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Abstract:  19	

Examination of activation maps using multi-electrode array (MEA) sensors can help to 20	

understand the mechanisms underlying atrial fibrillation (AF). Classically, creation of 21	

activation maps starts with detection of local activation times (LAT) based on recorded 22	

unipolar electrograms. LAT detection has a limited robustness and accuracy, and generally 23	

requires manual edition. In general, LAT detection ignores spatiotemporal information of 24	

activation embedded in the relation between electrode signals on the MEA mapping sensor. 25	

In this work, a unified approach to construct activation maps by simultaneous analysis of 26	

activation patterns from overlapping clusters of MEA electrodes is proposed. An activation 27	

model fits on the measured data by iterative optimization of the model parameters based on a 28	

cost function. The accuracy of the estimated activation maps was evaluated by comparison 29	

with audited maps created by expert electrophysiologists during sinus rhythm (SR) and AF. 30	

During SR recordings, 25 activation maps (3100 LATs) were automatically determined 31	

resulting in an average LAT estimation error of -0.66 ± 2.00 ms and a correlation of 32	

98.0=sr  compared to the expert reference. During AF recordings (235 maps, 28226 LATs), 33	

the estimation error was -0.83 ± 6.02 ms with only a slightly lower correlation ( 93.0=sr ). In 34	

conclusion, complex spatial activation patterns can be decomposed into local activation 35	

patterns derived from fitting an activation model, allowing the creation of smooth and 36	

comprehensive high-density activation maps. 37	

 38	

Keywords: Activation Mapping, Atrial Fibrillation, Multi-Electrode Array Sensors, Normal 39	

Sinus Rhythm, Solid Angle, Uniform Double Layer, Unipolar Electrograms.40	
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1. Introduction: 41	

Atrial fibrillation (AF) is one of the most common arrhythmias, responsible for one third of 42	

all hospitalizations at cardiac arrhythmia units [1], with an increasing prevalence due to aging 43	

of the population[2,3]. Moe et al. [4] first proposed the wavelet hypothesis underlying the 44	

initiation and perpetuation of AF, describing the presence of multiple propagating wavelets 45	

sustaining the fibrillation process, validated later by Allessie et al. [5,6]. Other proposed 46	

mechanisms include driving foci, mainly located at the pulmonary veins [7], re-entrant 47	

circuits, rotors [8,9] and trans-mural conduction of fibrillation waves between epicardial and 48	

endocardial atrial layers [10,11]. However, mechanisms underlying the initiation and 49	

perpetuation of AF are not yet fully understood [8], limiting the optimal treatment of patients. 50	

 Activation mapping is the most commonly used method for visualization and study of 51	

cardiac arrhythmias [12]. During hemodynamically stable and regular tachycardia, activation 52	

maps can be created after sequential recording of electrograms (EGM) and detected local 53	

activation times (LAT) can be referred against a fiducial point in a simultaneously recorded 54	

surface or intracardiac signal [13]. However, during irregular tachycardia like AF, 55	

simultaneous mapping is needed due to the non-repetitive nature and complexity of the 56	

arrhythmia [8]. Multi-electrode mapping catheters such as PentaRay and Lasso (Biosense 57	

Webster, Inc. Diamond Bar, CA, USA) or the Constellation full contact basket catheter 58	

(Boston Scientific, Inc. Natick, MA, USA) lack spatial resolution during more complex 59	

activation of the atrium due to electrode sparsity and bad wall contact [14]. For high-density 60	

mapping of more complex AF, a high-density multi-electrode array (MEA) mapping sensor 61	

will be needed [8]. 62	

 In this study, unipolar electrograms (u-EGM) were recorded using a MEA mapping 63	

sensor in direct contact to the epicardial wall of the atrium during open chest surgery. The 64	
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recorded signals are displayed in a matrix related to the location of the electrodes on the 65	

MEA sensor. This will allow constructing activation maps which show the propagation of 66	

cardiac activation [6,8]. 67	

 The construction of activation maps involves several processing steps including 68	

denoising, baseline correction, far field R-wave cancelation and detection of activation times 69	

followed by an error rejection process. Detection of LATs is related to the u-EGM steepest 70	

negative slope ( dtdV ) as a result of an activation wave under-passing the recording 71	

electrode [15,16]. Activation maps are constructed by combining LATs detected from each of 72	

the electrodes on the mapping array. However, this procedure ignores the information 73	

embedded in the morphology of the u-EGM signal, hence not used for the creation of high-74	

density activation maps. 75	

 Detailed cardiac electrophysiological modelling provides insight in the physiology 76	

underlying cardiac arrhythmias and serves as a tool for a better diagnosis and interpretation of 77	

experimental data [17]. Those models describe the ion currents flowing through the 78	

myocardial cell membrane (e.g.[18,19]) embedded in realistic structures and geometries of 79	

the human heart [17]. Less detailed models of cardiac propagation provide a less time-80	

consuming alternative to represent the cardiac activation propagation. Equivalent source 81	

model uses current sources and densities to calculate the potentials, hence describing the 82	

activation propagation as a uniform double layer (UDL) model [20]. 83	

 In this paper, a unified spatiotemporal approach for estimation and construction of 84	

high-density activation maps is presented. The proposed method fits an activation pattern 85	

model to acquired cardiac activity in order to reconstruct the complete activation map as the 86	

combination of contributions from different isotropic focal activation sources. The 87	

contribution of each of the sources was determined by an iterative optimization process 88	
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modifying the UDL propagation model after comparing the modelled signals against u-EGM 89	

signals acquired during epicardial atrial mapping in sinus rhythm (SR) and AF. Finally, the 90	

complete activation map was reconstructed by combining individual solutions. Preliminary 91	

analysis of this approach has been reported in [21]. 92	

2. Materials and methods:  93	

2.1. High-density atrial epicardium recordings:  94	

The clinical data used in this study was obtained from a 61 years-old male patient with 95	

coronary artery disease, without a history of AF which echocardiographic examination 96	

revealed a normal left ventricular ejection fraction and normal atrial dimensions. The patient 97	

was admitted for open chest surgery at Erasmus Medical Center Rotterdam (Rotterdam, The 98	

Netherlands) in whom an intraoperative electrophysiological study was performed. The 99	

patient was informed and signed the consent form. During the intervention, a custom made 100	

high-density MEA mapping sensor (Applied Biomedical Systems B.V., Maastricht, The 101	

Netherlands) was positioned on the epicardial wall of the left and right atrium following a 102	

sequence of epicardial locations, as illustrated in Fig. 1(a). Datasets of high-density u-EGMs 103	

signals were acquired during SR and AF. 104	

Figure 1 here 105	

Fig. 1: Schematic of the mapping procedure in posterior view: (a) Anatomical location of the 106	

MEA sensor in the atrium and (b) MEA sensor used for mapping procedure. CS: Coronary 107	

Sinus, CT: Crista Terminalis, IVC: Inferior Vena Cava, LA: Left Appendage, LBB: Left 108	

Bachmann Bundle, LPV: Left Pulmonary Vein, RA: Right Appendage, RBB: Right 109	

Bachmann Bundle, RPV: Right Pulmonary Vein, SVC: Superior Vena Cava. 110	
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 The custom MEA sensor measures 3.0×1.4 cm, is composed by 128 circular gold 111	

plated electrodes (2 mm inter-electrode distance, 1 mm diameter) organized in an 8×16 112	

rectangular grid. Electrode channels corresponding to each corner of the mapping array were 113	

not available for mapping and were reserved for storing surface ECG, reference and 114	

calibration signals, resulting in 124 u-EGM signals available for analysis (Fig. 1(b)). The 115	

acquired u-EGM signals were band-pass filtered (1-500 Hz) sampled and digitized at 1 kHz. 116	

The recording length during SR episodes was 5 s and 10 s during AF episodes. 117	

 Automatic LAT detection was performed off-line after the procedure using a wavelet-118	

based algorithm [22] and subsequently audited by an expert electrophysiologist blind to the 119	

detection outcome of this work. Therefore, the resulting LATs were considered as “ground 120	

truth” for performance evaluation of the proposed algorithm. 121	

2.2. Algorithm overview and notation: 122	

 Before algorithm starts, a 100 ms signal excerpt that includes a complete activation 123	

across the MEA sensor is selected and the mapping array is segmented in 44 overlapped 124	

groups of 5×5 electrodes (area 64 mm2), being this the size of the analysing mask in this 125	

work. A comprehensive flow of the processing steps is described below: 126	

L1: For each 5×5 group of electrodes: 127	

1. Estimate conduction velocity and initial focus location, 128	

which is considered the source for this estimation. 129	

2. Generate activation pattern and modelled u-EGMs. 130	

3. Compare measured against modelled u-EGMs. 131	
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L2: While the similarity is below a given threshold or the 132	

maximum number of iterations is not reached: 133	

a) Compute new focus location for next iteration. 134	

b) Generate new activation pattern and modelled u-EGMs. 135	

c) Compare measured against modelled u-EGM signals. 136	

End of loop L2. 137	

End of loop L1. Go to step 1 unless all 5x5 groups have been 138	

already analysed. 139	

4. Activation map reconstruction. 140	

 For notation, ][nsi  stands for the recorded u-EGM signal corresponding to the i th 141	

electrode, 25...1=i , from the 5×5 group under analysis and ][ˆ nsi  denotes the modelled u-142	

EGM signal corresponding to the same electrode located in the cardiac tissue model. 143	

2.3. Activation pattern and tissue model: 144	

 The basic activation pattern can be generalized as a single focal point generating an 145	

activation wavefront concentrically spreading with a uniform conduction velocity. In a 2-146	

dimensional plane, the wavefront coordinates T
, ]],[],,[[],[ qqq nwnwn yxv =fw  created by a 147	

circular activation pattern with center focus location [ ]T, yx ff=f  at a time instant n ; can be 148	

described by the parametric form: 149	
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where [ )pq 2,0=  and v  stands for the conduction velocity of the medium. Note that 151	
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],[, qnvfw  is the expression of a circumference of radius nv ×  centred at f . Hence, (1) defines 152	

a circular activation pattern from a single focus, becoming a planar wave when the focus is 153	

located far away from the observer scope. 154	

 The activation pattern was introduced into a UDL model using the boundary element 155	

method [20]. The UDL models a square planar slice of atrial tissue of 12×12 mm and 2 mm 156	

thick conform to the average thickness of the human atria [23]. Since no EGMs from the 157	

endocardial wall were recorded, epicardial and endocardial conduction velocity was assumed 158	

to be equal [24]. Consequently, the modelled activation propagates in parallel and at the same 159	

velocity in both endocardial and epicardial side of the UDL model. 160	

2.4. EGM signal modelling:  161	

A virtual MEA sensor (v-MEA) with 5×5, 2 mm spaced, circular electrodes was placed on 162	

the epicardial side of the UDL enabling calculation of electrical activity during activation. 163	

Each i th virtual electrode of the v-MEA has a spatial location T],[ iii yx=e . The infinite 164	

medium potential generated by a UDL at time instant n  and position ie  is given by [20]: 165	

][
4

][ˆ n
V

ns
i

d
i eW-=

p
,         (2) 166	

where dV  stand for a constant value called double layer strength of the UDL [20] and ][n
ie

W  167	

stands for the solid angle of the surface created by the activation wavefront ],[, qnvfw  and 168	

subtended within the UDL at ie , as illustrated in Fig. 2. This solid angle ][n
ie

W  can be 169	

computed numerically by dividing the wavefront surface into triangular elements and 170	

summing the solid angles subtended by each surface element, using the plane triangle 171	

formula [25]. 172	

Figure 2 here  173	
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Fig. 2: Schematic in: (a) perspective view and (b) lateral view, of the solid angle ][n
ie

W  174	

obtained at electrode position ie  from a circular activation pattern ],[, qnvfw  subtended 175	

within a UDL shown as a closed grey strip. 176	

 Equation (2) describes the electrophysiological behaviour of local u-EGMs recorded 177	

from the myocardium. The potential ][ˆ nsi  increases when the activation wavefront 178	

approaches the recording electrode, shows a fast downward slope when the wave underpasses 179	

the electrode and goes back to baseline when the wave passes away [13,15,20]. The 180	

amplitude of this fast downwards slope is proportional to the double layer strength dV  [20], 181	

hence it can be estimated from the measured u-EGM signals as the mean value of all 182	

amplitude difference between the positive and negative deflection (i.e., the R-wave and S-183	

wave, respectively). This constant value does not affect the spatiotemporal features of ][ˆ nsi  184	

(i.e., the LAT and wave morphology) hence having been set arbitrarily in this work to 1=dV . 185	

2.5. Estimation of tissue conduction velocity:  186	

To use the propagation model (1), the conduction velocity of the cardiac tissue v  needs to be 187	

estimated from recorded u-EGMs. Estimation of conduction velocity from invasive data is an 188	

already addressed problem (e.g. in [6,26–28]), although difficult due to the spatiotemporal 189	

changes of cardiac tissue properties, especially during irregular tachycardias [26]. 190	

 Estimation of conduction velocity based on LATs can be sensitive to detection errors. 191	

Therefore, an alternative approach is used in this work inspired in that presented by 192	

Fitzgerald et al. [27]. The time delay id  between each u-EGM ][nsi  and the central electrode 193	

of the 5×5 group being analysed ][nsr  is obtained by maximizing the normalized cross-194	

covariance function: 195	
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]}[{argmax , mC ri
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i =d ,        (3) 196	
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where is  and rs  stand for the mean value ][nsi  and ][nsr , respectively; and m  represents the 198	

time lag between signals. 199	

 The next step involves the estimation of the conduction velocity for the 5×5 electrode 200	

analysing mask while avoiding the possible effect of electrode bad contact, noise or 201	

conduction blocks. A biquadratic model is fitted to the delays measured from each 3×3 sub-202	

group of electrodes at 4...1=k corners of the complete 5×5 group following [26]: 203	

( ) 2
6

2
54321, yaxaxyayaxaayxDk +++++= ,     (5) 204	

where 61....aa are the coefficients of the biquadratic model obtained in the least square sense 205	

[26]. Only those fitted models with RMSE 5.1£  ms were considered valid [24]. Then, the 206	

velocity vector field can be obtained by partial differentiation of ),( yxDk  following [26]: 207	
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where xyxDD kk
x ¶¶= ),(!  and yyxDD kk

y ¶¶= ),(! . The estimated velocity vectors k
iv̂  were 209	

obtained by evaluating (6) at each electrode location T],[ ii yx . Then, for each k th 3×3 sub-210	

group of electrodes, an estimated conduction velocity is obtained for all kiÎ th corner as: 211	

{ }kik medianv v̂ˆ = .         (7) 212	
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 Finally, the conduction velocity v̂  for the complete 5×5 group of electrodes is 213	

estimated by averaging kv̂  from each of the 4£K  corners with valid model fitting: 214	

å
=

=
K

k
kvK

v
1

ˆ1ˆ .          (8) 215	

2.6. Initial focus location:  216	

The focus location f  in (1) will be estimated by the iterative algorithm introduced in section 217	

2.2. The initialization process of f (step 1) is explained in this section. 218	

Figure 3 here 219	

Fig. 3: R-S relation evolution with distance to the activation focus: The u-EGM activation 220	

measured at point (a) has nearly QS morphology ( i
RSR =-0.9) that turns into a RS morphology 221	

as points (b) and (c) are distal from the source of activation (star). The grey dashed line 222	

indicates the zero level. Curved lines show the evolution of the activation wavefront with 223	

time in 5 ms steps. 224	

 The relation between the amplitude of the positive deflection (R-wave) and negative 225	

deflection (S-wave) of the u-EGMs is influenced by wavefront curvature and distance to the 226	

source of activation [13,24]. A QS morphology (i.e., absence of R-wave) indicates that the 227	

electrode is located at the origin of the activation whereas RS morphology (i.e., equal R-wave 228	

and S-wave amplitudes) indicates activation by a planar wave as illustrated in Fig. 3 [13]. In 229	

order to take into account this phenomenon, for each i th electrode signal ][nsi , the R-S 230	

relation has been quantified as the difference between R-wave and S-wave amplitude 231	

normalized by the peak-to-peak amplitude of the u-EGM signal [24]: 232	
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ii

iii
RS SR

SR
+
-

=R ,         (9) 233	

were iR  and iS  stand for the R-wave and S-wave amplitudes of ][nsi . i
RSR  ranges from -1 to 234	

1, where negative values show predominance of S-wave over R-wave and vice versa [24]. 235	

Therefore, the initial focus 0f  is set to the location of the electrode mini , which is activated 236	

earliest and has the most negative R-S relation, being estimated with a combined criterion: 237	

{ }i
RSi

i
i Rargminmin += d .        (10) 238	

2.7. Model optimization algorithm:  239	

An iterative algorithm modifies f  optimizing the fitting of the u-EGM signals derived from 240	

the propagation model (1) to the recorded data, while the conduction velocity v̂  estimated in 241	

section 2.5 is unmodified. 242	

 The focus location is initialized at 0f  and updated in each iteration l  following 243	

tlll D××D+=+ uff 1 ,         (11) 244	

where D  represents the update step, tD  the signal time resolution and lu  is the unit update 245	

vector towards the direction that improves the synchronization between the modelled and 246	

recorded u-EGMs. The update step is set up as v̂=D  therefore, in each iteration, f  changes 247	

according to the distance that the activation wavefront travels in tD  ms. A schematic of this 248	

model optimization is shown in Fig. 4. 249	

Figure 4 here 250	

Fig. 4: Schematic of the model optimization algorithm: signals are derived from the modelled 251	

propagation pattern in test and compared against the measured u-EGM signals. The algorithm 252	
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decides a new focus location and the new pattern is tested. Direction vectors dr , 4...1=d , 253	

connect the center of each 2×2 corner group of electrodes dG  (indicated by dashed squares) 254	

to the activation focus lf . Vector 1+lu  stands for the update vector for the next iteration. The 255	

signal amplitudes were scaled for visualization purposes as indicated in method section 2.4. Note: 256	

Characters with arrows appear boldface in text. 257	

 Synchronization between recorded and modelled u-EGMs is measured by the delay it  258	

obtained by maximizing the normalized cross-covariance function:  259	

{ }][argmax mCi
m

i =t ,         (12), 260	

åå
å

--

---
=

n iin ii

n iiii
i

snssn

smnssn
mC

22 )ˆ][ˆ()][(s

)ˆ][ˆ)(][(s
][ ,      (13) 261	

where is  and iŝ  stand for the mean value ][nsi  and ][ˆ nsi , respectively; and m  represents the 262	

time lag between signals. 263	

 Then, each 2×2 sub-group of electrodes dG , 4...1=d , located at the corners of the 264	

complete 5×5 group of electrodes under analysis (indicated within dashed squares in Fig. 4) 265	

has a “median sub-group delay” defined as: 266	

}{~
iGid

d

median tt
Î

= .         (14) 267	

 On the other hand, the director vector from each sub-group dG  to the focus lf  is: 268	

dl

dl
d gf

gfr
-
-

= ,          (15) 269	

where dg  stands for the center coordinates of dG . 270	
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 Finally, the unit update vector lu  for the next iteration is determined by: 271	

å å=
÷
÷
ø

ö
ç
ç
è

æ4

1
~

~
=u
d

d
d d

d
l r

t
t ,         (16) 272	

l

l
l u

u
=u ,          (17) 273	

whose direction depends of the sign of dt~ . 274	

 This process is repeated until a cost function Q  exceeds a threshold or the maximum 275	

number of iterations is reached. The cost function Q  is defined as: 276	

{ }]0[ii
CmeanQ = ,         (18) 277	

where ]0[iC  stands for the normalized cross-covariance value between the i th recorded and 278	

modelled u-EGM signals at zero delay, i.e., a measure of morphology similarity and 279	

synchronization. Therefore, Q  can be interpreted as the average resemblance level between 280	

recorded and modelled signals given by the activation pattern in test. 281	

 When 85.0³Q , the algorithm is terminated. In case the algorithm meets the 282	

maximum number of iterations without reaching the threshold for Q , the solution is given by 283	

the location lf  with maximum Q . The algorithm embeds protection against solution 284	

oscillations to avoid local maxima solution by means of inertia movements (increasing D  by 285	

10% during a maximum of 5 iterations while Q  value is not increasing using the last valid 286	

update vector 1-lu ) and random transition vectors (random movements of lf in perpendicular 287	

directions to lu  when inertia vectors do not reduce Q  after 5 iterations) which replace the 288	

update term lu×D  in (11). 289	
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 Then, for each 5×5 group of electrodes, the outcomes of the algorithm are the 290	

estimated conduction velocity v̂ , the final focus location lf  and the resulting value of Q  291	

which evaluates the solution fitting. Additionally, “loci maps” are built by representing the 292	

focus location lf  for each 5×5 group of electrodes in the MEA. 293	

2.8. Activation map reconstruction:  294	

After analysing all the 44 5×5 groups of electrodes in the complete 8×16 MEA sensor, the 295	

activation sequence is obtained as follows. 296	

 Each j th electrode, 124...1=j , of the MEA sensor lies in jhh ...1= different 5×5 297	

groups of electrodes, and therefore has 20£jh  different LAT estimates )()...1( jjj hnn  and 298	

cost function values )()...1( jjj hQQ . Each jn  was identified by the maximum negative slope 299	

of the modelled signal ][ˆ , ns hj  from the j th electrode contained in the h th 5×5 group. Where 300	

each ][ˆ , ns hj  is obtained following (2) after the substitution of hv̂  and hl ,f  in (1). The final 301	

LAT estimate jn̂  for each j th electrode is obtained as the nearest integer of the weighted 302	

averaging of the individual LAT estimates using jQ  as weights: 303	

,
)(

)()(
ˆ

1

1

å
å

=

=
×

=
j

j

h

h j

h

h jj
j

hQ

hnhQ
n         (19) 304	

 For robust LAT estimation during AF recordings, the number of solutions taking part 305	

of the map reconstruction in (19) were limited using a threshold x  obtained as: 306	

}55.0,2min{ QQ sµx -= , where Qµ  and Qs  stand for the mean and standard deviation (SD) 307	

of the Q  values for all the 44 5×5 electrode groups. Therefore, if x£)(hQ j , the activation 308	
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time is not considered in the computation of (19). The value 0.55 is set empirically as a 309	

minimum value of Q  to consider a reliable LAT solution. 310	

2.9. Evaluation protocol:  311	

The evaluation of the proposed algorithm is performed by a comparison of the estimated 312	

LATs with those audited by an expert electrophysiologist showing this comparison error as 313	

mean ± SD. 314	

Figure 5 here 315	

Fig. 5: Representative examples of the atrial activity complexity classification proposed in 316	

this paper. Reference against estimated activation maps were shown in: (a) Normal sinus 317	

rhythm (NSR) activity (error: -0.31 ± 0.93 ms, area: 100 %), (b) abnormal sinus rhythm 318	

(ASR) activity (error: -0.23 ± 3.5 ms, area: 100 %), (c) single atrial fibrillation wavefront 319	

(SAFW) activity (error: -0.03 ± 2.96 ms, area: 100 %), (d) breakthrough (BT) activity (error: 320	

-0.27 ± 2.59 ms, area: 100 %), (e) atrial fibrillation wave fusion (AFWF) activity (error: -0.12 321	

± 1.73 ms, area: 100 %), (f) dissociated atrial activity due to a line of block (LB) (error: 0 ± 322	

13.52 ms, area: 95.97 %) and (g) complex atrial fibrillation (CAF) activity (error: -5.3 ± 323	

10.55 ms, area: 80.17 %). LATs are color-coded from red (earliest) to pink (latest) in 10 ms 324	

isochrones. In case of no LAT could be identified at one electrode location, a cross is used. 325	

 Activation maps were studied in function of the activation pattern complexity and 326	

classified into one of the following 7 degrees, illustrated in Fig. 5: 327	

1. Normal sinus rhythm (NSR): Normal propagation of a single wavefront within the 328	

mapping catheter during SR. 329	

2. Abnormal SR (ASR): Abnormal propagation of one or more wavefronts within the 330	

mapping catheter during SR. 331	
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3. Single atrial fibrillation wavefront (SAFW): Single AF wavefront propagating within 332	

the mapping catheter whose origin is located outside the mapping array. 333	

4. Breakthrough (BT): Concentric AF propagation wavefront whose focus is located 334	

within the mapping array [11]. 335	

5. Atrial fibrillation wave fusion (AFWF): Two separated wavefronts collide and fuse 336	

into a single wavefront. 337	

6. Line of Block (LB): A line of block is present in the propagation pattern of the 338	

mapping catheter creating longitudinal dissociation of wavefronts traveling at 339	

different velocities and/or directions [10]. 340	

7. Complex AF (CAF): Chaotic activation with wave interruption and multiple lines of 341	

block. 342	

 Since LATs have an ordered nature (i.e., from earliest activated to latest activated 343	

electrode), Spearman's rank correlation sr  has been computed for assessing the performance 344	

of the proposed method. Additionally, Lin's concordance correlation factor cr  [29] and 345	

Bland-Altman analysis were used to assess agreement between the measurements. A p -value 346	

05.0£  was required for considering statistical significance. Sensitivity Se  and positive 347	

predictive value +P  of the detection have been computed as: 348	

FNTP
TPSe
+

= ,         (20) 349	

FPTP
TPP
+

=+ ,         (21) 350	

where TP  stands for the number of true detections, FN  stands for the number of missed 351	
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detections and FP  stands for the number of false detections. A tolerance of ± 5 ms respect to 352	

the expert reference LATs was used to consider a true detection. 353	

3. Results:  354	

3.1. Analysis of SR recordings:  355	

Table 1 summarizes the results obtained during SR. Note that in contrast to recordings at RA1 356	

to RA3, recording at RA4 shows abnormal SR activity suggesting a stable functional re-357	

entrant circuit (illustrated in Fig. 5(b)) which is present during the complete recording time.  358	

Table 1 here 359	

Table 1: Detection error (mean ± SD), sensitivity and positive predictive value of comparing 360	

estimated LATs with the manual reference in SR recordings. N/A stands for Not Applicable. 361	

 The global error obtained with the proposed method is -0.66 ± 2.00 ms across 3100 362	

LAT measurements, thus covering the 100 % of the sensor area. A high level of agreement is 363	

confirmed by high Spearman’s correlation ( 98.0=sr , 01.0<p ) and high Lin's concordance 364	

correlation factor ( 98.0=cr , 01.0<p ) as shown in Fig. 6. Bland-Altman analysis shows 365	

(Fig. 6(b)) no trend in LAT estimation (Pearson's 01.0-=r , 73.0=p ). Moreover, the 366	

detection performance is also high with 100=Se  % and 84.97=+P  %. Those observations 367	

confirm the high agreement between measurements during SR as illustrated by activation 368	

maps shown in Fig. 5(a)-(b). 369	

Figure 6 here 370	

Fig. 6: Agreement evaluation between reference and estimated LATs during SR: (a) 371	

Reference vs. estimated LATs plot for Lin's concordance correlation factor cr  where pink 372	
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line indicates the unit slope and (b) Bland-Altman plot where red solid line indicates mean 373	

error and red dashed lines show mean ± 2SD of the error. 374	

3.2 Analysis of AF recordings:  375	

Table 2 summarizes the results obtained using the proposed method during AF. Note that LB 376	

and CAF complexity levels were only present at recording RA1. The global error obtained by 377	

evaluating a total of 28226 different LATs is -0.83 ± 6.02 ms covering almost the complete 378	

MEA sensor area (97.99 ± 7.66 %) having high agreement with manual annotations indicated 379	

by Spearman's 93.0=sr  and Lin's concordance correlation factor 90.0=cr  ( 01.0<p  both). 380	

On the other hand, the detection performance is also high with 80.97=Se  % and 381	

36.88=+P  %. The Bland-Altman analysis (Fig. 7(f)) illustrates this agreement and shows a 382	

slight trend of the proposed method towards over-estimation of early LATs and sub-383	

estimation of late LATs (Pearson's 21.0=r , 01.0<p ). Representative examples of 384	

activation map reconstruction during AF are shown in Fig. 5(c)-(g). 385	

Table 2 here 386	

Table 2: Detection error (mean ± SD), sensitivity and positive predictive value of comparing 387	

estimated LATs with the manual reference per AF recording at different levels of AF 388	

complexity. N/A stands for Not Applicable. 389	

Figure 7(a)-(e) shows individual LATs agreement analysis for each AF complexity level 390	

proposed in this paper. A high level of agreement is found for SAFW, BT and AFWF. 391	

However, LB and CAF show lower level of agreement (Fig. 7(d)-(e)). 392	

Figure 7 here 393	
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Fig. 7: Agreement evaluation between reference and estimated LATs during AF at different 394	

complexity levels including (a) SAFW, (b) BT, (c) AFWF, (d) LB (e) CAF and (f) all LATs 395	

studied in this work. In each pair of panels, left shows reference vs. estimated LAT plot for 396	

Lin's concordance correlation factor cr  (pink line indicates the unit slope) and the right panel 397	

shows Bland-Altman plot (red solid line indicates mean error and red dashed lines show 398	

mean ± 2SD of the error). 399	

3.3 The “loci maps”:  400	

Aside from the activation map reconstruction, an interesting result of the proposed method is 401	

the estimation of the activation pattern origin f  for a given 5×5 group of electrodes of the 402	

MEA sensor. Therefore, construction of “loci maps” is possible by plotting all estimated 403	

focus location f across the MEA sensor. Fig. 8 shows examples of these loci maps from 404	

different activation patterns merged with the activation map. Note that loci maps spatially 405	

follow the potential activation wavefront evolution, providing extra information to 406	

complement the activation map. 407	

 Moreover, these loci maps can show different wavefront behaviour and properties, 408	

e.g., the number of wavefronts coming through the catheter and their different directions (Fig. 409	

8(e)-(f)), the curved wavefronts due to potential re-entrant circuits (Fig. 8(b)) and even tissue 410	

anisotropy explained by small groups of clusters coming from the same place but moving into 411	

different directions, presumably following the cardiac fibres orientation (Fig. 8(a)). 412	

Figure 8 here 413	

Fig. 8: Examples of loci maps merged with its estimated activation map: (a) NSR, (b) ASR, 414	

(c) SAFW, (d) BT, (e) AFWF and (f) LB. LATs are color-coded from red (earliest) to pink 415	

(latest) in 10 ms isochrones. Electrodes are shown as empty circles and each focus solution f  416	
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is shown in black dots connected with the center electrode of its corresponding 5×5 group. 417	

Spatial reference is shown with a cross. 418	

4. Discussion: 419	

Assessing LATs for activation mapping during AF is a common task to study and understand 420	

its underlying mechanisms [12]. Automatic LAT detection during AF relies in the detector 421	

accuracy and often requires manual checking. Moreover, LAT detection reduces the 422	

activation information to just a binary signal which takes values whether an activation is 423	

found, rejecting the remaining spatiotemporal information embedded in the morphology and 424	

time relation with adjacent electrodes. 425	

 In this paper, an integrated activation detection scheme is proposed, which takes 426	

benefit of the relation between u-EGMs, hence providing a spatiotemporal detection of 427	

activation maps in high-density recordings using MEA sensors. The rationale behind this 428	

technique is that it is possible to decompose a complete (and complex) activation pattern into 429	

a combination of simpler activation patterns fitted to small areas of the MEA sensor. The 430	

simplest activation pattern is concentric and isotropic, hence only depends on the location of 431	

the activation origin and the tissue conduction velocity. 432	

 The process introduces the parameters of the activation pattern into a UDL model of 433	

the tissue, deriving the corresponding u-EGM signals. Model pattern parameters were 434	

modified iteratively by comparing the resulting u-EGM signals against the recorded ones in 435	

order to reach a maximum of a cost function that takes into account the signal shape 436	

similarities and synchronization. Finally, the complete activation map is reconstructed by the 437	

weighted average of all solutions obtained by running this iterative process over the complete 438	

MEA sensor. 439	
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 Mapping performance has been evaluated by comparing the estimated LATs with 440	

those obtained manually by an expert electrophysiologist in recordings during SR and AF. 441	

Additionally, activation maps were studied and classified based in a complexity scale, hence 442	

providing a more complete view of the method's behaviour and usefulness. Moreover, the 443	

complexity classification used in this work is similar to those activation modes recently 444	

identified by Kuklik and co-workers in an hypertensive sheep cardiac model [30].  445	

 During SR recordings, the agreement between manual and estimated LATs was 446	

proved to be very high. The error was -0.66 ± 2.00 ms with very high Spearman's correlation 447	

and Lin's concordance correlation factor ( 98.0=sr  and 98.0=cr , 01.0<p  both). An 448	

exceptional situation was found in those recordings during SR. The cranial location of the 449	

MEA sensor over the right atrium (RA4 recording) shows full abnormal atrial activity during 450	

SR. This activity suggests the presence of a re-entrant circuit, described by the proposed 451	

method, as illustrated in Fig. 5(b). Moreover, the novel proposed loci maps show potential 452	

trajectory of the activation wavefront evolution, suggesting the presence of a curved 453	

wavefront due to a functional re-entry present during SR (see Fig. 8(b)). 454	

 During AF recordings, the LAT estimation error was of -0.83 ± 6.02 ms with high 455	

agreement with manual annotations ( 93.0=sr  and 90.0=cr , 01.0<p  both). This 456	

agreement is even higher considering the SAFW, BT and AFWF maps solely, which 457	

correspond to the 93 % of the studied maps. However, much lesser agreement was found in 458	

higher complexity maps (LB and CAF). Nevertheless, in this study those types of patterns 459	

were poorly represented in the available data (only at recording location RA1), limiting the 460	

conclusions that can be obtained from those classes. 461	
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 Comparing the mean error in LAT estimation with the standard error of the mean, for 462	

each atrial rhythm and atrial location, it is shown that the proposed method presents a 463	

statistically significant bias. However, in 80 % of SR maps and 66 % of AF maps, this bias is 464	

below one sampling interval and in 100 % of SR maps and 89 % of AF maps this bias is 465	

below two sampling intervals. Moreover, it must be noted that having a systematic bias is not 466	

crucial in activation mapping, where stability between the measurements at different sites is 467	

pursued. This is quantified by the error standard deviation and the correlation with the 468	

reference annotations. 469	

 The proposed algorithm provides smoother and more comprehensive activation maps 470	

than those obtained manually as illustrated by Fig. 5. This fact is in concordance with the 471	

smoothing nature of the weighted average process for reconstructing the final activation maps. 472	

Additionally, the modelled activation pattern used for LAT estimation also contributes to this 473	

smoothness. As an additional outcome of the iterative process, the loci maps appear to be an 474	

interesting tool for assessing the activation behaviour and track the wavefront evolution in the 475	

activation map under analysis. The presented algorithm for activation map and loci map 476	

estimation was possible due to the iterative process and the small computation times of the 477	

solid angle and UDL approaches, in contrast to the high computation times of more classic 478	

and detailed tissue simulation approaches [17]. However, the proposed method needs manual 479	

assistance to select the time interval to analyse the activation map; therefore, the presented 480	

method is a semi-automatic approach. 481	

 The isotropic concentric activation model used in this work assumes the presence of a 482	

single wavefront at the time of mapping within each 5x5 sensors analysis mask. This 483	

assumption is not always accomplished and may be the reason behind the lower performance 484	

observed in the more complex AF activity levels. Small lines of block or high frequency 485	
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(short wavelength) atrial activity may yield in poor estimation of the tissue conduction 486	

velocity or small values of the cost function due to the impossibility of the activation pattern 487	

to model the underlying activation behaviour. One possible solution is to select a smaller 488	

group of electrodes. Reducing the analysis mask size may allow to better estimate activations 489	

under those situations but also turns into a limitation because estimation of tissue conduction 490	

velocity could be less accurate and/or less robust to data acquisition errors (i.e., non-contact 491	

of electrodes) and noise. 492	

 Another limitation is related to the studied database. Only one set of locations coming from 493	

the same patient have been studied. It must be noted the singularity of the data used in this work, as 494	

epicardial high-density mapping is not performed during routine clinical interventions. Additionally, it 495	

must be noted also the fact that manual annotations and/or checking during AF of 124 channels is a 496	

high time-consuming task. Therefore, these constrain the database size for this study. However, more 497	

than 30000 LATs combining SR and AF recordings with very different propagation patterns were 498	

studied in this work, thus making a high amount of measurements for evaluating the proposed 499	

methodology. Nevertheless, extension of this work to more patients and more atrial locations is 500	

needed before clinical usage, especially including those left atrial locations where more complex 501	

activity can be expected. 502	

5. Conclusion:  503	

This paper presents an integrated spatiotemporal detection approach that allows to obtain 504	

smooth and comprehensive high-density activation maps and to track the underlying 505	

wavefront evolution. Simplified, but explicative enough, activation pattern and tissue models 506	

are used in order to generate u-EGM signals that resemble the measured activation map using 507	

an iterative process. Results indicate high accuracy of the proposed method compared against 508	

audited annotations during SR and AF. Therefore, although this work uses invasive data, it 509	
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opens the possibility of studying high-density activations maps with robust outcomes and the 510	

development of minimally invasive epicardial high-density mapping. 511	
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Figure Legends: 605	

Fig. 1: Schematic of the mapping procedure in posterior view: (a) Anatomical location of the 606	

MEA sensor in the atrium and (b) MEA sensor used for mapping procedure. CS: Coronary 607	

Sinus, CT: Crista Terminalis, IVC: Inferior Vena Cava, LA: Left Appendage, LBB: Left 608	

Bachmann Bundle, LPV: Left Pulmonary Vein, RA: Right Appendage, RBB: Right 609	

Bachmann Bundle, RPV: Right Pulmonary Vein, SVC: Superior Vena Cava. 610	

Fig. 2: Schematic in: (a) perspective view and (b) lateral view, of the solid angle ][n
ie

W  611	

obtained at electrode position ie  from a circular activation pattern ],[, qnvfw  subtended 612	

within a UDL shown as a closed grey strip. 613	

Fig. 3: R-S difference evolution with distance to the activation focus: The u-EGM activation 614	

measured at point (a) has nearly QS morphology ( i
RSR =-0.9) that turns into a RS morphology 615	

as points (b) and (c) are distal from the source of activation (star). The grey dashed line 616	

indicates the zero level. Curved lines show the evolution of the activation wavefront with 617	

time in 5 ms steps. 618	

Fig. 4: Schematic of the model optimization algorithm: signals are derived from the modelled 619	

propagation pattern in test and compared against the measured u-EGM signals. The algorithm 620	

decides a new focus location and the new pattern is tested. Direction vectors dr , 4...1=d , 621	

connect the center of each 2×2 corner group of electrodes dG  (indicated by dashed squares) 622	

to the activation focus lf . Vector 1+lu  stands for the update vector for the next iteration. The 623	

signal amplitudes were scaled for visualization purposes as indicated in method section 2.4. Note: 624	

Characters with arrows appear boldface in text. 625	
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Fig. 5: Representative examples of the atrial activity complexity classification proposed in 626	

this paper. Reference against estimated activation maps were shown in: (a) Normal sinus 627	

rhythm (NSR) activity (error: -0.31 ± 0.93 ms, area: 100 %), (b) abnormal sinus rhythm 628	

(ASR) activity (error: -0.23 ± 3.5 ms, area: 100 %), (c) single atrial fibrillation wavefront 629	

(SAFW) activity (error: -0.03 ± 2.96 ms, area: 100 %), (d) breakthrough (BT) activity (error: 630	

-0.27 ± 2.59 ms, area: 100 %), (e) atrial fibrillation wave fusion (AFWF) activity (error: -0.12 631	

± 1.73 ms, area: 100 %), (f) dissociated atrial activity due to a line of block (LB) (error: 0 ± 632	

13.52 ms, area: 95.97 %) and (g) complex atrial fibrillation (CAF) activity (error: -5.3 ± 633	

10.55 ms, area: 80.17 %). LATs are color-coded from red (earliest) to pink (latest) in 10 ms 634	

isochrones. In case of no LAT could be identified at one electrode location, a cross is used. 635	

Fig. 6: Agreement evaluation between reference and estimated LATs during SR: (a) 636	

Reference vs. estimated LATs plot for Lin's concordance correlation factor cr  where pink 637	

line indicates the unit slope and (b) Bland-Altman plot where red solid line indicates mean 638	

error and red dashed lines show mean ± 2SD of the error. 639	

Fig. 7: Agreement evaluation between reference and estimated LATs during AF at different 640	

complexity levels including (a) SAFW, (b) BT, (c) AFWF, (d) LB (e) CAF and (f) all LATs 641	

studied in this work. In each pair of panels, left shows reference vs. estimated LAT plot for 642	

Lin's concordance correlation factor cr  (pink line indicates the unit slope) and the right panel 643	

shows Bland-Altman plot (red solid line indicates mean error and red dashed lines show 644	

mean ± 2SD of the error). 645	

Fig. 8: Examples of loci maps merged with its estimated activation map: (a) NSR, (b) ASR, 646	

(c) SAFW, (d) BT, (e) AFWF and (f) LB. LATs are color-coded from red (earliest) to pink 647	

(latest) in 10 ms isochrones. Electrodes are shown as empty circles and each focus solution f  648	
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is shown in black dots connected with the center electrode of its corresponding 5×5 group. 649	

Spatial reference is shown with a cross. 650	

651	
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Figures 652	

Figure 1: 653	

Author: Alcaine et al.(Single Column, Black and white) 654	

 655	

656	
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Figure 2: 657	

Author: Alcaine et al. (Single Column, Black and white) 658	

 659	

660	
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Figure 3: 661	

Author: Alcaine et al. (Single Column, Black and white) 662	

 663	

664	
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Figure 4: 665	

Author: Alcaine et al. (Double Column, Black and white) 666	

 667	

668	
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Figure 5: 669	

Author: Alcaine et al. (Double Column, Colour figure on-line) 670	

 671	

672	
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Figure 6: 673	

Author: Alcaine et al. (Single Column, Colour figure on-line) 674	

 675	

676	
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Figure 7: 677	

Author: Alcaine et al. (Double Column, Colour figure on-line) 678	

 679	

680	
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Figure 8: 681	

Author: Alcaine et al. (Double Column, Colour figure on-line) 682	

 683	

684	
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Tables: 685	

Table 1: Detection error (mean ± SD), sensitivity and positive predictive value of comparing 686	

estimated LATs with the manual reference in SR recordings. N/A stands for Not Applicable. 687	

Loc. 
Maps 

(#) 

LATs 

(#) 

Area 

(%) 

Error  

(ms) 

NSR 

 (#) 

ASR  

(#) 
sr  cr  

Se  

(%) 

+P  

(%) 

RA1 6 744 100 -0.82 ± 1.41 6 N/A 0.99* 0.99* 100 98.66 

RA2 6 744 100 -0.78 ± 0.92 6 N/A ~1* 0.99* 100 100 

RA3 6 744 100 -0.44 ± 0.76 6 N/A ~1* ~1* 100 100 

RA4 7 868 100 -0.62 ± 3.36 N/A 7 0.97* 0.97* 100 93.43 

Total 25 3100 100 -0.66 ± 2.00 18 7 0.98* 0.98* 100 97.84 

* indicates a p - value < 0.01. 688	

689	
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Table 2: Detection error (mean ± SD), sensitivity and positive predictive value of comparing 690	

estimated LATs with the manual reference per AF recording at different levels of AF 691	

complexity. N/A stands for Not Applicable. 692	

Loc. Type 
Maps 

(#) 

LATs 

(#) 

Error  

(ms) 

Area  

(%) 
sr  cr  

Se  

(%) 

+P  

(%) 

RA1 

SAFW 27 3141 -1.05 ± 4.33 95.59 ± 13.98 0.95* 0.92* 95.42 92.87 

BT 3 350 -0.58 ± 4.74 97.62 ± 4.12 0.88* 0.80* 97.43 86.57 

AFWF 3 359 -1.91 ± 7.39 98.62 ± 1.71 0.90* 0.83* 98.26 78.55 

LB 7 789 -2.39 ± 15.25 91.70 ± 8.84 0.74* 0.67* 87.11 60.84 

CAF 10 903 -7.60 ± 20.26 83.36 ± 23.09 0.46* 0.38* 62.23 35.21 

Total 50 5542 -2.33 ± 11.01 92.91 ± 15.43 0.79* 0.68* 91.16 77.59 

RA2 

SAFW 44 5419 -1.09 ± 3.41 99.50 ± 1.81 0.96* 0.95* 99.47 93.17 

BT 2 238 -3.01 ± 3.61 100 0.95* 0.93* 100 81.51 

AFWF 15 1823 -1.09 ± 4.15 99.11 ± 1.66 0.95* 0.95* 99.04 90.78 

LB N/A N/A N/A N/A N/A N/A N/A N/A 

CAF N/A N/A N/A N/A N/A N/A N/A N/A 

Total 61 7480 -1.15 ± 3.63 99.42 ± 1.74 0.96* 0.95* 99.38 92.22 

RA3 

SAFW 15 1883 -0.12 ± 2.94 98.55 ± 2.00 0.97* 0.96* 98.48 95.64 

BT 43 5298 -0.11 ± 3.47 99.46 ± 0.96 0.95* 0.95* 99.41 92.26 

AFWF 2 242 0.22 ± 3.24 97.58 ± 3.42 0.92* 0.90* 97.38 92.15 

LB N/A N/A N/A N/A N/A N/A N/A N/A 

CAF N/A N/A N/A N/A N/A N/A N/A N/A 

Total 60 7373 -0.10 ± 3.33 99.17 ± 1.43 0.96* 0.96* 99.10 93.10 

RA4 SAFW 53 6478 -0.16 ± 4.21 99.42 ± 1.41 0.96* 0.96* 99.35 87.90 
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BT 4 488 0.92 ± 6.70 99.57 ± 0.48 0.84* 0.81* 99.51 83.20 

AFWF 7 865 -0.67 ± 3.95 99.88 ± 0.31 0.96* 0.94* 99.87 90.06 

LB N/A N/A N/A N/A N/A N/A N/A N/A 

CAF N/A N/A N/A N/A N/A N/A N/A N/A 

Total 64 7831 -0.14 ± 4.39 99.48 ± 1.30 0.96* 0.95* 99.42 87.84 

all 

SAFW 139 16871 -0.62 ± 3.90 98.61 ± 6.43 0.96* 0.96* 98.52 91.36 

BT 52 6374 -0.17 ± 3.94 99.38 ± 1.28 0.94* 0.94* 99.33 90.85 

AFWF 27 3289 -0.97 ± 4.54 99.14 ± 1.59 0.95* 0.93* 99.06 89.36 

LB 7 789 -2.39 ± 15.25 91.70 ± 8.84 0.74* 0.67* 87.11 60.84 

CAF 10 903 -7.60 ± 20.26 83.36 ± 23.09 0.46* 0.38* 62.23 35.22 

Total 235 28226 -0.83 ± 6.02 97.99 ± 7.66 0.93* 0.90* 97.80 88.36 

* indicates a p - value < 0.01. 693	

694	
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