000061638 001__ 61638
000061638 005__ 20190709135525.0
000061638 0247_ $$2doi$$a10.3390/s17051137
000061638 0248_ $$2sideral$$a99539
000061638 037__ $$aART-2017-99539
000061638 041__ $$aeng
000061638 100__ $$0(orcid)0000-0003-2357-1407$$aJiménez, Roberto
000061638 245__ $$aExperimental approach for the uncertainty assessment of 3D complex geometry dimensional measurements using computed tomography at the mm and sub-mm scales
000061638 260__ $$c2017
000061638 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061638 5203_ $$aThe dimensional verification of miniaturized components with 3D complex geometries is particularly challenging. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile techniques. However, the establishment of CT systems’ traceability when measuring 3D complex geometries is still an open issue. In this work, an alternative method for the measurement uncertainty assessment of 3D complex geometries by using CT is presented. The method is based on the micro-CT system Maximum Permissible Error (MPE) estimation, determined experimentally by using several calibrated reference artefacts. The main advantage of the presented method is that a previous calibration of the component by a more accurate Coordinate Measuring System (CMS) is not needed. In fact, such CMS would still hold all the typical limitations of optical and tactile techniques, particularly when measuring miniaturized components with complex 3D geometries and their inability to measure inner parts. To validate the presented method, the most accepted standard currently available for CT sensors, the Verein Deutscher Ingenieure/Verband Deutscher Elektrotechniker (VDI/VDE) guideline 2630-2.1 is applied. Considering the high number of influence factors in CT and their impact on the measuring result, two different techniques for surface extraction are also considered to obtain a realistic determination of the influence of data processing on uncertainty. The uncertainty assessment of a workpiece used for micro mechanical material testing is firstly used to confirm the method, due to its feasible calibration by an optical CMS. Secondly, the measurement of a miniaturized dental file with 3D complex geometry is carried out. The estimated uncertainties are eventually compared with the component’s calibration and the micro manufacturing tolerances to demonstrate the suitability of the presented CT calibration procedure. The 2U/T ratios resulting from the validation workpiece are, respectively, 0.27 (VDI) and 0.35 (MPE), by assuring tolerances in the range of +- 20–30 micro-m. For the dental file, the EN < 1 value analysis is favorable in the majority of the cases (70.4%) and 2U/T is equal to 0.31 for sub-mm measurands (L < 1 mm and tolerance intervals of +- 40–80 micro-m).
000061638 536__ $$9info:eu-repo/grantAgreement/ES/UZ/CUD2016-TEC-09$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2015-69403-C3-1-R
000061638 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000061638 590__ $$a2.475$$b2017
000061638 591__ $$aCHEMISTRY, ANALYTICAL$$b30 / 80 = 0.375$$c2017$$dQ2$$eT2
000061638 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b16 / 61 = 0.262$$c2017$$dQ2$$eT1
000061638 591__ $$aELECTROCHEMISTRY$$b15 / 28 = 0.536$$c2017$$dQ3$$eT2
000061638 592__ $$a0.584$$b2017
000061638 593__ $$aAnalytical Chemistry$$c2017$$dQ2
000061638 593__ $$aAtomic and Molecular Physics, and Optics$$c2017$$dQ2
000061638 593__ $$aMedicine (miscellaneous)$$c2017$$dQ2
000061638 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ2
000061638 593__ $$aInstrumentation$$c2017$$dQ2
000061638 593__ $$aBiochemistry$$c2017$$dQ3
000061638 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061638 700__ $$0(orcid)0000-0002-3069-2736$$aTorralba, Marta
000061638 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe Fabra, José Antonio$$uUniversidad de Zaragoza
000061638 700__ $$aOntiveros, Sinué
000061638 700__ $$aTosello, Guido
000061638 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000061638 773__ $$g17 (2017), 1137$$pSensors$$tSENSORS$$x1424-8220
000061638 8564_ $$s3370610$$uhttps://zaguan.unizar.es/record/61638/files/texto_completo.pdf$$yVersión publicada
000061638 8564_ $$s105042$$uhttps://zaguan.unizar.es/record/61638/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061638 909CO $$ooai:zaguan.unizar.es:61638$$particulos$$pdriver
000061638 951__ $$a2019-07-09-11:59:20
000061638 980__ $$aARTICLE