000061718 001__ 61718
000061718 005__ 20190709135448.0
000061718 0247_ $$2doi$$a10.1371/journal.pcbi.1005277
000061718 0248_ $$2sideral$$a99226
000061718 037__ $$aART-2017-99226
000061718 041__ $$aeng
000061718 100__ $$aBidone, T.C.
000061718 245__ $$aMorphological Transformation and Force Generation of Active Cytoskeletal Networks
000061718 260__ $$c2017
000061718 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061718 5203_ $$aCells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation.
000061718 536__ $$9info:eu-repo/grantAgreement/EUR/FP7/ERC2012-StG-306751
000061718 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000061718 590__ $$a3.955$$b2017
000061718 591__ $$aMATHEMATICAL & COMPUTATIONAL BIOLOGY$$b5 / 59 = 0.085$$c2017$$dQ1$$eT1
000061718 591__ $$aBIOCHEMICAL RESEARCH METHODS$$b13 / 79 = 0.165$$c2017$$dQ1$$eT1
000061718 592__ $$a3.097$$b2017
000061718 593__ $$aCellular and Molecular Neuroscience$$c2017$$dQ1
000061718 593__ $$aComputational Theory and Mathematics$$c2017$$dQ1
000061718 593__ $$aEcology$$c2017$$dQ1
000061718 593__ $$aMolecular Biology$$c2017$$dQ1
000061718 593__ $$aGenetics$$c2017$$dQ1
000061718 593__ $$aModeling and Simulation$$c2017$$dQ1
000061718 593__ $$aEcology, Evolution, Behavior and Systematics$$c2017$$dQ1
000061718 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061718 700__ $$aJung, W.
000061718 700__ $$aMaruri, D.
000061718 700__ $$0(orcid)0000-0002-3784-1140$$aBorau, C.$$uUniversidad de Zaragoza
000061718 700__ $$aKamm, R.D.
000061718 700__ $$aKim, T.
000061718 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000061718 773__ $$g13, 1 (2017), e1005277[22 pp]$$pPLoS Comput. Biol.$$tPLoS computational biology$$x1553-7358
000061718 8564_ $$s5639276$$uhttps://zaguan.unizar.es/record/61718/files/texto_completo.pdf$$yVersión publicada
000061718 8564_ $$s104320$$uhttps://zaguan.unizar.es/record/61718/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061718 909CO $$ooai:zaguan.unizar.es:61718$$particulos$$pdriver
000061718 951__ $$a2019-07-09-11:39:30
000061718 980__ $$aARTICLE