (lM1 , . . . , lMn )) +Horner(t, (αM
0 , . . . ,αM

n−1)))− p(t)|,

where the expressions lM1 , . . . , lMn are given in the proof of i) of Theorem 4.2. From
the previous formula and the two formulas in Lemma A.2, taking into account that
f0 = V S(t, (c0, ..., cn)) and that p(t) = V S(t, (c0, ..., cn)) +

∑n−1
j=0 lMj+1t

j+1(1 − t)n−1−j +
∑n−1

j=0 αM
j · tj , we deduce that

|res− p(t)| ≤ γ2 |p(t)|+ (1 + γ2)γ4n−3|t|p̃M (t) + (1 + γ2)γ2n−2

n−1∑

j=0

|αj | · |tj |.

By Lemma A.1 and taking into account that |t| ≤ 1, we have
|res− p(t)| ≤ γ2 |p(t)|+ 2(1 + γ2)γ4n−3γ4np̃(t) + (1 + γ2)γ2n−2γ4np̃(t)

= γ2 |p(t)|+ [2(1 + γ2)γ4n−3 + (1 + γ2)γ2n−2]γ4np̃(t).

Taking into account that γ4n−3, γ2n−2 ≤ γ4n and that in every practical floating point
arithmetic system 1 + γ2 ≤ 4/3 we conclude from the previous expression that |res −
p(t)| ≤ γ2 |p(t)|+ 4γ2

4np̃(t) and so
|res− p(t)|

|p(t)| ≤ γ2 + 4γ2
4nSbn(p(t)).
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