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Abstract

The record of the oscillations of the electric potential of the human
brain provides useful information about the mind activity at rest and
during the achievement of sensory and cognitive processing tasks. It is
necessary then the use of appropriate quantitative tools assigning numer-
ical values to the observed variable, in order to define good descriptors of
the electroencephalogram, allowing comparisons between different record-
ings. In this line, we propose a numerical method for the spectral and
temporal reconstruction of a brain signal. The convergence of the proce-
dure is analyzed, providing results of the concerned approximation error.
In a second part of the text, we use the methodology described to the
quantification of the bioelectric variations produced in the brain waves
for the execution of a test of attention related to military simulation.
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1 Introduction

In this paper we propose approximants of spectral type for sampled signals. The
method is based on the computation of numerical Fourier coefficients beginning
from an experimental variable. The multipliers enable the computation of de-
scriptors such as Activity and Mobility of a time series. The coefficients provide
a power spectrum as well, displaying the frequency content of the function.
The numerical procedure constitutes an alternative to the classical Fast Fourier
Transform algorithm. At the same time, one obtains approximation curves that
display the macroscopic cycles underlying the described phenomenon.
We study the convergence of the procedure, proving that for weak conditions
(Hölder continuity) the simulated curve tends to the original. The methods
are based on classical concepts of analysis and approximation theory. They
may be specially useful for the description of movements of stationary or quasi-
stationary character, such as electrophysiological records, and all types of phe-
nomena near periodicity.
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In a second part of the article, we present an application of the method pro-
posed to electroencephalographic processing. In particular, we inquire about
the brain bioelectric patterns produced during an attention task of military
simulation character. The study of concentration, as well as its loss, during the
execution of jobs performed by the Armed Forces, is a subject of great interest
from the neurological, laboral and social point of view. The computational tools
currently available allow a deeper insight into the experimental signals, and it is
our aim to use them for a better understanding of the brain processes involved
in the cognitive and attentional mental activities related to this sector.

2 Finite real sum of Fourier

From here on we assume, without loss of generality, a real compact interval I of
length T such that T = 2π, in order to simplify the calculus. We consider the
space of 2π-periodic continuous functions

C(2π) = {f : [−π, π]→ R : f continuous, f(−π) = f(π)}

and the operator
Jm : C(2π)→ C(2π)

f → sm

where sm is the m-th Fourier finite real sum of f defined by (see for instance
[1], [2])

Jm(f)(t) = sm(t) =
a0
2

+

m∑
k=1

(ak cos(kt) + bk sin(kt))

where

ak =
1

π

∫ π

−π
f(t) cos(kt)dt,

bk =
1

π

∫ π

−π
f(t) sin(kt)dt.

Jm is a linear and bounded operator, and the following inequality holds [3]

‖Jm‖ ≤ A log(m) (1)

In addition Jm is a projection, Jm ◦ Jm = Jm.

Fourier expansions make the filtering and processing of a signal easier, omit-
ting or retrieving frequencies in a given band. In principle a Fourier finite sum
only assures a good representation of the function in the quadratic mean sense,
that is to say, with respect to the norm

‖f‖2 = (

∫
I

|f |2dt)1/2.

2



In the following we deduce some results in order to bound the uniform error
committed in the approximation of the function by a finite sum.

For f ∈ C(2π), let S∗ be the trigonometric polynomial of order m such that

d∗m(f) = ‖f − S∗‖∞ = inf{‖f − S‖∞; S ∈ τm}

where τm is the space of trigonometric polynomials of order at most m:

τm =< {1, sin t, cos t, sin 2t, cos 2t, ..., sinmt, cosmt} >

and let us consider the next result due to Lebesgue ([3]).

Theorem 2.1. There exists a constant M such that, for each f ∈ C(2π),

‖f − Jm(f)‖∞ ≤Md∗m(f) log(m), (2)

for m > 1, where Jm(f) is the m-th Fourier sum of f .

Theorems of Jackson [1] give upper bounds for d∗m(f). In particular, a
Theorem states that for any function f ∈ C(2π)

d∗m(f) ≤ wf (
π

m+ 1
), (3)

where wf (δ) is the modulus of continuity of f , defined as

wf (δ) = sup
|t−t′|≤δ

|f(t)− f(t′)|.

A Hölder continuous function with exponent β (0 < β ≤ 1) satisfies the inequal-
ity ([1]):

wf (δ) ≤ kδβ . (4)

In this case, applying Theorem of Lebesgue 2.1, (3) and (4),

d∗m(f) ≤ k(
π

m+ 1
)β , (5)

the Fourier series Jm(f) is convergent to f in the uniform sense as well since
‖f −Jm(f)‖∞ tends to zero when m tends to infinity. This is a particular case
of a Dini-Lipschitz condition (wf (δ) log(δ)→ 0 as δ → 0).

The rate of decay of the Fourier coefficients is measured by the modulus of
continuity as well ([6]):

|ak| ≤ wf (
π

k
), (6)

|bk| ≤ wf (
π

k
). (7)

Now we consider an approximation to the theoretical Fourier sum of a sam-
pled signal. Since f is only known at its samples, we consider the data points
{(tn, xn = f(tn))}Nn=0 and a piecewise linear and continuous function f0 with

3



vertices on the data, and we use this approximation to compute a Fourier finite
sum of the signal. This approach does not require any condition of smoothness
of the signal and consequently is useful for a wide range of physical, economic,
social and natural variables.

In order to simplify the calculus we assume tn − tn−1 = h, for all n =
1, 2, . . . N.

The approximation of f by f0 is bounded by the modulus of continuity ([4],
Lemma 3.9):

‖f − f0‖∞ ≤ ωf (h). (8)

For a continuous function on a compact interval I, ωf (h) tends to zero as h→ 0.
In particular if f is Hölder continuous, we obtain the rate of convergence:

‖f − f0‖∞ ≤ khβ ,

for a constant β such that 0 < β ≤ 1.

Lemma 2.2. Let f0 be a piecewise linear and continuous function with ver-
tices {(tn, xn = f(tn))}Nn=0, tn − tn−1 = h constant and t0 = −π, tN = π. For
m sufficiently large (m+ 1 ≥ N/2),

wf0(
π

m+ 1
) ≤ 2wf (

2π

N
). (9)

Proof. The modulus of continuity of f0 is defined as

wf0(δ) = sup
|t−t′|≤δ

|f0(t)− f0(t′)|

Let t, t′ be such that |t− t′| ≤ π
m+1 . For m large enough

π

m+ 1
≤ h =

2π

N
(10)

(m+ 1 ≥ N/2). If t, t′ ∈ In = [tn−1, tn], then

f0(t)− xn =
(xn − xn−1)

h
(t− tn)

f0(t′)− xn =
(xn − xn−1)

h
(t′ − tn)

Then:

f0(t)− f0(t′) =
(xn − xn−1)

h
(t− t′)

and, using (10),

|f0(t)−f0(t′)| ≤ |xn − xn−1|
h

( π

m+ 1

)
≤ |xn−xn−1| ≤ wf (h) = wf (

2π

N
), (11)
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and the inequality (9) is fulfilled.
If t, t′, such that |t− t′| ≤ π

m+1 , belong to consecutive intervals, t < tn < t′,
applying (11)

|f0(t)− f0(t′)| ≤ |f0(t)− f0(tn)|+ |f0(tn)− f0(t′)| ≤ 2wf (
2π

N
).

Proposition 2.3. Let f0 be as in the previous Lemma. Then,

‖f0 − Jm(f0)‖∞ ≤ 2Mwf (
2π

N
) log(m).

Proof. According to Theorem 2.1,

‖f0 − Jm(f0)‖∞ ≤Md∗m(f0) log(m),

Applying the Jackson’s Theorem (3) and Lemma 2.2,

d∗m(f0) ≤ wf0(
π

m+ 1
) ≤ 2wf (

2π

N
),

and the result is obtained.

We have now a Theorem of approximation error.

Theorem 2.4. Let f ∈ C(2π) be the function providing the data {(tn, xn)}Nn=0.
For m sufficiently large

‖f − Jm(f0)‖∞ ≤ wf (
2π

N
)(1 + 2M log(m)).

Proof. The result is a consequence of (8) and the previous Proposition, bearing
in mind the inequality

‖f − Jm(f0)‖∞ ≤ ‖f − f0‖∞ + ‖f0 − Jm(f0)‖∞.

Consequence 2.5. If the original function f is Hölder continuous, and choos-
ing m,N suitably, the convergence of the procedure is ensured, when the sampling
step h tends to zero. For instance, we may take m = [N/2].

The next result bounds the discretization error in the Fourier coefficients.

Proposition 2.6. Let f0 be the broken-line interpolant of f with respect to
data {(tn, xn)}Nn=0, where h = tn − tn−1. If ak, bk are the approximate Fourier
coefficients,

|ak − ak| ≤ 2wf (h),

|bk − bk| ≤ 2wf (h).
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Proof. Let us consider that, according to their definition

|ak − ak| ≤
1

π

∫ π

−π
|f(t)− f0(t)|dt,

and the inequality (8) gives the result.

Consequence 2.7. For a Hölder continuous function with exponent β, the
rate of convergence of the approximation of the Fourier coefficients is O(hβ).

Consequence 2.8. The following upper bound of the approximate Fourier
coefficients is obtained:

|ak| ≤ wf (
π

k
) + 2wf (

2π

N
) ≤ 3wf (δkN ),

|bk| ≤ wf (
π

k
) + 2wf (

2π

N
) ≤ 3wf (δkN ),

where δkN = max{π/k, 2π/N}.

These inequalities are due to the previous Proposition, the monotony of wf
and (6), (7).

3 Application to electroencephalographic pro-
cessing

The methods proposed above have been applied to the quantification of elec-
troencephalographic signals for the study of attention in activities carried by
the members of the Spanish Armed Forces. Our goal is to study the at-
tention/concentration of the military personnel in simulated situations that
would require alertness and a possible assessment of the lack of the concen-
tration/attention at any given time.

3.1 Subjects

The EEG (electroencephalographic) signals were collected in the Hospital Gen-
eral de la Defensa de Zaragoza from a group of Armed Forces people who volun-
tarily offered to cooperate, composed of Caballeros Cadetes Alumnos, Officers
and Subofficial of the Academia General Militar de Zaragoza and from the
Hospital General de la Defensa de Zaragoza. EEGs were recorded at rest and
during the performance of a tactical simulation exercise consisting of a tank
driving using a videogame.

For each subject, the following signals of 3 minutes long were collected:

• EEG at rest with closed eyes.

• EEG while a tank driving is simulated using an iPad (j1).
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The EEG signal from each subject was recorded with a digital computer
using ambulatory software Compumedics Limited Profusion EEG 4. The record
was monopolar (with Ag/AgCl electrodes) and 16 channels of the international
10-20 Jasper system referenced Cz were used. The test was conducted in a
dimly lit, quiet room, at constant temperature and in an electrically shielded
room.

In this study we present the results of an analysis of the frontal channels F7
and F8, occipital O1 and O2 and temporal T5 and T6 of the EEG signals at
rest with eyes closed and while performing the task j1 of 13 subjects.

3.2 Methods

We obtained the Fourier coefficients of one minute of the electroencephalo-
graphic signals at rest with closed eyes and during the simulation of a military
task (j1). The signal was sampled at 256 points per second and analyzed the
third minute of each record.

We have computed the Hjorth parameters Activity and Mobility ([5]) for
both types of EEGs. The Activity is a measurement of the power (and thus the
magnitude) of the signal and the Mobility is an indicator of angular frequency.
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Figure 1: In red one second of the initial signal of the O2 channel from an EEG at rest with closed eyes, in green

the reconstructed signal

Furtherly, we performed a test to check if the signals admit a model of colored
(or 1/f) noise, where

S(ω) ' kω−exp,

and S(ω) is the power spectrum. The correlation obtained would allow us to
infer the nature of the EEG variable.

We computed an average frequency as well, as mean of the frequencies
weighted by the amplitudes obtained by means of the FFT algorithm.

3.2.1 Statistical tests

Once the different EEG quantification parameters were computed, a compre-
hensive statistical study of the results obtained was performed.

First an exploratory data analysis was performed, making line diagram, Box-
Plot graphics, etc. Later on a Shapiro-Wilk’s test was implemented in order to
verify the hypothesis of normality of the data.
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To study the significant differences between the samples with closed eyes
and in the tank driving simulation for each quantifier, a T -parametric test for
related samples was executed. This test contrasts the hypothesis that both
types of EEG (closed eyes and j1) at every electrode (F7, F8, O1, O2, T5, T6)
have the same mean (i.e., the average difference between tasks is zero). The
statistic used was the T of Student.

To test the results and bring more consistency to the findings, two additional
non-parametric tests were implemented:

• The Wilcoxon test for paired samples contrasts that both types of EEG
in any electrode have the same distribution function (i.e., no significant
differences between measurements). Primarily it computes the magnitude
of the differences between pairs of measurements at each individual with
closed eyes and during the task j1. The Z is used as statistical test.

• The sign test for related samples contrasts that both types of EEG in any
electrode have the same distribution function. Primarily it computes the
differences between the pairs and classifies the positive and negative in
order to check the equality of distributions. In this case, unlike the above,
the magnitude of the differences is irrelevant.

4 Results and statistics

Several quantifiers of the EEG signal were analyzed: Hjorth parameters (Ac-
tivity and Mobility), exponent of colored noise and FFT mean frequency. The
results are shown in corresponding subsections describing the group averaged
values of the indices.

4.1 Hjorth parameters

Means in each channel for Activity and Mobility are shown in a self-explanatory
table, collecting the averages of the values on the group.

ACTIVITY MOBILITY

Closed eyes Task j1 Closed eyes Task j1

F7 171.441 291.124 78.794 65.879

F8 165.918 504.180 79.315 68.016

O1 270.083 243.937 74.249 96.667

O2 240.045 204.159 72.788 100.425

T5 180.891 192.937 73.135 97.910

T6 203.801 173.456 73.524 96.841

Activity shows that mean differences more significant between the two tasks
occur in F7 (119.679) and F8 (−338.262) for j1 task. Variability and hetero-
geneity of the measurements are also higher in F7 and F8.
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Observing the results for Mobility, a significant increase was seen in the
means of that parameter when comparing the EEG at rest with closed eyes to
the simulation task, in the channels corresponding to the occipital and temporal
areas (O1, O2, T5, T6). This is explained by the activation of the temporal
region of the brain (primary auditory cortex) due to the sound of the simulator,
and the primary visual area processing the task.

The obtained data were analyzed with the statistical methods mentioned
previously. The most appropriate test to see if there are significant differences
between measurements with closed eyes and the simulation task j1 is the T -
parametric test for related samples, but we also employed two non-parametric
tests to contrast results and bring more consistency to the findings.

The application of the statistical methods to the values obtained for the
Activity provided the following results:

• The parametric test was found unsuitable because the variables failed the
assumption of normality (Shapiro-Wilk test), necessary to use this test.

• The non-parametric Wilcoxon test for related samples pointed to signif-
icant differences only in the F7 and F8 channels with p-values (signifi-
cances) of less than 0.05. Specifically we found for F7 (Z = −1.956, sig =
0.05) and for F8 (Z = −2.341, sig = 0.019).

• The non-parametric sign test for related samples obtained the same dif-
ferences as in the previous case, specifically F7 (sig = 0.012) and F8 (sig
= 0.003).

The application of the statistical methods to the values obtained for the
parameter Mobility provided the following results:

• T−test for related samples indicated significant differences in all chan-
nels except F7 with p−values (significances) of less than 0.05. Specifi-
cally F8 (T = 2.395, sig = 0.034), O1 (T = −3.014, sig = 0.011), O2
(T = −4.857, sig = 0.0003), T5 (T = −4.121, sig = 0.001) and T6
(T = −5.160, sig = 0.0002). In all cases except at F7 and F8, the higher
average was obtained in the task j1, with much larger differences in the
occipital and temporal areas.

• With the non-parametric Wilcoxon test for paired samples, significant
differences in all channels were observed except F7 with p−values (signif-
icances) of less than 0.05. These results agree with those obtained in the
T−test.

• The non-parametric sign test for related samples showed significant dif-
ferences in all channels except F7 and F8, with p−values (significances) of
less than 0.05, specifically sig= 0.022.
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4.2 Exponent of colored noise

The averages obtained in each channel for the exponent are shown in a self-
explanatory table.

EXPONENT

Closed eyes Task j1

F7 1.496 1.579

F8 1.461 1.534

O1 1.702 1.173

O2 1.680 1.100

T5 1.661 1.122

T6 1.675 1.136

In this case, a lower exponent reflects a higher complexity of the signal (in
a fractal sense). However, we have a qualified opinion on this parameter, as the
correlations obtained in its computation are not high and the test on the nature
of the signal is not conclusive.

It is noted that the most important differences in the means between the
measurements with closed eyes and task j1 occur in O1, O2, T5 and T6, being
higher in eyes closed. Variability and heterogeneity of the measurements are
higher in those channels.

After performing the statistical tests previously listed the following results
were obtained:

• The data fitted the normality hypothesis (Shapiro-Wilk test), so a T para-
metric test for related samples was applied. The results proved significant
differences in the channels analyzed in occipital and temporal areas with
p−values (significances) of less than 0.05. Specifically O1 (T = 4.493, sig =
0.0007), O2 (T = 6.682, sig = 0.00003), T5 (T = 6.933, sig = 0.00002) and
T6 (T = 7.558, sig = 0.000001). The highest averages were found in the
EEG at rest in occipitals.

• In the non-parametric Wilcoxon test for related samples the results showed
significant differences in O1, O2, T5 and T6 channels with p-values (sig-
nificances) of less than 0.05. These results agree with those obtained in T
test.

• The non-parametric sign test for related samples showed significant differ-
ences in the O1, O2, T5 and T6 channels with p-values (significances) of
less than 0.05. These results agree with those obtained in the T test and
Wilcoxon test.

4.3 Mean frequency

The averaged values obtained for the mean frequency for each channel and task
are shown in a self-explanatory table.
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MEAN FREQUENCY

Closed eyes Task j1

F7 15.700 13.922

F8 15.875 14.381

O1 12.557 16.319

O2 12.864 16.797

T5 13.353 18.155

T6 12.973 17.356

One can observe from the numbers that the mean frequency increases con-
siderably in the job j1 for the occipital and temporal areas.

The statistical analysis on the data yielded the following results:

• In the T−test for related samples the results show significant differences
in all channels except F8 with p-values (significances) of less than 0.05.

In the temporal and occipital area the p-values obtained are substantially
lower than 0.05. Specifically O1 (T = −5.9254, sig = 0.00007), O2 (T =
−6.599, sig = 0.00003), T5 (T = −7.208, sig = 0.00001) and T6 (T =
−8.008, sig = 0.000002). The averages are greater in the j1 task.

In the F7 electrode the p-value obtained is very close to the significance
level prefixed (0.05), being (T = 2.283, sig = 0.046).

In the line graphs below we can observe that the differences in F7 are not
as clear as in T6:
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Figure 2: Line graphs of the mean frequency in F7 and T6

In the Box-Plot in Figure 3 the mean frequency values are shown at rest
and performing the simulation job for each of the electrodes studied.

In F7 and F8 channels the Box-Plot are very similar, while in O1, O2,
T5 and T6 the Box-Plot of the simulation task displays higher values
compared to the closed eyes EEG.
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Figure 3: Box-Plot of the mean frequency in both types of recording for each electrode analyzed

Non-parametric tests may help to decide if the difference is considered
significant or not in F7.

• The application of the Wilcoxon test for paired samples provided differ-
ences in all channels except F8 with p-values (significances) of less than
0.05.

• The sign test for related samples showed variations in O1, O2, T5 and T6,
with p-values (significances) of less than 0.05 (in all cases sig = 0.0002).

5 Conclusions

It can be concluded that the parameters of quantification of EEG used so far
to analyze the EEG signals collected to the members of the Armed Forces show
significantly the activation of the occipital and temporal areas involved in tank
driving simulation.

The results show an increase in the Mobility and mean frequency, that
reaches clearly the beta band for the sensorial processing sites. That is to
say, the spectral content of the signal is moved to higher frequencies, and this
fact is accompanied by a reduction of the amplitude of the signal in O1, O2 and
T6, but not reaching significance.

Concerning the results obtained for the Activity, only the non-parametric
tests indicate conclusively a significant increase in measurements F7 and F8
channels during the test j1.

The results obtained in the exponent, considering both types of tests, in-
dicate conclusively a significant decrease of the measurements in the O1, O2,
T5 and T6 channels during test j1. The values corresponding to closed eyes are
higher than in task j1 significantly on these leads, pointing to a lower complexity.
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