000061693 001__ 61693
000061693 005__ 20190709135441.0
000061693 0247_ $$2doi$$a10.1103/PhysRevLett.118.071802
000061693 0248_ $$2sideral$$a99138
000061693 037__ $$aART-2017-99138
000061693 041__ $$aeng
000061693 100__ $$aBallesteros, G.
000061693 245__ $$aUnifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism
000061693 260__ $$c2017
000061693 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061693 5203_ $$aA minimal extension of the standard model (SM) with a single new mass scale and providing a complete and consistent picture of particle physics and cosmology up to the Planck scale is presented. We add to the SM three right-handed SM-singlet neutrinos, a new vectorlike color triplet fermion, and a complex SM-singlet scalar s that stabilizes the Higgs potential and whose vacuum expectation value at ~1011 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously. Primordial inflation is produced by a combination of s (nonminimally coupled to the scalar curvature) and the SM Higgs boson. Baryogenesis proceeds via thermal leptogenesis. At low energies, the model reduces to the SM, augmented by seesaw-generated neutrino masses, plus the axion, which solves the strong CP problem and accounts for the dark matter in the Universe. The model predicts a minimum value of the tensor-to-scalar ratio r?0.004, running of the scalar spectral index a?-7×10-4, the axion mass mA~100 µeV, and cosmic axion background radiation corresponding to an increase of the effective number of relativistic neutrinos of ~0.03. It can be probed decisively by the next generation of cosmic microwave background and axion dark matter experiments.
000061693 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2012-10597$$9info:eu-repo/grantAgreement/ES/MINECO/FPA2015-65745-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 656794-DEFT$$9info:eu-repo/grantAgreement/EC/H2020/656794/EU/Dark energy, non-linearites and effective theories/DEFT
000061693 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000061693 590__ $$a8.839$$b2017
000061693 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b6 / 78 = 0.077$$c2017$$dQ1$$eT1
000061693 592__ $$a3.622$$b2017
000061693 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ1
000061693 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061693 700__ $$0(orcid)0000-0002-1044-8197$$aRedondo, J.$$uUniversidad de Zaragoza
000061693 700__ $$aRingwald, A.
000061693 700__ $$aTamarit, C.
000061693 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000061693 773__ $$g118, 7 (2017), 071802 [7 pp]$$pPhys. rev. lett.$$tPhysical Review Letters$$x0031-9007
000061693 8564_ $$s297953$$uhttps://zaguan.unizar.es/record/61693/files/texto_completo.pdf$$yVersión publicada
000061693 8564_ $$s127615$$uhttps://zaguan.unizar.es/record/61693/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061693 909CO $$ooai:zaguan.unizar.es:61693$$particulos$$pdriver
000061693 951__ $$a2019-07-09-11:36:12
000061693 980__ $$aARTICLE