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ABSTRACT 28 

Sixteen commercial red wines, selected to cover a different range of color and total 29 

polyphenols index (TPI), were stored at 25ºC during 6 months under controlled and different 30 

oxygen additions (0, 1.1, 3.1, 10.6 and 30.4 mg L-1) during the bottling process. Changes in 31 

color and the anthocyanic composition were evaluated using transmittance spectra and UPLC-32 

MS-UV/Vis respectively. Results reveal a general pattern in the evolution of wines. However, 33 

different patterns of evolution related to initial wine composition, especially to TPI, were 34 

observed. Wines with higher TPI had a lower evolution, whereas wines with lower TPI showed 35 

a higher evolution and greater variability in behavior. In general, oxygen seemed to accelerate 36 

all changes observed during aging although the oxygen effect was more limited than the effect 37 

of the storage time. These results are relevant for wine experts and help explain the evolution of 38 

wine at the bottling stage.  39 

 40 
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1. INTRODUCTION 44 

During their time in the bottle wines undergo changes that greatly influence the 45 

organoleptic features that determine their quality. These changes depend on the time in the 46 

bottle, on access to oxygen and, of course, on the composition of the wine before it is bottled. 47 

Regarding the time in the bottle, the Designation of Origin regulations usually determine the 48 

minimum time wines must remain in the bottle to reach the specific sensory attributes required. 49 

However, managing the amounts of oxygen is still a challenge in the manufacturing process, 50 

although it is widely accepted that the presence of moderate amounts of oxygen in the wine can 51 

be beneficial, whereas too little or too much can make the wine either not develop the intended 52 

attributes or develop undesired oxidation notes. In the aging process in the bottle there are two 53 

key moments for wine to be oxygenated: at bottling and the transfer through the stopper. 54 

Oxygen intervenes in complex reactions- including those undergone by the wine’s phenolic 55 

composition- which play an important role in some of the sensory attributes sought during 56 

aging in the bottle, such as the reduction of astringency and color stabilization. Color is one of 57 

the main attributes involved in appearance evaluations and thus in the construction of the 58 

consumers´ concept of quality. Color provides information about the type of wine, winemaking 59 

or aging processes. Color can often predispose the perception of other sensory characteristics as 60 

it allows one to anticipate the taste and/or odor properties based on the previous experience of 61 

the consumer (De Simón, Cadahia, Sanz, Poveda Pérez-Magariño, Ortega-Heras & González-62 

Herta, 2008). This explains the importance of wine color in the acceptability of products 63 

(Morrot, Brochet & Dubourdieu, 2001). 64 

The change of color during aging from red–purple to brick red hues is attributed to the 65 

progressive formation of new pigments as anthocyanins react with other compounds (Somers, 66 

1971; Timberlake & Bridle, 1971; Dallas & Laureano, 1994, Atasanova, Fulcrand, Cheynier & 67 

Moutounet, 2002). The progress of these chemical reactions during winemaking and wine 68 
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aging depends on multiple factors, such as the concentration of anthocyanins and flavanols, 69 

acetaldehyde and other yeast metabolites, as well as pH, temperature, the presence of oxygen or 70 

sulfur dioxide among others (Somers & Evans 1986; Dallas et al., 1994; Romero & Bakker; 71 

2000a, 2000b; Fulcrand, Dueñas, Salas & Cheynier, 2006). The mechanisms involved in the 72 

formation of these pigments have been reported to be the result of direct condensation of 73 

anthocyanins with other molecules such as flavanols (Vivar-Quintana, Santos-Buelga, Francia-74 

Aricha & Rivas-Gonzalo, 1999; Salas, Atanasova, Poncet-Legrand, Meudec, Mazauric & 75 

Cheynier, 2004), mediated mainly by acetaldehyde- although other carbonylic compounds have 76 

also been described (Fulcrand, Cheynier, Oszmiansky & Moutounet, 1997; Escribano-Bailón, 77 

Álvarez-García, Rivas-Gonzalo, Heredia & Santos-Buelga, 2001; Pisarra, Mateus, Rivas-78 

Gonzalo, Santos-Buelga & De Freitas, 2003; Fulcrand et al., 2006)  or by cycloaddition 79 

reactions between anthocyanins and other molecules such as acetaldehyde, pyruvic acid or 80 

vinylphenol among others (Bakker et al, 1997; Fulcrand, Cameira do Santos, Sarni-Manchado, 81 

Cheynier & Favre-Bonvin, 1996; Fulcrand, Benabdeljalik, Rigaud, Cheynier & Moutounet, 82 

1998). In wine, acetaldehyde and pyruvic acid are products of microbial metabolism. The 83 

former may also be produced during aging by ethanol oxidation coupled with autoxidation of 84 

ortho-diphenols (Wildenradt & Singleton, 1974), although it has been recently shown that the 85 

increase in acetaldehyde during oxidation can be attributed to the cleavage of the hydroxyethyl 86 

sulfonate already present in the wine, as consequence of the depletion of SO2 caused by 87 

oxidation (Carrascon, Fernández-Zurbano, Bueno & Ferreira, 2015). 88 

In general, pigments derived from anthocyanins are more resistant to pH changes and 89 

bleaching by bisulfite than the precursor anthocyanins (Sarni-Manchado, Fulcrand, Souquet, 90 

Cheynier & Moutounet, 1996). This helps in understanding the stabilization of color that wine 91 

undergoes during a correct aging process. In this stage, oxygen plays an important and essential 92 

role in the formation of anthocyanin-derived compounds and therefore decisive in the stability 93 
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of the wine’s color (Fulcrad et al., 1998; Perez-Magariño&Gonzalez-San Jose, 2004; Wirth, 94 

Morel-Salmi, Souquet, Dieval, Aagaard, Vidal, Fulcrand&Cheynier, 2010).  95 

Color stability during the aging process in the bottle is discussed in several studies 96 

performed on red wines, where color intensity (CI) did not change during the time of the study 97 

(Gambuti, Rinaldi, Ugliano &Moio, 2013; Pérez-Magariño & González-San José, 2004). 98 

However, other aging experiments also carried out on red wines with the aim of evaluating the 99 

impact of exposure to different oxygen doses during bottling stage show that wines stored with 100 

higher oxygen transferrates (OTR) had higher color intensity (CI) (Wirth et al., 2010; Caillé, 101 

Samson, Wirth, Diéval, Vidal & Cheynier, 2010; Han, Ugliano, Currie, Vidal, Diéval & 102 

Waterhouse, 2014). This increase in CI for wines stored under higher OTRs may be attributed 103 

to (1) a higher increase in the formation of different pigments as a result of oxygen exposure, 104 

(2) the release of pigments bound to SO2 as consequence of the higher consumption of sulfites 105 

in higher OTR wines (Wirth et al. 2010). Specifically, Carrascon et al. (2015) found that the 106 

increase in absorbances to 520, 420 and 620 nmis limits the consumption of oxygen when the 107 

level of free SO2 is above 5 mg/L. 108 

Knowledge concerning the evolution of color and anthocyanin composition that red wines 109 

undergo during their time in the bottle based on their initial composition is currently a scientific 110 

challenge and a demand made by wine experts. In order to delve deeper into the relation 111 

between the initial composition of wines and the sensory and chemical changes they may 112 

undergo during aging in the bottle, a larger project was undertaken. To this purpose 16 red 113 

wines with different sensory attributes and different TPI were chosen and stored for 6 months 114 

at varying oxygen levels, dosed when they were bottled. A paper already published by our 115 

research group contains the section corresponding to the changes in aroma and taste (Sáenz-116 

Navajas, Avizcuri, Ferreira & Fernández-Zurbano, 2014). This paper focuses on studying the 117 

changes that wine undergoes in color and the anthocyanin composition during aging in the 118 
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bottle. The goals of this paper are to determine the existence of behavior models for wine 119 

during aging in the bottle depending on their initial composition, as well as the influence of the 120 

dissolution of controlled oxygen levels during the bottling process. 121 

2. MATERIALS AND METHODS 122 

2.1 Reagents 123 

Bovine serum albumin (BSA, fraction V powder) was purchased from Sigma. Glacial 124 

acetic acid, HPLC-grade acetone, HPLC–MS-grade acetonitrile, formic acid reagent grade, 125 

absolute ethanol and sodium chloride were obtained from Scharlau (Barcelona), and potassium 126 

metabisulfite from Panreac (Madrid, Spain). Oenin-chloride was obtained from Extrasynthese. 127 

Deionized water was purified with a Milli-Q water system (Millipore, Molsheim, France) prior 128 

to use. 129 

2.2 Commercial wines 130 

Sixteen different Spanish commercial red wines from different wine making areas were 131 

selected to cover a suitable range of total phenolic index (TPI) and color intensity (CI). The 132 

detailed list of samples, including sample information and basic compositional data obtained 133 

following standard operating procedures, is shown in Table 1. The wines were coded so that the 134 

first two letters refer to the name of the wine, an underscore followed by a letter that indicates 135 

the Designation of Origin of the wine and two numbers for the year it was made (MG_V05). 136 

2.3 Storage of wine samples under different initial oxygen doses 137 

For each wine there were 7 bottles with 750 mL capacity which were placed in an anoxic 138 

glove box equipped with a vacuum chamber (Jacomex, Dagneux, France) where oxygen was 139 

under 0.002%. In this chamber, the contents of these 7 bottles were mixed in a big beaker and 140 

stirred until the oxygen level in the 5250 mL of total wine dropped to 0.00 mg L−1 as measured 141 

with a fluorescence oxygen meter OptiOx SG-98 from Mettler Toledo (Barcelona, Spain). This 142 

amount of wine was distributed into 5 air-tight amber bottles, 1150 mL capacity, supplied by 143 
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Sigma-Aldrich. Thus, for each of the 16 chosen wines, 5 bottles were prepared, filled with 1035 144 

mL of the same wine, different oxygen regimens and 115 mL of Argon headspace. The bottles 145 

were closed with an internal silicone septum, a crimp cap, a second silicone septum and an 146 

external screw cap. Known volumes of oxygen were introduced through the internal septum 147 

(with bottles upside down so that the oxygen passed through the wine) with a Hamilton gas-148 

tight syringe (Samplelock™ syringe). Bottles were kept upside down about 15 minutes to 149 

ensure oxygen contact with the entire volume of wine. Oxygen was introduced into the vacuum 150 

chamber of the anoxic glove box in Tedlar gas sampling bags supplied by Sigma-Aldrich. The 151 

oxygen volumes introduced were equivalent to the theoretical concentrations of 0, 1.1, 3.1, 10.6 152 

and 30.4 mg of oxygen per liter of wine. This range covers the normal levels introduced during 153 

normal wine bottling operations and extends it to two unrealistic extreme situations (0 and 30.4 154 

mg L-1). All the oxygen was introduced in a single dose at the time of bottling. Lastly, the 155 

resulting eighty (16 wines x 5 oxygen levels) 1150 mL bottles were double sealed under 156 

vacuum into two plastic bags (with known oxygen permeability (< 9 cm3m-2 24 h) supplied by 157 

Amcor (Barcelona, Spain). The eighty bottles were taken out of the anoxic glove box and 158 

stored in the dark at 25 °C during 6 months in an incubator (Climas GROW 360). The overall 159 

permeability of the systems was independently checked with control samples containing a 160 

solution of indigo carmine following the procedure developed by Lopes et al. (2009). Results 161 

suggested that the total external atmospheric oxygen that penetrated into the samples after the 6 162 

months of storage was 0.9 ± 0.6 mg, which can be considered air-tight enough for the purposes 163 

of the experiment. Taking into consideration this permeability data during 6 months, the 164 

oxygen levels in the wines were 0.9 (level 0); 2.0 (level 1); 4.0 (level 2); 11.5 (level 3) and 31.3 165 

mg L-1 (level 4). 166 

As this experiment was part of a bigger project, only those samples that underwent 167 

significant sensory changes during wine aging were chemically analyzed. Discriminant tests 168 
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(triangle tests) were performed to evaluate sensory differences between samples stored under 169 

oxygen levels 1 and 3. Only when the triangle test was not significant (P> 0.05), samples of 170 

this wine stored under both oxygen levels were not submitted for chemical and sensory 171 

characterization. In these cases the wine sample stored at oxygen level 2 was used for chemical 172 

and sensory characterization (Sáenz-Navajas et al. 2014). According to this premise, 86 (16 173 

original wines + 70 aged wines) samples out of 96 (16 original wines + 80 aged wine samples) 174 

were analyzed in terms of color and anthocyanic composition and thus reported in this paper. 175 

For the wines with different oxygen regimes, we added the numbers 0 to 4 to their initial 176 

wine code, where 0 (MG_V05_0) is for the sample stored during 6 months in the bottle without 177 

adding oxygen and 4 (MG_V05_4) is for the sample stored during 6 months in the bottle with 178 

the highest addition of oxygen. 179 

2.4 Conventional oenological parameters 180 

Ethanol content, pH, reducing sugars, (total) titratable and volatile acidities were determined by 181 

Infrared Spectrometry with Fourier Transformation (FTIR) with a WineScan™ FT 120 182 

(FOSS), which was calibrated with wine samples analyzed in accordance with official OIV 183 

practices (OIV 2005). Malic and lactic acid were determined by enzymatic methods in 184 

accordance with official AOAC analysis methods (AOAC, 2002). Total polyphenol index (TPI) 185 

was determined as absorbance at 280 nm (Ribéreau-Gayon, 1970). Free and combined sulfur 186 

dioxide analyses were performed by the OIV method (OIV 2005). Color intensity (CI) was 187 

calculated as the sum of absorbances at 420, 520 and 620 nm. Tonality (T) was calculated as 188 

the relation between absorbances at 420 and 520 nm. 189 

2.5 Analysis of polymeric pigments and copigmented anthocyanins 190 

The procedure for the determination of large polymeric pigments (LPP) and small polymeric 191 

pigments (SPP) was based on the procedure developed by Harbertson, Picciotto, & Adams 192 

(2003). Copigmented anthocyanins were estimated according to the method developed by 193 
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Boulton (2001). This method is based on diluting the wine to induce the dissociation of 194 

copigmented complexes 195 

 196 

 197 

2.6 Color measurements 198 

The wine transmittance spectra were measured by Perkin-Elmer Lambda 6 199 

spectrophotometer (Perking-Elmer Corp., Norwalk, CT) using 0.2 cm path-length quartz 200 

cuvettes. Measurements were taken every 1 nm between 380 and 780 nm. Wine samples were 201 

centrifuged and filtered through 0.45 μm filter prior to analysis. From the spectra, the color 202 

coordinates were calculated using the CIELAB method (C.I.E., 2004) with the CIE 1964 10° 203 

standard observer and the illuminant D65 as reference, according to the OIV (O.I.V., 2005). 204 

The color coordinates correspond to wine lightness (L*10) and green-red (a*10 < 0 to a*10 > 0) 205 

and blue-yellow (b*10 < 0 to b*10 > 0) axes. The chroma coordinates (C*ab) and hue (hab) were 206 

calculated based on the coordinates a*10 and b*10, ���∗ =  [(��!∗ )" + (#�!∗ )"]� "$  �%& ℎ��  =207 

arctan *#�!∗ ��!∗, - (Resolution OENO 1/2006, 2006). 208 

2.7 UPLC–UV/Vis-MS anthocyaninsanalysis 209 

The analyses of anthocyanins were performed following the previously reported method by 210 

González-Hernández, Avizcuri-Inac, Dizy & Fernández-Zurbano (2014). Each sample was 211 

analyzed in duplicate with a Waters Acquity Ultra Performance LC system (Milford, MA, 212 

USA) by direct injection of wine samples. UPLC separation was achieved using an acquity 213 

BEHC18 column (100 mm × 2.1 mm, i.d., 1.7 μm particle size, Waters) kept at 40 °C. Mobile 214 

phase flow rate was 0.45 mL min−1 and the injection volume was 7.5 μL. Solvents were (A) 215 

water/formic acid (5%) and (B) acetonitrile/formic acid (5%). The identity assignation of 216 



10 

 

compounds was carried out by comparison of their retention time (tR), MS and MS/MS spectra 217 

(Table 2). Quantification by UV/Vis was performed with a variable wavelength detector at 520 218 

nm. The concentration of anthocyanins has been expressed as mg L−1 of malvidin-3-O-219 

glucoside (lineal range: 0.054-58.3 mg/L; area = 0.0270 [malvidin-3-O-glucoside] - 0.0037; R2 220 

= 0.999). Once the anthocyanin compounds were individually quantified, they were grouped by 221 

chemical similarity, verifying that they undergo similar changes (increase or decrease) during 222 

aging. These groups include: no acylated anthocyanins, acylated anthocyanins, 223 

pyranoanthocyanins and malvidin-3-glc-ethyl-(epi)catechin. Table 2 shows the individual 224 

compounds of each of these groups. 225 

MS and MS/MS analyses were performed by coupling the Waters Acquity Ultra 226 

Performance LC chromatograph system described above to a Microtof-Q (Q-TOF) mass 227 

spectrometer from Bruker Daltonik (GMBH, Germany) with an electrospray interface. The 228 

MS/MS analyses were performed by applying 20-50 eV. Chromatographic separation was 229 

performed under the same conditions described above. Electrospray ionization was carried out 230 

in positive mode using a capillary voltage of -4.5 kV. A coaxial nebulizer N2 gas flow with a 231 

dry gas of 9.0 L min-1 at 180 °C and 4.0 bar of pressure around the ESI emitter was used to 232 

assist the generation of ions. The mass spectrometer was calibrated across the mass range of 233 

50–1200 m/z using sodium formate internal references. 234 

2.8 Data analysis 235 

Analyses were performed in duplicate with the results expressed as the average of the two 236 

measurements. All analyses were carried out with the SPSS program for Windows (SPSS inc, v 237 

19, Chicago, USA). Data were studied with the ANOVA one-way linear model analysis of 238 

variance and significant differences among means (P< 0.05) were determined by Duncan’s 239 

multiple range tests. 240 
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A first PCA was calculated with data from the chemical composition of the 16 wines 241 

analyzed before the aging process. In order to choose the number of factors that should be 242 

retained, dimensions with an eigenvalue higher than the mean eigenvalue (Kaiser condition) 243 

were calculated for PCA spaces. The Hierarchical Cluster Analysis (HCA) with the Ward 244 

criteria was applied to the main components of the wines in the space defined by the previously 245 

calculated PCA. The clusters identified by truncating the tree diagram were identified by using 246 

the test-value parameter (Morineau, lebart, &Piron, 1995). The test-value corresponds to a 247 

statistical criterion akin to a standardized variable (zero mean and unit variance). Significance 248 

is obtained when the absolute test-value is ≥1.96, which corresponds to an error threshold of 249 

5%. A ranking of the terms according to their test-values provides a quick characterization of 250 

each cluster (Morineau, 1984). The statistical software package used for these analyses was 251 

SPAD software (version 5.5, CISIA-CESRESTA, Montreuil, France). 252 

For the 16 wines (global storage effect) and for wines belonging to the same cluster 253 

(storage effect for each cluster), differences between the average for each parameter before and 254 

after storage (average of oxygen doses) were calculated. Significances of these differences 255 

were evaluated byt-test. 256 

3. RESULTS  257 

3.1 Color parameters, anthocyanic composition and TPI of wines before storage 258 

Tables 2 and 3 show the TPI data, color parameters, anthocyanins and anthocyanin 259 

derivatives for the 16 wines before aging. These wine samples presented a range of CI going 260 

from 7.3 to 19.3 absorbance units (AU) (SO_C07 and MG_V05, respectively). Their TPI 261 

(Table 1) ranged from 45.4 in BE_R10 to 83.3 in MG_V05. Given the variability among 262 

commercial wines (different origin, vintage, type of vinification, variety, etc…) samples 263 

presented differences in hue, color coordinates and in polymeric pigment, copigmented 264 

anthocyanins, anthocyanins and anthocyanin derivative concentrations. 265 
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A PCA was calculated on 16 chemical variables (pH and TPI together with anthocyanins, 266 

anthocyanin derivatives and color parameters shown in Table 2). Figure 1a shows the 267 

distribution of the samples on the first two PCs. PC1 was positively contributed by non-268 

acylated (93%) and acylated anthocyanins (92%), ethylidene-linked malvidin-3-glucoside-269 

(epi)catechin dimer (84%) and copigmented anthocyanins (79%), and negatively contributed by 270 

tonality (86%). This component appeared to be related to wine vintage, since youngest wines 271 

were projected on the right side of the plane. These samples were characterized by higher 272 

concentrations of non-acylated, acylated, ethylidene-linked malvidin-3-glucoside-(epi)catechin 273 

dimer and copigmented anthocyanins and lower values for the hue variable. The second PC 274 

was positively contributed by the concentration of free sulfur dioxide (49%) and negatively 275 

contributed by CI (87%), small polymeric pigments (SPP) (86%) and pyranoanthocyanins 276 

(70%). Thus, wines plotted on the top part of the plane were characterized by lower CI, higher 277 

concentrations of SPP, pyranoanthocyanins and higher concentration of free sulfur dioxide.  278 

The correlation matrix stemming from PCA revealed that CI was highly correlated to the 279 

concentration of pyranoanthocyanins, SPP, the a*10 coordinate (P < 0.001 in all cases) and a 280 

tendency (P < 0.1) with LPP concentration. 281 

Acylated and non-acylated anthocyanins, pyranoantocyanins and ethylidene-linked 282 

malvidin-3-glucoside-(epi)catechin dimer were negatively correlated to the b*10 coordinate (P < 283 

0.05 in all cases). Similarly, copigmented anthocyanins and free sulfur dioxide concentration (P 284 

< 0.05) presented negative correlations with the b*10 coordinate. Thus, wines with higher levels 285 

of free sulfur dioxide and copigmented anthocyanins presented lower yellow nuances, given 286 

that hab presented higher values. On the one hand, this suggested that the presence of sulfur 287 

dioxide capable of reducing the quinones generated during the oxidation of ortho-diphenols 288 

would avoid the reactions yielding yellow compounds (Singleton, 1987; Laurie et al., 2012; 289 

Nikolantonaki & Waterhouse, 2012). On the other hand, copigmentation, which generates a 290 
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bathocromic shift from red to blue-purple color in wine (Boulton, 2001), would be involved in 291 

the decrease of hab coordinate and thus in the yellow color of wine. 292 

Concerning a*10 coordinate, it was primarily correlated with copigmented anthocyanins, 293 

SPP, LPP, acylated anthocyanins, ethylidene-linked malvidin-3-glucoside-(epi)catechin dimer 294 

and pyranoanthocyanins, suggesting an important contribution of these compounds to the red 295 

color of these wines as a result of the relationship between the coordinate a*10 and the 296 

coordinate C*10. 297 

Hierarchical cluster analysis was calculated on the PCA dimensions to classify wines 298 

according to their initial composition. Figure 1b shows the tree diagram and the three clusters 299 

obtained. For each cluster, the closest wine to the center of gravity was identified as the most 300 

typical specimen of the group and so their color characteristics. These samples were MC_R09 301 

(cluster 1), CD_C10 (cluster 2) and CT_B07 (cluster 3). 302 

Table 4 shows the global values of the parameters for the whole set of wines (average 303 

among the 16 studied wines) and the average values for each cluster.  304 

Cluster 1 comprised five wines (MC_R09, AR_A08, BE_R10, RN_R09 and SC_R10): all 305 

of them with TPI lower than the average, presenting the highest concentrations of free sulfur 306 

dioxide and copigmented anthocyanins, the lowest concentration of SPP and LPP, and the 307 

lowest values for CI and b*10. 308 

Cluster 2 was comprised of 5 samples: CH_R10, BO_B10, RM_R10; GC_B10, CD_C10, 309 

all of them belonging to the youngest vintage: 2010. This cluster presented higher TPI than the 310 

average. These wines contained the highest concentrations of ethylidene-linked malvidin-3-311 

glucoside-(epi)catechin dimer, pyranoanthocyanins, acylated and non-acylated anthocyanins, 312 

LPP, SPP and the highest values for the a*10 coordinate and CI, as well as the lowest tonality 313 

value.  314 
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Cluster 3 consisted of six wines (CZ_D08, SO_C07, RB_R06, CT_C07, AY_C05 and 315 

MG_V05) belonging to the oldest vintages. This cluster presented TPI values higher than the 316 

average and showed the highest values of tonality and b*10 coordinate and the lowest 317 

concentrations of ethylidene-linked malvidin-3-glucoside-(epi)catechin dimer, acylated, non-318 

acylated and copigmented anthocyanins. 319 

 320 

 321 

 322 

3.2 Evolution of color parameters and anthocyanic composition during bottle aging 323 

3.2.1 Global Evolution 324 

The effect of aging was assessed by comparing color parameters of the 16 wines before 325 

and after bottle aging during 6 months at 25 °C in the presence of five different oxygen levels.  326 

Considering the global evolution of the sample set (Table 5), a decrease in the 327 

concentration of both free (-14.8 mg L-1) and combined (-20.1 mg L-1) sulfur dioxide and an 328 

increase of their yellow nuances, measured as tonality (+0.13) and b*10 coordinate (+10.27) 329 

during aging, were observed. The variation of hue and b*10 coordinate values during aging was 330 

positively correlated with wine vintage (P < 0.05); thus, the older the wine, the smaller the 331 

increase in these parameters. 332 

On the other hand, neither CI nor pH seemed to globally vary during aging. Regarding the 333 

anthocyanic composition, the concentration of LPP increased during aging. In contrast, an 334 

important decrease in the concentration of anthocyanins (non-acylated and acylated) was 335 

observed, while pyranoanthocyanins and the ethylidene-linked malvidin-3-glucoside-336 

(epi)catechin dimer underwent a slight decrease. Copigmented anthocyanins and SPP remained 337 

constant after bottle storage. 338 
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Although a general evolution pattern was observed for the overall sample set, some 339 

departures from this trend were observed depending on the initial composition of wines. The 340 

evolution of each of the 3 clusters described above is further commented upon. 341 

3.2.2 Evolution of cluster 1 342 

The evolution of the five wines included in cluster 1 (MC_R09, AR_A08, RN_R09, 343 

BE_R10, SC_R10) can be observed in Figure 2a. The evolution (increase or decrease) of their 344 

color parameters and the anthocyanic composition are shown in Table 5. 345 

Wine samples in this cluster were characterized by high concentrations of free sulfur 346 

dioxide and copigmented anthocyanins as well as low concentrations of SPP and TPI values, 347 

which were lower than the average (Table 4). These wines underwent substantial changes 348 

during aging, and the injection of different oxygen concentrations at the bottling stage also 349 

induced changes in color and the pigment composition. It is important to note that in all cases 350 

the effect of aging time was more important than the effect of the oxygen levels studied, as 351 

Figure 2a shows. The two dimensional PCA (Figure 2a) shows a displacement of all wines after 352 

6 months of aging to the left of their corresponding original wine (MC_R09, AR_A08, 353 

RN_R09,BE_R10, SC_R10) with a decrease in the first PCA dimension. This shift was mainly 354 

due to the increase in hue (+0.2 on average) and b*10 coordinate (+12.0 on average) during the 355 

bottle aging period, as well as to the decrease in the concentrations of both non-acylated (-61.7 356 

mg L-1 on average) and acylated anthocyanins (-13.4 mg L-1 on average). 357 

The effect of aging on PC2 was not as clear as for PC1, since in this case three out of the 358 

five wines from this cluster underwent a negative displacement (lower scores of PC2). One 359 

sample presented a positive displacement (AR_A08), while no shift on PC2 was observed for 360 

sample MC_R09. According to Table 5, these changes could mainly be explained in terms of 361 

increase in wine color intensity for most wines (except for SC_R10). 362 
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The presence of different oxygen levels (levels 0-4) resulted in a displacement of the 363 

samples to the left side of the plot (lower scores for PC1). This suggested that higher 364 

concentrations of oxygen applied at bottling favored the formation of yellow nuances and 365 

caused a greater decrease of acylated and non-acylated anthocyanins. Furthermore, as for the 366 

global effect observed for the overall sample set, the presence of increased oxygen 367 

concentrations did not generate similar variations of color or anthocyanic composition during 368 

the aging storage according to PC2 displacements. Thus, a positive displacement (to positive 369 

PC2 values) of samples aged with the highest oxygen doses (MC_R09_4, SC_R10_4, 370 

RN_R09_4, BE_R10_4) was observed in four wines with respect to samples aged in the 371 

absence of oxygen (MC_R09_0, SC_R10_0, RN_R09_0, BE_R10_0), while the opposite effect 372 

was found for samples AR_A08_4 and AR_A08_0.  373 

3.2.3 Evolution of cluster 2 374 

The evolution of the five wines included in cluster 2 (CH_R10, BO_B10, RM_R10, 375 

GC_B10, CD_C10) is shown in Figure 2b. The evolution (increase or decrease) of their color-376 

parameter and anthocyanin composition is shown in Table 5. 377 

Wines belonging to cluster 2 were characterized by high concentrations of ethylidene-378 

linked malvidin-3-glucoside-(epi)catechin dimer, pyranoanthocyanins and LPP, and high 379 

values of a*10 coordinate, CI and low hue value. All samples presented TPI higher than the 380 

average. These wines underwent substantial changes during aging. As shown in Figure 2b, after 381 

6 months of aging, all wines were plotted on the left part of the PCA plot with respect to their 382 

original wine (before storage: RM_R10, GC_B10, CD_C10, CH_R10, BO_B10). These 383 

changes during aging were associated to the increase in hue value (+0.1) and b*10 coordinate 384 

(+10.5), while also associated to the decrease in the concentrations of non-acylated (-64.6 mg 385 

L-1 on average) andacylated (-14.7 mg L-1 on average) anthocyanins as well as of ethylidene-386 
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linked malvidin-3-glucoside-(epi)catechin dimer (-0.3 mg L-1 on average) (Table 5). Changes 387 

observed along PC2 were quite limited (Figure 2b). 388 

The presence of different oxygen doses caused similar effects to the storage in terms of 389 

anthocyanic composition and color evolution but the magnitude of these changes was more 390 

discrete. This could be observed in Figure 2b, where wines stored with higher oxygen levels 391 

(level 4) were plotted on the left section of the plot with respect to the lowest oxygen levels 392 

(level 0). These displacements were in any case lower than those observed during wine aging 393 

(original wines vs level 0). However, in PC2 only a slight displacement was observed along 394 

PC2 in the case of samples bottled with the highest oxygen levels (level 4). A common increase 395 

of the hue value was observed for the 5 wines belonging to cluster 2. However, differences 396 

among these 5 wines in the evolution of other parameters were also observed. A negative 397 

displacement to lower PC2 scores, involving a decrease of red nuances (coordinate C*10) and a 398 

decrease in CI, was observed for samples CH_R10 and BO_B10. This fact occurred in wines 399 

with lower TPIs and not aged in barrel. Conversely, GC_B10 and RM_R10 wines, with higher 400 

TPIs and aged in oak barrels (4 and 8 months, respectively), showed an increase of a*10 401 

coordinate with higher doses of oxygen. In view of the data in Table 5, the variation in the 402 

concentration of pyranoanthocyanins was the main variable responsible for the shifts 403 

undergone by samples belonging to cluster 2. 404 

3.2.4 Evolution of cluster 3 405 

The evolution of the six wines belonging to cluster 3 (CZ_D08, SO_C07, RB_R06, 406 

CT_B07, AY_C05, MG_V05) is shown in Figure 2c. The evolution (increase or decrease) of 407 

color parameters and anthocyanic composition for wines of this cluster is shown in Table 5. 408 

Wines of this cluster, which were the oldest of the sample set studied, presented higher TPI 409 

than the average and were also characterized by high values of hue and b*10 coordinate as well 410 

as low concentrations of ethylidene-linked malvidin-3-glucoside-(epi)catechin dimer, acylated, 411 
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non-acylated and copigmented anthocyanins. Important changes were observed for these 412 

samples during aging. A negative displacement (to the left section of the plot) along PC1 was 413 

observed for all wines (Figure 2c). This shift was attributed to an increase of hue and a decrease 414 

in the concentration of the acylated anthocyanins, pyranoanthocyanins and ethylidene-linked 415 

malvidin-3-glucoside-(epi)catechin dimer.  416 

In the second component, a negative displacement during aging was observed for all wines 417 

and it was higher in wines with lower TPI (RB_R06 and CT_B07). In view of the results in 418 

Table 5, the displacement seemed to be mainly due to a decrease of non-acylated anthocyanin 419 

concentrations.  420 

Similarly, the effect of different oxygen concentrations at bottling could only be observed 421 

for wines with lower TPI (RB_R06 and CT_B07) and attributed to an increase in hue values 422 

and a decrease of anthocyanins with increasing oxygen doses. The effect of oxygen on the rest 423 

of wines of this cluster was quite limited as samples were projected close together on the plot 424 

(Figure 2c).  425 

The effect of oxygen on the MG_V05 wine was especially remarkable. Lower oxygen 426 

levels (levels 0-3) caused a small decrease in CI (unlike the other wines of the cluster) and an 427 

increase in yellowish hues (Supplementary material Table 1). However, the highest oxygen 428 

level (level 4) caused a high decrease of CI. This fact could be explained by the precipitation of 429 

the coloring matter observed in this wine, which was exclusively observed for the highest 430 

oxygen concentration (level 4). This could explain that this wine presented a different trend 431 

compared to the other wines of this cluster. 432 

A strategy for exploring the effect of oxygen on compositional data and color parameters 433 

could be a comparison of the Euclidean distances between the highest and the lowest oxygen 434 

levels applied at bottling (level 4 vs level 0) (Supplementary material Table 2). As reported 435 

above, for the three wine clusters or groups, dose 4 presented the lowest value for PC1 when 436 
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compared with dose 0, even if this shift was different amongst them. Thus, wines belonging to 437 

clusters 1 and 2 showed similar average displacement for this PC, whereas their standard 438 

deviation (sd) was different. Wines with lower TPI (cluster 1) showed higher sd (1.12) than 439 

wines of cluster 2 (0.51), these samples being the youngest among the sample set. This 440 

indicated that in the presence of oxygen, wines with lower TPI (average = 51.6) showed higher 441 

variability in their evolution than wines with higher TPI (average = 65.1).  442 

The wines of cluster 3 (aged wines with similar TPI (average = 63.8) to cluster 2 showed a 443 

smaller shift in PC1 (-0.51) than wines belonging to the other two clusters and a similar 444 

evolution regarding the sd (0.65) calculated with the Euclidean distance between level 4 and 445 

level 0. 446 

Besides the displacement along PC1, the addition of different oxygen levels to the sixteen 447 

wines studied generated shifts on PC2, the most important being for the highest level applied 448 

(level 4). This change along PC2 was different among the three groups of wines studied 449 

(Supplementary material Table 2); however, its interpretation was deemed difficult. This was 450 

mainly because, unlike PC1, PC2 presented different (positive or negative, depending on the 451 

cluster) correlations with variables (such as pH or a*10), even if the CI variable was positive in 452 

the three cases. 453 

4. DISCUSSION 454 

The major aim of this work was to evaluate the changes in color parameters and the 455 

anthocyanin composition of a relatively large number of red wines during bottle storage (6 456 

months at 25 °C) in air-tight containers under five different oxygen doses mimicking real and 457 

extreme bottling situations. Results showed that there was a general pattern of evolution of 458 

color parameters and anthocyanin composition of red wines during bottle aging. This general 459 

pattern was mainly characterized by a decrease in the concentration of free and combined sulfur 460 

dioxide and an increase in yellow nuances during aging measured by the increase in hue and 461 
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b*10 coordinate, both parameters related to wine aging (Negueruela, Echavarri, & Pérez, 1995; 462 

García-Puente, Alcalde-Eon, Santos-Buelga, Rivas-Gonzalo & Escribano-Bailón, 2006; Perez-463 

Magariño & González-San José, 2006). These aging changes have been widely described in 464 

literature (Wirth et al., 2010; Wirth, Caille, Souquet, Samson, Dieval, Vidal, Fulcrand & 465 

Cheynier, 2012; Negueruela et al., 1995; García-Puente et al., 2006; Perez-Magariño et al., 466 

2006). Thus, when there are low concentrations of sulfur dioxide in wines, the formation of 467 

quinones and hydrogen peroxide is favored as a consequence of the oxidation of ortho-468 

diphenols (Danilewicz, 2012). Those quinones that are not reduced due to insufficient content 469 

in SO2 can participate in polymerization reactions, which lead to an increase in the yellow color 470 

of wines (Singleton, 1987). 471 

Likewise, it has also been observed that the variation of hue during aging presented a 472 

positive correlation with vintage (P < 0.01), indicating that young wines presented a pigment 473 

composition that seem to be less stable during aging. These results agree with the fact that the 474 

coloring matter of aged wines is more stable to changes produced by time, temperature or 475 

available oxygen during aging (McRae et al., 2012). Furthermore, the general pattern of 476 

evolution involved an increase in the concentration of LPP and a decrease in free anthocyanins 477 

(acylated and non-acylated), pyranoanthocyanins and ethylidene-linked malvidin-3-glucoside-478 

(epi)catechin dimer pigments. The decrease in free anthocyanins during aging has been widely 479 

described in literature (Atanasova, Fulcrand, Cheynier & Moutounet, 2002; Monagas et al., 480 

2005; García-Falcón, Pérez-Lamela, Martínez-Carballo & Simal-Gándara, 2007; Giovanelli & 481 

Brenna, 2007; Wirth et al., 2010, 2012; Chira, Pacella, Jourdes & Teissedre, 2011; Gambuti et 482 

al., 2013; Gómez-Gallego, Gómez García-Carpintero, Sánchez-Palomo, González-Viñas & 483 

Hermosín-Gutiérrez, 2013). As expected, this decrease was more pronounced for non-acylated 484 

and acylated anthocyanins than for pyranoanthocyanins and ethylidene-linked malvidin-3-485 

glucoside-(epi)catechin dimer. This fact is very interesting in order to preserve wines with a 486 
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less evolved color for longer, since pyranoanthocyanins and ethylidene-linked malvidin-3-487 

glucoside-(epi)catechin dimer appear to be opposed to the increase in yellow nuances (Sáenz-488 

Navajas, Echavarri, Ferreira & Fernández-Zurbano, 2011). The contribution of these 489 

compounds to the color of aged wines has been widely demonstrated (Escribano-Bailón et al., 490 

2002; Wirth et al., 2010; Sáenz-Navajas et al., 2011). These works agree in finding a decrease 491 

in non-acylated and acylated anthocyanins, while there is a disagreement in the reported 492 

evolution of compounds such as pyranoanthocyanins and ethylidene-linked malvidin-3-493 

glucoside-(epi)catechin dimer. There are some research papers that show an increase in the 494 

concentration of these compounds, especially during the early stages of bottle aging (Wirth et 495 

al., 2012; García-Falcón et al., 2007; Atanasova et al., 2002), while others (Monagas et al., 496 

2005) show a slight decrease. As reported in the bibliography, pyranoanthocyanins are more 497 

stable than their anthocyanic precursors, but depending on factors such as wine composition or 498 

aging period, among others, an increase or slight decrease in the concentration of these 499 

compounds may occur. In this experiment, results showed that once the concentration of 500 

pyranoanthocyanins and ethylidene-linked malvidin-3-glucoside-(epi)catechin dimer decreased, 501 

an increase in the concentration of SPP polymeric pigments and especially of LPP were 502 

observed. The decrease observed for the former compounds could be due to reactions between 503 

pyranoanthocyanins and vinyl-flavanol adducts as proposed by Mateus, Silva, Rivas-Gonzalo, 504 

Santos-Buelga & De Freitas (2003), leading to pigments with higher molecular weight.  505 

Even if a general pattern of evolution was observed, different trends have been found 506 

depending on the initial composition of wine samples such as color or polyphenolic 507 

composition (TPI). Thus, the youngest wines (cluster 2) underwent more important changes in 508 

the color parameters studied. These wines showed a slight decrease in TPI, a reduction in all 509 

the families of monomeric anthocyanins, while no variation in copigmented anthocyanins or 510 

SPP were found. Furthermore, the wines of this cluster presented a different evolution of CI 511 
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depending on their TPI. Thus,  a decrease in CI was observed in wines with lower TPI; whereas 512 

for wines with higher TPI, this parameter increased with aging in wines with higher TPI. Wirth 513 

et al., (2012) and Caille et al., (2010) related this increase in CI to the decline of sulfur dioxide; 514 

however, the decrease of this antioxidant was similar in all wines, suggesting that the release 515 

and contribution of these compounds should be similar. Thus, this effect could be attributed to 516 

the condensation of polyphenolic compounds such as flavanols and proanthocyanidins with 517 

anthocyanins, which would lead to an increase in the concentration of red pigments. The 518 

reduction of anthocyanins minimizes the irreversible transformation of the anthocyanins 519 

through the chalcone series into colorless phenolic acids, leading to an irreversible decrease in 520 

wine color (Ribéreau-Gayon, 1970). These results are in accordance with the fact that wines 521 

with higher TPIs are the most resistant to oxidation and the most suitable for aging (Jaffré, 522 

Valentin, Dacremont & Peyron, 2009).  523 

Contrary to young wines, samples of older vintages (cluster 3) experienced an unexpected 524 

increase in copigmented anthocyanins during aging. This fact is difficult to explain since these 525 

compounds have been reported to contribute mostly to the color of young wines (Boulton, 526 

2001). Lastly, the wines in cluster 1, which belonged to intermediate vintages and presented 527 

low TPI, were characterized by a decrease in red nuances when CI increased. This decrease in 528 

red color was attributed to the decrease in copigmented anthocyanins, non-acylated and 529 

acylated anthocyanins, while the increase in CI could be linked to an increase in the absorbance 530 

at 420 nm and also in the b*10 coordinate. The observed increase in the yellow color of these 531 

intermediate vintage wines was (1.5 units) higher than that experienced by young wines (cluster 532 

2), possibly due to their lower TPI (Table 4). Similarly, Gambuti et al. (2013) observed a slight 533 

decrease of color in wines with less TPI. 534 

The second main result of this dataset was that the role of the initial oxygen level at 535 

bottling was minimal compared to the storage time. Oxygen appears to slightly accentuate the 536 



23 

 

processes observed during aging. It should be considered that the wine samples used in this 537 

experiment were red wines with relatively high TPIs and able to consume all the oxygen in just 538 

a few days. Nevertheless, all wines showed the most important compositional changes between 539 

the highest and the lowest oxygen levels applied at bottling (level 4 and level 0). There were 540 

certain compounds that experienced remarkable changes when the level of oxygen was 541 

increased. Moreover, in the presence of oxygen, the evolution of wines with lower TPI showed 542 

higher variability (in terms of the chemical variables analyzed) than wines with higher TPI, 543 

which showed a more homogeneous evolution among them. 544 

Wine MG_V05 was the only wine that experienced a precipitation of coloring matter with 545 

the highest dose of oxygen, together with a decline in CI and, most importantly, a reduction of 546 

its yellow color measured by the hue. The formation of yellow, large and insoluble polymeric 547 

pigments (Habertson et al., 2003; Sun, Barradas, Leandro, Santos & Spranger, 2008) described 548 

to occur during wine aging, could explain the apparition of this precipitation, the reduction in 549 

CI and the yellow color of this wine sample. 550 

5. CONCLUSIONS 551 

In conclusion, the wines stored in this study showed a general pattern in the evolution of 552 

their characteristics and color composition. This pattern of evolution depended on both the 553 

initial composition of the wine and its TPIs. Thus, wines with higher TPI from older vintages 554 

had the most stable coloring matter and experienced a small evolution. Wines with lower TPI 555 

showed a more important evolution and greater variability in the behavior, even if they were 556 

not young wines.  557 

More important changes in wine composition and related to oxygen doses were expected; 558 

however, these changes were less marked than those related to aging time. This could be 559 

related to the fact that the total addition of oxygen (in the initial headspace) was carried out at 560 

once at bottling, while the injection of oxygen along the storage period (through closure) is 561 
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expected to induce a different evolution of wine samples. Similarly, the content and the 562 

consumption rate of sulfur dioxide seemed to be responsible for the reactions of polyphenolic 563 

compounds; hence, these issues are currently being considered in our laboratory. 564 

The results presented in this paper are relevant to wine experts since they help to 565 

understand the evolution of color properties of wine during bottling. This study may help to 566 

develop strategies to manage this stage in winemaking with objective criteria. 567 
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FIGURE CAPTIONS 746 

Figure 1. a) Projection of the 16 wines on the first two principal component of the PCA and b) 747 

Tree diagram and the three clusters derived from the Hierarchical cluster analysis calculated on 748 

three dimensions of the PCA performed with the 16 wine samples. 749 

Figure 2. a) Projection of the 5 wines of cluster 1 on the first two principal component of the 750 

PCA, b) projection of the 5 wines of cluster 2 on the first two principal component of the PCA 751 

and c) projection of the 6 wines of cluster 3 on the first two principal component of the PCA752 
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 1 

    Table 1. The sixteen studied commercial wines and their original oenological parameters. 2 

 3 

wine code origin 
vintage 

year 
grape variety 

Months 

in 

barrels 

TPIa pH TAb VAc RSd MAe LAf 
Alcohol  

(% v/v) 

MG_V05 
DO Dominio 
de Valdepusa 

2005 Cabernet Sauvignon 12 83.4 ± 0.7 3.65 ± 0.01 4.91 ± 0.02 0.56 ± 0.01  4.35 ± 0.09 0.29 ± 0.10 0.77 ± 0.02 15.2 ± 0.02 

AY_C05 DO Cariñena 2005 
Merlot, Tempranillo,Cabernet 
Sauvignon 

10 74.3 ± 0.3 3.52 ± 0.00 5.86 ± 0.01  0.69 ± 0.01 3.39 ± 0.18 0.33 ± 0.10 1.00 ± 0.03 14.3 ± 0.07 

RB_R06 DOCa Rioja 2006 Tempranillo, Garnacha 18 49.4 ± 0.3  3.49 ± 0.01 5.37 ± 0.01 0.57 ± 0.01 2.23 ± 0.07 0.23 ± 0.14 1.45 ± 0.01 14.3 ± 0.00 

CT_B07 DO Borja 2007 Garnacha 15 59.1 ± 0.3 3.47 ± 0.00 5.66 ± 0.01 0.51 ± 0.00 4.34 ± 0.18 0.30 ± 0.02 0.75 ± 0.03 13.9 ± 0.07 

SO_C07 DO Cariñena 2007 
Garnacha, Tempranillo, 
Cabernet Sauvignon 

18 54.9 ± 1.4 3.53 ± 0.00 5.66 ± 0.01 0.75 ± 0.00 3.81 ± 0.03   0.18 ± 0.04 1.21 ± 0.01 13.8 ± 0.05 

AR_A08 DO Arlanza 2008 Tempranillo 12 53.0 ± 0.2 3.73 ± 0.00 5.57 ± 0.01 0.63 ± 0.01 1.98 ± 0.10 0.24 ± 0.06 2.79 ± 0.03 13.6 ± 0.03 

CZ_D08 DO Duero 2008 Tempranillo 18 62.0 ± 0.1 3.65 ± 0.01 5.33 ± 0.01 0.57 ± 0.01 1.71 ± 0.18 0.35 ± 0.07 2.47 ± 0.01 13.4 ± 0.05 

MC_R09 DOCa Rioja 2009 
Tempranillo,Graciano, 
Mazuelo 

12 52.3 ± 0.3 3.64 ± 0.01 4.92 ± 0.02 0.52 ± 0.01 2.09 ± 0.14 0.21 ± 0.02 2.11 ± 0.05 13.7 ± 0.03 

RN_R09 DOCa Rioja 2009 Tempranillo, Garnacha 18 49.7 ± 0.4 3.65 ± 0.01 5.35 ± 0.01 0.66 ± 0.01 1.67 ± 0.15 0.18 ± 0.10 2.14 ± 0.01 13.6 ± 0.03 

BO_B10 DO Borja 2010 Garnacha, Syrah, Tempranillo 0 61.0 ± 0.9 3.66 ± 0.01 5.04 ± 0.01 0.47 ± 0.00 2.68 ± 0.20  0.17 ± 0.06 1.07 ± 0.01 14.8 ± 0.07 

CH_R10 DOCa Rioja 2010 Tempranillo, Viura 0 60.3 ± 0.4 3.88 ± 0.00 4.45 ± 0.01 0.62 ± 0.01 1.77 ± 0.14  0.20 ± 0.03 3.30 ± 0.02 14.1 ± 0.03 

CD_C10 DO Cariñena 2010 
Garnacha, Tempranillo, 
Cabernet Sauvignon 

0 66.4 ± 0.4 3.63 ± 0.00 5.30 ± 0.01 0.53 ± 0.01 2.57 ± 0.16 0.24 ± 0.17 0.90 ± 0.01 13.5 ± 0.07 

SC_R10 DOCa Rioja 2010 Tempranillo, Garnacha 0 57.8 ± 0.3 3.72 ± 0.02 4.84 ± 0.01 0.48 ± 0.01 2.32 ± 0.08 0.18 ± 0.04 2.52 ± 0.01 13.4 ± 0.03 

GC_B10 DO Borja 2010 Garnacha 4 71.4 ± 0.3 3.43 ± 0.01 6.14 ± 0.01 0.42 ± 0.01 3.61 ± 0.11 0.25 ± 0.02 0.68 ± 0.02 14.7 ± 0.04 

RM_R10 DOCa Rioja 2010 Graciano 8 66.4 ± 1.7 3.57 ± 0.00 5.80 ± 0.01 0.41 ± 0.01 2.31 ± 0.21 0.19 ± 0.06 1.45 ± 0.02 14.8 ± 0.04 

BE_R10 DOCa Rioja 2010 Tempranillo, Garnacha 0 45.4 ±  1.0 3.61 ± 0.00 5.09 ± 0.01 0.25 ± 0.01 1.52 ± 0.15 0.18 ± 0.02 1.86 ± 0.02 13.9 ± 0.02 
 
Data expressed as the mean ± SD (n = 2). 

aTotal Polyphenol Index 
bTotal titratable acidity expressed in g L-1 of tartatic acid 
cVolatile acidity expressed in g L-1 of acetic acid 
dReducing sugars expressed in g L-1 
eMalic acid expressed in g L-1 

fLactic acid expressed in g L-1 

Table(s)
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 4 

Table 2. Identification, pigment groups, MS and MS2 spectrum data (M+: positive charged molecular ion), retention time (tR), chemical identity, maximum 5 

(max.), average and minimum (min.) concentrations (expressed in mg L-1 of malvidin-3-O-glucoside) for anthocyanins analyzed by UPLC–UV/Vis-MS. 6 
 7 

 8 
peak pigment groups M+ (m/z) MS2 

tR 

(min) 
compound max. mean min. 

1 pyranoanthocyanin 489 327  1.2 B-type vitisin of Dp-3-glc 0.22 0.13 0.05 

2 non acylated anthocyanins + A-F adduct 465/781 303/619  2.0 Dp-3-glc + Mv-3-glc-(epi)catechin 17.00 8.72 0.47 

3 non acylated anthocyanins 449 287  2.4 Cy-3-glc 2.12 1.11 0.30 

4 non acylated anthocyanins 479 317  2.7 Pt-3-glc 17.80 8.25 0.33 

5 non acylated anthocyanins 463 301  3.2 Pn-3-glc 6.52 3.02 0.10 

6 non acylated anthocyanins 493 331  3.4 Mv-3-glc 72.43 36.35 2.48 

7 acylated anthocyanins 507 303  3.6 Dp-3-acylglc 0.96 0.29 0.05 

8 pyranoanthocyanin 561 399  3.7 Vitisin A 4.21 2.76 1.98 

9 pyranoanthocyanin 517 355  4.0 Vitisin B 0.18 0.08 0.05 

10 pyranoanthocyanin + acylated anthocyanins 559/491 355/287  4.2 B-type vitisin of Mv-3-acylglc + Cy-3-acylglc 0.82 0.25 0.05 

11 acylated anthocyanins 521 317  4.6 Pt-3-acylglc 2.14 0.52 0.08 

12 ethylidene-linked malvidin-3-glucoside-
(epi)catechin dimer 

809 357  4.9 Ethylidene-linked malvidin-3-glucoside-(epi)catechin dimer 0.71 0.34 0.12 

13 acylated anthocyanins 611 303  5.3 Dp-3-p-coumglc 3.48 1.82 0.08 

14 acylated anthocyanins 535 331  5.8 Mv-3-acylglc 10.63 3.31 0.07 

15 pyranoanthocyanin 707 399  5.9 A-type vitisin of Mv-3-p-coumglc 0.86 0.42 0.23 

16 acylated anthocyanins 625 317  6.7 Pt-3-p-coumglc 2.76 1.16 0.05 

17 acylated anthocyanins 639 331  7.3 Mv-3-p-coumglc cis 1.97 0.52 0.18 

18 acylated anthocyanins 609 301  8.0 Pn-3-p-coumglc 2.05 0.97 0.05 

19 acylated anthocyanins + pyranoanthocyanin 639/771 331/463  8.2 Mv-3-p-coumglc trans + Mv-3-p-coumglc 4-vinylcatechol adduct 7.62 4.04 0.53 

20 pyranoanthocyanin 651 447  9.4 Mv-3-acylglc 4-vinylphenol adduct 2.28 0.50 0.14 

21 pyranoanthocyanin 755 447 10.7 Mv-3-p-coumglc 4-vinylphenol adduct 0.07 0.05 0.05 

Dp: delphinidin; Cy: cyanidin; Pt: petunidin; Pn: peonidin; Mv: malvidin; glc: glucose; acylglc: 6”-acetylglucoside; p-coumglc: 6”-p-coumaroylglucoside 
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Table 3. Original color parameters and anthocyanins concentration of wines studied. 9 

     color coordinates        

Wine 

code 
SO2 F

a SO2 C
a CIb Tonality a*10 b*10 L*10 C*ab hab CAb SPPb LPPb Non-acyla Acyla Pyranoa EMv-Fa 

MG_V05  8.0 ± 1.1 25.6 ± 0.0 
19.3 ± 
0.02 

0.79 ± 0.03 46.5 ± 0.0 26.6 ± 0.0 34.4 ± 0.0 
53.6± 0.0 29.8± 0.0 

1.12 ± 0.04 1.17 ± 0.02 0.28 ± 0.01   4.03 ± 0.04  4.28 ± 0.10 
5.74 ± 
0.08 

nd 

AY_C05  6.4 ± 1.1 58.4 ± 0.0 
10.8 ± 
0.01 

0.94 ± 0.04   41.1 ± 0.0 27.6 ± 0.1 55.3 ± 0.1 
49.5± 0.1 33.9± 0.1 

0.00 ± 0.01 0.60 ± 0.02 0.35 ± 0.01   5.50 ± 0.06  1.46 ± 0.02 
3.31 ± 
0.04 

0.22 ± 0.01 

RB_R06  8.0 ± 0.0 67.2 ± 1.1 8.6 ± 0.05 0.92 ± 0.03 33.2 ± 0.1 18.1 ± 0.1 60.2 ± 0.3 
37.8± 0.2 28.6± 0.3 

2.11 ± 0.04 0.22 ± 0.00 0.40 ± 0.05  18.08 ± 0.07  4.18 ± 0.06 
3.42 ± 
0.03 

0.14 ± 0.01 

CT_B07 15.6 ± 1.1 64.0 ± 0.0  9.2 ± 0.00  0.77 ± 0.00 42.2 ± 0.0 13.7 ± 0.0  45.7 ± 0.1  
44.4± 0.1 17.9± 0.1 

0.00 ± 0.06  0.61 ± 0.06  0.40 ± 0.05   29.15 ± 0.17   7.45 ± 0.05  
3.53 ± 
0.03  

0.12 ± 0.00  

SO_C07  8.8 ± 1.1 48.0 ± 0.0 7.2 ± 0.07 0.85 ± 0.10 35.1 ± 0.1 13.8 ± 0.1 64.6 ± 0.1 
37.7± 0.1 21.5± 0.1 

0.16 ± 0.16 0.23 ± 0.05 0.31 ± 0.01  44.89 ± 0.27 10.25 ± 0.06 
5.57 ± 
0.04 

0.23 ± 0.00 

AR_A08 23.6 ± 1.9 32.0 ± 1.1 8.8 ± 0.04 0.79 ± 0.02 37.4 ± 0.1 10.7 ± 0.0 38.9 ± 0.2 
38.9± 0.1 16.0± 0.2 

2.04 ± 0.05 0.54 ± 0.00 0.26 ± 0.04  58.71 ± 0.63 11.70 ± 0.06 
4.58 ± 
0.05 

0.18 ± 0.00 

CZ_D08 11.2 ± 1.7 28.8 ± 0.0 9.6 ± 0.01 0.76 ± 0.01 41.1 ± 0.0 10.5 ± 0.1 54.3 ± 0.1 
42.5± 0.1 14.3± 0.1 

2.77 ± 0.10 0.23 ± 0.01 0.32 ± 0.01  48.53 ± 0.21  8.84 ± 0.04 
3.87 ± 
0.04 

0.25 ± 0.00 

MC_R09 15.2 ± 0.6 35.2 ± 0.6 8.8 ± 0.00 0.80 ± 0.05 38.4 ± 0.0 10.0 ± 0.0 57.5 ± 0.0 
39.6± 0.0 14.6± 0.0 

2.96 ± 0.10 0.23 ± 0.01 0.32 ± 0.01  74.04 ± 0.24 15.09 ± 0.08 
3.07 ± 
0.06 

0.29 ± 0.01 

RN_R09 29.1 ± 0.0 76.8 ± 0.0 7.8 ± 0.00 0.82 ± 0.02 34.0 ± 0.0 11.3 ± 0.0 62.0 ± 0.0 
35.8± 0.0 18.4± 0.0 

1.98 ± 0.02 0.23 ± 0.01 0.35 ± 0.00  64.21 ± 0.44 13.92 ± 0.07 
3.26 ± 
0.05 

0.21 ± 0.01 

BO_B10  8.0 ± 0.0 19.2 ± 0.0 
12.5 ± 
0.00 

0.66 ± 0.03 51.5 ± 0.1  9.6 ± 0.01 45.7 ± 0.1 
52.4± 0.1 10.6± 0.1 

1.57 ± 0.04 0.66 ± 0.03 0.32 ± 0.01  85.48 ± 0.40 21.82 ± 0.12 
5.70 ± 
0.03 

0.71 ± 0.00 

CH_R10  7.2 ± 1.1 16.0 ± 0.0 
13.3 ± 
0.05 

0.77 ± 0.01 43.8 ± 0.0 
10.5 ± 
0.01 

43.3 ± 0.1 
45.0± 0.1 13.5± 0.1 

2.81 ± 0.05 0.43 ± 0.03 0.36 ± 0.05  88.28 ± 0.15 18.90 ± 0.12 
7.35 ± 
0.07 

0.46 ± 0.01 

CD_C10 19.6 ± 0.0 64.4 ± 1.1 
14.8 ± 
0.00 

0.66 ± 0.00 53.3 ± 0.1 13.0 ± 0.0 40.2 ± 0.1 
54.9± 0.1 13.7± 0.1 

2.35 ± 0.03 0.77 ± 0.01 0.49 ± 0.02  94.16 ± 0.69 26.13 ± 0.22 
4.26 ± 
0.04 

0.62 ± 0.00 

SC_R10 23.2 ± 0.6 33.6 ± 0.6 
11.0 ± 
0.04 

0.69 ± 0.02 45.4 ± 0.0   6.7 ± 0.0 49.0 ± 0.1 
46.0± 0.1 8.8± 0.1 

3.29 ± 0.01 0.25 ± 0.02 0.30 ± 0.03 
113.26 ± 
1.49 

22.27 ± 0.09 
6.32 ± 
0.11 

0.44 ± 0.01 

GC_B10 17.6 ± 0.6 51.2 ± 0.0 
14.0 ± 
0.01 

0.64 ± 0.01 53.2 ± 0.2 10.3 ± 0.1 41.8 ± 0.2 
54.2± 0.1 11.0± 0.2 

1.56 ± 0.07 0.50 ± 0.02 0.52 ± 0.05  61.47 ± 0.38 14.28 ± 0.09 
4.72 ± 
0.04 

0.41 ± 0.01 

RM_R10 17.1 ± 0.0 89.2 ± 0.0 
18.7 ± 
0.05 

0.71 ± 0.01 47.1 ± 0.1 14.0 ± 0.1 31.5 ± 0.1 
49.1± 0.1 16.6± 0.1 

2.84 ± 0.17 0.50 ± 0.02 0.50 ± 0.05  63.55 ± 0.53   9.14 ± 0.06 
6.15 ± 
0.10 

0.45 ± 0.00 

BE_R10 18.4 ± 1.1 33.6 ± 0.0 8.0 ± 0.00 0.71 ± 0.00 40.3 ± 0.0   5.1 ± 0.0 59.4 ± 0.0 
40.6± 0.0 7.3± 0.10 

2.11 ± 0.22 0.24 ± 0.02 0.24 ± 0.03  66.01 ± 0.12 14.56 ± 0.07 
2.66 ± 
0.07 

0.33 ± 0.01 

 

Data expressed as the mean ± SD (n = 2). 
a: expressed in mg L-1 

b: expressed in absorbance units 

nd: no detected  

SO2 F:  Free sulfur dioxide 

SO2C:  Combined sulfur dioxide 
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 10 

 11 

CI: color intensity 

Hue:  absorbance at 420 nm / absorbance at 520 nm 

CA: copigmented  anthocyanins 

SPP: small weighted polymeric pigments 

LPP: large weighted polymeric pigments 

Non-acyl: non acylated  anthocyanins 

Acyl: acylated  anthocyanins 

Pyrano: pyranoanthocyanins 

EMv-F: ethylidene-linked malvidin-3-glu-(epi)catechin dimer 
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 13 

 14 

 15 

Table 4. Overall average composition and composition of the cluster obtained from HCA to start. Different letters show significant differences (P <0.05) 16 

 17 

 18 

 19 

  20 

Cluster TPIs pH SO2 F
 SO2 C

a CIb Tonality a*10 b*10 C*ab hab CAb SPPb LPPb Non-acyla Acyla Pyranoa EMv-F 

                  

Global 60.43 ± 10.13 3.61 ± 0.11 14.8 ± 6.9 31.6 ± 21.7 11.4 ± 4.7 0.77 ± 1.3 42.7 ±   8.9 13.2 ± 7.2 40.6±6.5 17.3±7.7 1.66 ± 1.10 0.47 ± 0.25 0.36 ± 0.08 57.45 ± 30.84 12.74 ± 6.84 4.14 ± 1.36 0.32 ± 0.18 

1 51.64 ±   4.55b 3.67 ± 0.05 21.9 ± 5.3a 42.2 ± 19.3   8.8 ± 1.3b 0.76  ± 0.05ab 39.1 ±   3.9b   8.8 ± 2.5b 40.2±3.3b 13.0±4.3b 2.48 ± 

0.57a 

0.27 ± 

0.06b 

0.29 ± 0.05b 75.24 ± 20.59a 15.51 ± 3.74a 3.10 ± 0.26b 0.29 ± 0.10a 

2 65.12 ±   8.40a 3.63 ± 0.15 13.9 ± 5.8b 48.0 ± 20.9 14.7 ± 2.3a 0.69  ± 0.04b 49.8 ± 14.5a 11.5 ± 1.8ab 51.1±3.7a 13.1±2.2ab 2.22 ± 
0.63a 

0.57 ± 
0.13a 

0.44 ± 0.09a 78.59 ± 14.14a 18.05 ± 6.03a 5.63 ± 1.14a 0.53 ± 0.11a 

3 63.84 ± 10.89a 3.55 ± 0.08   9.7 ± 3.3b 48.7 ± 17.9 10.8 ± 4.1ab 0.84  ± 0.07a 39.9 ±   4.6b 18.4 ± 6.9a 44.2±5.8ab 24.3±6.9a 0.51 ± 

0.39b 

0.56 ± 
0.33a 

0.34 ± 0.05ab 25.03 ± 18.28b  6.01 ± 3.20b 3.77 ± 0.99b 0.16 ± 0.09b 

underlined indicates parameters that characterize the cluster positively 
Italics indicates parameters that characterize the cluster negatively 
a: expressed in mg L-1 

b: expressed in absorbance units 

nd: no detected  

SO2 F:  Free sulfur dioxide 

SO2C:  Combined sulfur dioxide 

CI: color intensity 

Hue:  absorbance at 420 nm / absorbance at 520 nm 

CA: copigmented  anthocyanins 

SPP: small weighted polymeric pigments 

LPP: large weighted polymeric pigments 

Non-acyl: non acylated  anthocyanins 

Acyl: acylated  anthocyanins 

Pyrano: pyranoanthocyanins 

EMv-F: ethylidene-linked malvidin-3-glu-(epi)catechin dimer 
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 22 

Table 5. Differences between color parameters and anthocyanin composition before and after aging. Data in bold show significant differences (P <0.05) 23 

24 

cluster TPIs pH SO2 F
a SO2 C

a CIb Tonality a*10 b*10 C*ab hab CAb SPPb LPPb Non-acyla Acyla Pyranoa EMv-F 

Global -1.2 ± 16.2 -0.03 ± 0.16 -14.8 ± 10.2 -20.1 ± 18.7 0.37 ± 4.57 0.13  ± 0.09 -2.8 ± 10.6 10.3 ± 8.5 5,9+9,2 13.0+8.1 -0.08 ± 1.36 0.05 ± 0.28 0.18 ± 0.13 -46.5 ± 31.7 -10.5 ± 6.9 -1.03 ± 0.83 -0.16 ± 0.11 

1 -1.7 ±  6.7 -0.04 ± 0.06 -21.9 ±  9.2 -36.4 ± 17.3 0.77 ± 0.40 0.15  ± 0.09 -3.1 ±  2.4 11.9 ± 4.2 1,39+2,2 17.0+4.6 -1.52 ± 0.92 0.14 ± 0.09 0.17 ± 0.09 -61.7 ± 21.6 -13.4 ± 2.1 -0.32 ± 0.86 -0.14 ± 0.12 

2 -2.6 ±  2.4 -0.04 ± 0.23 -13.9 ± 8.4 -29.8 ± 12.1 -0.30 ± 3.31 0.13  ± 0.08  0.7 ± 12.4 10.5 ± 2.5 4.0.+1,5 10.4+7.1  0.22 ± 0.84 0.00 ± 0.12 0.18 ± 0.16 -64.6 ± 12.9 -14.7 ± 2.6 -1.41 ± 1.61 -0.32 ± 0.10 

3  0.5 ± 11.3 -0.03 ± 0.11   -9.7 ± 4.3 -37.0 ± 16.9 -0.27 ± 4.55 0.09  ± 0.10 -0.8 ±   6.8   8.6 ± 6.5 3.3+5,1 10.3+3.4  1.29 ± 0.61 0.01 ± 0.35 0.19 ± 0.14 -18.9 ± 11.5 -4.4 ± 3.3 -1.24 ± 0.85 -0.05 ± 0.20 

 
a: expressed in mg L-1 
b: expressed in absorbance units 
SO2 F:  Free sulfur dioxide 
SO2 C:  Combined sulfur dioxide 
CI: color intensity 
T:  absorbance at 420 nm / absorbance at 520 nm 
CA: copigmented  anthocyanins 
SPP: small weighted polymeric pigments 
LPP: large weighted polymeric pigments 
Non-acyl: non acylated  anthocyanins 
Acyl: acylated  anthocyanins 
Pyrano: pyranoanthocyanins 
EMv-F: ethylidene-linked malvidin-3-glu-(epi)catechin dimer 
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