
Accelerating Sparse Arithmetic in the Context
of Newton’s Method for Small Molecules with

Bond Constraints

Carl Christian Kjelgaard Mikkelsen1, Jesús Alastruey-Benedé2,
Pablo Ibáñez-Maŕın2, and Pablo Garćıa Risueño3,4,5

1 Department of Computing Science and HPC2N, Ume̊a University spock@cs.umu.se
2 Instituto Universitario de Investigación en Ingenieŕıa de Aragón (I3A),

Universidad de Zaragoza {jalastru,imarin}@unizar.es
3 Institut für Physik, Humboldt Universität zu Berlin

4 Fritz-Haber Institut (MPG), Berlin
5 Instituto de Biocomputación y F́ısica de Sistemas Complejos, Zaragoza

risueno@physik.hu-berlin.de

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-32149-3_16

Abstract. Molecular dynamics is used to study the time evolution of
systems of atoms. It is common to constrain bond lengths in order to
increase the time step of the simulation. Here we accelerate Newton’s
method for solving the constraint equations for a system consisting of
many identical small molecules. Starting with a modular and generic
base code using a sequential data layout, we apply three different op-
timization techniques. The compiled code approach is used to generate
subroutines equivalent to a single step of Newton’s method for a user
specified molecule. Differing from the generic subroutines, these specific
routines contain no loops and no indirect addressing. Interleaving the
data describing different molecules generates vectorizable loops. Finally,
we apply task fusion. The simultaneous application of all three tech-
niques increases the speed of the base code by a factor of 15 for single
precision calculations.

Keywords: Newton’s method, non-linear equations, molecular dynam-
ics, constraints, SHAKE, RATTLE, LINCS, compiled code approach,
vector level parallelism, vectorizing compiler, SIMD.

1 Introduction

Molecular dynamics (MD) of bio-molecules and organic compounds is at present
an extremely important tool for bio-medical purposes and in the chemical in-
dustry [1,2]. It is central for understanding phenomena within the human body
and for the design of novel drugs. For instance, MD simulations of proteins have

http://dx.doi.org/10.1007/978-3-319-32149-3_16

been instrumental in the design of HIV therapies [3]. In industry, MD simula-
tions enable the detailed analysis of a wide range of phenomena such as catalysis
and adsorption [4,5,6].

In the context of MD, it is common to constrain internal degrees of free-
dom (usually bond lengths and bond angles), i.e. to keep their values constant
throughout the simulation. Constraining fast degrees of freedom allows for an in-
crease in the time step of the MD simulation, so that larger systems and intervals
of real time can be simulated [7].

The imposition of constraints requires the solution of nonlinear equations.
The most widely used methods are SHAKE, RATTLE and LINCS which all
converge linearly [8,9,10]. Solving the constraint equations to the limits of ma-
chine precision is normally out of the question, unless the constraint block is
allowed to consume a significant fraction of the total computational time, de-
feating the purpose of imposing constraints in the first place. For reasons of ef-
ficiency, accuracy and stability, it is desirable to develop a constraint algorithm
which can satisfy the constraints within the limits imposed by machine precision
and perform the corresponding calculations in a very efficient manner. Several
authors have already sought to solve the constraint equations using Newton’s
method, which is locally second order convergent, together with a direct or an
iterative method for the linear systems. However, their proposals were generally
not satisfactory due to efficiency [11] or generality [12] reasons. In this paper
we apply three different optimization techniques to Newton’s method together
with a direct linear solver and we solve the bond constraint equations for several
solvents each consisting of many identical molecules.

1. Compiled code approach: we construct a code generator which reads
a description of a molecule and writes loop free subroutines with direct
addressing, which are then compiled and used to process all molecules of
the given type.

2. Data layout transformations: we enable vector-level parallelism for func-
tions with irregular patterns of memory access and computation by interleav-
ing the data describing different molecules and linear systems of the same
type.

3. Task fusion: we fuse distinct stages of Newton’s method in order to facilitate
data reuse and reduce the number of memory operations.

The combined effect of our three optimization techniques is a 15-fold increase
in the single precision computational speed as demonstrated by our experiments
with several commonly used organic solvents.

2 Newton’s Method for Molecules with Bond Constraints

In MD the most commonly constrained degrees of freedom are general bond
lengths and the hydrogen bond angles. For the sake of simplicity, in this paper
we only tackle bond length constraints. However, note that hydrogen bond angles

can be constrained by imposing a bond length-like constraint between two atoms
that are not actually covalently bonded, so our treatment is rather general.

Consider a molecule with m atoms and let ri = (xi, yi, zi)
T ∈ R3 denote the

coordinates of the ith atom. A bond length constraint is an equation of the form

‖rak
− rbk‖22 − σ2

k = 0, (1)

where σk > 0 is the length of the bond between atoms ak and bk, and ‖ · ‖2
denotes the Euclidean norm. Physical bond lengths are on the order of 100 pm,
where 1 pm = 10−12 m. Let n denote the number of constrained bonds lengths
and let

g : R3m → Rn, g(r) = (g1(r), g2(r), . . . , gn(r))T (2)

denote the constraint function where

gk(r) =
1

2

(
‖rak

− rbk‖22 − σ2
k

)
(3)

represents the bond between atoms ak and bk. The celebrated SHAKE and
RATTLE algorithms are contingent upon the solution of nonlinear equations
of the form f(r) = g(φ(r)) = 0, where φ ∈ R3m → R3m is a function which
depends on the algorithm. For the sake of clarity, this presentation is limited to
the simplest case of φ(r) = r, which corresponds to finding initial coordinates
for each of the m atoms such that the n bond length constraints are satisfied. If
we assume that the Jacobian Dg(r) ∈ Rn×3m has full row rank, then Newton’s
method for the constraint equation g(r) = 0 takes the form

r := r−Dg(r)T (Dg(r)Dg(r)T)−1g(r). (4)

The problem of evaluating each Newton iteration (4) can be split into the
following tasks:

1. Compute the n components of g(r).
2. Build a sparse representation of the symmetric matrix A = A(r) given by

A(r) = Dg(r)Dg(r)T . (5)

3. Expand the representation of A into extended arrays which can accept any
fill-in during the factorization. Simultaneously, overwrite any fill-in from pre-
vious factorizations.

4. Compute a sparse Cholesky factorization of A = LLT .
5. Solve the linear system Ly = g(r) using forward substitution.
6. Solve the linear system LT z = y using backward substitution.
7. Do the linear update r := r−Dg(r)T z.

Normally, one can only monitor the components of the residual, i.e. g(r),
but in our case we can estimate the relative constraint violation. Specifically, if
‖rak

− rbk‖2 ≈ σk, then

gk(r)

σ2
k

=
1

2

‖rak
− rbk‖22 − σ2

k

σ2
k

≈ ‖rak
− rbk‖2 − σk
σk

, (6)

which allows us to terminate the iteration when the constraints are satisfied
to a specific tolerance. The factorization (Task 4) need not be the Cholesky
factorization and there are several variants to choose from including a right-
looking, a left-looking, and a multi-frontal factorization [15].

3 Compiled Code Optimization

The compiled code approach has been applied to the solution of linear systems
in [13] and is rediscovered periodically in this context according to [14]. However,
to the best of our knowledge, it has not been applied to all aspects of a complete
Newton step.

3.1 Transforming a Numerical Routine into a Code Generator

Consider a single step of Newton’s method with a sparse direct solver based on
Cholesky’s decomposition. As there is no need to pivot for the sake of stability,
the order of the instructions depends only on the chemical structure of the
molecule and not on the actual values of the spatial coordinates of the atoms.

Starting from an implementation of Newton’s method, which uses a sparse
direct solver and indirect addressing, we developed a generator, which writes
loop-free subroutines that use direct addressing and are equivalent to a complete
Newton step for a molecule of a specific type.

The process of developing the generator can be illustrated in terms of Task
5, the solution of a lower triangular linear system Lx = b. Fig. 1 contains
a C implementation of forward substitution for matrices in compressed sparse
column (CSC) format. Here n is the dimension of the system, adj[k] is the row
index, val[k] is the value of the kth nonzero of the matrix L, and xadj[i]

marks the start of the ith column inside arrays adj[] and val[].

void forward(int n, int *xadj, int *adj,

float * restrict L, float * restrict b) {

for (int i=0; i<n; i++) {

b[i]=b[i]/L[xadj[i]];

for (int j=xadj[i]+1; j<xadj[i+1]; j++) {

b[adj[j]]=b[adj[j]]-L[j]*b[i]; // inner loop body

}

}

}

Fig. 1. A C subroutine for solving a non-singular lower triangular linear system Lx = b
in CSC format (xadj, adj, val) using forward substitution.

We obtained our subroutine generator by systematically replacing every com-
putation involving floating point numbers with an instruction writing direct ad-
dressing statements equivalent to the original computation to a file. This trans-
formation has been applied to the subroutine displayed in Fig. 1 producing the
generator given in Fig. 2.

void generate_forward(FILE *fp, int n, int *xadj, int *adj) {

fprintf(fp,"void forward(float *L, float *b)\n{\n");

for (int i=0; i<n; i++) {

fprintf(fp," b[%d]=b[%d]/L[%d];\n",i,i,xadj[i]);

for (int j=xadj[i]+1; j<xadj[i+1]; j++) {

fprintf(fp," b[%d]=b[%d]-L[%d]*b[%d];\n",adj[j],adj[j],j,i);

}

}

fprintf(fp,"}\n\n");

}

Fig. 2. Given the adjacency graph of a lower triangular matrix L, this code generates
a C subroutine forward with the linear list of instructions necessary for solving Lx = b
using forward substitution.

We eliminated Task 3 (matrix expansion) by mapping the nonzero entries of
A directly to their correct location inside an extended array, which is exactly
large enough to absorb the fill-in during the numerical factorization. Moreover,
our generator tracks the status of all entries during the symbolic factorization
and issues instructions which treat an entry as zero until it fills in.

Since the required number of subroutine generators is low, they were all
developed manually. If necessary, this task can be done automatically using a
parser that transforms computation statements into fprintf() instructions that
resolve indirect addressing.

3.2 Generated Code

Fig. 3 shows the forward substitution subroutine written by the code generator
in the case of the chloroform solvent. When comparing the new subroutine with
the generic subroutine in Fig. 1 we observe that:

1. The code is fully unrolled, i.e. it is loop-free.
2. There is no indirect addressing.

Replacing indirect addressing with direct addressing reduces the number of
memory operations. For instance, the read access of b[1] in the subroutine
forward chloroform() is performed by a single assembly instruction and re-
quires just one memory access to the array b[]. The corresponding access in the
generic forward() (b[adj[xadj[i]+1]]) is a memory read with double indirec-
tion (three memory accesses) which requires many instructions.

4 Vectorization through Data Transformations

It is hard to exploit vector-level parallelism in subroutines such as those in Fig. 1
and Fig. 3 due to their irregular patterns of memory access and computation.
Nevertheless, since the solvent is composed of identical molecules, we can gen-
erate vectorizable loops that process a group of molecules/linear systems simul-
tanously by interleaving their data, instead of storing the data for each item in
a single contiguous block.

void forward_chloroform(float * restrict L, float * restrict b) {

b[0]=b[0]/L[0];

b[1]=b[1]-L[1]*b[0]; // inner loop body

b[2]=b[2]-L[2]*b[0]; // inner loop body

b[3]=b[3]-L[3]*b[0]; // inner loop body

b[1]=b[1]/L[4];

b[2]=b[2]-L[5]*b[1]; // inner loop body

b[3]=b[3]-L[6]*b[1]; // inner loop body

b[2]=b[2]/L[7];

b[3]=b[3]-L[8]*b[2]; // inner loop body

b[3]=b[3]/L[9];

}

Fig. 3. Generated code for solving Lx = b using forward substitution for the chloro-
form solvent.

Fig. 4 shows a generic subroutine for solving p lower triangular linear sys-
tems. The subroutine assumes that the kth nonzero entries from each of the p

systems are stored contiguously in memory. The two loops over t can be vector-
ized by a compiler like GCC or ICC if the iteration count p is sufficiently large.
In our experiments with GCC and the AVX2 instruction set (256 bits, 8 single
precison floating point numbers), the optimal value of p depends on the level of
optimization. Generic codes peak at higher values of the loop length, compared
with loop free codes, see Subsection 6.2.

void forward_interleaved(int n, int *xadj, int *adj,

float * restrict L, float * restrict *b) {

int i, j, t;

const int p=LOOP_LENGTH;

for (i=0; i<n; i++) {

for (t=0; t<p; t++) b[p*i+t]=b[p*i+t]/L[p*xadj[i]+t];

for (j=xadj[i]+1; j<xadj[i+1]; j++) {

#pragma GCC ivdep // b[p*adj[j]+t] and b[p*i+t] do not overlap

for (t=0; t<p; t++) b[p*adj[j]+t]=b[p*adj[j]+t]-L[p*j+t]*b[p*i+t];

}

}

}

Fig. 4. A C code for solving a group of p non-singular lower triangular linear systems
Lixi = bi in CSC format and all with the same sparsity pattern. The parameter
LOOP LENGTH should be set at compile time.

The generator produces vectorizable code by generalizing a statement such as
b[1]=b[1]-L[1]*b[0] into a simple loop with no dependencies over p systems:

for (t=0; t<p; t++) b[p*1+t]=b[p*1+t]-L[p*1+t]*b[p*0+t];

Vectorial performance can be improved by ensuring that the arrays are properly
aligned at a suitable boundary. It can also be increased by issuing the directive

#pragma gcc ivdep which asserts that there is no aliasing in the loop. This
avoids loop versioning and runtime checks.

5 Task Fusion

Modular programming is a key concept in software development and reflects
how we think mathematically: a large problem is broken into smaller pieces
which are solved separately. Modular programming facilitates code reuse, testing,
debugging, maintenance, and future development, but it can increase the number
of memory operations as intermediate results have to be stored and retrieved.

It is possible to fuse the construction of the right hand side (Task 1) and the
matrix (Task 2) with the factorization (Task 4) and the forward sweep (Task
5). This hinges on the fact that pivoting is not necessary for systems which
are symmetric positive definite, but a left looking, rather than a right looking
factorization is required. In our case we merely fused the factorization of the
matrix with the forward sweep. It is not necessary to compute all components
of z (Task 6) before initiating the linear update (Task 7). Specifically, since

r := r−Dg(r)T z = r−
n∑

k=1

vkzk (7)

where vk is the kth column of Dg(r)T , we can define r(n+1) = r and compute
r(k) := r(k+1) − vkzk as soon as the backward substitution sweep has produced
zk. The vector r(1) will then contain the result of the linear update (7). In this
manner we fused the backward sweep and the linear update.

6 Numerical Experiments

In this paper we do not discuss how to integrate Newton’s method into existing
libraries for molecular dynamics. This allows us to concentrate on the effect
of the three different optimization techniques and we avoid the discussion of a
number of questions which are application or even library specific.

6.1 Methodology

In order to demonstrate the effect of the three different optimization techniques
we wrote 8 = 23 different implementations with the generic name newtonXYZ.
The coding is as follows:

1. Sequential data layout (X=0) versus interleaved data layout (X=1).

2. Generic (Y=0) versus subroutines for molecules of a specific type (Y=1).

3. Complete task separation (Z=0) versus partial task fusion (Z=1).

structural information flops

molecule atoms bonds nnz fill-in
√
a a/b a · b a + b a− b |a| total

acetone 10 9 24 0 9 42 252 93 255 9 660

acetonitrile 6 5 12 0 5 22 126 49 129 5 336

butanol 15 14 39 0 14 67 417 148 420 14 1080

chloroform 5 4 10 0 4 18 102 40 104 4 272

ethanol 9 8 19 0 8 37 223 82 226 8 584

methanol 6 5 12 0 5 22 126 49 129 5 336

THF 13 13 38 2 13 66 400 141 401 13 1034

Table 1. An alphabetical list of the molecules used in our experiments. The dimension
of the matrix A(r) = Dg(r)Dg(r)T is equal to the number of bonds. The number of
structural nonzeros on or below the main diagonal of A(r) is given in the column labeled
“nnz”. The flop count for one complete Newton step as implemented in newton000 is
given for each molecule. Tetrahydrofuran is abbreviated as “THF”.

We implemented a solver based on a right-looking Cholesky factorization. We
interleaved all the information representing groups of molecules and enforced
suitable memory alignment. For all versions, we assisted the compiler with prag-
mas in order to vectorize specific loops. Moreover, we used the restrict qualifier
to inform the compiler that different pointers do not alias. This allows for better
code generation as there is no need to generate both scalar and vectorial versions,
and runtime checks for aliasing are avoided. We explored partial task fusion as
described in Section 5. Experiments were carried out on a workstation with an
Intel i7-4770 processor (Haswell microarchitecture, 3.4GHz, 8MB L3 cache) and
8GB of RAM running Mageia 5 Linux (3.19.6-desktop-2.mga5 kernel).

We used the GCC compiler (version 4.9.2) with the following flags: -O3 -std=c11
-march=native -fno-math-errno which generate AVX2 instructions.

We selected 7 organic solvents for our numerical experiments: acetone, ace-
tonitrile, butanol, chloroform, ethanol, methanol, and tetrahydrofuran, see Ta-
ble 1. They are all produced and used on an industrial scale6. We simulated
solvents composed of 1,600,000 molecules. For each solvent and variation of
Newton’s method we applied 10 iterations of Newton’s method. For each ex-
ecution we measured the wall-clock time. We made several repetitions of each
experiment in order to ensure the reliability of the measurements.

6.2 Results

All results in this section are related to calculations which were performed using
a single core and single precision floating point numbers. Since solvents typically
consist of many copies of the same small molecule, parallelization across a mul-

6 Ethanol is frequently consumed by humans during festive occasions such as confer-
ence dinners.

000 001 010 011 100 101 110 111
code versions

0

2

4

6

8

10

12

14

16

sp
ee

du
p

ov
er

 n
ew

to
n0

00

GS=8
GS=16
GS=32
GS=64
GS=128

Fig. 5. This figure shows the speedup over the base code averaged over all molecules and
computed for each implementation of Newton’s method and group size (GS) separately.

ticore machine is straight forward and maximizing the single core performance
is always a necessary first step.

We interleaved the molecules in groups of size 8, 16, 32, 64, and 128. With
8 codes, 7 molecules and 5 different values of the group size, there were 280
benchmarks to evaluate. In each case we did 20 repetitions. We measured the
wall-clock time and computed the median run-time which is less sensitive to the
effect of outliers. In the vast majority (265 of 280) cases the coefficient of varia-
tion was less than 5% and it was less than 10% in all cases. The speedup SXYZ

of newtonXYZ over the base code newton000 is computed as SXYZ = m(T000)
m(TXY Z) ,

where m(TXYZ) is the median runtime of newtonXYZ. Speedups SXYZ corre-
sponding to group size 16 are given in Figure 2.

For each version of Newton’s method and each group size we computed the
average of the speedup for all molecules with respect to the base code newton000.
These results are displayed in Figure 5.

We also examined our codes using Intel’s SDE (Software Development En-
vironment). Deterministic counts for different types of instructions were deter-
mined for a benchmark involving 16,000 tetrahydrofuran (THF) atoms and 10
Newton iterations per molecule. Table 3 shows, for each version of Newton’s
method, the total number of executed instructions, the total number of floating-
point operations (FLOPs), the fraction of FLOPs computed by scalar instruc-
tions, the fraction of FLOPs computed by vector instructions, and the FLOPs
per instruction ratio.

The highest speedups are achieved through the application of all three opti-
mization techniques. The code newton111 achieves speedups in the interval from
14.97 to 16.14, when the group size is 16, see Table 2. As the optimizations are
applied the total number of instructions required to execute the THF benchmark
is reduced by more than 97%, from 1169.2 million instructions (MI) to a mere
33.6 MI, see Table 3.

Generic subroutines (Y=0) versus specific subroutines (Y=1). Specific
subroutines achieve speedups between 2.1 and 2.4 with sequential data layouts

sequential layout interleaved layout

molecule 000 001 010 011 100 101 110 111

acetone 1.00 1.13 2.32 2.28 3.27 3.53 13.04 15.59

acetonitrile 1.00 1.11 2.28 2.25 3.31 3.63 13.58 15.80

butanol 1.00 1.14 2.29 2.44 3.41 3.66 13.27 16.04

chloroform 1.00 1.09 2.30 2.14 3.26 3.59 13.22 15.41

ethanol 1.00 1.13 2.42 2.35 3.46 3.71 13.56 16.14

methanol 1.00 1.10 2.22 2.19 3.32 3.65 13.03 15.26

THF 1.00 1.05 2.86 2.74 3.14 3.32 12.89 14.97

Table 2. Speedups SXYZ for 8 different implementation of Newton’s method newtonXYZ

over the base code newton000. The codes are identified by their three digit binary
extension XYZ. The molecules were interleaved in groups of size 16 for newton1YZ.

flops

version instr. total scalar
total

vector
total

flops
instr.

000 1169.2 165.5 1 0 0.14

001 1130.4 165.5 1 0 0.15

010 226.2 134.7 1 0 0.60

011 226.1 134.7 1 0 0.60

100 282.9 165.5 0.152 0.848 0.58

101 267.7 165.5 0.139 0.861 0.62

110 52.2 135.4 0 1 2.59

111 33.6 135.4 0 1 4.03

Table 3. Instruction and flop counts in millions for a benchmark consisting of 16,000
THF molecules and 10 Newton iterations per molecule. The group size was 16..

(newton00Z versus newton01Z) and between 1.2 and 6.9 for the interleaved data
layouts (newton10Z versus newton11Z) depending on the group size, see Figure
5. Replacing generic codes newtonX0Z with specific codes newtonX1Z removes
more than 80% of the instructions, see Table 3. The deleted instructions include
counter increments, comparisons, and jump instructions required for loops, as
well as memory operations associated with indirect addressing, all of which are
no longer necessary. The instruction count is reduced even further as the matrix
expansion (Task 3) is avoided. The flop count is reduced as dummy operations
involving zeros are avoided during the sparse factorizations.

Sequential data layout (X=0) versus interleaved data layout (X=1).
For the sequential data layout versions newton0YZ, the compiler is not able
to generate any vectorial code: all floating point operations are performed us-
ing scalar instructions. On the other hand, when interleaving the data layout
newton1YZ, the compiler generates codes with high percentages of their FLOPs
performed by vector instructions (around 85% and 100% for generic and specific

codes, respectively). This reduces the number of executed instructions by more
than 75% in all cases, see Table 3. The performance of the vectorized codes peaks
at a specific value of the group size, see Figure 5. This happens due to a trade-
off between vectorization profitability and the temporal reuse of vector registers
and cache. For small group sizes, some loops are not vectorized because their
iteration counts are too small. The generic code is less amenable to vectorization
and require group sizes above 32 to show speedups close to the AVX SP vector
length. On the other hand, when the group size is increased it is impossible to
retain in vector registers all the values which could be reused, and the compiler
has to generate spill code which increases L1 cache traffic. Eventually, the L1
data cache is exhausted and we experience a substantial drop in performance. A
simple calculation can be offered in support of this second part of the argument.
The THF molecule involves 13 atoms and 13 bonds. The amount of memory re-
quired to store the data necessary to formulate and solve the constraint equation
can be computed as follows: 39 floating-point (FP) numbers for the spatial coor-
dinates of the atoms, 13 FP numbers for the right hand side, and 40 FP numbers
for the matrix, a total of 92 FP numbers or 368 bytes in single precision. If 128
molecules are interleaved, 47104 bytes are required and we exhaust the 32kB L1
data cache capacity of our i7-4770 CPU. When we interleave 64 THF molecules,
we only require 23552 bytes, i.e. less than the L1 data cache capacity.

Complete task separation (Z=0) versus partial task fusion (Z=1). Task
fusion has a significant effect on specific vectorized code (newton110) and small
groups. For instance, when the group size is 16, it causes speedups in the interval
from 1.16 to 1.21 depending on the molecule, see Table 2.

7 Conclusions

If you are solving a large number of identical sparse problems, then you should
consider the simultaneous application of three distinct optimization techniques:
the compiled code approach, partial task fusion, and interleaving the data de-
scribing different problems, as compiler technology has advanced to the point
were a 15-fold increase in computational speed using AVX2 instructions may be
possible.

We demonstrated speedups of this magnitude by solving the constraint equa-
tions for a solvent consisting of a large number of identical molecules of a specific
type using Newton’s method. We wrote 8 different implementations of Newton’s
method using a direct solver based on a right looking Cholesky factorization al-
gorithm. We tested our codes on 7 different organic solvents which are produced
on an industrial scale. The combined effect of all three optimization techniques
is a single precision speedup between 14.97 and 16.14 for each of the different
solvents.

8 Acknowledgments

The work is supported by eSSENCE, a collaborative e-Science programme funded
by the Swedish Research Council within the framework of the strategic re-
search areas designated by the Swedish Government. It is also supported in part
by grants TIN2013-46957-C2-1-P and Consolider NoE TIN2014-52608-REDC
(Spanish Gov.), gaZ: T48 research group (Aragón Gov. and European ESF),
and HiPEAC-3 NoE (European FET FP7/ICT 287759). P.G. Risueño is funded
by MPG. We would like to thank our reviewers as their comments made it pos-
sible to improve the clarity of our manuscript. We are grateful to our editor
Roman Wyrzykowski who encouraged us to continue improving our code and
allowed us to exceed the page limitation.

References

1. Adcock, S.A., McCammon, J.A.: Molecular Dynamics: Survey of Methods for Sim-
ulating the Activity of Proteins. Chem. Rev. 5, 1589–1615 (2006)

2. Frenkel, D., Smit, B.: Understanding molecular simulations: From algorithms to
applications. 2nd Edition, Academic Press (2002)

3. Moraitakis, G., Purkiss, A. G., Goodfellow J. M.: Simulated dynamics and biolog-
ical macromolecules. Reports on Progress in Physics 66, 383 (2003)

4. Liu, H., Sale, K. L., Holmes, B. M., Simmons, B. A. and Singh, S.: Understanding
the Interactions of Cellulose with Ionic Liquids: A Molecular Dynamics Study. J.
Phys. Chem. B 114-12, 4293–4301 (2010)

5. Li, C., Tan, T., Zhang, H., Feng, W.: Analysis of the Conformational Stability and
Activity of Candida antarctica Lipase B in Organic Solvents: insights from MD
and QM simulations. J. Bio. Chem. 285, 28434–28441 (2010)

6. Skoulidas, Anastasios I., Sholl, David S.: Self-Diffusion and Transport Diffusion
of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular
Dynamics Simulations. J. Phys. Chem. B. 33, 15760–15768 (2005)

7. Garćıa-Risueño, P., Echenique, P., Alonso, J. L.:, Exact and efficient calculation
of Lagrange multipliers in biological polymers with constrained bond lengths and
bond angles: Proteins and nucleic acids as example cases. J. Comp. Chem. 32,
3039-3046 (2011)

8. Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C.: Numerical integration of the
Cartesian equations of motion of a system with constraints: Molecular dynamics
of n-alkanes. J. Comp. Phys. 23, 327–341 (1977)

9. Andersen, H. C.: Rattle: A “velocity” version of the Shake algorithm for molecular
dynamics calculations. J. Comp. Phys. 52, 24–34 (1983)

10. Hess, B., Bekker, H. Berendsen, H. J. C. Fraaije, J. G. E. M.: LINCS: A Linear
constraint solver for molecular simulations. J. Comp. Chem. 18, 1463–1472 (1997)

11. Barth, E., Kuczera, K., Leimkuhler, B., Skeel, R.: Algorithms for constrained
molecular dynamics, J. Comp. Chem. 16,10, 11921209 (1995)

12. Bailey, A.G., Lowe, C.P.: MILCH SHAKE: An efficient method for constraint dy-
namics applied to alkanes, J. Comp. Chem. 30,15, 2485–2493 (2009)

13. Gustavson, F. G., Liniger, W., Willooughby R.: Symbolic generation of an optimal
Crout algorithm for sparse systems of linear equations. J. Assoc. Comput. Mach.
17, 87–100 (1970)

14. Duff, I. S.: The impact of high-performance computing in the solution of linear
systems: trends and problems. J. Comput. Appl. Math. 123, 515–530 (2000)

15. Davis, T. A.: Direct methods for sparse linear systems. SIAM (2006)

	Accelerating Sparse Arithmetic in the Context of Newton's Method for Small Molecules with Bond Constraints

