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May 29, 2017

Abstract

Cache working-set adaptation is key as embedded systems moves to
multiprocessor and simultaneous multithreaded architectures (SMT) be-
cause inter-thread pollution harms system performance and battery life.
Light-Power NUCA (LP-NUCA) is a working-set adaptive cache that
depends on temporal-locality to save energy. This work identifies the
sources of energy waste in LP-NUCAs: parallel access to the tag and data
arrays of the tiles and low locality phases with useless block migration.
In order to counteract both issues, we prove that switching to serial ac-
cess reduces energy without harming performance and propose a machine
learning Adaptive Drop Rate controller (ADR) that minimizes the amount
of replacement and migration when locality is low.

This work demonstrates that these techniques efficiently adapt the
cache drop and access policies to save energy. They reduce LP-NUCA
consumption 22.7% for 1SMT. With inter-thread cache contention in
2SMT, the savings rise to 29%. Versus a conventional organization, energy–
delay improves 20.8 and 25% for 1 and 2SMT benchmarks, and, in 65% of
the 2SMT mixes, gains are larger than 20%.

1 Introduction

Due to locality of reference, cache hierarchies speed up applications and extend
battery life [5]. Recent cache approaches, such as NUCA or LP-NUCA, advocates
for heavily tiled designs interconnected with scalable networks [26, 43]. The key
feature is that cache blocks are continuously migrating among tiles to keep track
of locality at a fine grain level. Unfortunately, in programs or execution phases,
with low locality, saving the data in these caches hampers both performance and
energy consumption because migrations are useless. The penalty for storing low
locality data is twofold: writing data in the cache tiles consumes energy, and
these insertions may require the migration, or even the eviction, of blocks with
higher locality.
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Sharing the cache, either in Simultaneous Multithreading (SMT) or Chip
Multiprocessor (CMPs) systems increases the migration harm because low locality
threads can easily fill the cache with infrequent used data, trashing hot cache
blocks used by other threads. This inter-thread pollution problem has been
widely studied for large Last-Level Caches, LLCs, in CMPs [19, 4, 16, 40], but
mostly overlooked in the first cache levels of SMT processors, where shared caches
are preferable over private ones [46]. Many current embedded processors rely on
thread rather than instruction level parallelism to improve their performance–
energy ratio. For example, the Intel Xeon LC3528, the MIPS MIPS32-1004K, or
the Netlogic XLP832 simultaneously execute between 2 and 4 threads [20, 31, 13].

LP-NUCA merges the first two cache levels in a fabric of single processor cycle
tiles. Three specialized Networks-in-Cache convey messages among tiles, and the
access latency of blocks is proportional to their temporal locality. The LP-NUCA
organization self-adapts to working set changes and reduces the memory access
time, but at the cost of being very vulnerable to low locality phases and thread
pollution. To avoid both issues, we propose two major changes targeting the
following energy inefficiencies: (a) the parallel access policy to tag and data
arrays in tiles, and, (b) the useless migration present in low locality phases. The
switch to serial access and the use of an adaptive controller enable the new
design to save energy without reducing performance for single and multi-threaded
workloads.

To understand the variation of temporal locality among programs and exe-
cution phases, Figure 1 shows the number of block evictions and reuses in an
LP-NUCA root tile of 32 KBytes from 4 representative benchmarks of SPEC
CPU 2006. A reuse means that an evicted block is referenced again in the future.
By construction, reuses are lower than evictions. The upper plots represent the
number of reuses and the lower plots the numbers of evictions. Time is divided
in 1 million cycle epoch, and each bar represents the amount of evicted or reused
blocks during a single epoch. The reuse bars consist of three categories based on
the reuse time: next, after next, and rest. Next means the evicted block is reused
in less than 1 million cycles, after next means that the reuse occurs between 1
and 2 million cycles, and rest means the block is reused later. In the LP-NUCA,
next and after next reuses are good candidates for being stored in the tiles and
rest reuses in the LLC. In SMT mode, under high pressure, the dropping of after
next blocks are preferable over next ones.

Some programs, such as 473.astar, Figure 1(a), reuse almost all the evicted
blocks in the next epoch. On the contrary, some others, such as 470.lbm,
Figure 1(b) behave in a way that no block is reused. Storing these blocks in
the hierarchy after the root tile eviction wastes energy. Most programs, such
as 456.hmmer or 183.equake, fall in between these two extremes. On the left
side, Figure 1(c), 456.hmmer reuses almost every block until epoch 50, when
reuse drops significantly, showing that reuses are scattered across time. So if
456.hmmer runs alone, keeping the blocks in the cache may increase performance,
but otherwise it may be better to only store its evicted blocks during peak
reuse epochs: 18, 19, 26, 36. . . On the right side, Figure 1(d), 183.equake starts
evicting and reusing blocks; however, between epochs 170 to 210, the reuse
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Figure 1: Temporal evolution of the number of block evictions and reuses
measured inside 1M cycle epochs
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rate greatly decreases, and it is preferable to drop the evicted blocks rather
than keep them in the cache. Dropping useless blocks is especially important in
shared caches. For example, if 473.astar and 470.lbm run together, without an
intelligent control, the latter can completely flush the useful content from the
former harming both system performance and energy consumption.

This work extends LP-NUCA in several significant ways. First, we identify
that most energy waste occurs during low locality phases and has two primary
sources: (a) the continuous replacement of blocks among tiles and (b) the parallel
access to the tag and data arrays when the likelihood of a hit is low in loads.
Against intuition, the later source represents a larger fraction of the total energy
inefficiency in some applications. Second, we analyze the cache access policy
inside tiles and demonstrate that performing these accesses in serial, rather than
in parallel, will reduce energy without a sacrifice in performance.

Third, in order to decrease consumption without lowering performance, we
propose a learning-based adaptive controller relying on local search methods to
dynamically select drop rate (percent of blocks that are discarded from the root
tile cache). The controller sets a drop rate, recalls information on the accuracy
of its choice during execution, and uses the feedback to continuously tune the
drop rate.

The rest of this paper is organized as follows: Section 2 presents the related
work. Section 3 describes the LP-NUCA architecture. Section 4 details the
methodology. Section 5 explores the impact of serial versus parallel access policy.
Section 6 introduces the ADR adaptive drop controller, and Section 7 evaluates
it. Section 8 shows how both techniques combine together. Section 9 comments
on the system impact of the proposed optimization, and Section 10 concludes.

2 Background

Tullsen et al. compare the performance of private and shared L1 caches and
observe that regardless the number of threads, shared data caches are always the
best choice [46]. Hily and Seznec studied how secondary cache bandwidth limited
SMT performance and conclude that: (a) the larger the number of executed
threads, the larger the L1 cache size has to be; (b) when the number of threads
increases, spatial locality decreases and conflict misses increase; (c) as the number
of threads rise, a smaller block size (16-32 bytes), is more effective than increasing
the associativity of the cache [17]. To improve SMT performance, Settle et al.
define a cache partitioning scheme based on column caching. When a cache
miss occurs, the replacement algorithm takes the thread id as input restricting
the placement of blocks from a given thread to a set of ways [41]. Nemirovsky
and Yamamoto analyzed the effect of varying cache capacity, associativity, and
line size on miss rate for multistreamed architectures [34]. They observe that
increasing both cache capacity and associativity reduces miss rate, specially
for small caches, and that large blocks increase miss rate. The Multithreaded
Virtual Processor (MVP) is a coarse-grain multi-threaded system with software
support that explicitly forces context switching on long latency events such as
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cache misses, I/O, or synchronization [27]. For SMT data caches, Garćıa et al.
observed that large associativities reduce inter-thread misses and that XOR-
based placement reduces inter-thread miss rate in some cases. Besides, they
proposed several organizations combining the hash-rehash caches and static
cache splitting [11]. Sarkar and Tullsen proposed two strategies to minimize
inter-object data cache misses at compilation time [39]. López et al. studied
control strategies for reconfigurable caches in SMT GALS processors. They
conclude that the best control strategy to maximize performance is to minimize
the harmonic mean of the per-thread weighted access time [29]. All this previous
work deals with improving performance in workstation/server multi-threaded
superscalar out-of-order processors (4 or more SMT) without considering energy.
In contrast, our work focuses on energy consumption in embedded processors
with limited multi-threading capability.

Architects have proposed a plethora of designs to save cache energy through
reconfigurable caches that change their number of ways, sets, or both at run
time [2, 3, 37, 47, 44]. Sundararajan et al. present a comprehensive view of
the state-of-the-art for these techniques [44]. Özer et al. studied the fetch
resources of SMT processors in soft-real time environments to provide an energy-
efficient mechanism for speeding-up a single thread without starving the rest
of threads [35]. These works adapt the cache at a finer granularity than our
proposal requiring modifications in the cache organization. Increasing the cache
complexity in LP-NUCA is not an option because LP-NUCA tiles operate
at single processor cycles and the slack is minimal. Besides, reconfiguration
techniques that do not increase the cache complexity are orthogonal to the ADR
controller and could be applied to provide extra energy gains. Similarly, in
large shared LLCs, intra- and inter-thread cache pollution and thrashing have
been tackled by modifying either one or both of the insertion and replacement
policies [40, 22].

Beckmann, Marty, and Wood proposed Adaptive Selective Replication (ASR)
to replicate shared read-only blocks in private L2 caches of CMPs [4]. When the
L1 cache evicts a shared clean block, the corresponding ASR module decides
whether the block should be replicated into the local L2 bank. The replication
level is dynamically adjusted to minimize the average L1 miss latency. The
adjustment is done by simultaneously computing the score of the current, next
lower, and next higher replication levels with the help of specialized structures.
ASR is a clear precedent of our work because it probabilistically stores L1
evicted blocks into local L2 caches to improve performance. Our work uses
a similar approach to save energy in a cache closely coupled to the processor.
However, since the size of the LP-NUCA tiles is very small, adding extra
complexity for simultaneously evaluate multiple states is not appealing. Instead,
our proposal requires smaller and simpler structures, and evaluates drop ratios
during execution.

Compared with the original LP-NUCA design [43], we introduce a reactive
dynamic technique to save energy when the application is not profiting from
temporal locality. Previous LP-NUCA energy saving techniques (Sectoring and
Miss Wave Stopping) were completely static and application agnostic. This work
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analyzes SMT workloads which have not been extensively studied for NUCA
cache organizations.

Regarding the learning based approach, the Hill Climbing algorithm has
been employed for distributing resources in SMT processors and controlling
prefetch aggressiveness [7, 1], but not for dropping cache blocks in first level
caches. Optimizing the memory behaviour based on temporal locality has been
studied to improve performance of victim caches by only storing blocks with
likely reuse [18]. Their policy is based on a fixed threshold, the victim cache only
stores those blocks whose dead time is less than 1024 cycles. On the contrary,
our proposed ADR controller does not require any threshold to operate properly
and self-adjusts itself.

3 Light Power NUCA Operation and Energy
Breakdown

Figure 2 shows a Light Power NUCA (LP-NUCA) cache. The LP-NUCA
organization merges the L1 and L2 caches into a tiled fabric behaving as a
very large distributed victim cache [23]. The root tile, RT, interfaces with
the processor, and it is equivalent to an L1 cache, but including the required
network components. The L2 cache is split in multiple small tiles that surround
the RT and communicate over 3 networks-in-cache (one per activity): Search,
Transport, and Replacement. The search network conveys the miss requests
from the root tile to the rest of tiles through a broadcast tree (blue network).
All tiles receiving a miss request at the same time form a level, and requests
progress sequentially among them, until a hit is found or a global miss triggers a
request to the next cache level. When a tile finds a request in its cache, the block
returns directly to the root tile through the transport network (red network).
If the corresponding set in the RT is full, a victim block is evicted through the
replacement network (black network) to a neighbour tile with the minimum
transport latency difference. The delay of all tiles but the RT is one processor
cycle and, the tag and data arrays are accessed in parallel for reads. Write
hits take two cycles to complete, one for the tag comparison and another to
update the data array. A write buffer between the tag and data array enables
the back-to-back single-cycle operations.

For example, in Figure 2, the RT evicts to a 3-cycle tile. If necessary, the
destination tile will repeat the operation to a tile with transport latency of 4,
and this domino operation continues until a tile has an empty way, or a block
is evicted from the whole LP-NUCA. These sequences of operations ensure
that blocks remain ordered by temporal locality, so the blocks recently evicted
from the RT have a lower service latency than those evicted in the past. The
performance advantage of LP-NUCA comes from servicing blocks recently evicted
faster than conventional or S-NUCA caches. The drawback is that blocks without
a nearer reuse waste energy as they traverse multiple tiles before leaving the
fabric.
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Figure 2: LP-NUCA basic organization with its three Networks-in-Cache: Search
in blue, Transport in red, and Replacement in black. The number in the right
upper corner of each tile represents its service latency assuming single-cycle tiles

Regarding search activity, LP-NUCA always accesses tag and data arrays
in parallel to reduce latency (as most NUCA designs do except NuRAPID [6]).
Since in LP-NUCA, a data array access roughly consumes more than 5× the
energy of a tag array [43], this parallel policy may account for a major waste of
energy for requests that are likely to cause a miss during low locality phases.

To quantify the magnitude of these energy inefficiencies, Figure 3 shows
the dynamic energy breakdown of all activities in a 3-level baseline LP-NUCA
(excluding the RT) for all programs under test. Section 4 details both the
baseline and the workload. For each activity we include the involved network
(routers, links, . . . ) and memory arrays. Transport includes cache hits, search
includes cache misses, and replacement includes cache evictions and insertions.
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Figure 3: Dynamic energy breakdown of the LP-NUCA activities with parallel
tile cache access

Starting top-down, transport, replacement and search have average percents
of 7.5, 36.8, and 55.7%, respectively. Two reasons explain these results. First,
because the low overhead of the Networks-in-Cache, most energy is spent in the
memory arrays, up to 75% of the total energy required by a tile [43]. Transport
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spends little energy as it only involves moving blocks through the corresponding
network, while replacement and search add a substantial number of cache accesses.
Second, replacement requires less energy than search. Notice that a global miss
in a 3-level LP-NUCA involves 15 cache lookups, while a chain of replacements,
starting in the RT and ending in a corner tile (worst case), performs up to 5
evictions and 5 insertions. Since the energy cost per tile is similar regardless
the operation (lookup, eviction, or insertion), a chain of replacements can spend
67% of a global miss at most, but it often consumes less than 10% because RT
replacements usually end up in a second-level tile, where previous hits have left
empty ways to be filled.

In summary, more than 90% of the total consumption comes from search and
replacement activities which are not always useful. With regard to the replace-
ment activity, LP-NUCA incorrectly assumes that programs exhibit temporal
locality across all their execution and triggers chain of domino replacements to
keep the most recently evicted blocks nearby. So, during low locality phases, and
specially in SMT mode, the RT can pollute the rest of tiles with useless blocks
and move away useful blocks. Moreover, the parallel access policy may give a
small performance advantage, but at the cost of higher energy consumption.

Since the energy waste occurs during low locality phases for search and
replacement networks, we need to assert which access policy is the best for
LP-NUCA (parallel, serial, or dynamic between both) and devise a mechanism
able to drop blocks evicted from the RT when a thread enters in a low locality
phase.

4 Methodology

The evaluation environment is based on SimpleScalar with a rewritten memory
hierarchy, and the energy estimations for battery-powered devices in 32nm from
previous LP-NUCA evaluations (both cross-validated with gate level simula-
tions) [43]. The simulator has been extended to work with several independent
threads. The energy consumption of the cache elements without VLSI imple-
mentation has been modeled with Cacti 6.5 [32], including the auxiliary tags
presented in Section 6.

4.1 Baseline Configuration

The baseline processor resembles the IBM/LSI PowerPC 476FP [14, 30], but
executing 1 or 2 threads in SMT mode. Instructions are fetched according to
the ICOUNT 2.4 fetch policy [45]. Table 1 summarizes the main characteristics
for the processor core and memory hierarchy, including the common L1 and
L3 caches, and the tested L2 ones. Namely, we test 4 different second level
cache organizations: a conventional L2, an S-NUCA, and the LP-NUCA with
parallel and serial cache access, and LP-NUCA with serial access and the ADR
controller.
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Table 1: Simulator Micro-architectural parameters. BS, AM, lat, and init stand
for block size, access mode, latency, and initiation rate, respectively

Clock Frequency 1 GHz Fetch/Decode/ Commit
width

2

Issue width 2(INT+MEM)
+2FP

ROB / LSQ entries 32 / 16

INT/FP/MEM IW en-
tries

8 / 8 / 8 branch predictor bimodal + gshare, 16
bit

Miss. branch penalty 6 Instruction Cache perfect
L1/L2/L3 MSHR en-
tries

8 / 8 / 4 TLB miss latency 30

MSHR secon. misses 4 Store Buffer/ L2/ L3 WB
sizea

8 / 4 / 4

L1/RTb 32KB–4Way–32B BS, parallel AM, write-through, 2-cycle lat, 1-cycle
init

L2 512KB–8Way–32B BS, serial AM, 4-cycle lat, 2-cycle init, copy-back
S-NUCA 2×2 128KB–2Way–32BS banks, parallel AM, 3-cycle lat, 3-cycle

init, copy-back
LP-NUCA rest of tiles 32KB–2Way–32B BS, parallel AM, copy-back, levels: 3, total size:

448KB

L3 4MB eDRAM–16Way–128B BS, 14-cycle lat, 7-cycle init, copy-back
Main Memory 100 cycles/4 cycle inter chunk, 16 Byte bus
a L2, S-NUCA, LP-NUCA, and L3 Write Buffers coalesce entries
b In RT, copy-back and write-around

We have also implemented state-of-the-art scan- and trash-resistant replace-
ment policies for the conventional L2: Thread-Aware Static Re-Reference Interval
Prediction (TA-SRRIP), and its dynamic version (TA-DRRIP) [22]. As Jaleel et
al. stated in their paper, these replacement techniques are thought for LLCs with
bigger size and higher associativity, where the temporal locality has been filtered
by lower levels. In lower levels (L1 and small L2), they do not offer significant
performance advantages over the conventional LRU replacement. Thus, for the
sake of clarity, we do not include these results in the following sections, and we
assume a conventional L2 cache with LRU replacement.

4.2 Workload

Our workload extend the same embedded oriented applications that LP-NUCA
previous work with some extra benchmarks to test the controller against more
reuse patterns. In SMT mode, we focus on multiprogrammed workloads because
they tend to stress the memory hierarchy more than parallel benchmarks as
there is no shared data and instructions between the threads.

Table 2 shows all the benchmarks under test from the SPEC CPU2000 and
CPU2006 suites. Instead of classifying the benchmarks according to the Misses
per Kilo-instruction rate, MPKI, we employ Replacements per Kilo-instruction,
RPKI, because the former does not imply a high degree of replacements when
the cache does not allocate blocks for write misses. With our L1/RT cache
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Table 2: Benchmark characterization. RT-RPKI represents the root tile replace-
ments per kilo instructions, and a high value forecasts a risk of block pollution.
RESTT-HPKI represents the number of hits from the rest of tiles, and a high value
represents a good reuse. I, F, 0, and 6 refer to Integer, Floating Point, SPEC
CPU2000, and SPEC CPU2006, respectively

Low RPKI High RPKI
RT-RPKI RESTT-HPKI RT-RPKI RESTT-HPKI

186.crafty I0 2.8 2.9 164.gzip I0 10.0 17.7
255.vortex I0 4.9 4.9 179.art F0 130.0 7.4
177.mesa F0 2.0 6.6 183.equake F0 75.5 21.4
187.facerec F0 9.3 3.9 401.bzip2 I6 14.8 6.3
445.gobmk I6 4.3 12.6 429.mcf I6 56.2 14.4
456.hmmer I6 6.2 2.1 450.soplex F6 28.9 22.0
458.sjeng I6 1.2 2.0 453.povray F6 12.9 14.1
433.milc F6 4.0 0 464.h264ref I6 13.2 27.0
482.sphinx3 F6 0.21 0.1 470.lbm F6 18.1 0.0

473.astar I6 21.7 16.7

a In cases where RESTT-HPKI is higher than RT-RPKI, we found a high number of write hits
in the rest of tiles. Because the LP-NUCA root tile follows a write-around policy, a write hit
in a tile does not trigger a block migration to the root tile.

allocation policies, fetch-on-miss for loads and no-fetch-on-miss for stores, RPKI
is exactly the load misses per kilo-instructions (see Table 2 footnote). Note
that RPKI offers another additional advantage over MPKI, because it does not
account for secondary misses1. RPKI measures the flow of blocks from the RT to
the rest of tiles, whether the blocks are reused or not. On the contrary, hits per
kilo-instruction, HPKI, makes out those benchmarks profiting from the cache,
so it is shown in Table 2 as well.

Benchmarks with higher RT-RPKI represent a higher pollution risk and can
reduce the cache space for those benchmarks that take profit of the LP-NUCA,
those with high RESTT-HPKI. Benchmarks with a high value in both metrics
require a careful balance in the controller engine we are going to develop.

Since we have two groups of benchmarks, Low and High RPKI, results are
broken down in these two groups for single-threaded, 1SMT, experiments, and
in three groups for dual-threaded mixes, 2SMT, namely, Low, Medium and High.
Low and High results refer to thread pairs belonging to the same Low and High
RPKI group, respectively. Medium results refer to thread pairs not belonging to
the same RPKI group.

For each benchmark, we simulate 100M representative instructions selected
with the SimPoint methodology [15] with the inputs suggested by Phansalkar et
al. for SPEC CPU2006 and Sherwood et al. for SPEC CPU2000 [42, 36]. In
1SMT, stateful structures, such as branch predictors or caches, are warmed-up
for 200M instructions. In 2SMT, we use last simulation methodology where
a simulation ends when the slowest thread commits 100M instructions. To
resemble the load of real system, when a thread finishes, its statistics collection

1In processors with Miss Status Holding Registers, the first level data cache can have
multiple outstanding misses to the first block, one primary and several secondaries depending
on the MSHR organization.
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stops, its cache content is invalidated without modifying the replacement stack,
and it is re-executed to keep the system load. To guarantee that the initial state
for each thread at re-execution do not change, there is no warm-up for 2SMT
simulations. We have repeated the experiments without and with warm-up in 1
and 2SMT, and the results were the same because the traces are long enough so
the effect of cold structures is negligible.

Regarding measurement methodology, we follow the same approach than Li
et al. and account for all the energy consumed until the last thread commits
100M instructions [28]. Since our goal is to reduce energy, during its evaluation,
our main metric is total energy consumption. We do not normalize the energy
results because we have verified than the difference in total executed instructions
between configurations is less than 0.8%. For completeness, we also evaluate other
metrics such as energy per instruction [12], IPC throughput2, and fairness [9].

IPC througput =

n∑
i=1

IPCi fairness =
min

i

(
IPCMT

i

IPCST
i

)
max

j

(
IPCMT

j

IPCST
j

)
MT and ST stand for multi- and single-threaded, respectively. Fairness

ranges between 0, complete starvation, to 1, perfectly fair. This strict definition
ensures that different single thread performance across configurations does not
affect the results.

5 Tile Cache Access Policy Evaluation

Contrary to most secondary level caches, the original NUCA and LP-NUCA
designs access the tag and data arrays in parallel instead of serial. Parallel access
reduces access time at the cost of extra energy consumption; however, previous
works do not quantify the performance advantage of parallel access if any.

From the point of view of the LP-NUCA VLSI implementation, serial access
does not require any main change in the tiles. In fact, writes are always performed
serially, and the same circuitry with some additional control suffice to support
read serial accesses as well. On the other hand, an ideal access policy should
dynamically switch from serial in misses to parallel in hits. LP-NUCA could adopt
such dynamic policies leveraging the Network-in-Cache congestion mechanism.
Switching between access mode encompasses two operations: (a) choose between
parallel or serial, and (b), mark the search request accordingly to the mode. For
the first operation, we can use the controller proposed in Section 6 to select
between parallel or serial. For marking, it suffices to add an extra access mode
bit in the Search Network. In serial mode, the bit disables the accesses to the
data arrays in the tiles, and misses propagate back-to-back over the fabric as in

2IPC throughput is advantageous because it allows an absolute comparison among config-
urations. We can use IPC throughput whenever mixes are made from independent threads,
because no unpredictable instruction spinning can arise; e.g., before entering a critical section.
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Figure 4: IPC Throughput and Total Energy Consumption for parallel and serial
tile access

the conventional LP-NUCA. Nevertheless, if a tile hits during a serial (tag-only)
access, the data array has to be accessed. Since we can not stop the request
propagation in the Search network because it lacks any flow control mechanism,
we set the congestion bit in the request to notify that it must be re-injected
again, but in parallel mode. This re-injection feature is already supported to
cope with congestion of the Transport network. When a Search request hits in a
tile and no output transport link is available, the tile sets the request congestion
bit and forwards the request to its leaf tiles. Eventually, the request arrives to
the global miss control logic that will reset the serial bit and re-inject the request
with parallel access.

The potential of the dynamic approach is bounded by the performance drop
from parallel to serial access. In serial mode, when a tile hits, the injection of
the block in the transport network occurs one cycle later than in parallel access,
but the latency to transport the block to the RT is the same (1 cycle per tile
hop). Quantitatively, for a 3-level LP-NUCA, the overhead ranges between 14%
and 33% for tiles with latencies 7 and 3, respectively. But since the load to use
latency—time elapsed between a load instruction starts executing and the data
is ready—is at least 8 cycles, the real overhead is smaller.

Figure 4 shows the IPC throughput and total energy consumption—energy
required to execute all the benchmarks one after the other—assuming fixed par-
allel or serial access, either for one or two threads, 1SMT and 2SMT, Figures 4a
and 4b. Independently of the number of threads and RPKI benchmark group, se-
rial has almost identical performance at lower energy, with gains ranging between
13.2% and 31.7% for 1SMT-LOW-RPKI and 2SMT-HIGH-RPKI, respectively.

As regards the dynamic breakout of the activities, if we compare Figure 5,
serial access case, with the previous Figure 3, parallel case, we can extract several
conclusions. First, switching to serial improves efficiency because, on average,
the transport component almost doubles from the parallel version, 14% vs. 7.5%.
Second, replacements has overtake search as the largest consumer, 62.2% vs.
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Figure 5: Dynamic energy breakdown of the LP-NUCA activities with serial tile
cache access

23.8%, because replacement accesses the data array consumes 5x times more
than the tag array [43].

Based on all these results, the best access mode for LP-NUCA caches is serial
because neither a parallel nor a dynamic policy can provide any advantage for
the tested workloads; serial performs almost equal than parallel, and there is no
room for improving IPC by switching between serial and parallel. Besides, the
consumption of any parallel or dynamic policy will always be higher than the
consumption of the serial one.

6 Adaptive Drop Rate Controller Fundamentals

In order to detect low locality phases and drop useless blocks evicted from the RT,
we propose to use an Adaptive Drop Ratio Controller, ADR, based on steepest
Hill Climbing [38]. Hill Climbing is an iterative optimization algorithm for finding
the maximum of a target function f(d), where d represents the set of controllable
parameters; i.e., the drop rates. At each iteration, the algorithm modifies a
single element of the vector d and checks whether this change improved the
value of the target function. When a (local) maximum is reached, hill climbing
cannot find any change in d improving the current value of f(d) and terminates.
It is worth recalling that our function f(d) is non-stationary and extremely
difficult to model analytically. Hill climbing provides a simple yet efficient way
to continuously search for the maximum of the target function ft(d) at time t.
Due to non-stationarity, more sophisticated techniques that attempt to find the
global maxima as simulated annealing are useless [38].

The set of controllable parameters d = (dr1, . . . , drnthreads
)T forming the

search space comprises all possible combinations of per thread drop rates. Each
dri represents the fraction of blocks of thread i that the RT drops instead of evict
to the rest of tiles or main memory during an epoch. Its range, dri ∈ [0, 1], varies
between 0, no dropping, and 1, all dropping. For example, the default drop rate
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of the RT is 0 because all block evictions go the second level tiles 3. Figure 6
shows the search space for a dual thread execution. The dr0, dr1 = [0.5, 0.5]
point represents that both threads are dropping 50% of RT block evictions and
inserting another 50% into the rest of tiles.

In our implementation, the possible drop rates are discretized with a resolution
of ∆. The smaller the ∆, the larger the number of possible drop values, and,
hence, the number of states in the search space. The resulting problem is
therefore an instance of combinatorial optimization. In Figure 6 ∆ equals 0.5,
and the search space has nine different states. Selecting the correct ∆ is crucial
for the ADR because tiny ∆ increases the accuracy of the solution but also
increases the convergence time. The convergence time is the number of required
epochs to reach the best dropping configuration. Also, large ∆ may cause
oscillations in the optimization process around the optimal drop rate.

dr0

dr1

0

0 0.5

0.5

1

1

Figure 6: State map for a two thread execution with 3 states, ∆ = 0.5. Each
dot represents an state, and the arrows represent the possible next drop rate for
each thread, green and red for threads 0 and 1, respectively

Hill Climbing searches the space of possible solutions by modifying only one
component of d at each iteration, that is, only one thread changes its drop ratio.
Similarly to tabu search [8], we incorporate some memory and additional rules
to avoid local minima and improve the exploration of the space. Given the
discretized representation for d, each drop rate dri can be increased, adding ∆, or
decreased, subtracting ∆. In the example of Figure 6, ∆ = 0.5 and dr = [0.5, 0.5],
the drop state in the next epoch can be: [0, 0.5], [1, 0.5], [0.5, 0], and [0.5, 1]. The
main difficulty for the ADR is that the value of the target function for a given
drop state d is unknown and has to be empirically estimated by executing the
program with the corresponding drop rates for each thread. As the number of
threads increases, the number of neighboring drop states increases exponentially.
Since the behavior of the program changes with time, it is possible that, by the
time the set of all drop states have been tried, the behaviour of the program in
terms of locality has changed. To constrain the number of drop states that have
to be evaluated, we use a short memory to limit the exploration of each single
drop rate dri to a single direction, upwards and downwards, based on whether

3In copy-back caches, dropped dirty blocks have to be sent to the next cache level even
when the drop rate is 1.
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the last drop rate change for thread i improved or not the target function. This
information is kept in a direction variable diri that can take two values: −1 for
downwards (the drop rate of thread i will be decreased by ∆) and 1 for upwards
(the drop rate of thread i will be increased by ∆). Therefore, the ADR computes
the next drop rate of thread i at age j + 1 as:

drtrialij+1
= drrefij

+ dirij∆ (1)

where drtrialij+1
and drrefij

represent the next drop rate and the reference drop rate,
respectively.

k k + 1epoch k + 2
age j

k + 3 k + 4 k + 5
j + 1

trial
thread 0

trial
reference

 best trial
selection 
+ direction

adjustement

activity

trial
thread 1

time

trial
thread 0

trial
reference

trial
thread 1

 best trial
selection 
+ direction

adjustement

Figure 7: ADR operation phases for a 2SMT system

We are now ready to describe the ADR operation. Figure 7 depicts this
process for two threads. The initial reference state is set to no dropping for all
threads (dri = 0, ∀i = 1..nthreads). Program execution is divided in ages. Each
age is formed by nthreads + 1 epochs. At each epoch, the ADR modifies the
drop rate of one thread using Equation 1 in round robin fashion and evaluates
the target function. After evaluating the new drop rates for each thread, one
last epoch evaluates the current reference state since its previous score may be
outdated if the program variability is large, epoch k + 2 and k + 5. When an
age ends, the reference state is updated with the combination with higher score
among the age epochs, dirbest. The direction variables are also updated at the
end of each age; diri reverts if the epoch score in the target function is lower
than the reference one, otherwise it remains equal.

Additionally, to avoid local optimal and speed up the exploration of the space
two empirical rules are applied to select the reference state at the end of each
age. Both of them reduce the converge time and save energy:

drrefij+1
=


1 (all) if rest-tiles hits = 0
0 (no) if RT evictions < α
drbestij

otherwise
(2)

The rules improve the ADR behaviour specially with small ∆s and large
number of threads. In this case, it can take a large amount of time until a
polluting thread reaches the all dropping state. The first rule shortens the
convergence time by setting the drop rate of a thread to one when there is no
temporal locality. The second rule avoids the problem of programs with low
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RT block eviction rate, offering low energy savings potential. For them, it is
preferable to inject all the evictions in the rest of tiles because the performance
penalty of servicing blocks from the LLC, and the extra static energy consumption
may offset the ADR savings. We tested α values between one eight and the full
RT capacity in blocks, and the best value is 1/4 closely followed by 1/8 and 1/2.

One key design aspect for the ADR is the epoch length. We can consider
time and event based epochs. On the former, the epoch changes after a given
number of cycles, and, on the latter, a new epoch triggers when an event, such
as the number of RT evictions, reaches a given threshold. Both have advantages
and disadvantages, time based is easier to implement, but may provide less
accuracy than event based. Subsection 7.1 evaluates both approaches and shows
that both performs similarly if the epoch length is selected correctly.

Up to now we have described a generic ADR that can optimize any function
that depends on the controllable parameters of each thread. Since our goal is
to reduce the cache energy, the first candidate for target function will be cache
energy. Nevertheless, energy counters are not mainstream in current processors,
and we cannot rely on them for the target function. As a simple yet efficient
heuristic, we can think in the cache hits as the target function. First, the
hardware overhead will be minimal because current processors already include
cache counters. Second, in LP-NUCA, cache hits are a good measure of pollution.
When the RT evicts low-locality blocks, they pollute the rest of tiles and most of
cache services come from the last level cache, LLC. Since LLC accesses consume
more than LP-NUCA ones, a large number of rest-tiles cache hits entails low
energy consumption.

Unfortunately, cache hits may not follow a gradient function across program
execution. It may be the case that the hit rate decreases because of the execution
phase and not because of an incorrect drop rate. Therefore, we need a target
function that combines the real hits with the potential ones. Potential hits refer
to those hits that would have occurred with a lower drop rate. At first glance, a
good target function would subtract the LP-NUCA hits minus LLC ones, but
since LLC caches are larger than LP-NUCA, their temporal locality window
(amount of time that a block can reside in a cache) is larger and the result will
be misleading.

As a solution for getting a traceable function, we propose to use auxiliary
tags. The auxiliary tags are an structure that approximates the number of hits
that the LP-NUCA would have attained without dropping blocks. It is made
of two components: a tag-only cache memory and a hit counter. With them,
the ADR keeps track of all dropped blocks and enables the computation of the
potential hits. Storing extra tag entries has been used in many applications, such
as page allocation in the OS, cache replacement policies, or cache distribution
between cores [10, 24].

The ADR performs two operations in the auxiliary tags: (a) insertion and (b)
address look-up. The former, insertion, is triggered every time the ADR drops a
block from the RT, and stores the address of the dropped block in the auxiliary
tags. The latter, look-up, is triggered only when a request has missed in all
LP-NUCA tiles, and it searches in the auxiliary tags array for the requested
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address. If found, the potential hit counter is incremented by one, and the entry
is removed because the block will be written back in the LP-NUCA. Since the
LP-NUCA is small, we will see in Sections 6.1 and 7.3 that a small 1024-entry
auxiliary tags structure provides very good performance with little overhead.

Using auxiliary tags, the target function maximizes low energy accesses and
minimizes high energy accesses as follows4:

f(d) =

nthreads∑
i=0

hitsi − k × aux tags hitsi (3)

where hitsi represents the LP-NUCA hits (low energy consumption), aux tags hitsi
the hits to dropped blocks (high energy consumption) from thread i, and k is
a constant that represents the ratio of energy cost between both cases. As a
rule of thumb, k can be computed dividing the energy cost of an LLC hit by
the search energy of accessing all LP-NUCA tiles minus the root tile and the
transport energy of servicing a block to the root tile. To keep the temporal
locality window similar to that of the LP-NUCA, the auxiliary tags are flushed
at the end of every epoch.

6.1 Hardware Cost

The ADR controller leverages existing processor and LP-NUCA mechanisms to
minimize the overhead in terms of latency, area, and energy. Figure 8 shows the
controller organization and the interface with the RT and processor. Now, we
detail the cost of each component. Starting from the target function, current
processors include hardware counters for cache hits, so the computation of the
target function only requires a few wires from the cache to drive the cache hit
values to the controller.

RT

cache ports ADR
controller

processor
RNGsearch

message

replacement message

...

RT mshr

hits / evictions

state, dir

# 
th

re
ad

s

epoch id

RT repl.
buffer

cmp

drop/insert

auxiliary
tags

epochs & 
age stats.

...

dropped @

Figure 8: ADR organization. Size does not indicate the complexity

Following with the epoch and statistics, the storage requirements are negligible
because the ADR controller stores the result of the target function in a 32-bit

4Equation 3 does not make explicit the time dependency of function f(d). The target
function is computed over an epoch and its value depends on the code actually executed during
that epoch. Consequently, the target function will provide different values for the same d when
computed in different epochs.
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counter. For example, a 4SMT processor would require 160 bits, 5 epochs × 32
bits/epoch. Apart from the statistics, the ADR controller stores the reference
state and the trial direction for each thread, and requires an epoch counter
register. The reference states includes, per thread, one bit for the direction (up
or down), and log2(drop states) bits for the potential drop states values. For
instance, a 4 SMT processor with 8 drop states would need 4 bits per thread
and, thus, 16 bits in total. The epoch identifier register operates modulo the
number of threads + 1 arithmetic. In our 4 SMT example, it would require 3
bits. Altogether, the epoch statistics, drop states, and epoch counter register for
4 threads would require 179 bits.

The final component of the ADR controller is the auxiliary tags. The most
straightforward implementation is a CAM-based design with a comparator per
entry storing the block address of each entry. However, we can take advantage of
the LP-NUCA organization to simplify the implementation. The key observation
is that if a block would be expelled from the LP-NUCA, the auxiliary tags should
do the same thing. Since the global associativity of the LP-NUCA is the number
of tiles times tile associativity, we can change the fully associative CAM design
with a set associative SRAM design. For example, for a 1024-entry auxiliary
tags, a 3-level LP-NUCA with 2-way 32KByte tiles with 32Byte blocks and 40
bit addresses, the size of each entry reduces from 35 to 26 bits and the number
of comparisons reduces from 1024 to 28. To reduce even more the number of
comparisons and energy, the ADR controller takes advantage of the fact that
its look-up latency can be as slow as the next cache level, because this is the
minimum round-trip delay (when a block is inserted in the RT, its address is
removed from the auxiliary tags). Since look-up latency is the same as LLC
latency, the ADR controller employs serial tags [25] and compares the 28 entries
in fours. Regarding the area, a 1024-entry auxiliary tags stores 3328 bytes in
total, 81% of the capacity of each tile tag array. Since the tag array takes an
8% of a single tile, in a 3 level LP-NUCA, the auxiliary tags would take a 0.5%
extra area vs. an standard LP-NUCA.

To choose if a block is dropped or inserted, the ADR controller relies on the
processor support as well; in this case, on the cryptographic Random Number
Generator engine. RNGs are already included in machines such as Intel Bull
Mountain or Sun Niagara T2 [33, 21] and will be commonplace in the near future.
To save energy, the ADR controller only interacts with the RNG when a thread
is neither in zero nor in all dropping states because during these epochs, the
dropping decision is always the same. For the rest of states, RNG provides an
stream of random bits—normally between 64 and 256 bits—that is divided in
chunks of log2(drop states). When the RT evicts a block, a chunk is compared
against the drop state. When the drop state is smaller than the chunk, the block
is dropped. This simple implementation ensures low area and energy costs.

Delay To select the best state, the controller has to evaluate and compare the
results of all the epochs. To minimize this delay, most of the work can be done
off-line during the evaluation of other threads. Hence, at the end of the last
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epoch of each age, the controller already knows which of the previous epoch has
the highest score and only computes the score for the last epoch, compares the
two values, selects the best, and updates the reference state and the directions.
We estimate that these operations can take in the order of 100 cycles. For the
sake of completeness, Subsection 7.3 evaluates the impact of the controller delay
in the performance.

7 ADR Controller Experimental Evaluation

The ADR controller has multiple parameters that can interfere themselves, so we
evaluate them one after another leaving the other parameters as in the baseline
configuration. The analysis begins discussing the epoch length and triggering
mode, continues with the optimal number of drop states, and finishes assessing
the sensitivity to the remaining controller parameters; namely, delay, weight in
the target function of the number of hits in the auxiliary tags (k constant), and
auxiliary tags size. Table 3 shows the parameters of the baseline ADR controller.

Table 3: Baseline ADR controller configuration

∆ / # States 0.5 / 3 Epoch 1 MCycles Delay 50 Cycles

Auxiliary Tags 16 KEntries k constant 10

7.1 Time or Event based Epochs

In order to narrow the design space for the optimal epoch length, we performed
some estimations based on the values from the replacement rates of Table 2.
The RT roughly evicts 20 blocks per KInstruction. Assuming an IPC of 1,
typical eviction rate would be around 20 blocks per KCycle. This means that
around 50 KCycles are necessary to evict all the 1024 blocks of the considered
RT (32 KBytes with 32 Byte blocks). Therefore, our cycle-based epoch length
experiments explore epochs of 8, 32, 128 KCycles and 1 MCycles. On the other
hand, for epochs based on replacement events, we analyze the following number
of RT replacements: 512, 1024, 5120, and 9216 that correspond to half, all, 5×,
and 9× the number of RT blocks. 5× and 9× are the number of blocks in the
second and third level tiles, respectively.

Figure 9 shows the total energy consumption for the LP-NUCA with ADR
controllers with the epoch length defined either by number of cycles or replace-
ment events. Each bar stacks the static (s suffix) energy over the dynamic (d
suffix) for the auxiliary tags (axt), the rest of tiles (rlp), and the root tile (rt).
For all configurations, RT energy is constant because the ADR controller only
reduce the dynamic activity of the rest of tiles (rlp-d). The prefix SE indicates
that the access policy is serial. Names continue with ADR plus c or r, for time
(cycles) and event (replacement) based configurations, and end with the number
of cycles or replacements.
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Figure 9: Total Energy Consumption for different epoch length and triggering
modes for 1 and 2 threads. rt, rlp, axt refer to the RT, the rest of LP-NUCA tiles,
and the auxiliary tags, and d and s refers to dynamic and static consumption

Beginning with 1 SMT, Figure 9a, low-RPKI benchmarks almost offer no
potential for reducing energy by dropping useless blocks. For example, ADR-c-
1024K and ADR-c-128K reduce LP-NUCA total energy 1.7 and 1.6%, respectively.
Results improve for high-RPKI benchmarks, and, the best configuration of each
group, ADR-c-128K and ADR-r-512, saves 7 and 9.4%, respectively. Most
important, gains occur among all benchmarks; namely, half of them save at
least 4.2% energy in any ADR configuration. 2SMT results, Figure 9b, follow
the same trend with larger gains due to the reduction of inter-thread pollution.
Focusing on med-RPKI and high-RPKI, ADR-c-128K and ADR-r-5K are the best
configurations with similar gains, around 14% and 21% reduction, respectively.

Results are similar for both time and event based epochs. ADR-c-128K
performs slightly better with larger improvements in high-RPKI benchmark, and
it is the best for time based configurations in both 1 and 2SMT. However, in
event-based configurations, the best configurations differ, ADR-r-512 and ADR-r-
5K for 1 and 2SMT, respectively. Given these results, the simpler implementation
tips the scale in favour of the ADR-c-128K time based approach.

7.2 Optimal Number of Drop States

The value of ∆, drop variation between states, controls the variations in the
drop rate during the optimization of the controller. It represents a trade-off
between resolution and speed and as such can be computed from a given number
of states ∆ = 1

states−1 . Figure 10 depicts the total energy consumption for all
the configurations under test. Plots show that having large ∆, or few controller
states, provide the largest energy savings when the epoch length is 128 KCycles.
SE-ADR-2s followed by SE-ADR-3s obtain the best results with little difference
between them, 5.0% and 0.2% for total rest of tiles energy in 1 and 2SMT,
respectively. Even in 1SMT, SE-ADR-3s has a lower consumption than SE-ADR-

20



SE
-L

P-
NU

CA

SE
-A

DR
-2

S

SE
-A

DR
-3

S

SE
-A

DR
-5

S

SE
-A

DR
-9

S

LOW-RPKI

0

5

10

15

20

25

30
En

er
gy

 (m
J)

SE
-L

P-
NU

CA

SE
-A

DR
-2

S

SE
-A

DR
-3

S

SE
-A

DR
-5

S

SE
-A

DR
-9

S

HIGH-RPKI

(a) 1 SMT

SE
-L

P-
NU

CA

SE
-A

DR
-2

S

SE
-A

DR
-3

S

SE
-A

DR
-5

S

SE
-A

DR
-9

S

LOW-RPKI

0

50

100

150

200

250

300

350

En
er

gy
 (m

J)

axt-s
axt-d
rlp-s
rlp-d
rt-s
rt-d

SE
-L

P-
NU

CA

SE
-A

DR
-2

S

SE
-A

DR
-3

S

SE
-A

DR
-5

S

SE
-A

DR
-9

S

MED-RPKI

SE
-L

P-
NU

CA

SE
-A

DR
-2

S

SE
-A

DR
-3

S

SE
-A

DR
-5

S

SE
-A

DR
-9

S

HIGH-RPKI

(b) 2 SMT

Figure 10: Total Energy Consumption for multiple ∆s: 2, 3, 5, and 9. rt, rlp,
axt refer to the RT, the rest of LP-NUCA tiles, and the auxiliary tags, and d
and s refers to dynamic and static consumption

2s in more benchmarks than the other way around, but when SE-ADR-2s beats
SE-ADR-3s it does by a higher percentage. SE-ADR-2s excels when RPKI is
high while low RPKI programs—whose working sets are smaller and, therefore,
the risk of dropping a useful block larger—prefer SE-ADR-3s. Lower number of
states are preferred because when ∆ is high, the effect on dropping is partially
diluted with the system noise. For example, in 179.art, ADR-5s only reaches
the all dropping state in 10 epochs of the 1220 total epochs, and ADR-9s never
reaches that state. A final observation is that ∆ size is tied to the epoch length.
The same experiment with 1 MCycle epochs shows lower gains because no ∆
correctly follows the target function. From now onwards, ∆ is set to 1 (2 states).

7.3 Sensitivity to Controller Delay, k Constant, and Aux-
iliary Tags Size

Next, we analyze those controller parameters with lower impact on the behaviour:
delay, k constant, and auxiliary tags size.

Controller Delay and Energy At the end of every epoch, the ADR adjusts
the drop rates stalling the processor. The critical aspect is the ratio between
the controller delay and the epoch length; e.g., a 1 KCycle delay after every 128
KCycle epoch only increases execution time 0.8%. This little overhead impacts
neither performance nor energy.

To support this claim, Figure 11 shows the reduction in IPC Throughput as
delay increases from 1 to 10000 cycles. Throughput remains constant when the
controller delay is lower than 1000 cycles irrespectively of RPKI and number
of threads. In other words, the ADR controller drops mostly useless blocks,
otherwise performance would be severely affected. Nevertheless, large delays
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affect performance, and ADR-10000c reduces IPC between 7.6% and 8.6% for
low-RPKI–1SMT and high-RPKI–2SMT, respectively because it adds 7.8% delay
overhead to every epoch.
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Figure 11: Harmonic Mean of IPC Throughput for several controller delays and
benchmark groups

Since the ADR easily operates in the range of 50–100 cycles (see Section 6.1)
and the optimal epoch length is around 128 Kcycles, the controller delay does
not penalize the system. Focusing on the controller energy consumption, it has
two primary contributors: dynamic and static. The ADR dynamic consumption
is small because it only updates some counters and, during the evaluations,
performs some comparisons and register updates. On the other hand, there is no
rise in the static energy because execution time does not grow5, and the design
assumes a low standby power technology [43].

The first rows of Table 4 summarizes aggregated energy consumption for
the different delays. Results are not split into groups because the trends do not
change from previous parameters. For each row, the table shows the energy of all
LP-NUCA tiles but the RT including the auxiliary tags, and the total energy of
the cache hierarchy, including the RT and the L3 cache. Then, each cell contains
the values for 1 and 2 threads separated by an slash. All configurations reduce
energy, and gains range between 6.1% (Total, ADR-10000c, 1SMT) and 30.5%
(Rest-T + Auxiliary Tags, ADR-1c, 2 SMT).

k constant and Energy Regarding the value of the k constant, see Equation 3,
we explore three values: 10, 1, and 100. 10 approximates the quotient between a
read hit access to the L3 and five times the cost of a tile insertion plus a tile
eviction 6. The numbers 1 and 100 act as more and less aggressive policies,
respectively. As the middle part of Table 4 shows, changing k has little variance

5Static consumption is directly proportional to execution time.
6Five is the number of tiles that a block visits before its eviction to the L3.
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Table 4: Effect of controller delay, k constant, and auxiliary tags size in
energy consumption

Energy (mJ) Rest-T + Auxiliary Tags Total
1 / 2 SMT 1 / 2 SMT

SE-LP-NUCA 17.6 / 318.8 36.3 / 656.9

SE-ADR-1c 14.8 / 221.4 33.4 / 558.9
controller SE-ADR-50c 14.9 / 222.4 33.5 / 559.9

delay SE-ADR-1000c 14.9 / 222.7 33.5 / 560.4
SE-ADR-10000c 15.3 / 231.0 34.1 / 570.2

SE-ADR-k1 14.8 / 221.6 33.5 / 559.1
k constant SE-ADR-k10 14.9 / 222.4 33.7 / 559.9

SE-ADR-k100 15.2 / 222.8 33.8 / 560.2

SE-ADR-1024 14.9 / 221.9 33.5 / 559.5
auxiliary SE-ADR-8192 14.9 / 222.4 33.5 / 559.9
tag size SE-ADR-16384 14.9 / 222.4 33.5 / 559.9

SE-ADR-32768 14.9 / 222.4 33.5 / 559.9

on energy consumption, and there are only subtle differences in 1 SMT workloads
where ADR-k1 performs better.

Auxiliary Tags size and Energy Lastly, the lower part of Table 4 shows
the energy consumed as the number of entries in the auxiliary tags increases
from 1024 to 32768. Results are almost the same irrespective of the size, and
surprisingly ADR-1024, having only 1024-entry auxiliary tags, obtains the lowest
consumption. Three reasons explain this result. First, due to the temporal
locality, the percent of auxiliary tags hits, does not reduce linearly with the
size. Second, 75% and 50% of all epochs evict less than 1000 blocks for 1 and 2
threads, respectively. In two threads, around 2200 entries are required to store
the addresses of all the evicted blocks during 75% of epochs. Third, it occurs a
very interesting effect. During some epochs, the ADR-1024 has a lower number
of hits than the rest of configurations, so the controller decides to stay in a high
dropping state. The rest of configurations have a higher number of hits in the
auxiliary tags and choose to reduce the dropping rate. However, in the following
epochs, the LP-NUCA reuse rate reduces and only ADR-1024 is dropping blocks.

7.4 Controller Effectiveness

To verify that the ADR correctly follows the drop gradient, we have performed
an experiment that randomly drops blocks with a fixed drop rate of 0.25 and
0.50. These uniform schemes would reduce the energy consumption, if the ADR
was unable to track locality. Nevertheless, the best uniform drop, 0.50, consumes
30% more energy only in the rest of tiles. Adding the L3 consumption increases
the difference and reinforces the conclusion that random dropping is not effective
at all.
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Figure 12: Overall energy and IPC throughput evaluation of serial tile access
and adaptive drop rate controller

8 Combined Analysis of Serial Tile Access and
Adaptive Drop Rate Controller

Now, we compare the energy consumption and IPC throughput of the LP-NUCA,
a serial LP-NUCA (SE-LP-NUCA), and the combination of serial access and
the controller (SE-ADR). In all experiments we will assume the best parameters
of the ADR controller 128 Kcycles epoch lenght, ∆ and k equal 1, and a delay
of 50 cycles.

Figure 12 shows energy and IPC results for 1 and 2SMT. In both cases,
neither serial access nor the controller reduces performance, but both reduce
energy specially for medium and high RPKI groups. Focussing on the target of
the techniques, the energy of rest tiles (including the auxiliary tags) halves for
all benchmarks combined, and for each individual benchmark the energy savings
are larger than 20%.
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9 System Impact

This section analyzes the SE-ADR system impact comparing a broad spectrum
of cache hierarchies: conventional cache (CONV-L2), static NUCA (S-NUCA)7,
LP-NUCA, and LP-NUCA with serial tile access and an ADR controller, (SE-
ADR). All configurations share the rest of components, including the L3, as
described in Section 4, and energy results comprise the L3 cache as well.

Energy per Instruction Many embedded processors run with batteries and
demand power efficient cache hierarchies to sustain high throughput for as long as
possible. Energy per Instruction, EPI, is a suitable metric for this environment
because it represents the required energy to execute the basic work unit of
processors (instructions), so the lower the EPI, the larger the device uptime.

Table 5: Average Energy per Instruction (pJ/I)

CONV-L2 S-NUCA LP-NUCA SE-ADR

1 SMT
low 27.2 28.7 20.7 19.9
high 55.3 53.0 56.9 48.1
all 42.0 41.5 39.7 34.8

2 SMT

low 28.5 30.9 20.8 19.8
med 42.8 41.0 38.9 33.0
high 56.4 53.3 57.3 46.0
all 43.4 42.1 39.9 33.7

Table 5 shows the average EPI for both 1 and 2 SMT scenarios. In 1SMT,
SE-ADR always performs better than the rest of configurations for all programs
except 450.soplex, which has a high hit rate in the last level tiles. In this situation,
the ADR cannot reduce the migration without reducing the hit rate as we can
see in Figure 13. The plot zooms the drop rate and the target function between
30 and 60 millions of cycles. During this interval, the controller is unable to
track the gradient because the function is completely non-stationary. In 2SMT,
the ADR controller reduces both intra-thread, as in 1SMT, and inter-thread
pollution. SE-ADR improves EPI 22.4%, 20%, and 15.5% on average for CONV-
L2, S-NUCA, and LP-NUCA, respectively, for the 171 2SMT mixes. Besides the
switching to serial access, the 15.5% savings with regards to LP-NUCA also are
due to an 85.5% reduction in total block replacements with 1.25% increase in
misses. The latter proving the ability of the ADR to detect low locality phases.
Since inter-thread pollution increases with the number of threads, the SE-ADR
has potential to rise these improvements with larger number of threads in future
systems.

Energy–Delay Figures 14a and 14b show the Energy–Delay product relative
to the CONV-L2 approach for the 4 cache hierarchies considered in 1SMT and

7The static NUCA does not migrate blocks reducing the energy cost of moving blocks
among tiles.
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Figure 13: Drop rate and target function evolution in program 450.soplex

2SMT environments, respectively. Single benchmarks, in 1SMT, and mixes,
in 2SMT, are sorted from SE-ADR lowest to highest improvement regarding
CONV-L2.
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Figure 14: Energy–Delay relative to CONV-L2 per benchmark for 1 and 2SMT.
Results are sorted from SE-ADR lowest to highest gain relative to CONV-L2.
Lower is better.

Starting with 1SMT, Figure 14a, S-NUCA performs irregularly; well in
470.lbm, but bad in 450.soplex, 464.h264ref, and 433.milc. Both LP-NUCA and
SE-ADR perform better except for some benchmarks with high reuse in the last
level tiles. Even in those, savings has improved, and the worst consumption
relative to the CONV-L2 reduces from 17% to 7.5%. In terms of gains, SE-ADR
is better than LP-NUCA in all but 4 benchmarks. In 2SMT, SE-ADR gain excels
more as shown in Figure 14b. In all but 5 mixes, SE-ADR achieves a better
ED than the conventional CONV-L2, and in 65% of them the improvement is
larger than 20%. Also, the SE-ADR reduction of inter-thread pollution improves
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the results of the combinations where the LP-NUCA performs worse than the
conventional approach, CONV-L2. S-NUCA static placement suffers when
memory pressure rises and performs up to 98% worse than the CONV-L2. On
the contrary, the SE-ADR reduces the LP-NUCA worse energy-delay results
from 16% to 4.8%. Not surprisingly, SE-ADR bigger gains relative to LP-NUCA
occur in pairs where each benchmark belongs to one of the groups (high and
how RPKI), such as 433.milc and 164.gzip, or where the two benchmarks belong
to high-RPKI group, such as 464.h264ref and 179.art.

Energy–Delay2 For systems where performance stands out over energy (set-
top boxes, routers, . . . ) ED2 is a metric because its bias towards delay. In our
particular case, ED2 proves that SE-ADR energy improvement does not carry
along a loss of performance. Figure 15a shows the ED2 relative to the baseline
CONV-L2 for all single thread applications. In single thread applications, S-
NUCA has the absolute maximum gain in 470.lbm with 65.5% improvement;
however, on average, it performs 6.7% and 45.2% worse than CONV-L2 and
SE-ADR, respectively. Finally, SE-ADR outperforms LP-NUCA by 3.6% with
improvements up to 42.0% in 179.art.

450
.so

ple
x

456
.hm

mer

183
.eq

uak
e

473
.as

tar

464
.h2

64r
ef

453
.po

vra
y

429
.mcf

186
.cra

fty

401
.bz

ip2

177
.mesa

164
.gz

ip

458
.sje

ng

445
.go

bm
k

255
.vo

rte
x

482
.sp

hin
x3

187
.fac

ere
c
179

.ar
t

470
.lbm

433
.milc

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
-D

ela
y2

 re
lat

ive
 to

 C
ON

V-
L2

CONV-L2
S-NUCA
LP-NUCA
SE-ADR

(a) 1SMT

0 20 40 60 80 100 120 140 1600.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
-D

ela
y2

 re
lat

ive
 to

 C
ON

V-
L2

CONV-L2
S-NUCA
LP-NUCA
SE-ADR

(b) 2SMT

Figure 15: 1 and 2SMT Energy–Delay2 per benchmark sorted from lowest to
highest SE-ADR to CONV-L2 relative gains

In 2SMT experiments, Figure 15b, the trend remains the same. The behaviour
of S-NUCA is the most erratic, and it shows the largest dispersion relative to
CONV-L2, with a 56% maximum improvement and 196% decline in 470.lbm–
473.astar and 433.milc–482.sphinx3, respectively. LP-NUCA and SE-ADR
improve that gains, and SE-ADR also reduces variance. Namely, the worst
LP-NUCA decline is 10%, 179.art–473.astar, while SE-ADR improves ED2 in
all combinations, 14.4% in this particular case. Most importantly, SE-ADR
overpasses CONV-L2 by more than 25% in 51.4% of the combinations.

Fairness Previous metrics may provide distorted results in terms of resource
distribution or fairness; e.g., IPC throughput reflects the amount of work per unit
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of time regardless if some threads are starving. To prove SE-ADR improvements
are not due to a prioritization of some threads, we have computed the fairness
of all 2SMT mixes as described in Section 4.2. The SE-ADR does not affect
the fairness of the LP-NUCA, and in 81% of the mixes, SE-ADR overpasses the
CONV-L2 and S-NUCA. In a few thread mixes, the SE-ADR fairness is worse
than the CONV-L2 fairness. These mixes are made up of benchmarks with the
largest IPC improvements compared with CONV-L2 executing in single thread
mode. In other words, when running in single thread mode, their IPC is almost
ideal, so when they run shared their IPC reduces a lot.

10 Conclusions

LP-NUCA is a tiled cache organization that improves performance by keeping
cache blocks ordered by temporal locality. Ordering requires continuous migra-
tions of blocks among tiles and makes LP-NUCA vulnerable to waste energy
during polluting phases for single and multithreaded workloads.

This paper analyzes the tile cache access mode and proposes and Adaptive
Drop Ratio Controller to reduce dynamic energy in LP-NUCA caches. We
demonstrate that serial access reduces energy without harming performance.
Also, we propose a hill climbing based controller detecting low locality program
phases, so that useless blocks are silently dropped during them. Dropping
saves energy and avoids the eviction of more useful blocks. The controller
implementation is straightforward and requires a negligible amount of area.

Through an extensive parameter evaluation, we prove that the ADR works
well for all kinds of applications and that its effectiveness does not depend on
the configuration parameters. In single thread mode, a LP-NUCA with serial
access and ADR controller, SE-ADR, reduces LP-NUCA energy consumption
22.7%. When inter-thread cache contention appears in 2SMT, the energy savings
rise to 29%, the controller reduces the total number of migrations 81% and only
increases miss rate 1.7%. If the full cache hierarchy is considered, the SE-ADR
improves energy–delay and energy–delay2 versus conventional, static NUCA,
and LP-NUCA cache organizations. Namely, the SE-ADR improves ED 20.8 and
14.1% versus the conventional and static NUCA in single threaded applications.
In 2SMT, the improvement rises to 25% and 23%.

Finally, note that the use of the ADR controller is not restricted to LP-NUCA,
and could be used for example to filter victims into the L3 cache of the IBM
Power7 or to migrate important data between the exclusive L2 and L3 caches of
the AMD Bulldozer. This extension is not straightforward, because these block
streams present different locality properties.
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[29] Sonia López, Steve Dropsho, David H. Albonesi, Oscar Garnica, and Juan
Lanchares. Dynamic capacity-speed tradeoffs in smt processor caches. In
Proc. of the 2nd int’l conference on High performance embedded arch.s and
compilers, HiPEAC’07, pages 136–150, Berlin, Heidelberg, 2007. Springer-
Verlag.

[30] LSI Corporation. PowerPC™ processor (476FP) embedded core prod-
uct brief, http://www.lsi.com/DistributionSystem/AssetDocument/

PPC476FP-PB-v7.pdf, January 2010.

[31] MIPS Technologies. MIPS32® 1004K™coherent processing system (CPS),
2010.

[32] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi.
CACTI 6.0: A tool to model large caches. Technical Report HPL-2009-85,
HP Laboratories, April 2009.

[33] U. G. Nawathe, M. Hassan, K. C. Yen, A. Kumar, A. Ramachandran, and
D. Greenhill. Implementation of an 8-core, 64-thread, power-efficient sparc
server on a chip. IEEE Journal of Solid-State circuits, 43(1):6–20, 2008.

[34] Mario Nemirovsky and Wayne Yamamoto. Quantitative study of data caches
on a multistreamed arch. In In Workshop on Multithreaded Execution, Arch.
and Compilation, 1998.
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