000061588 001__ 61588
000061588 005__ 20200221144313.0
000061588 0247_ $$2doi$$a10.1021/acs.energyfuels.6b00638
000061588 0248_ $$2sideral$$a95646
000061588 037__ $$aART-2016-95646
000061588 041__ $$aeng
000061588 100__ $$0(orcid)0000-0003-2614-9228$$aColom, J.M.
000061588 245__ $$aImportance of Vanadium-Catalyzed Oxidation of SO2 to SO3 in Two-Stroke Marine Diesel Engines
000061588 260__ $$c2016
000061588 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061588 5203_ $$aLow-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur and ash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinder oxidation of SO2 to SO3, promoting the formation of sulfuric acid and enhancing problems of corrosion. In the present work, the kinetics of the catalyzed oxidation was studied in a fixed-bed reactor at atmospheric pressure. Vanadium oxide nanoparticles were synthesized by spray flame pyrolysis, i.e., by a mechanism similar to the mechanism leading to the formation of the catalytic species within the engine. Experiments with different particle compositions (vanadium/sodium ratio) and temperatures (300–800 °C) show that both the temperature and sodium content have a major impact on the oxidation rate. Kinetic parameters for the catalyzed reaction are determined, and the proposed kinetic model fits well with the experimental data. The impact of the catalytic reaction is studied with a phenomenological zero-dimensional (0D) engine model, where fuel oxidation and SOx formation is modeled with a comprehensive gas-phase reaction mechanism. Results indicate that the oxidation of SO2 to SO3 in the cylinder is dominated by gas-phase reactions and that the vanadium-catalyzed reaction is at most a very minor pathway.
000061588 536__ $$9info:eu-repo/grantAgreement/ES/DGA/GPT$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2015-65226-R
000061588 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000061588 590__ $$a3.091$$b2016
000061588 591__ $$aENGINEERING, CHEMICAL$$b27 / 135 = 0.2$$c2016$$dQ1$$eT1
000061588 591__ $$aENERGY & FUELS$$b33 / 92 = 0.359$$c2016$$dQ2$$eT2
000061588 592__ $$a1.258$$b2016
000061588 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000061588 593__ $$aFuel Technology$$c2016$$dQ1
000061588 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000061588 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000061588 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, M.U.$$uUniversidad de Zaragoza
000061588 700__ $$aChristensen, J.M.
000061588 700__ $$aGlarborg, P.
000061588 700__ $$aCordtz, R.
000061588 700__ $$aSchramm, J.
000061588 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000061588 773__ $$g30, 7 (2016), 6098-6102$$pEnergy fuels$$tEnergy and Fuels$$x0887-0624
000061588 8564_ $$s762407$$uhttps://zaguan.unizar.es/record/61588/files/texto_completo.pdf$$yPostprint
000061588 8564_ $$s130763$$uhttps://zaguan.unizar.es/record/61588/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000061588 909CO $$ooai:zaguan.unizar.es:61588$$particulos$$pdriver
000061588 951__ $$a2020-02-21-13:38:09
000061588 980__ $$aARTICLE